
P Systems with Membrane Creation and Rule

Input

Miguel Angel Gutiérrez-Naranjo, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: {magutier, marper}@us.es

Summary. When a uniform family of recognizer P systems is designed to solve a
problem, the data of a concrete instance of the problem is usually provided via a
multiset which is placed in the so-called input membrane. In this paper we present
a new definition for recognizer P systems, called with rule input, where the data of
the instance is provided via a set of rules which are introduced in the system at the
beginning of the computation. We also discuss a new semantic for P systems with
membrane creation and, as an example, a uniform family of recognizer P systems
with rule input which solves the Subset Sum problem is provided.

1 Introduction

Solving NP-complete problems is done in the membrane computing frame-
work by generating an exponential amount of workspace in polynomial time
and using the parallelism to check simultaneously all the candidate solutions.

The way in which this exponential number of membranes is created in
polynomial time is based on biological processes inspired in living cells. Ba-
sically, two processes are used in order to produce new membranes: mitosis
(membrane division) and autopoiesis (membrane creation), see [?]. Both ways
of generating new membranes have given rise to different variants of P sys-
tems: P systems with active membranes, where the workspace is generated by
membrane division, and P systems with membrane creation, where the new
membranes are created from objects.

Both models are universal from a computational point of view, but tech-
nically, they are pretty different. In fact, nowadays there does not exist any

2 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

theoretical result which proves that these models can simulate each other in
polynomial time.

P systems with active membranes have been successfully used to design
solutions to well-known NP-complete problems, as SAT [?], Subset Sum [?],
Knapsack [?], Bin Packing [?] and Partition [?], but as Gh. Păun pointed in
[?] “membrane division was much more carefully investigated than membrane
creation as a way to obtain tractable solutions to hard problems”. Recently,
the first results related to the power and design of algorithms to solve NP
problems by means of P systems using membrane creation have arisen (see
[?, ?, ?]).

In these solutions, both in the model of P systems with active membranes
and P systems with membrane creation, a uniform family of recognizer P
systems is designed to solve the problem and the data of a concrete instance
of the problem is usually provided via a multiset which is placed in the so-
called input membrane.

In this paper we present a new definition for recognizer P systems with
rule input, where the data of the instance is provided via a new set of rules.
We also discuss a new semantics for P systems with membrane creation and,
as an example, a uniform family of recognizer P systems with rule input which
solves the Subset Sum problem is provided.

The paper is organized as follows. P systems with membrane creation are
remembered in the next section, together with a short disscusion about their
semantics. In section 3 recognizer P systems with input rules are presented. As
an example, a uniform family of recognizer P systems with rule input which
solves the Subset Sum problem is presented in Section 4. Finally, some formal
details and conclusions are given in the last sections.

2 A new semantics for P systems with membrane

creation

Since Gh. Păun presented the cellular computation with membranes, many
different variants have been proposed. If the membrane structure is consid-
ered to set a classification among these different variants, two big groups are
obtained: P systems where the initial structure does not change along com-
putations and P systems where the tree structure of the membranes vary (or
can do it) along computation. The decrease of the number of membranes is
made by applying the so-called dissolution rules, of the form [a]e → b, where
the object a inside a membrane with label e produces the dissolution of the
membrane, the object a disappears and a new element b and the rest of the
multiset in the membrane go to its father (more precisely, they go to the

P Systems with Membrane Creation and Rule Input 3

closest non-dissolved ancestor in the membrane hierarchy, since several mem-
branes can dissolve in the same step). Increasing the number of membranes
are usually made via division of existing ones or creating new membranes from
objects1.

We recall that a P system with membrane creation is a construct of the
form

Π = (O,H, µ, w1, . . . , wm, R),

where:

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled (not nec-

essarily in a one-to-one manner) with elements of H ;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed

in the m regions of µ;
6. R is a finite set of rules, of the following forms:

a) [a → v]h, where h ∈ H , a ∈ O, and v is a string over O describing
a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

b) a[]h → [b]h, where h ∈ H , a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane, possibly modified
during the process.

c) [a]h → []h b, where h ∈ H , a, b ∈ O. These are send-out communica-
tion rules. An object is sent out of the membrane, possibly modified
during the process.

d) [a]h → b, where h ∈ H , a, b ∈ O. These are dissolution rules. In
reaction with an object, a membrane is dissolved, while the object
specified in the rule can be modified.

e) [a → [v]h2
]h1

, where h1, h2 ∈ H , a ∈ O, and v is a string over O

describing a multiset of objects. These are creation rules. In reaction
with an object, a new membrane is created. This new membrane is
placed inside of the membrane of the object which triggers the rule
and has associated an initial multiset and a label.

The rules are applied according to the following principles:

• The rules are used as customary in the framework of membrane computing,
that is, in a maximal parallel way. In one step, each object in a membrane

1 Recently, new operations to change the membrane structure, such as merging

membranes, or the operations of endocytosis, exocytosis or gemmation have been
explored.

4 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

can only be used by one rule (non-deterministically chosen when there are
several possibilities), but any object which can evolve by a rule of any form
must do it (with the restrictions indicated below).

• If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

• All the elements which are not involved in any of the operations to be
applied remain unchanged.

• The rules associated with the label l are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it
was obtained by creation.

• At one step, different rules can be applied to different membranes with the
same label, but one membrane can just be the subject of only one rule of
types (b), (c) or (d).

• Several rules of the type (a) or (e) can be applied to different objects in
the same membrane simultaneously.

Hence, the rules of type (a) and (e) are applied in parallel, that is, all
objects which can evolve by such rules must do it, while the rules of type (b),
(c) and (d) are used sequentially, in the sense that one membrane can be used
by at most one rule of these types in each step (time unit).

The main difference with respect to the usual semantics of P systems with
membrane creation is related to the communication rules (send-in and send-
out). In [?, ?, ?], several objects can cross out one membrane simultaneously.
On the contrary, in the semantics used in this paper, only one element can
cross a membrane in each time unit. This is closer to the semantics of P
systems with active membranes, where only one object can cross a membrane
in one time unit.

From a theoretical point of view, both semantics are acceptable and, as
shown in this paper, NP-complete problems can be solved in both models.
Another matter of discussion is the parallelism of the creation of new mem-
branes. In this paper, in a similar way as in [?, ?, ?], several membranes can
be created simultaneously inside one membrane, and there are no restrictions
with respect to the label of the objects contained in the created membrane.

Each of these semantics makes sense from a theoretical point of view. An-
other question is to know which of them is closer to the biological inspiration.
Deciding the best semantics of these models is an open discussion in the P
systems community.

P Systems with Membrane Creation and Rule Input 5

3 Recognizer P systems with membrane creation

Recognizer P systems were introduced in [?] and are the natural framework
to study decision problems, since deciding if an instance has an affirmative
or negative solution is equivalent to deciding if a word (yes or no) belongs or
not to the language.

In the literature, recognizer P systems are associated in a natural way
with P systems with input. The data related to an instance of the decision
problem has to be provided to the P system in order to compute the appropri-
ate answer. The formal definition of such P systems consider a specific label
and calls input membrane the membrane associated to this label. A multiset
encoding the instance of the problem is then placed in the input membrane
in the initial configuration and the computation starts.

In this paper we propose a different way to supply the data related to the
instance of the problem. In a similar way to the classical definition, a label is
marked as input label, but instead of associating a multiset to the membrane
with this label, we associate a set of rules which encodes the data of the
problem. The main differences between this model and the classic model are:

• The data of the instance is involved in the computation when the rules are
triggered.

• Since the membrane structure can change along the computation, the num-
ber of membranes with input label can also change. All these membranes
are input membranes.

This can be formalized as follows.

Definition 1. A P system with rule input is a tuple (Π, iΠ , RiΠ), where Π

is a P system, with working alphabet Γ and n membranes labelled by 1, . . . , n,
and initial multisets w1, . . . , wn associated with them, and a finite set of rules
R, iΠ is a distinguished label and RiΠ is a set of rules disjoint of R. The set
of rules RiΠ is a new set of rules where the data of the problem is codified. It
is associated to the input label iPi and it is added to the set of rules R. None
of the rules from R is modified.

In a certain sense, providing the instance of the problem via a set of rules is
the dual process of providing it as a multiset. In both cases, the information is
provided before the computation starts and the P system acts as a black box,
but, on the one hand, if we provide an initial multiset, these elements interact
with a set of rules which do not depend on the instance of the problem. On
the other hand, if the data is supplied as a set of rules, these rules have to
interact with the object of an initial configuration which does not depend on
the instance.

6 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The way in which the user obtains the computed answer is similar to usual
recognizer P systems. We use an external output in the classical way (see, for
example, [?]).

Definition 2. A recognizer P system with rule input and with external out-
put, is a P system with rule input (Π, iΠ , RiΠ), such that

• The working alphabet contains two distinguished elements: yes, no.
• All of its computations halt.
• If C is a computation of Π, then either an object yes or an object no (but

not both) has to be sent out to the external environment, and only in the
last step of the computation.

Let us note that a recognizer P system with rule input is also a conflu-
ent system in the following sense: every computation with the same initial
configuration has the same output.

4 Linear solution to the Subset Sum problem

In this section we present a family
∏

of recognizer P systems with rule input
that solves the Subset Sum problem in linear time.

The Subset-Sum problem can be stated as follows: Given a finite set, A,
a weight function, w : A → N, and a constant k ∈ N, determine whether
or not there exists a subset B ⊆ A such that w(B) = k. If A has n ele-
ments with weights w1, . . . , wn, one instance of the problem can be encoded as
(n, (w1, . . . , wn), k).

As usual in the framework of P systems, the solution of the problem
is based on an algorithm of brute force where an exponential amount of
workspace is built in linear time. In a similar way to the solution of NP-
problems with P systems with active membranes, the algorithm is split in
four stages:

• Generation stage: for every subset of A, a membrane is created.
• Weight calculation stage: in each working membrane the weight of the

associated subset is calculated.
• Checking stage: in each membrane it is checked whether or not the weight

of its associated subset is exactly k.
• Output stage: when the previous stage has been completed in all mem-

branes, the system sends out the answer (yes or no) to the environment.

Next we describe the family
∏

of recognizer P systems with rule input that
solves the Subset Sum problem. Given an instance (n, (w1, . . . , wn), k) of the

P Systems with Membrane Creation and Rule Input 7

problem, the recognizer P system with rule input (Π, iΠ , RiΠ) is built, where
Π is a P system which only depends on n and the input label iΠ also depends
only on n. The data corresponding to this specific instance are provided in the
set of rules RiΠ which, obviously, depends on k, on the weights (w1, . . . , wn)
and on the label iΠ .

• Alphabet:

O =

z0, . . . , z3n+11, a1, . . . an, na1, . . . , nan, w1, . . . , wn, s1, . . . , sn−1,

u1, . . . , un−1, i, k, q, i0, . . . , i5, q0, . . . , q8, ba, ca, da, br, cr, dr,

m1, . . . ,m6, dr1, da1, c, c1, c2,#, no0, no1, h0, . . . , hn, yes0, . . . , yes3,

fn1, fn2, fn3, yes, no

• Set of labels: H = {e0, e1, . . . , en, r, a, dr, da, d, f, h}
• Initial membrane structure: µ = []e0 .

• Initial multiset Ms = z0a1na1
• The set R of evolution rules consists of the following rules:

(a) 2n rules

[ai → [ai+1nai+1wi]ei]ei−1
, for i = 1, . . . , n− 1.

[nai → [ai+1nai+1]ei]ei−1
, for i = 1, . . . , n− 1.

[an → [wns1]en]en−1
,

[nan → [s1]en]en−1
,

These 2n rules create 2n membranes at depth n (if the skin is at depth
zero) in n steps. Note how the objects w1, . . . , wn are distributed in the
created membranes. If each object wi in a membrane ej was sent to all
children of ej and the process goes on until every wi were in a elementary
membrane, we would obtain each one of the 2n subsets of {w1, . . . , wn} in
one of the 2n elementary membranes. This is done by the next set of rules.

(b) n2 − n rules

[wi → u2
i]ej , for i = 1, . . . , n− 1 and j = i, . . . , n− 1.

ui[]ej → [wi]ej , for i = 1, . . . , n− 1 and j = i+ 1, . . . , n.

Each wi have to be sent to two membranes. This is done in two steps. In
the first one, wi evolves to two copies of ui and then, in the second step,
each copy of ui send wi into a child.

(c) n− 1 rules

[si → si+1]en , for i = 1, . . . , n− 2.

[sn−1 → ikq]en
The membranes with label en are created with the element s1. This element
is the first one of a sequence s1, . . . , sn−1 which is used as a counter. When
the element sn−1 is reached, it evolves to the set {i, k, q}. The element k

8 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

will evolve in the next step to represent the value of the constant k in an
unary representation. In the meanwhile, i and q evolve to i0 and q0 in a
waiting step by using rules of the following set.

(d) n− 1 rules

[ai → ai−1]en , for i = 2, . . . , n.

[i → i0]en
[q → q0]en
Besides the waiting rules for i and k, we also have rules for decreasing
the index of elements ai. By using this sequence {an, . . . , a1} we get the
synchronous apparition of a multiset of elements a1 which encodes the
whole weight of the corresponding subset.

(e) 16 rules

[a1 → ba, ca, da]en [r → br, cr, dr]en

[ba → [m1]a]en ca []r → [c1]r [c1 → c2]a
[br → [m1]r]en cr []a → [c1]a [c1 → c2]r
[da → da1]en [da1 → [m2]da]en ca[]da → [c]da
[dr → dr1]en [dr1 → [m2]dr]en cr[]dr → [c]dr

[c2]a → # [c2]r → #

The task of this set or rules is to compare the number of elements a1 and
r in each elementary membrane (labelled by en). The idea is the following:
For each element a1 a new element ca and a new membrane (labelled by
a) will be created. Analogously, for each element r a new element cr and a
new membrane (labelled by r) will be created. In the next steps, elements
ca will be introduced (after renaming) into membranes labelled with r.
These elements will produce the dissolution of such membranes. Analo-
gously, elements cr will be introduced (after renaming) into membranes
labelled with a. These elements will also produce the dissolution of such
membranes.
If the initial number of elements a1 and r are the same, after an appro-
priate number of steps all the membranes labelled with a or r disappear.
Otherwise, a membrane labelled with a or r remains and it will be used
as a flag for the computation in this membrane.
This comparison has other technical details. For example, we do not desire
that two objects ca go into the same membrane labelled with r, so we need
extra rules, but the process is essentially as described above.

(f)10 rules

P Systems with Membrane Creation and Rule Input 9

[i → i0]en [i0 → i1]en
i5[]a → [i5]a [i1 → i2]en
i5[]r → [i5]r [i2 → i3]en
[i5]a → no0 [i3 → i4]en
[i5]r → no0 [i4 → i5]en

As we saw above, by using the rules from set (e), if the number of elements
a1 and r are the same, then all membranes labelled with a or r dissappear.
But if this does not happen, after an appropriate number of steps, at
least one of this type of membranes remains. In this set (f) we have 10
rules which are the complement to this process. We have a counter with
an initial object i (generated via a rule of the set (c)) and the sequence
i0, i1, . . . , i5. When i5 appears, if there exists a membrane with label a or r,
this element goes into the membrane and dissolves it sending the element
no0. Otherwise, the element i5 does not trigger any rule and the object
no0 does not appear.

(g) 16 rules

[m1 → m2]a [m1 → m2]r
[m2 → m3]a [m2 → m3]r [m2 → m3]da [m2 → m3]dr
[m3 → m4]a [m3 → m4]r [m3]da → # [m3]dr → #
[m4 → m5]a [m4 → m5]r
[m5 → m6]a [m5 → m6]r
[m6]a → # [m6]r → #

Membranes with label a or r are auxiliary membranes created for the
comparison between the number of objects a1 and r. When the comparison
ends, these membranes are dissolved. This process is carried out by a
counter. The membranes are created with the objectm1. When the counter
m1,m2, . . . reaches m6 the membrane is dissolved.
Membranes with labels da and dr are also created for the comparison.
They catch the excess of objects ca and cr. When this work is done, they
are also dissolved.

(h)n+ 8 rules

[qi → qi+1]en , for i = 0, . . . , 7.

[q8]ej → q8, for j = 2, . . . , n.

[q8]e1 → #,

When the element q8 is generated, it produces sequentially the dissolution
of all membranes except the skin.

(i) 9 rules

10 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

[c2 → #]en [c → #]en [m4 → #]en
[m6 → #]en [i5 → #]e0 [q8 → #]e0
[no2 → #]e0 [yes2 → #]e0 [fn3 → #]e0
These are cleaning rules. When an object becomes useless, it is sent to #.

(j) 4n+12 rules

[zi → zi+1]e0 , for i = 0, . . . , 2n+ 5.

[z2n+6 → z2n+7h0]e0 ,

[zi → zi+1]e0 , for i = 2n+ 7, . . . , 3n+ 10.

[hi → h2
i+1]e0 , for i = 0, . . . , n− 1.

[hn → [yes0]h]e0 ,

The counter zi starts at z0 and finishes at z3n+11. When the object z2n+6 is
reached it generates z2n+7 but also a new element h0. This is the beginning
of a new counter hi. When hn is reached, it creates a new membrane with
label h containing yes0.

(k) 5 rules

[yes0 → yes1]h no0[] → [no0]h
[yes1 → yes2]h [no0]h → no1
[yes2]h → yes3

Membranes with label h are generated with the object yes0 inside. This
object evolves t0 yes2, and yes2 dissolves the membrane and sends out an
object yes3. Simultaneously, if there exists an object no0, it goes into the
membrane and dissolves it. The evolution of the yes needs one step more,
so at the end of the process there will exist objects yes3 only if there are
more membranes with label h than objects no0.

(l) 20 rules

[z3n+11 → b0, f0]e0 ,

[yes3 → yes4, d0]e0

[yesi → yesi+1]e0 for i = 4, 5, 6.

[yes7[]d → [yes7]d

[yes7[]f → [yes7]f

[yes7]d → #

[yes7]f → yes

[fi → fi+1]e0 for i = 0, 1.

[f2 → [fn1]f]e0
[fni → fni+1]f for i = 1, 2.

[fn3]f → no

P Systems with Membrane Creation and Rule Input 11

[d0 → []d]e0

b0[]d → [b0]d

b0]d → #

[yes]e0 → yes[]e0
[no]e0 → no[]e0

Each workspace membrane which finds a positive response in the checking
stage sends an object yes3 to the skin. This set of rules controls the output
stage:
– If there does not exist any object yes3 in the skin, one object no is sent

to the environment and the P system halts.
– If there exists some objects yes3 in the skin, only one object yes is sent

to the environment and the P system halts.

This finishes the description of the regular set of rules. This set of rules is the
same for all instances of the problem Subset Sum where the set A has n ele-
ments. It does not depend on k or the weight of the objects. This information
is supplied to the system through a specific set of rules which is described in
the next section.

4.1 Rules for unary representation

The solution to the Subset Sum problem presented in this work is made via
a family of P systems in a similar way to the solution of other numeric NP

problems reached via P systems with active membranes.
In these families, the set of rules only depends on the size of the problem

and the concrete data which describes a particular instance of the problem is
provided as elements added in the initial configuration in a particular mem-
brane called input membrane. This membrane is identified by its label, which
can be called the input label.

In the solution presented above to solve Subset Sum, we also have a family
of P systems which have a set of rules which depends of the size of the problem.
In this model we also have input membranes, identified by the input label. The
main difference is that the input which codifies the concrete instance of the
problem is not a multiset introduced into the initial membranes, but a set of
rules associated to the input label.

These rules are a set of n + 1 rules which express the weights w1, . . . , wn

and k into the unary representation used by P systems. These rules are

[wi → a
w(ai)
i]en , for i = 1, . . . , n.

[k → rk]en
That is, when the element wi reaches a membrane with label en, in the next

12 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

step this element evolves to a multiset which consists of as many objects ai
as the weight of the element ai in the description of the subset sum problem.
Analogously, when the object k reaches a membrane with label en, it evolves
to a mutiset with K copies of r. For example, if we consider the Subset Sum
problem with the set A = {a1, a2, a3} (i.e., N = 3), the weights w1 = w(a1) =
1, w2 = w(a2) = 2, w3 = w(a3) = 1, and K = 3, then the input of the P
system will be codified as the following for rules:

[w1 → a1]e3

[w2 → a2a2]e3
[w3 → a3]e3
[k → rrr]e3

5 How it works

In this section we informally describe how the P system works. The comments
are general, but we illustrate them with an example. As above, we consider the
Subset Sum problem with the set A = {a1, a2, a3} (i.e., N = 3), the weights
w1 = w(a1) = 1, w2 = w(a2) = 2, w3 = w(a3) = 1, and K = 3. The initial
configuration does not depend on the instance of the problem:

[z0, a1, na1]e0

The rules for the unary representation of the data are provided in the previous
section.

5.1 The generation and weight calculation stages

In the solution presented here the generation stage and the weight calculation
stage are developed simultaneously in the first 2n evolution steps. The algo-
rithm is deterministic at this stage and it is the same for all the instances
with the same number of elements n. Only at the end of the stage the rules
for the unary representation are applied. In the first step two rules of the set
(a) are applied and one of the set (j). Two new membranes are created and
the counter z increases one unit. The new configuration has two membranes
at level 1 (with label e1) and the skin (with label e0):

[z1, [a2, na2, w1]e1 , [a2, na2]e1]e0

Note that the elements a1 and na1 have created new membranes with label
e1. The index of the label e denotes its level. In general, elements ai and nai

P Systems with Membrane Creation and Rule Input 13

create membranes with index ei. The membrane created by ai includes the
element wi. The evolution of these wi will determine the differences among
the workspace membranes.

The configuration at time two is

[z2, [u1, u1, [a3, na3, w2]e2 [a3, na3]e2]e1
[[a3, na3, w2]e2 [a3, na3]e2]e1]e0

The counter z goes on increasing and four new membranes are created
from the objects a2 and na2. The rule [w1 → u1, u1]e1 has been applied. In
the first membrane with label e1,

[u1, u1, [a3, na3, w2]e2 [a3, na3]e2]e1

there are two elements u1 and two membranes with label e2. In the next step
the objects u1 will send objects w1 into these membranes. The configuration
at time 3 is

[z3, [[u2, u2, w1, [w3, s1]e3 [s1]e3]e2 [w1, [w3, s1]e3 [s1]e3]e2]e1
[[u2, u2, [w3, s1]e3 [s1]e3]e2 [[w3, s1]e3 [s1]e3]e2]e1]e0

In this configuration we have already reached 23 workspace membranes (with
label e3). A new counter s appears. It is synchronized with the arrival of the
objects wi to the working space. When an object wi arrives to the working
space, it is split into the unary representation with the appropriate rule. When
the counter s reaches sn−1, this element generates the objects i, k, q. In the
next step the generation stage finishes. In our example, this happens at time
6:

[z6, [[[q0i0r
3a41]e3 [q0i0r

3a31]e3]e2 [[q0i0r
3a21]e3 [q0i0r

3a1]e3]e2]e1
[[[q0i0r

3a31]e3 [q0i0r
3a21]e3]e2 [[q0i0r

3a1]e3 [q0i0r
3]e3]e2]e1]e0

In every workspace membrane there are n copies of the object r, the objects
q0 and i0 and different copies of a1. These copies of ai represent the weighs
of the different subsets which can be built from the set A.

5.2 The checking stage

In this stage the 2n workspace membranes work in parallel. In each membrane
we have to compare if the number of objects r and a1 are equal. This is done in
a constant number of steps, exactly 8, regardless of the parameters N and K.

14 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The cost we have to pay in order to develop the checking stage in a constant
number of steps is the creation of a large amount of auxiliary membranes.

In order to follow this stage we focus our attention only to two workspace
membranes from our example:

M1 ≡ [q0i0r
3a21]e3 M2 ≡ [q0i0r

3a31]e3]e2

The answer in M1 has to be negative, and positive (more precisely, no answer)
in M2.

In the next step (time 7) the counters i and q increase untill i1 and q1.
Each object a1 and r generates three new objects ba, ca, da, and br, cr, dr,
respectively.

M1 ≡ [q1, i1, ba
2, ca2, da2, br3, cr3, dr3]e3

M2 ≡ [q1, i1, ba
3, ca3, da3, br3, cr3, dr3]e3

The basic idea is the following. Each object ba creates one membrane with
label a and, analogously, each object br creates one membrane with label r. In
the step, the elements ca are sent into membranes with label r and elements
cr are sent into membranes with label a. This is done in a maximal parallel
manner and, if a rule can be applied, it is applied. So, if after this process
there exists an object ca or cr in the membrane with label en, the reason is
because the number of elements a1 and r was different. If the number of 1 and
r are equal, none of these objects remains in the membrane e3. In the next
step, we have:

M1 ≡ [ca2, cr3, . . . , [m1]r, [m1]r, [m1]r, [m1]a, [m1]a]e3
M2 ≡ [ca3, cr3, . . . , [m1]r, [m1]r, [m1]r, [m1]a, [m1]a, [m1]a]e3

and in the following step

M1 ≡ [cr, . . . , [m2, c1]r, [c1,m2]r, [m2]r, [m2, c1]a, [m2, c1]a]e3
M2 ≡ [. . . , [m2, c1]r, [m2, c1]r, [m2, c1]r, [m2, c1]a, [m2, c1]a, [m1, c1]a]e3

In the next step, we do not want that the object cr that has not evolved in
M1 go into a membrane with label a. In P systems with electric charges, this
can avoided by changing the polarization, but we do not have that tool in this
model.

This problem is solved by using the objects da and dr which create new
membranes whose task is to collect these remaining objects. The whole process
can be seen in the next example (where [. . .]np denotes that there exist n

membranes [. . .]p.

P Systems with Membrane Creation and Rule Input 15

At time t: [i0, q0, a1, r
2]

At time t+1: [i1, q1, ba, ca, da, br
2, cr2, dr2]

At time t+2: [i2, q2, [m1]a, ca, da1, [m1]
2
r, cr

2, dr21]
At time t+3: [i3, q3, [m2, c1]a, [m2]da, [m2]r, [m2, c1]r, cr, [m2]

2
dr]

At time t+4: [i4, q4, [m3, c2]a, [m3]da, [m3]r, [m3, c2]r, [m3, c]dr, [m3]dr]
At time t+5: [i5, q5,m

2
4, c,#

5, [m4]r]
At time t+6: [q6,#

8, [m5, i5]r]
At time t+7: [q7,#

8,m6, no0]
At time t+8: [q8,#

9, no0]

Some comments to this example:

• This stage has the same number of steps regardless of N , K, and the
weights of the elements.

• The stage is not deterministic. The element cr that appears at time 3 in
the next step can go to a membrane with label dr (as it happens) or with
label a, but the system is confluent, since both membranes dissolve and
the useless objects are sent to #.

• An element no0 appears only if there exists an alive membrane with label a
or r when the counter i reaches i5. As said before, if the number of elements
a1 are equal at the beginning of the checking stage, no membrane with label
a or r survives untill i5. In this case, the absence of no0 is considered as a
positive answer.

Following our example (A = {a1, a2, a3} (i.e., N = 3), the weights w1 =
w(a1) = 1, w2 = w(a2) = 2, w3 = w(a3) = 1, and K = 3), at time 14 the next
configuration is obtained:

[z14, h
2
1 [[[q8#

21no0]e3 [q8#
18i5]e3]e2 [[q8#

15no0]e3 [q8#
12no0]e3]e2]e1

[[[q8#
18i5]e3 [q8#

15no0]e3]e2 [[q8#
12no0]e3 [q8#

9no0]e3]e2]e1]e0

In six workspace membranes the object no0 is obtained. In the remaining two,
this object does not appears. These two membranes have obtained a positive
answer. Note that in the skin the counter h has already started to grow.

5.3 Output stage

In this stage the answers from the workspace membranes are collected. It has
two substages:

• Simplification. In this stage all the workspace and auxiliary membranes
are dissolved. In this way, all the elements no0 (if any exists) reach the
skin.

16 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

• Checking. In this stage 2n new auxiliary membranes with label h are gen-
erated and the objects no0 are sent into them. If there exists 2n objects
no0 in the skin, all these membranes will stop their inner process and the
object no is sent to the environment. If the number of no0 in the skin is
less than 2n, this means that at least one of the workspace membrane had
a positive answer. In this case at least one of the membranes with label h
is not stopped by no0 and the object yes is sent to the environment.

The simplification is performed by the object q8. It appears in all workspace
membranes and dissolves them and the auxiliary membranes as well. In our
example, at time 16 we have

[z16, h
8
3 [q

4
8#

54i5no
3
0]e1 [q

4
8#

66i5no
3
0]e1]e0

In the next step, both membranes at level 1 are dissolved under the action
of object q8, but the counter h has reached hn and 2n new membranes with
label h are created. At time 17, we have

[z17,#
122q68i5no

3
0 [yes0]

8
h]e0

The computation follows as described above, and at time 20 we have

[z20,#
142yes23]e0

Here we find two objects yes0, but only one element yes has to be sent to
the environment. This stage is managed by rules of the set (l). For that, new
membranes with label d and f are created. Finally, at time 26 we have again
only one membrane

[#144fn3yes]e0

In the next step (time 27), the object yes is sent to the environment and
the system reaches a halting configuration.

6 Some formal details

We have presented a uniform family of P systems which solves the Subset
Sum problem. The construction of the P systems is linear in the parameter
n, in the number of objects of the alphabet, and quadratic in the number of
rules, so each P system can be built in polynomial time.

The number of steps of the P system is also linear in n:

• 3n+ 18 if the answer is yes,
• 3n+ 19 if the answer is no.

P Systems with Membrane Creation and Rule Input 17

7 Conclusion and future work

The key for solving NP-complete problems in the membrane computing
framework is the possibility to generate an exponential workspace in poly-
nomial time.

The processes by which this exponential number of membranes is created
in polynomial time are basically two: mitosis (membrane division) and au-
topoiesis (membrane creation). In this paper we explore a new semantics for
P systems with membrane creation, closer to the semantics of P systems with
active membranes than the semantics from [?, ?, ?]) and remark the necessity
of set a standard semantics for this recently explored and fruitful model of P
systems.

The main novelty of this paper is the concept of P systems with rule input.
As pointed above, in a certain sense, providing the instance of the problem
via a set of rules is the dual process of providing it as a multiset, since the P
system which solves a problem only depends on the size of the problem and we
only provide the data in a different way. In one case, we modify the multisets
placed in the initial configuration adding the data and the set of rules remains
unchanged. In the second case, the initial configuration remains unchanged
and the data is supplied by adding new rules which codify the information.

One of the main drawbacks of this new approach is the fact that several
membranes can be labelled with the input label (since new membranes with
this label can be created) and in this way the input data can be supplied
several times (even at different steps) along the computation and this feature
goes against the simplicity principle. Therefore, a further and deeper study
must be done in this line.

Acknowledgement

The support for this research through the project TIC2002-04220-C03-01 of
the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds,
is gratefully acknowledged.

References

1. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system
for finding a balanced 2-partition. Soft Computing, in press.

2. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving
SAT with membrane creation. Accepted paper for CiE 2005.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear
solution for QSAT with membrane creation. Submitted.

18 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear
solution of Subset Sum by using membrane creation. Submitted.

5. P.L. Luisi: The chemical implementation of autopoiesis. In Self-Production of

Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer, Dordrecht,
1994.

6. Gh. Păun: Further open problems in membrane computing. In Proceedings of

the Second Brainstorming Week on Membrane Computing (Gh. Păun, A. Riscos,
A. Romero, F. Sancho, eds.), Report RGNC 01/04, University of Seville, 2004,
354–365.

7. M.J. Pérez-Jiménez, A. Riscos-Núñez: Solving the Subset-Sum problem by ac-
tive membranes. New Generation Computing, in press.

8. M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear solution for the Knapsack prob-
lem using active membranes. In Membrane Computing (C. Mart́ın-Vide, G.
Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), Lecture Notes in Computer

Science, 2933, 2004, 250–268.
9. M.J. Pérez-Jiménez, F.J. Romero-Campero: Solving the BIN PACKING prob-

lem by recognizer P systems with active membranes. In Proceedings of the Sec-

ond Brainstorming Week on Membrane Computing (Gh. Păun, A. Riscos, A.
Romero, F. Sancho, eds.), Report RGNC 01/04, University of Seville, 2004,
414–430.

10. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. In Proceedings of the

5th Workshop on Descriptional Complexity of Formal Systems, DCFS 2003 (E.
Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszyl, eds.), 2003, 284–294.

