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Abstract

We prove some regularity results for the pullback attractor of a non-
autonomous SIR model with diffusion in a bounded domain Ω of Rd where
d ≥ 1. We show a regularity result for the unique solution of the prob-
lem. We establish a general result about H2(Ω)3-boundedness of invariant
sets for the associate evolution process. Then, as a consequence, we de-
duce that the pullback attractor of the non-autonomous system of SIR
equations with diffusion is bounded in H2 (Ω)3.

Keywords: SIR epidemic model with diffusion; nonautonomous dynamical
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1 Introduction and setting of the problem

The emerging and reemerging diseases have led to a revived interest in infectious
diseases. Mathematical models have become important tools in analyzing the
spread and control of infectious diseases. Mathematical epidemiology seems to
have grown exponentially starting in the middle of the 20th century (the first
edition in 1957 of Bailey’s book [5] is an important landmark), so that a tremen-
dous variety of models have now been formulated, mathematically analyzed, and
applied to infectious diseases.

The SIR model for the transmission of infectious diseases, which was in-
troduced by Kermack and McKendrick [13] in 1927, is one of the fundamental
models of mathematical epidemiology [1, 6]. Its classical form involves a system
of autonomous ordinary differential equations for three classes, the susceptibles
S, infectives I and recovereds R, of a constant total population.

There is a strong biological motivation to include time-dependent terms into
epidemiological models, for instance temporally varying forcing is typical of
seasonal variation of a disease [12, 20]. Recently, nonautonomous versions of
the SIR model and related epidemic systems for which the total population
may vary in time have been investigated [11, 14, 15, 17, 22, 23].
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We consider a classical and well-known model from mathematical epidemiol-
ogy in the form of the SIR equations (cf., e.g., [14, 16]), with diffusion, in which
a temporal forcing term is considered.

Let us introduce the model we will be involved with in this paper. Let Ω ⊂
Rd, where d ≥ 1, be a bounded domain with a smooth boundary ∂Ω.

We consider the following problem for a temporally-forced SIR model with
diffusion

∂S

∂t
−∆S = aq(t)− aS + bI − γ SI

N ,

∂I

∂t
−∆I = −(a+ b+ c)I + γ SI

N ,

∂R

∂t
−∆R = cI − aR,


(1)

where
N(t) = S(t) + I(t) +R(t),

with the Dirichlet boundary condition

S(x, t) = I(x, t) = R(x, t) = 0 on ∂Ω× (t0,+∞) (2)

and initial condition

S(x, t0) = S0(x), I(x, t0) = I0(x), R(x, t0) = R0(x) for x ∈ Ω, (3)

where t0 ∈ R and the parameters a, b, c and γ are positive constants such that
γ + b

2 + c
2 < λ1, where λ1 > 0 is the first eigenvalue of the negative Laplacian.

The temporal forcing term is given by a continuous function q : R → R taking
positive bounded values, i.e. q(t) ∈ [q−, q+] for all t ∈ R where 0 < q− ≤ q+,
such that q′ ∈ L2

loc

(
R;L2 (Ω)

)
.

Before to continue with the setting of the problem, let us introduce some
notation that will be useful in the sequel. L2 (Ω) denotes the space of square in-
tegrable real valued functions defined on Ω with the norm |·|L2(Ω) corresponding
to the scalar product defined

(u, v) =

∫
Ω

u · vdx

for all u, v ∈ L2 (Ω), while H1
0 (Ω) denotes the space of such functions satis-

fying the Dirichlet boundary condition that have square integrable generalized
derivatives with the scalar product

((u, v)) := (∇u,∇v) =

∫
Ω

∇u · ∇vdx

for all u, v ∈ H1
0 (Ω) and the norm ||·|| := |∇·|L2(Ω). We will denote by 〈·, ·〉 the

duality product between H−1 (Ω) and H1
0 (Ω).
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In addition, X3 denotes the space of functions (u1, u2, u3) ∈ L2 (Ω)
3

with
the scalar product

((u1, u2, u3), (v1, v2, v3)) = (u1, v1) + (u2, v2) + (u3, v3) ,

and norm

|(u1, u2, u3)|L2(Ω) = |u1|L2(Ω) + |u2|L2(Ω) + |u3|L2(Ω)

for all (u1, u2, u3),(v1, v2, v3) ∈ X3, while Y3 denotes the space of functions

(u1, u2, u3) ∈ H1
0 (Ω)

3
with the scalar product

(((u1, u2, u3), (v1, v2, v3))) = ((u1, v1)) + ((u2, v2)) + ((u3, v3)) ,

and norm
||(u1, u2, u3)|| = ||u1||+ ||u2||+ ||u3||

for all (u1, u2, u3),(v1, v2, v3) ∈ Y3. Finally, let X+
3 be the subspace of non-

negative functions in X3 and Y +
3 be the subspace of non-negative functions in

Y3. We will denote the subspace of non-negative functions in H2 (Ω)
3

by Z+
3 .

In Anguiano and Kloeden [3] we discussed several issues concerning problem
(1)-(3). We first proved the existence and uniqueness of positive solutions of
(1)-(3) for initial data in X+

3 . The globally defined nonnegative solutions of (1)–
(3) generate a nonautonomous 2-parameter semigroup or process in the Banach
space X+

3 , i.e., a family of mappings Ut,t0 : X+
3 → X+

3 with t ≥ t0 in R satisfying

Ut0,t0x = x, Ut,t0x = Ut,r ◦ Ur,t0x

for all t0 ≤ r ≤ t and x ∈ X+
3 . In [3, Proposition 1] we established that the

2-parameter family of mappings Ut,t0 : X+
3 → X+

3 , t0 ≤ t, given by

Ut,t0(S0, I0, R0) = (S(t), I(t), R(t)),

where (S(t), I(t), R(t)) is the unique positive solution of (1)–(3) with the initial
value (S0, I0, R0) defines a continuous process on X+

3 . Then, we studied the
asymptotic behavior of this process in the framework of pullback attractors.
Recall that a pullback attractor for the process U (e.g., cf. [7, 8, 9]) in the space
X+

3 is a family A = {A(t), t ∈ R} of nonempty compact subsets of X+
3 , which

is invariant in the sense that

Ut,t0A(t0) = A(t) for all t ≥ t0

and pullback attracts bounded subsets D of X+
3 , i.e.,

distX+
3

(Ut,t0D,A(t))→ 0 as t0 → −∞,

where we denote by distX+
3

(O1,O2) the Hausdorff semi-distance in X+
3 between

two sets O1 and O2, defined as

distX+
3

(O1,O2) = sup
x∈O1

inf
y∈O2

dX+
3

(x, y) for O1, O2 ⊂ X+
3 .
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Namely, in [3, Theorem 6.2.] we establish that the process Ut,t0 has a unique
pullback attractor.

However, as far as we know, there are no results in the literature concerning
regularity of the pullback attractor as we will consider in this paper (for similar
results for the reaction-diffusion equations see [2, 4], and for the Navier-Stokes
equations see [10]). The regularity results on the solutions and the attractors
(that we obtain here) might be useful in the future in order to implement new
methods to seek solutions of more general problems by different arguments, to
gain attraction in higher norms, or for numerical purposes.

The structure of the paper is as follows. In Section 2 we establish a regularity
result for the unique positive solution to problem (1)-(3). In Section 3 we prove
some results which, in particular, imply that, under suitable assumptions, the
pullback attractor A for Ut,t0 satisfies that A(t) is a bounded subset of Z+

3 ∩Y
+
3 ,

for every t ∈ R.

2 A regularity result

In this section, we prove a regularity result for the positive solution to (1)-(3),
whose existence and uniqueness are guaranteed in [3].

Let A : H1
0 (Ω)→H−1(Ω) be the linear operator associated with the negative

Laplacian. The operator A is symmetric, coercive and continuous. Since the
space H1

0 (Ω) is included in L2(Ω) with compact injection, as a consequence of
the Hilbert-Schmidt Theorem there exists a nondecreasing sequence 0 < λ1 ≤
λ2 ≤ . . . of eigenvalues of A with zero Dirichlet boundary condition in Ω, with
limj→∞ λj = +∞ and there exists an orthonormal basis of Hilbert {wj : j ≥ 1}
of L2(Ω) and orthogonal in H1

0 (Ω) with Vn := span {wj : 1 ≤ j ≤ n} densely
embedded in H1

0 (Ω), such that

Awj = λjwj for all j ≥ 1.

For each integer n ≥ 1, we denote by (Sn(t), In(t), Rn(t)) = (Sn(t; t0, S0),
In(t; t0, I0), Rn(t; t0, R0)) the Galerkin approximation of the solution (S(t; t0, S0),
I(t; t0, I0), R(t; t0, R0)) of (1)-(3), which is given by

Sn(t) =

n∑
j=1

γ1
nj(t)wj , In(t) =

n∑
j=1

γ2
nj(t)wj , Rn(t) =

n∑
j=1

γ3
nj(t)wj , (4)

and is the solution of

d

dt
(Sn(t), wj) = 〈∆Sn(t), wj〉+ (f1(Sn(t), In(t), Rn(t), t), wj) , ∀wj ∈ Vn (5)

d

dt
(In(t), wj) = 〈∆In(t), wj〉+ (f2(Sn(t), In(t), Rn(t), t), wj) , ∀wj ∈ Vn (6)

d

dt
(Rn(t), wj) = 〈∆Rn(t), wj〉+ (f3(Sn(t), In(t), Rn(t), t), wj) , ∀wj ∈ Vn (7)
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with initial data

(Sn(t0), wj) = (S0, wj) , (In(t0), wj) = (I0, wj) , (Rn(t0), wj) = (R0, wj) , (8)

for all wj ∈ Vn, where

γ1
nj(t) = (Sn(t), wj), γ2

nj(t) = (In(t), wj), γ3
nj(t) = (Rn(t), wj).

We denote

f1(Sn(t), In(t), Rn(t), t) := aq(t)− aSn(t) + bIn(t)− γ Sn(t)In(t)

Nn(t)
,

f2(Sn(t), In(t), Rn(t), t) := −(a+ b+ c)In(t) + γ
Sn(t)In(t)

Nn(t)
,

f3(Sn(t), In(t), Rn(t), t) := cIn(t)− aRn(t),

where Nn(t) = Sn(t) + In(t) +Rn(t).

Remark 1 It can be proved that Sn(t; t0, S0), In(t; t0, I0), Rn(t; t0, R0) ≥ 0 for
all t ≥ t0 (see, for instance, Theorem 2.1 from Chapter 5 in [19]).

On the other hand, if we denote

D(A) =
{
v ∈ H1

0 (Ω) : Av ∈ L2(Ω)
}

,

with the scalar product

(v, w)D(A) = (Av,Aw) ∀v, w ∈ D(A),

then D(A) is a Hilbert space, and D(A) is included in H1
0 (Ω) with continuous

and dense injection. Let D(A)+ be the subspace of non-negative functions in
D(A).

Remark 2 We note that if Ω ⊂ Rd is a bounded C2 domain, then we have that
D(A) = H2 (Ω)∩H1

0 (Ω), and moreover the norm induced by (·, ·)D(A) in D(A)

and the norm of H2 (Ω) are equivalent.

Next result gives some preliminary (and standard) uniform estimates for the
Galerkin approximations defined above. We include its proof for clarity since it
will be used in the sequel.

Lemma 3 Assume that γ + b
2 + c

2 < λ1 where λ1 is the first eigenvalue of the
operator A on the domain Ω with Dirichlet boundary condition. For any bounded
set B ⊂ X+

3 , consider (S0, I0, R0) ∈ B. Then, the sequence of corresponding
solutions to the Galerkin scheme (4)-(8) is bounded in L2(t0, T ;Y +

3 ) for all
T > t0.
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Proof. Multiplying by γ1
nj in (5), by γ2

nj in (6), by γ3
nj in (7) and summing

from j = 1 to n, we obtain

1

2

d

dr

(
|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω)

)
+‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

= (f1(Sn(r), In(r), Rn(r), r), Sn(r)) + (f2(Sn(r), In(r), Rn(r), r), In(r))

+ (f3(Sn(r), In(r), Rn(r), r), Rn(r)) . (9)

We have

(f1(Sn(r), In(r), Rn(r), r), Sn(r)) ≤ a

4
(q+)2 |Ω|+ (

b

2
+ γ) |Sn(r)|2L2(Ω)

+
b

2
|In(r)|2L2(Ω) , (10)

where(
Sn(r)In(r)

Nn(r)
, Sn(r)

)
≤
∫

Ω

∣∣∣∣ In(r, x)

Nn(r, x)

∣∣∣∣ |Sn(r, x)|2 dx ≤ |Sn(r)|2L2(Ω) ,

since |In/Nn| ≤ 1.
We deduce

(f2(Sn(r), In(r), Rn(r), r), In(r)) ≤ γ |In(r)|2L2(Ω) , (11)

since |Sn/Nn| ≤ 1 and we also obtain

(f3(Sn(r), In(r), Rn(r), r), Rn(r)) ≤ c

2
|In(r)|2L2(Ω) +

c

2
|Rn(r)|2L2(Ω) . (12)

Taking into account (10)-(12) in (9), we can deduce

1

2

d

dr

(
|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω)

)
+‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

≤ a

4
(q+)2 |Ω|+

(
b+ c

2
+ γ

)(
|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω)

)
.

By the Poincaré inequality, we have

d

dr

(
|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω)

)
(13)

+(2− λ−1
1 (b+ c+ 2γ))

(
‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

)
≤ a

2
(q+)2 |Ω| ,

provided γ + b
2 + c

2 < λ1.
Integrating between t0 and T , the result follows.
Now we may establish a regularity result for the solution to the problem.

Theorem 4 Suppose that Ω ⊂ Rd is a bounded C2 domain and assume that
γ+ b

2 + c
2 < λ1 where λ1 is the first eigenvalue of the operator A on the domain Ω

with Dirichlet boundary condition. Then, for any initial condition (S0, I0, R0) ∈
Y +

3 , the solution to (1)-(3), whose existence and uniqueness are guaranteed in
[3], satisfies in addition that (S, I,R) ∈ C

(
[t0, T ];Y +

3

)
∩ L2

(
t0, T ; (D(A)+)3

)
,

for all T > t0.
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Proof. Let (S0, I0, R0) ∈ Y +
3 , and we consider the basis of Hilbert {wj : j ≥ 1}

of L2(Ω) formed by the eigenfunctions associated with eigenvalues of the opera-
tor A with zero Dirichlet boundary condition in Ω. It is not difficult to conclude
that wj ∈ D(A).

For each integer n ≥ 1, we consider the sequence {(Sn, In, Rn)} defined by
(4)-(8).

Multiplying by the derivative (γ1
nj)
′ in (5), by the derivative (γ2

nj)
′ in (6),

by the derivative (γ3
nj)
′ in (7) and summing from j = 1 to n,

|S′n(r)|2L2(Ω)+|I ′n(r)|2L2(Ω)+|R′n(r)|2L2(Ω)+
1

2

d

dr

(
‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

)
= (f1(Sn(r), In(r), Rn(r), r), S′n(r)) + (f2(Sn(r), In(r), Rn(r), r), I ′n(r))

+ (f3(Sn(r), In(r), Rn(r), r), R′n(r)) . (14)

We obtain

(f1(Sn(r), In(r), Rn(r), r), S′n(r)) ≤ a2(q+)2 |Ω|+ 1

2
|S′n(r)|2L2(Ω) (15)

+ 3(a2+γ2) |Sn(r)|2L2(Ω)+3b2 |In(r)|2L2(Ω),

where (
γ
Sn(r)In(r)

Nn(r)
, S′n(r)

)
≤
∫

Ω

γ

∣∣∣∣ In(r, x)

Nn(r, x)

∣∣∣∣ |Sn(r, x)| |S′n(r, x)| dx

≤ 3γ2 |Sn(r)|2L2(Ω) +
1

12
|S′n(r)|2L2(Ω) ,

since |In/Nn| ≤ 1.
We have

(f2(Sn(r), In(r), Rn(r), r), I ′n(r)) ≤ ((a+b+c)2+γ2) |In(r)|2L2(Ω) (16)

+
1

2
|I ′n(r)|2L2(Ω),

since |Sn/Nn| ≤ 1.
We also obtain

(f3(Sn(r),In(r),Rn(r),r), R′n(r)) ≤ 1

2
|R′n(r)|2L2(Ω) + c2 |In(r)|2L2(Ω) (17)

+ a2 |Rn(r)|2L2(Ω) .

Taking into account (15)-(17) in (14), we have

|S′n(r)|2L2(Ω)+|I ′n(r)|2L2(Ω)+|R′n(r)|2L2(Ω)+
d

dr

(
‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

)
≤ 2a2(q+)2 |Ω|+ k1

(
|Sn(r)|2L2(Ω) + |In(r)|2L2(Ω) + |Rn(r)|2L2(Ω)

)
(18)

for an appropriate positive constant k1.
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Integrating now between t0 and t, we obtain∫ t

t0

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω) + |R′n(θ)|2L2(Ω)

)
dθ+‖Sn(t)‖2+‖In(t)‖2+‖Rn(t)‖2

≤ ‖S0‖2 + ‖I0‖2 + ‖R0‖2 + 2a2(q+)2 |Ω| (t− t0)

+ k1

∫ t

t0

(
|Sn(θ)|2L2(Ω)+|In(θ)|2L2(Ω) + |Rn(θ)|2L2(Ω)

)
dθ. (19)

Using the Poincaré inequality in (13) and integrating between t0 and t, in
particular, we obtain∫ t

t0

(
|Sn(θ)|2L2(Ω)+|In(θ)|2L2(Ω)+|Rn(θ)|2L2(Ω)

)
dθ (20)

≤ C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)+

a

2
(q+)2 |Ω| (t− t0)

)
, ∀n ≥ 1,

where C(λ1, b, c, γ) := (2λ1 − b− c− 2γ)−1.
Taking into account (20) in (19), we deduce∫ t

t0

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω)+|R′n(θ)|2L2(Ω)

)
dθ+‖Sn(t)‖2+‖In(t)‖2+‖Rn(t)‖2

≤
(
1 + k1λ

−1
1 C

) (
‖S0‖2 + ‖I0‖2 + ‖R0‖2

)
+ (q+)2 |Ω| (t− t0)(2a2 +

a

2
k1C),

for all t0 ≤ t.
It follows that {(Sn, In, Rn)} is bounded in L∞

(
t0, T ;Y +

3

)
and {S′n, I ′n, R′n}

is bounded in L2 (t0, T ;X3), for all T > t0.
Taking into account the uniqueness of solution, it is not difficult to conclude

that the sequence {(Sn, In, Rn)} converges weakly-star in L∞
(
t0, T ;Y +

3

)
to the

solution (S, I,R) of (1)-(3), and we also obtain that (S′, I ′, R′) ∈ L2 (t0, T ;X3).
Now, we will see that the Galerkin sequence {(Sn, In, Rn)} is bounded in

L2
(
t0, T ; (D(A)+)3

)
, and in which case we will have that (S, I,R) ∈

L2
(
t0, T ; (D(A)+)3

)
.

As (S, I,R) ∈ L∞
(
t0, T ;Y +

3

)
and (S′, I ′, R′) ∈ L2 (t0, T ;X3), by Theorem

2.1 in [21], we can deduce that (S, I,R) ∈ C
(
[t0, T ] ;Y +

3

)
.

To prove that the sequence {(Sn, In, Rn)} is bounded in L2
(
t0, T ; (D(A)+)3

)
,

multiplying in (5) by λjγ
1
nj , in (6) by λjγ

2
nj and in (7) by λjγ

3
nj , where λj is

the eigenvalue associated to the eigenfunction wj , and summing once more from
j = 1 to n, we have

(S′n(r),∆Sn(r)) + (I ′n(r),∆In(r)) + (R′n(r),∆Rn(r)) (21)

= |∆Sn(r)|2L2(Ω) + |∆In(r)|2L2(Ω) + |∆Rn(r)|2L2(Ω)

+ (f1(Sn(r), In(r), Rn(r), r),∆Sn(r)) + (f2(Sn(r), In(r), Rn(r), r),∆In(r))

+ (f3(Sn(r), In(r), Rn(r), r),∆Rn(r)) .
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We obtain

− (f1(Sn(r), In(r), Rn(r), r),∆Sn(r)) ≤ 2a2(q+)2 |Ω|+ 1

2
|∆Sn(r)|2L2(Ω) (22)

+ 2(a2+γ2)|Sn(r)|2L2(Ω)+2b2|In(r)|2L2(Ω)

where (
γ
Sn(r)In(r)

Nn(r)
,∆Sn(r)

)
≤
∫

Ω

γ

∣∣∣∣ In(r, x)

Nn(r, x)

∣∣∣∣ |Sn(r, x)| |∆Sn(r, x)| dx

≤ 2γ2 |Sn(r)|2L2(Ω) +
1

8
|∆Sn(r)|2L2(Ω) ,

since |In/Nn| ≤ 1 and similarly, we have

− (f2(Sn(r), In(r), Rn(r), r),∆In(r)) ≤ 1

2
|∆In(r)|2L2(Ω) (23)

+ ((a+ b+ c)2 + γ2) |In(r)|2L2(Ω) ,

since |Sn/Nn| ≤ 1.
We also obtain

− (f3(Sn(r), In(r), Rn(r), r),∆Rn(r)) ≤ 1

2
|∆Rn(r)|2L2(Ω)+c2 |In(r)|2L2(Ω) (24)

+ a2 |Rn(r)|2L2(Ω) .

Taking into account (22)-(24) in (21), we have

d

dr

(
‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

)
+|∆Sn(r)|2L2(Ω)+|∆In(r)|2L2(Ω)+|∆Rn(r)|2L2(Ω)

≤ 4a2(q+)2 |Ω|+ 2λ−1
1 k2

(
‖Sn(r)‖2 + ‖In(r)‖2 + ‖Rn(r)‖2

)
,

for all r ≥ t0 and for an appropriate positive constant k2.
Finally, integrating the last inequality between t0 and T , and taking into

account that {(Sn, In, Rn)} is bounded in L∞
(
t0, T ;Y +

3

)
, we can deduce that

{(Sn, In, Rn)} is also bounded in L2
(
t0, T ; (D(A)+)3

)
.

Taking into account the uniqueness of solution of (1)-(3) and using Lemma
3, it is not difficult to conclude the following remark.

Remark 5 Under the assumptions in Theorem 4, for any initial condition
(S0, I0, R0) ∈ X+

3 , the solution (S, I,R) of (1)-(3) satisfies

(S, I,R) ∈ L2(t0, T ;Y +
3 ),

for all T > t0.

As a consequence of Theorem 4 and Remark 5, we can now establish the fol-
lowing result.

Theorem 6 Under the assumptions in Theorem 4, for any initial condition
(S0, I0, R0) ∈ X+

3 , the solution (S, I,R) of (1)-(3) satisfies

(S, I,R) ∈ C
(
(t0, T ] ;Y +

3

)
,

for all T > t0.
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3 H2-boundedness of invariants sets

In this section we will prove that under suitable assumptions, every family of
bounded subsets of X+

3 which is invariant for the process U , is in fact bounded
in Z+

3 .
First, we recall a lemma (see [18]) which is necessary for the proof of our

result.

Lemma 7 Let X,Y be Banach spaces such that X is reflexive, and the in-
clusion X ⊂ Y is continuous. Assume that {un} is a bounded sequence in
L∞(t0, T ;X) such that un ⇀ u weakly in Lq(t0, T ;X) for some q ∈ [1,+∞)
and u ∈ C0([t0, T ];Y ).

Then, u(t) ∈ X for all t ∈ [t0, T ] and

‖u(t)‖X ≤ sup
n≥1
‖un‖L∞(t0,T ;X) ∀t ∈ [t0, T ].

We first prove the following result

Proposition 8 Assume the assumptions in Theorem 4. Then, for any bounded
set B ⊂ X+

3 , any t0 ∈ R, any ε > 0 and any t > t0 + ε, the set {(Sn(r; t0, S0),
In(r; t0, I0), Rn(r; t0, R0)) : r ∈ [t0+ε, t], (S0, I0, R0) ∈ B, n ≥ 1}, is a bounded
subset of Y +

3 .

Proof. Let us fix a bounded set B ⊂ X+
3 , t0 ∈ R, ε > 0, t > t0 + ε, and

(S0, I0, R0) ∈ B.
Integrating (18) between s ∈ [t0, r] and r ≤ t, we obtain∫ r

s

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω)+|R′n(θ)|2L2(Ω)

)
dθ +‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

≤ ‖Sn(s)‖2 + ‖In(s)‖2 + ‖Rn(s)‖2 + 2a2(q+)2 |Ω| (t− t0)

+ k1

∫ t

t0

(
|Sn(θ)|2L2(Ω)+|In(θ)|2L2(Ω) + |Rn(θ)|2L2(Ω)

)
dθ.

Using (20), we have∫ r

s

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω)+|R′n(θ)|2L2(Ω)

)
dθ+‖Sn(r)‖2+‖In(r)‖2+‖Rn(r)‖2

≤ ‖Sn(s)‖2 + ‖In(s)‖2 + ‖Rn(s)‖2 + (q+)2 |Ω| (t− t0)(2a2 +
a

2
k1C)

+ k1C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
, (25)

for all s ∈ [t0, r], and any r ∈ [t0, t].
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Integrating in this last inequality with respect to s from t0 to r, we, in
particular, obtain

(r − t0)
(
‖Sn(r)‖2 + ‖In(r)‖2 + ‖Rn(r)‖2

)
(26)

≤
∫ t

t0

(
‖Sn(s)‖2+‖In(s)‖2+‖Rn(s)‖2

)
ds+(q+)2 |Ω| (t− t0)2(2a2+

a

2
k1C)

+ k1C
(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
(t− t0).

for all r ∈ [t0, t], and for any n ≥ 1.
Now, integrating (13) between t0 and r, we obtain

|Sn(r)|2L2(Ω)+|In(r)|2L2(Ω)+|Rn(r)|2L2(Ω) (27)

+ (2− λ−1
1 (b+ c+ 2γ))

∫ r

t0

(
‖Sn(s)‖2+‖In(s)‖2+‖Rn(s)‖2

)
ds

≤ |S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)+
a

2
(q+)2 |Ω| (t− t0),

for all r ∈ [t0, t], n ≥ 1.
From (26) and (27), our result holds.

Corollary 9 Under the assumptions in Proposition 8, for any bounded set B ⊂
X+

3 , any t0 ∈ R, any ε > 0, and any t > t0 + ε, the set
⋃

r∈[t0+ε,t]

Ur,t0B is a

bounded subset of Y +
3 .

Proof. This is a straightforward consequence of Lemma 7, Proposition 8 and the
fact that the Galerkin sequence (Sn(·; t0, S0), In(·; t0, I0), Rn(·; t0, R0)) converges
weakly to the unique solution to (1)-(3) (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0)) in
L2(t0, t;Y

+
3 ).

Proposition 10 Under the assumptions in Proposition 8, suppose moreover
that q′ ∈ L2

loc

(
R;L2 (Ω)

)
. Then, for any bounded set B ⊂ X+

3 , any t0 ∈ R, any
ε > 0, and any t > t0 + ε, the set {(Sn(r; t0, S0), In(r; t0, I0), Rn(r; t0, R0)) :
r ∈ [t0 + ε, t], (S0, I0, R0) ∈ B, n ≥ 1} is a bounded subset of Z+

3 .

Proof. Let us fix a bounded set B ⊂ X+
3 , t0 ∈ R, ε > 0, t > t0 + ε, and

(S0, I0, R0) ∈ B.
As we are assuming that q′ ∈ L2

loc

(
R;L2 (Ω)

)
, we can differentiate with

respect to time in (5), and then, multiplying by (γ1
nj)
′, and summing from

j = 1 to n, we obtain

1

2

d

dr

(
|S′n(r)|2L2(Ω)

)
+‖S′n(r)‖2

=

(
aq′(r)− aS′n(r)+bI ′n(r)−γ

(
Sn(r)In(r)

Nn(r)

)′
, S′n(r)

)
. (28)
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Now, we differentiate with respect to time in (6), and then, multiplying by
(γ2

nj)
′, and summing from j = 1 to n, we have

1

2

d

dr

(
|I ′n(r)|2L2(Ω)

)
+‖I ′n(r)‖2=

(
−(a+b+c)I ′n(r)+γ

(
Sn(r)In(r)

Nn(r)

)′
, I ′n(r)

)
. (29)

On the other hand, we differentiate with respect to time in (7), and then, mul-
tiplying by (γ3

nj)
′, and summing from j = 1 to n, we obtain

1

2

d

dr

(
|R′n(r)|2L2(Ω)

)
+ ‖R′n(r)‖2 = (cI ′n(r)− aR′n(r), R′n(r)) . (30)

We observe that(
Sn(r)In(r)

Nn(r)

)′
= S′n(r)

In(r)

Nn(r)
+
Sn(r)

Nn(r)
I ′n(r)− Sn(r)In(r)

N2
n(r)

N ′n(r). (31)

Using (31) we obtain(
aq′(r)− aS′n(r) + bI ′n(r)− γ

(
Sn(r)In(r)

Nn(r)

)′
, S′n(r)

)
(32)

≤ 1

2
a |q′(r)|2L2(Ω) +

1

2
(a+ 7γ + b) |S′n(r)|2L2(Ω)

+ (γ +
b

2
) |I ′n(r)|2L2(Ω) +

γ

2
|R′n(r)|2L2(Ω)

where(
γ

(
Sn(r)In(r)

Nn(r)

)′
, S′n(r)

)
≤ 7γ

2
|S′n(r)|2L2(Ω) + γ |I ′n(r)|2L2(Ω) +

γ

2
|R′n(r)|2L2(Ω) ,

since |In/Nn| , |Sn/Nn| ≤ 1 and similarly, we have(
−(a+ b+ c)I ′n(r) + γ

(
Sn(r)In(r)

Nn(r)

)′
, I ′n(r)

)
(33)

≤ γ |S′n(r)|2L2(Ω) +
7γ

2
|I ′n(r)|2L2(Ω) +

γ

2
|R′n(r)|2L2(Ω) .

We also obtain

(cI ′n(r)− aR′n(r), R′n(r)) ≤ c

2
|I ′n(r)|2L2(Ω) +

c

2
|R′n(r)|2L2(Ω) . (34)

Taking into account (32) in (28), (33) in (29) and (34) in (30), we have

1

2

d

dr

(
|S′n(r)|2L2(Ω)+|I ′n(r)|2L2(Ω)+|R′n(r)|2L2(Ω)

)
+‖S′n(r)‖2+‖I ′n(r)‖2+‖R′n(r)‖2

≤ 1

2
a |q′(r)|2L2(Ω) + k3

(
|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω)

)
,
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for an appropriate positive constant k3.
In particular, integrating in the last inequality, it follows

|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω)

≤ |S′n(s)|2L2(Ω) + |I ′n(s)|2L2(Ω) + |R′n(s)|2L2(Ω) + a

∫ t

t0+ε/2

|q′(θ)|2L2(Ω) dθ

+ 2k3

∫ t

t0+ε/2

(
|S′n(θ)|2L2(Ω) + |I ′n(θ)|2L2(Ω) + |R′n(θ)|2L2(Ω)

)
dθ,

for all t0 + ε/2 ≤ s ≤ r ≤ t.
Now, integrating with respect to s between t0 + ε/2 and r,

(r − t0 − ε/2)
(
|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω)

)
≤ [2k3(t−t0−ε/2)+1]

∫ t

t0+ε/2

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω)+|R′n(θ)|2L2(Ω)

)
dθ

+ (r − t0 − ε/2)a

∫ t

t0+ε/2

|q′(θ)|2L2(Ω) dθ,

for all t0 + ε/2 ≤ r ≤ t, and, in particular,

|S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω) (35)

≤ 2ε−1[2k3(t−t0−ε/2)+1]

∫ t

t0+ε/2

(
|S′n(θ)|2L2(Ω)+|I ′n(θ)|2L2(Ω)+|R′n(θ)|2L2(Ω)

)
dθ

+ a

∫ t

t0+ε/2

|q′(θ)|2L2(Ω) dθ,

for all r ∈ [t0 + ε, t].

On the other hand, taking into account (22)-(24) in (21), we have

1

4

(
|∆Sn(r)|2L2(Ω) + |∆In(r)|2L2(Ω) + |∆Rn(r)|2L2(Ω)

)
(36)

≤ |S′n(r)|2L2(Ω) + |I ′n(r)|2L2(Ω) + |R′n(r)|2L2(Ω) + 2a2(q+)2 |Ω|

+ k2

(
|Sn(r)|2L2(Ω) + |In(r)|2L2(Ω) + |Rn(r)|2L2(Ω)

)
,

for all r ≥ t0.
Finally, observe that by (25)∫ t

t0+ε/2

(
|S′n(θ)|2L2(Ω) + |I ′n(θ)|2L2(Ω) + |R′n(θ)|2L2(Ω)

)
dθ (37)

≤ ‖Sn(t0 + ε/2)‖2 + ‖In(t0 + ε/2)‖2 + ‖Rn(t0 + ε/2)‖2

+ (q+)2 |Ω| (t− t0)(2a2 +
a

2
k1C) + k1C

(
|S0|2L2(Ω)+|I0|2L2(Ω)+|R0|2L2(Ω)

)
.
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The result is a direct consequence of Proposition 8 and estimates (35), (36)
and (37).

Corollary 11 Under the assumptions of Proposition 10, for any bounded set

B ⊂ X+
3 , any t0 ∈ R, any ε > 0, and any t > t0 + ε, the set

⋃
r∈[t0+ε,t]

Ur,t0B is

a bounded subset of Z+
3 .

Proof. This follows from Lemma 7, propositions 8 and 10, and the facts that the
sequence (Sn(·; t0, S0), In(·; t0, I0), Rn(·; t0, R0)) converges weakly to the unique
solution to (1)-(3) (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0)) in L2(t0, t; (D(A)+)3) (see
Lemma 3 and propositions 8 and 10) and that (S(·; t0, S0), I(·; t0, I0), R(·; t0, R0))
∈ C([t0 + ε, t];Y +

3 ) (see Theorem 6).
As a direct consequence of the above results, we can now establish our main

result.

Theorem 12 Under the assumptions in Proposition 10, if A = {A(t) : t ∈ R}
is a family of bounded subsets of X+

3 , such that Ut,t0A(t0) = A(t) for any t0 ≤ t,
then for any T1 < T2, the set

⋃
t∈[T1,T2]

A(t) is a bounded subset of Z+
3 ∩ Y

+
3 .
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