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Abstract

A Euclidean graph G is the locus of a rectilinear em-
bedding of a planar graph in the Euclidean plane. A
shortcut set S is a collection of segments with end-
points on G such that the Euclidean graph obtained
from G by adding the segments in S has smaller diam-
eter than G. The minimum cardinality of a shortcut
set is the shortcut number scn(G). In this work, we
first provide a tight upper bound on scn(G). We then
show that it is possible, in polynomial time, to deter-
mine if scn(G) = 1 and, in that case, to construct a
shortcut set that minimizes the diameter among all
possible shortcut sets. Finally, we compute the short-
cut number in some families of Euclidean graphs.

Introduction

The set of points G in the Euclidean plane lying on
a rectilinear embedding of a certain planar graph is
called a Euclidean graph. We write p ∈ G for a point
p on G, and distinguish the vertices of the underly-
ing planar graph saying that u ∈ V (G). The edge
set E(G) of G is the collection of straight-line seg-
ments uv such that u, v ∈ V (G) are adjacent in the
underlying planar graph. The length of an edge is
the Euclidean distance between its two endpoints. A
path between p, q ∈ G is a sequence pu1 . . . ukq such
that u1u2, . . . , uk−1uk ∈ E(G), p is a point on an
edge ( 6= u1u2) incident with u1, and q is a point on
an edge (6= uk−1uk) incident with uk. The distance
d(p, q) between points p and q is the length of a short-
est p-q path in G. The diameter of G is diam(G) =
maxp,q∈G d(p, q), and the pair p, q ∈ G is called an-
tipodal whenever they are at distance diam(G). As
usual δ(u) denotes the degree of vertex u.

We define a shortcut segment for a Euclidean graph
G as a segment pq with p, q ∈ G satisfying that
diam(G ∪ pq) < diam(G), and it is called simple if
G ∩ pq = {p, q}. We want to point out that this def-
inition comes from that given by Yang in [1], which
includes as a possibility the equality of the diameters
of those two Euclidean graphs, but we believe that our
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definition captures better the intuitive idea of short-
cut, and it allows us to enrich the problem with new
elements.

Since one can easily find Euclidean graphs that
have no shortcut segment (a triangle, for example),
an interesting question arises: is it possible to reduce
the diameter of any Euclidean graph by adding a fi-
nite number of segments? With this idea in mind,
we define a shortcut set for G as a finite set S of
straight line segments with endpoints on G such that
diam(G ∪ (∪s∈Ss)) < diam(G). The shortcut number
scn(G) is the cardinality of a minimum shortcut set
for G, and S is optimal if |S| = scn(G) and it min-
imizes diam(G ∪ (∪s∈Ss)) among all shortcut sets of
size scn(G). The Euclidean graphs G here considered
are those that have no two antipodal vertices with di-
lation 1 (otherwise G does not admit a shortcut set).
From now on, we assume this condition to be satisfied.

In [1], the author deals with shortcut segments
for Euclidean chains (i.e., Euclidean graphs obtained
from paths). He designs three different approximation
algorithms to compute optimal shortcut segments for
that family of Euclidean graphs. Further, he obtains
necessary and sufficient conditions on the uniqueness
of those shortcut segments in certain subfamilies, and
studies the ratio diam(C ∪ pq)/diam(C) for any Eu-
clidean chain C. In particular, we extend here some of
his results to general graphs. To the best of our knowl-
edge, there are no other studies on shortcut sets and
so our work initiates the study of these sets in general
Euclidean graphs. We want to stress that our problem
can be viewed as a variant of the Diameter-Optimal
k-Augmentation Problem for edge-weighted geomet-
ric graphs, where one has to insert k additional edges
to a plane geometric graph in order to minimize the
diameter of the resulting graph. Even for this case in
which the endpoints of the added segments are ver-
tices of the graph, there are very few results as it is
pointed out in [2] (where other references are given).

1 An upper bound on the shortcut number

In this section, we provide an upper bound on scn(G)
by constructing, in polynomial time, an adequate
shortcut set. This leads us to show that one can al-
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ways find an optimal shortcut set.

Theorem 1 Let G be a Euclidean graph with n1
pendant vertices. Then, there exists a shortcut set for
G of cardinality at most 2|E(G)|−n1 that can be com-
puted in polynomial time. Consequently, scn(G) ≤
2|E(G)| − n1, and moreover, this bound is tight.

Proof. (Sketch) Let u ∈ V (G) be a vertex of degree
δ(u) = r ≥ 2 and let u0, ..., ur−1 be the set of its
neighbors sorted clockwise. Let `i be the line con-
taining the edge ei = uui with i ∈ {0, ..., r − 1}, and
let H+

i be the right half-space considering the positive
direction from u to ui. For each i, let ϕ(ui) = uj (if it
exists) such that uj ∈ H+

i and uj+1 6∈ H+
i (where in-

dices are taken modulo r). Clearly, the angle formed
by edges ei and ej is smaller than π, and so we can
take a segment si intersecting all edges ek for every
k so that i ≤ k ≤ j; Figure 1 illustrates this fact.
Further, si shortens all paths formed by any two of
those edges, and it can be placed sufficiently close to
u in order not to increase diam(G).

ui

`i uj

siu H+
i

Figure 1: Segment si (depicted as a thick segment)
cuts all edges ek with i ≤ k ≤ j.

In this way, we can construct a shortcut set for G of
cardinality at most

∑
u∈V (G),δ(u)≥2 δ(u) = 2|E(G)| −

n1. Thus, we obtain the desired bound whose equal-
ity is attained by the star Sn with odd n, given by
V (Sn) = {u, u0, ..., un−1}, E(G) = {uui : 0 ≤ i ≤
n−1}, and every ui placed at (cos( 2π

n i), sin( 2π
n i)). �

Corollary 2 Every Euclidean graph admits an opti-
mal shortcut set.

2 Euclidean graphs G with scn(G) = 1

The aim of this section is to show that it is possible
to identify in polynomial time whether scn(G) = 1
and, in that case, to find an optimal shortcut set (see
Theorem 5). To do this, we first need to prove that
the diameter of a Euclidean graph G can be computed
in polynomial time. We begin with a technical lemma.

Lemma 3 Let p, q ∈ G be an antipodal pair placed
in two different non-pendant edges, say e = uv and
e′ = u′v′. Then, there exist two different shortest p-q

paths, say P1 and P2, such that either u, u′ ∈ P1 and
v, v′ ∈ P2, or u, v′ ∈ P1 and v, u′ ∈ P2 (see Figure 2).

p

q

P1

P2

u v

u′ v′

Figure 2: Paths P1 and P2 (depicted with thick edges)
containing respectively vertices u, u′ and v, v′.

Note that, in general the diameter of the Euclidean
graph is given by points that may not belong to
V (G), which entails a substantial difficulty for finding
diam(G). However, the proof of the following lemma
shows that this parameter can be computed in poly-
nomial time by only considering the distances between
elements of V (G).

Lemma 4 The diameter of a Euclidean graph with
n vertices can be computed in polynomial time.

Proof. (Sketch) For a graph G on n vertices, our aim
is to find an antipodal pair p, q ∈ G. In a first step,
we compute the distance between any pair of vertices
of V (G). After this, we consider the case when p
(similar for q) lies on some pendant edge, say e = uv,
with δ(u) = 1 . We have,

d(p, q) = max
r∈u′v′

d(u, r) =
d(u, u′) + d(u′, v′) + d(v′, v)

2

since d(u′, v′) = |u′v′| (note that e′ cannot be a
pendant edge since this would lead us to the case
p, q ∈ V (G)). So, as a second step, we find all fur-
thest points to the pendant vertices of V (G) using
only the information obtained in the first step.

Finally, we assume that p and q lie on two non-
pendant edges e = uv and e′ = u′v′, respectively. To
compute d(p, q), we only need to consider the short-
est p-q paths P1 and P2 provided by Lemma 3, and
again the distances computed in the first step. More
precisely,

d(p, q) = min

{
d(u, v) + d(v, v′) + d(v′, u′) + d(u′, u)

2
,

,
d(u, v) + d(v, u′) + d(u′, v′) + d(v′, u)

2

}

Thus, diam(G) corresponds with the maximum over
all values obtained in each step. �
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Theorem 5 For every Euclidean graph G, it is possi-
ble to determine in polynomial time whether scn(G) =
1 and, in that case, to construct an optimal shortcut
set for G.

Proof. Let us first construct two vertical lines α and
β such that G lies inside the strip that they define.
To each vertex u ∈ V (G), we assign two horizontal
segments with an extreme in w and the other in, re-
spectively, α and β. The set of all those horizontal
segments is denoted by H.

For a pair of edges e, e′ ∈ E(G) and a line ` cross-
ing both of them, we define the class P(`) as the set
of lines intersecting exactly the same segments of H
that are intersected by `. Thus, we have classified the
lines that cross edges e and e′ by this relation. Note
that a line m ∈ P(`) crosses e and e′ in two points,
say em,e′m, and these points define a segment that we
denote by sm. Throughout this proof, we shall con-
sider P(`) as a set of lines as well as a set of points in
segments defined by those lines. An example of the
region of the plane formed by points on segments sm
with m ∈ P(`) is depicted in Figure 3.

u

v

u′

v′

e

e′

` m

sm

em

e′m

Figure 3: The region in grey corresponds to the points
on segments defined by P(`) and edges e, e′.

We now show that the number of families P(`) per
pair of edges e, e′ is of order O(n2). For each pair of
vertices u, v ∈ V (G), we construct a line `u+v+ paral-
lel to segment uv leaving u and v to its left, and sat-
isfying that any other such a line closer to uv crosses
the same segments of H. In the same way, we con-
struct the lines `u+v− (leaving u to its left and v to its
right), `u−v+ (u to its right and v to its left) and `u−v−
(both to its right). Observe that if a line ` intersects
a subset of segments of H then there exist vertices
u, v ∈ V (G) such that one among the above defined
lines, say `u+v− , crosses exactly the same segments
of H, and so P(`) = P(`u+v−). Thus, there are four
different families of lines P(`) associated with every
pair u, v ∈ V (G), and so the total number of families
is of order O(n2).

On the other hand, let e = uv and e′ = u′v′

be two edges of G, and let P(`) be a family of

lines intersecting both e and e′. We define the map

f
(e,e′)
` : P(`) −→ R as f

(e,e′)
` (m) = diam(G ∪ sm). To

compute the minimum of this map, we shall see that
it is only necessary to consider segments intersecting
the border of P(`). Indeed, let m ∈ P(`) be a line so
that sm does not intersect the border of P(`). It is
clear that at least one of the four segments depicted
in Figure 4 has image lower than sm.
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Figure 4: (a) Segments suv′ and su′v, and (b) seg-
ments smuu′ and smvv′ .

Finally, observe that if sm with m ∈ P(`) is a short-
est segment between e and e′ going through a fixed
point p on the border of the region induced by P(`),
then sm must be orthogonal to the bisector of the an-
gle formed by e and e′, whenever these edges are not
parallel (see Figure 5). Otherwise sm is orthogonal to
both e and e′.
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sm
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Figure 5: A shortest segment joining e and e′ inter-
secting the border of P(`).

Therefore, in order to find the minimum of f
(e,e′)
`

it suffices to compute the images of the lines contain-
ing the following segments: suv′ and su′v, the two
segments orthogonal to the bisector of the angle be-
tween e and e′ (or orthogonal to both e and e′ if
they are parallel) that intersects the border of P(`)
and are inside P(`), and the segments inside P(`)
containing a segment of the border of P(`). Thus,
the line with the smallest image is the minimum of

f
(e,e′)
` and, by Lemma 4, this can be computed in
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polynomial time. Consequently, we can also obtain in

polynomial time the minimum value of f
(e,e′)
` over all

pairs e, e′ and classes P(`), which is attained by a cer-
tain segment say sm. If this minimum is smaller than
diam(G) then segment sm forms an optimal shortcut
set for G (thereby showing that scn(G) = 1); other-
wise scn(G) > 1. �

3 Special families of graphs

Due to the hardness of computing the shortcut num-
ber, it is natural to restrict the problem to certain
graph classes. Indeed, as well as Yang studies short-
cuts of Euclidean chains in [1], we compute this pa-
rameter in Euclidean graphs generated from polygons
and embeddings of K4.

First, we consider polygons P as Euclidean graphs
that come from planar embeddings of cycles, and pro-
vide their shortcut number.

Proposition 6 For every polygon P , the following
statements hold.

1. P does not admit a simple shortcut segment.

2. If P is convex then scn(P ) = 2.

3. If P is non-convex then scn(P ) = 1.

Proof. (Sketch) First, observe that if P is a convex
polygon then any segment pq with p, q ∈ P and P ∩
pq = {p, q} splits P into two paths, say P1 and P2.
Thus, let p1 and p2 be the midpoints of P1 and P2,
respectively (see Figure 6(a)). It is trivial to check
that p1 and p2 remain at distance diam(P ).

On the other hand, if P is non-convex then there is
some pocket given by two vertices, say u, v ∈ P . We
consider a segment going through u and very close to v
that produces three intersection points with P : vertex
u, a point r outside the pocket, and a point r′ inside
the pocket; Figure 6(b) illustrates this situation. We
can prove that ur is a shortcut segment just checking
that for any antipodal pair p, q ∈ P ∪ ur there is a
shortest p-q path shortened by ur. Finally, Figure 7
shows that scn(P ) ≤ 2. �

The only non-trivial Euclidean graphs G obtained
from a planar embedding of a complete graph Kn ap-
pear for n = 3 and n = 4. Since the case n = 3 has
been already studied in Proposition 6, it only remains
to consider the case n = 4; with an analysis of the an-
tipodal points we can prove the following proposition.

Proposition 7 For any Euclidean graph G obtained
from a planar embedding of K4, it holds that
scn(G) = 1.
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Figure 6: (a) Polygons do not admit simple shortcut
segments, and (b) non-convex polygons always admit
shortcut segments.
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Figure 7: A convex polygon and one of its shortcut
sets (depicted with thick edges).

4 Concluding remarks and open questions

We have studied shortcut sets of Euclidean graphs,
designing first a method to construct, in polynomial
time, shortcut sets of bounded size for Euclidean
graphs G that have no two antipodal vertices with
dilation 1 (which is a necessary condition to guar-
antee the existence of a shortcut set). This method
yields a tight upper bound on scn(G) that is used to
prove that G has an optimal shortcut set. We then
show that Euclidean graphs G with scn(G) = 1 can
be identified in polynomial time and, in that case, we
construct an optimal shortcut set for G. Finally, we
have computed the shortcut number of polygons, and
all possible rectilinear embeddings of K4.

It would be interesting to reduce the complexity
of the algorithm provided in the proof of Theorem 5.
Also, it is unknown if the problem of deciding whether
scn(G) = k, for fixed k ≥ 2, is polynomial. Finally, it
would be interesting to explore the shortcut number
of Euclidean graphs generated from other classes of
graphs; for instance: trees, 2-connected outerplanar
graphs, and planar graphs with high symmetry.
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