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Abstract. We undertake a study on the maximum value of the difference between
the metric dimension and the determining number of a graph as a function of its order.
Our results include lower and upper bounds on that maximum, and exact compu-
tations when restricting to some specific families of graphs. Although our technique
is mainly based on locating-dominating sets, it also requires very diverse tools and
relationships with well-known objects in graph theory; among them: a classical result
in graph domination by Ore, a Ramsey-type result by ErdHos and Szekeres, a polyno-
mial time algorithm to compute distinguishing sets and dominating sets of twin-free
graphs, k-dominating sets, and matchings.
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1 Introduction and preliminaries

In this paper we focuss on two graph parameters that have attracted much
attention in recent years: the determining number and the metric dimension.
Concretely, we deal with the following question proposed by Boutin [2]: Can
the difference between the determining number and the metric dimension of a
graph be arbitrarily large? We begin with some definitions and notations.

Let G be a finite, connected, undirected, and simple graph2. The stabilizer
of a set S ⊆ V (G) is Stab(S) = {φ ∈ Aut(G) : φ(u) = u,∀u ∈ S}, and S is a

? The first and second authors are partially supported by projects 2010/FQM-164 and
2011/FQM-164. The third author is partially supported by the ESF EUROCORES pro-
gramme EuroGIGA ComPoSe IP04 MICINN Project EUI-EURC-2011-4306, and projects
2010/FQM-164 and 2011/FQM-164.

2 The vertex set and the edge set of G are denoted by V (G) and E(G), respectively; the
order of G is n = |V (G)|. As usual, G denotes the complement of G. An automorphism
of G is a bijective mapping of V (G) onto itself such that f(u)f(v) ∈ E(G) if and only if
uv ∈ E(G). The automorphism group of G is written as Aut(G), and its identity element
is idG. The distance d(u, v) between two vertices u and v is the length of a shortest u-v
path. Finally, we write N(u) for the open neighbourhood of a vertex u ∈ V (G).



342 D. Garijo, A. González, and A. Márquez

determining set of G if Stab(S) is trivial. The minimum cardinality of a deter-
mining set is the determining number of G, denoted by Det(G). On the other
hand, a vertex u ∈ V (G) resolves a pair {x, y} ⊆ V (G) if d(u, x) 6= d(u, y).
When every pair of vertices of G is resolved by some vertex in S, it is said
that S is a resolving set of G. The minimum cardinality of a resolving set is
the metric dimension of G, written as dim(G).

Determining sets of graphs are particular cases of bases of permutation
groups, defined by Sims [9] in 1971 as subsets of elements whose stabilizer is
trivial. Much later, Boutin [2] and Erwin and Harary [5] used the terms deter-
mining set and fixing set, respectively, to refer to a base of the automorphism
group of a graph. Also in the 1970s, Harary and Melter [7], and independently
Slater [8], introduced the notion of resolving set. For more references on these
topics, we refer the reader to the survey of Bailey and Cameron [1].

The above-mentioned question posed by Boutin comes from the fact that
every resolving set of a graph G is also a determining set, and so Det(G) ≤
dim(G) (see [2,5]). To study this question, we define the function (dim −
Det)(n) as the maximum value of dim(G)−Det(G) over all graphs G of order
n, and develop a technique based on locating-dominating sets, whose definition
(recalled from [11]) is provided below. The following result, written in terms
of our function, is the best approach to date on the problem.

Proposition 1. [3] For every n ≥ 8,

b2
5
nc − 2 ≤ (dim−Det)(n) ≤ n− 2.

A pair {x, y} ⊆ V (G) is distinguished by a vertex u ∈ V (G) if either
u ∈ {x, y} or N(x)∩{u} 6= N(y)∩{u}, and a set D ⊆ V (G) is a distinguishing
set of G if every pair of V (G) is distinguished by some vertex in D. If D is
also a dominating set, i.e., N(x) ∩D 6= ∅ for every x ∈ V (G) \D, then D is
a locating-dominating set. The minimum cardinality of a locating-dominating
set is the locating-domination number of G, denoted by λ(G).

Note that distinguishing sets and locating-dominating sets are in essence
the same concept: one can easily check that every distinguishing set becomes
a dominating set by adding at most one vertex. Thus,

Remark 1. Let D be a distinguishing set of a graph G. Then, λ(G) ≤ |D|+ 1.

Every locating-dominating set is clearly a resolving set, and so Det(G) ≤
dim(G) ≤ λ(G) for any graph G. Let (λ−Det)(n) and λ(n) be the maximum
values of, respectively, λ(G)−Det(G) and λ(G) over all graphs G of order n.
Obviously,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ(n).

The function λ(n) equals n−1 (attained by the complete graph Kn) but the
non-trivial restriction of this function to the class C∗ of twin-free graphs (i.e.,
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graphs that do not contain twin vertices) denoted by λ|C∗ (n) is fundamental
in this work.

The paper is organized as follows. In Section 2, we provide lower bounds
on the functions (dim−Det)(n) and (λ−Det)(n) by constructing appropriate
families of graphs. Section 3 establishes first that (dim − Det)(n) and (λ −
Det)(n) are bounded above by λ|C∗ (n) and then provides two upper bounds
on this last function. The first bound is obtained by combining a variant of
a classical theorem in domination theory due to Ore [8] and a Ramsey-type
result of ErdHos and Szekeres [4]. The second upper bound on λ|C∗ (n) comes
from a greedy algorithm to compute distinguishing sets and determining sets
of bounded size, which in addition gives an upper bound on the determining
number of a twin-free graph. In Section 4, we study the functions (dim −
Det)(n) and (λ − Det)(n) restricted to the class C4 of graphs not containing
the cycle C4 as a subgraph, and its subclass T of trees. For this purpose,
we use two well-known invariants of graphs: the k-domination number and
the matching number. We conclude in Section 5 with some remarks and open
problems.

2 Lower bounds on (dim−Det)(n) and (λ−Det)(n)

Cáceres et al. [3] used the wheel graph W1,n to obtain the lower bound on
(dim − Det)(n) given in Proposition 1. In order to get a better approach,
we construct two adequate families of graphs that, in addition, give a lower
bound on the function (λ−Det)(n).

Let Tr, r ≥ 6, be a tree that consists of a path (u1, ..., ur) and a pendant
vertex u0 adjacent to u3, and let Gr be the corona product Tr ◦ K1, i.e.,
the graph with vertex set V (Gr) = {u0, u1, ..., ur, v0, v1, ..., vr} and edge set
E(Gr) = E(Tr) ∪ {uivi : i ∈ {0, 1, ..., r}}. By adding another pendant vertex
v′0 to u0 in Gr we obtain the graph Hr (see Figure 1).

u1 u2 u3 u4 u5 ur−2 ur−1 ur

u0

v1 v2 v3 v4 v5 vr

v0

vr−2 vr−1

u1 u2 u3 u4 u5 ur−2 ur−1 ur

u0

v1 v2 v3 v4 v5 vr

v0

vr−2 vr−1

v′0

(a) (b)

Fig. 1: The graphs (a) Gr and (b) Hr.

The following lemma is the key tool to obtain lower bounds on the functions
(dim−Det)(n) and (λ−Det)(n).
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Lemma 1. For every r ≥ 6, the following statements hold:

(i) Det(Gr) = 0 and Det(Hr) = 1.
(ii) dim(Gr) = r and dim(Hr) = r + 1.

(iii) λ(Gr) = r + 1 and λ(Hr) = r + 2.

With this lemma in hand, one can prove that Gr, Hr, and their comple-
ments (for appropriate r) are the above-mentioned adequate families of graphs
which provide the following lower bounds.

Theorem 1. For every n ≥ 14,

(dim−Det)(n) ≥ bn
2
c − 1 and (λ−Det)(n) ≥ bn

2
c.

We shall exhibit large classes of graphs in which the restrictions of (dim−
Det)(n) and (λ−Det)(n) do not exceed n

2 . Thus, we believe that the preceding
bounds are in fact the exact values of our functions.

Conjecture 1. There exists a positive integer n0 such that, for every n ≥ n0,

(dim−Det)(n) = bn
2
c − 1 and (λ−Det)(n) = bn

2
c.

3 Upper bounds on (dim−Det)(n) and (λ−Det)(n)

In order to obtain explicit upper bounds on the functions (dim − Det)(n)
and (λ − Det)(n), our first step is to prove that they are bounded above
by λ|C∗ (n). To do this, we associate to every graph G a twin-free graph G̃,
from which one can extract locating-dominating sets of G. We then prove that
λ(G)−Det(G) ≤ λ(G̃), whose maximum taken over all graphs of order n leads
us to the desired inequality. This process comprises a complex machinery of
technical results that we omit for the sake of brevity.

Theorem 2. For every n ≥ 4,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n).

Theorems 4 and 2 give bn2 c ≤ λ|C∗ (n). Further, in [6] we find numerous
conditions for a twin-free graph G to satisfy λ(G) ≤ bn2 c (here we will indicate
only some of them). Thus, we believe that the following conjecture, which
implies most of Conjecture 1, is true.

Conjecture 2. There exists a positive integer n1 such that, for every n ≥ n1,

λ|C∗ (n) = bn
2
c.

In the following two subsections, we are concerned with obtaining upper
bounds on λ|C∗ (n) since, by Theorem 2, these are also bounds on the functions
(dim−Det)(n) and (λ−Det)(n).
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3.1 From minimal dominating sets to locating-dominating sets

A set D ⊆ V (G) is a minimal dominating set if no proper subset of D is a
dominating set of G. The following theorem, due to Ore [8], is one of the first
results in the field of graph domination. Theorem 4 below is a variant of this
result for twin-free graphs.

Theorem 3. [8] Let G be a graph without isolated vertices and let D ⊆ V (G)
be a minimal dominating set of G. Then, V (G) \D is a dominating set of G.

Theorem 4. Let G be a twin-free graph and let D ⊆ V (G) be a minimal
dominating set of G. Then, V (G) \D is a locating-dominating set of G.

The preceding theorem implies that minimal dominating sets of twin-free
graphs G provide bounds on λ(G). By showing that minimal dominating sets
can be constructed from independent sets and cliques of maximum size, we
reach the following corollary that supports Conjecture 2. Recall that the in-
dependence number α(G) and the clique number ω(G) are, respectively, the
maximum cardinality of an independent set and a clique of G.

Corollary 1. Let G be a twin-free graph. Then, λ(G) ≤ n−max{α(G), ω(G)−
1}. In particular, λ(G) ≤ n

2 when either α(G) ≥ n
2 or ω(G) ≥ n

2 + 1.

ErdHos and Szekeres [4] proved that every graph of order n contains either

a clique or an independent set of cardinality at least d log2 n
2 e. Applying this

result to Corollary 1, we obtain an upper bound on λ|C∗ (n) that, on account
of Theorem 2, improves significantly the upper bound of Proposition 1, due
to Cáceres et al. [3].

Corollary 2. For every n ≥ 4,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n) ≤ n− d log2 n

2
e+ 1.

3.2 A greedy algorithm for twin-free graphs

Our second upper bound on λ|C∗ (n), that is one of the main contributions of
this work, comes from a polynomial time algorithm that produces distinguish-
ing sets of twin-free graphs. In addition, this algorithm computes determining
sets of bounded size, and thus an upper bound on the determining number of
a twin-free graph. To present this algorithm, we first provide some notation.

For any set D ⊆ V (G), let us define a relation on V (G) given by u ∼D v
if and only if either u = v or {u, v} is distinguished by no vertex of D.
It is easy to check that this is an equivalence relation, and so we denote
by [u]D the set of vertices v ∈ V (G) such that u ∼D v. Thus, the sets D,
D1 = {u ∈ V (G) \ D : |[u]D| = 1} and D>1 = V (G) \ (D ∪ D1) form a
partition of V (G), where any of these sets may be empty.
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The following greedy algorithm gives a partition of V (G) into three sets
so that, combining them properly, one obtains distinguishing sets and deter-
mining sets of G of bounded size, as stated in Lemma 2 below.

Algorithm 1

Input: A twin-free graph G and a vertex u0 ∈ V (G).
Output: An appropriate partition of V (G) into three subsets A,B,C.

1 A← {u0}
2 B ← A1

3 C ← A>1

4 while ∃ u, x, y ∈ C such that [x]A = [y]A and [x]A∪{u} 6= [y]A∪{u} do
5 A← A ∪ {u}
6 B ← A1

7 C ← A>1

8 end
9 return A,B,C

Lemma 2. Let A,B,C be the sets obtained by application of Algorithm 1 to
a twin-free graph G and a vertex u0 ∈ V (G). Then, the following statements
hold:

(i) A ∪B, A ∪ C and B ∪ C are distinguishing sets of G.
(ii) A and B ∪ C are determining sets of G.

The pigeonhole principle ensures that one set among A ∪B,A ∪ C,B ∪ C
has cardinality at most b2

3nc. Then, by Lemma 2 and Remark 1, we obtain
the following theorem that improves the upper bound of Corollary 2, and
consequently the upper bound of Proposition 1 by Cáceres et al. [3].

Theorem 5. Let G be a twin-free graph of order n ≥ 4. Then,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n) ≤ b2
3
nc+ 1.

We want to point out that, this result and Theorem 4 give, as far as we
know, the best bounds on the function (dim−Det)(n).

By applying again the pigeonhole principle, one gets that either A or B∪C
has cardinality at most bn2 c and so, by Lemma 2, we obtain the following
bound on the determining number of a twin-free graph.

Theorem 6. Let G be a twin-free graph of order n ≥ 4. Then,

Det(G) ≤ bn
2
c.
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4 Restriction to specific families of graphs

Let (dim − Det)|C(n) and (λ − Det)|C(n) be the restrictions of our functions
to a class of graphs C. Here, we study these restrictions to the classes C4 and
T . To do this, we relate the locating-domination number to two well-known
graph parameters: the k-domination number and the matching number.

Given a positive integer k, a set D ⊆ V (G) is said to be a k-dominating
set if |N(x) ∩D| ≥ k for every x ∈ V (G) \D. The minimum cardinality of a
k-dominating set is the k-domination number of G, denoted by γk(G). On the
other hand, the matching number of G, written as α′(G), is the cardinality of
a maximum matching in G.

Let K2,k denote the class of graphs not containing K2,k as a (not necessarily
induced) subgraph (observe that K2,2 = C4). The following proposition gives
two bounds on the locating-domination number of a graph of K2,k in terms
of, respectively, its k-domination number and its matching number.

Proposition 2. For every G ∈ K2,k of order n ≥ 4, the following statements
hold:

(i) λ(G) ≤ γk(G).
(ii) λ(G) ≤ α′(G) whenever k = 2 and G ∈ C∗.

As an application of this proposition, we obtain the exact value of the
function (λ−Det)|C4 (n) and give bounds on (dim−Det)|C4 (n).

Theorem 7. For every n ≥ 49, it holds that

b2
7
nc ≤ (dim−Det)|C4 (n) ≤ bn

2
c and (λ−Det)|C4 (n) = bn

2
c.

Regarding the family of trees, Cáceres et al. [3] proved that (dim −
Det)|T (n) = Ω(

√
n). The following theorem provides the exact value of this

function (thereby closing the study initiated by those authors) and also the
value of (λ−Det)|T (n).

Theorem 8. For every n ≥ 49, it holds that

(dim−Det)|T (n) = b2
7
nc and (λ−Det)|T (n) = bn

2
c.

Observe that Theorems 7 and 8 also support Conjecture 2.

5 Concluding remarks

We develop a technique to study the function (dim − Det)(n) that involves
two other functions related to locating-dominating sets: (λ − Det)(n) and
λ|C∗ (n). This technique uses tools that go from results by Ore, and ErdHos
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and Szekeres to matchings, k-domination, and the design of a polynomial
time algorithm to obtain distinguishing sets and determining sets of twin-free
graphs. We want to stress that our technique requires many auxiliary results
that are of independent interest; here, they are omitted for the sake of brevity
but we refer the interested reader to [6] for more details.

It would be interesting to settle Conjectures 1 and 2, which deal with the
exact values of our functions. Further, it remains open the computation of
the function (dim − Det)|C4 (n). It would be also interesting to find specific
families of graphs where the restrictions of (dim− Det)(n) and (λ− Det)(n)
may be computed. Finally, the maximum value of the difference between the
metric dimension and the locating-domination number is still unknown and a
study on this function may be proposed.
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