
Converting Integer Numbers from Binary to Unary

Notation with P Systems

Miguel A. GUTIÉRREZ NARANJO1, Alberto LEPORATI2

and Claudio ZANDRON2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Sevilla University
Avda Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: magutier@us.es

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
E-mail: {leporati,zandron}@disco.unimib.it

Abstract. Current P systems which solve NP–complete numerical problems
represent instances in unary notation. In classical complexity theory, based
upon Turing machines, switching from binary to unary encoded instances gen-
erally corresponds to simplify the problem. In this paper we show that this
does not occur when working with P systems. Namely, we propose a simple
method to encode binary numbers using multisets, and a family of P systems
which transforms such multisets into the usual unary notation.

1 Introduction

P systems (also called membrane systems) were introduced in [?] as a new class of dis-
tributed and parallel computing devices, inspired by the structure and functioning of living
cells. The basic model consists of a hierarchical structure composed by several membranes,
embedded into a main membrane called the skin. Membranes divide the Euclidean space
into regions, that contain some objects (represented by symbols of an alphabet) and evo-
lution rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. The rules are applied in a nondeterministic and maximally parallel way:
all the objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied. The
result of a computation is the multiset of objects contained into an output membrane or
emitted to the environment from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions and
the terminology underlying P systems1.

1A layman-oriented introduction can be found in [?]; a formal description in [?] and the latest informa-
tion about P systems can be found on [?].

1

Many P systems which solve NP–complete decision problems have appeared in the
literature during the last few years. Both in the field of numerical problems, that is,
problems whose instances consist of sets or sequences of integer numbers (see for example
Subset Sum [?], Knapsack [?], Bin Packing [?] or Partition [?] problems) or non-numerical
problems as SAT [?, ?] or QSAT [?].

It is well known [?, ?] that the difficulty of such numerical problems is tied to the
magnitude of the numbers which appear into the instance. For example, let us consider
the Partition problem, which can be stated as follows:

Problem 1.1 Name: Partition.

• Instance: a set A = {a1, a2, . . . , an} of positive integer numbers

• Question: is there a subset A′ ⊆ A such that
∑

a′∈A′

a′ =
∑

a∈A\A′

a?

The following algorithm solves the problem using the well known Dynamic Programming
technique [?]. In particular, the algorithm returns 1 on positive instances, and 0 on
negative instances.

Partition({a1, a2, . . . , an})
s←∑n

i=1 ai
if s mod 2 = 1 then return 0
for j ← 1 to s/2

do M [1, j] ← 0
M [1, 0]←M [1, a1]← 1
for i← 2 to n

do for j ← 0 to s/2
do M [i, j]←M [i− 1, j]

if j ≥ ai and M [i− 1, j − ai] > M [i, j]
then M [i, j]←M [i− 1, j − ai]

return M [n, s/2]

First of all, the algorithm computes the sum s of all elements in the instance. If s is odd
then the instance is certainly negative, and thus the algorithm returns 0. If s is even then
the algorithm checks for the existence of a subset A′ ⊆ A such that

∑
a′∈A′ a′ = s

2
. In

order to look for A′, the algorithm uses a n × (s
2
+ 1) matrix M whose entries are from

{0, 1}. It fills the matrix by rows, starting from the first row. Each row is filled from left to
right. The entry M [i, j] is filled with 1 if and only if there exists a subset of {a1, a2, . . . , ai}
whose elements sum up to j. The given instance of Partition is thus a positive instance
if and only if M [n, s

2
] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time complexity
of the algorithm is proportional to n(s

2
+ 1) = Θ(ns). This means that the difficulty of

the problem depends on the value of s, that is, on the magnitude of the values in A. In
fact, let us denote by K the maximum element of A. If K is polynomially bounded w.r.t.
n then also s =

∑n
i=1 ai ≤ Kn is polynomially bounded w.r.t. n, and thus the above

algorithm works in polynomial time. On the other hand, if K is exponential w.r.t. n, say
K = 2n, then also s is exponential and the above algorithm works in exponential time and
space. This behavior is usually referred to in the literature by telling that the Partition

problem is a pseudo–polynomial NP–complete problem.

2

The fact that in general the above algorithm is not a polynomial time algorithm for
Partition can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Partition is Θ(n logK) (also O(n log s)
in [?, page 91]), since for conciseness every “reasonable” encoding is assumed to represent
each element of A using a string whose length is O(logK). Here all logarithms are taken
with base 2. Stated differently, the size of the instance is usually considered to be the
number of bits which must be used to represent in binary all the integer numbers which
occur in A. If we would represent such numbers using the unary notation, then the
size of the instance would be Θ(nK). But in this case we could write a program which
first converts the instance in binary form and then uses the above algorithm to solve the
problem in polynomial time with respect to the new instance size. We can thus conclude
that the difficulty of a numerical NP–complete problem depends also on the measure of
the instance size we adopt.

The fact that the difficulty of a problem generally depends upon how we measure the
instance size is even more apparent if we consider the Factorization problem:

Problem 1.2 Name: Factorization.

• Instance: a positive integer number n which is the product of two prime numbers
p and q

• Output: p

This problem is generally considered intractable, which means that no polynomial time
algorithm is known that solves it on every instance. The conjectured intractability of this
problem is often exploited in Cryptography: a notable example is the RSA cryptosystem
[?]. Here the natural instance size for the problem is Θ(log n), the number of bits which are
needed to represent n in binary form. Also for this problem, if we let the instance size be
Θ(n) then the trivial algorithm which tries to divide n by every number comprised between
1 and

√
n is a polynomial time algorithm which solves the Factorization problem.

For these reasons we believe that it is important to show that P systems which solve
NP–complete numerical problems do not take their power from the fact that the instances
are represented in unary notation. Hence in this paper we first propose a simple method
to represent positive integer numbers in binary notation using multisets of objects. Then,
we propose a family of P systems which transforms this binary encoding into the unary
notation used in [?, ?, ?, ?].

The paper is organized as follows. In section 2 we introduce our encoding of binary
numbers using multisets. In section 3 we propose a family of simple P systems which
can be used to transform a given positive integer number from such encoding to unary
notation. Section 4 concludes the paper and gives some directions for future research.

2 Encoding binary numbers using multisets

First of all let us show how a given positive integer number x can be represented in binary
notation using a multiset. Let xn, xn−1, . . . , x1 be the binary representation of x, so that
x =

∑n
i=1 xi2

i−1. We use the objects from the following alphabet:

An = {〈b, j〉 | b ∈ {0, 1}, j ∈ {1, 2, . . . , n}} (1)

3

Object 〈b, j〉 is used to represent bit b into position j in the binary encoding of an integer
number. Hence, to represent the above number x we will use the following multiset
(actually, a set) of objects:

〈xn, n〉, 〈xn−1, n− 1〉, . . . , 〈x1, 1〉

Let us remark that the alphabet A depends on the length of the binary representation
of the number x, i.e., with the alphabet An we can represent from 1 to 2n − 1.

On the other hand, the unary representation of x is obtained by choosing a symbol
from an alphabet, say the symbol a from alphabet A′, and putting into the multiset x
copies of such symbol: ax. Hence, unary notation is exponentially longer than binary
notation. Our transformation thus solves another problem raised by the solutions exposed
in [?, ?, ?, ?]: in order to provide the input values to the P systems, we should insert into
such systems an exponential (with respect to the instance size) number of objects. This
means that an exponential amount of work to prepare the system is required.

Working with binary encoded numbers, instead, allows one to prepare the system by
inserting a polynomially bounded number of objects.

3 Converting from binary to unary notation

In this section we propose a family of simple P systems which allows to convert a given
positive integer number x, expressed in binary notation as exposed in the previous section,
to the usual unary notation.

The objects used by the P systems form a subset of alphabet A of equation (??).
Namely, in order to represent x in binary notation we will use only the objects which
correspond to the bits of x which are equal to 1. For example, if x = 25 then its binary
representation is 11001, and we will use the objects 〈1, 5〉, 〈1, 4〉, and 〈1, 1〉 to represent it.
Since the first element in the pairs of A used is always equal to 1, we can be more concise
by omitting it. Once omitted the first element of the pair, also angular parenthesis are
superflous.

The family of P systems which performs the transformation is formally defined as
follows:

Π(n) = (A(n), µ, w,R(n), iin, iout)

where:

• A(n) = {1, 2, . . . , n} ∪ {a} is the alphabet;

• µ = []
skin

is the membrane structure consisting of the skin only;

• w = ∅ is the multiset of objects initially present in region 1;

• R(n) is the following set of evolution rules associated with region 1:

[j → (j − 1)2]skin for all j ∈ {2, 3, . . . , n}
[1→ a]skin

• iin = skin specifies the input membrane of Π;

• iout = skin specifies the output membrane of Π.

4

The semantics of the rules is the usual for evolution rules. All they are applied in a
maximal parallel mode. The number of cellular steps of the P system is bounded by n
and the computation halts when no more rules can be applied. When this happens, the
multiset placed in the output membrane (the only one membrane) is the output of the
computation.

Computations proceed as follows. The objects which denote the positions of 1’s in the
binary representation of x are initially put into the region enclosed by the skin. Then the
computation starts, and the rules from R are applied. It is easily seen that the presence
of object j, with j ∈ {1, 2, . . . , n}, will produce 2j−1 copies of object a. Hence at the end
of the computation, when no more rules from R can be applied, the skin will contain x
copies of object a, that is, the unary representation of x.

We conclude this section with an example of computation of the above P systems.
Let us consider again the value x = 25; as previously said, it will be represented by

means of objects 5, 4, and 1 (each in a unique copy). At the first step of computation, we
apply in parallel the rules 1→ a, 4→ 3, 3 and 5→ 4, 4, obtaining the multiset a, 3, 3, 4, 4.

Then, we apply in parallel the rule 3 → 2, 2 on each copy of the symbol 3, thus
obtaining four copies of the symbol 2, and the rule 4→ 3, 3 on each copy of the symbol 4,
thus obtaining four copies of the symbol 3. The multiset we obtain after the second step
of computation will be a, 2, 2, 2, 2, 3, 3, 3, 3.

Hence, we apply the rules 2 → 1, 1 and 3 → 2, 2 obtaining a, 18, 28. By means of the
rules 1 → a and 2 → 1, 1 we then obtain the multiset a9, 116 and finally, applying again
1 → a we obtain the multiset a25 which is exactly the unary codification of the initially
binary coded number.

From the previous definition and example, it is easy to see that the cardinality of the
alphabet and the number of computation steps are linear with respect to the input size.

4 Conclusions and directions for future work

When solving numerical NP–complete problems using P systems, integer numbers are
usually represented in unary notation. However, in classical complexity theory such num-
bers are assumed to be represented in binary notation, which is an exponentially more
compact encoding with respect to unary notation.

Switching from binary to unary notation simplifies NP–complete numerical problems,
because it modifies the way me measure the size of instances, as well as the relation
between instance size and the running time of algorithms which solve the problem.

The eventual composition between our systems and the ones exposed in literature
allows to solve NP–complete numerical problems working on instances whose numbers are
encoded in binary form. Moreover, since the instances must be injected into the systems
before starting computations, working with binary notation allows to prepare such systems
with a polynomially bounded effort. The preparation of these systems requires instead an
exponential amount of work when dealing with instances whose numbers are encoded in
unary form.

However, this paper does not fully conclude the work on P systems which solve NP–
complete numerical problems. In [?, ?, ?, ?], a uniform family of P systems is designed
to solve the problem and the same P system of the family solves every instance of the
problem with the same size. As we have seen, the P systems which are able to transform
an integer from binary to unary representation depends on the length of the number in
binary representation. In this way, if we want to solve an instance of the Partition problem

5

with n integers, the P system that we need do not depend only on n, but on the concrete
numbers of the set, which can be arbitrarily large.

The work presented in this paper opens a research line in the field of complexity of P
systems which should be deeper studied in the future.

Acknowledgments

The present paper has been inspired by joint work with Seville research group during

the Third Brainstorming Week held in Seville from January 31st to February 4th , 2005.
The first author acknowledges the support for this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti–Spaccamela, M. Pro-
tasi. Complexity and Approximation. Combinatorial Optimization Problems and Their
Approximability Properties. Springer–Verlag, Berlin, 1999.

[2] T. H. Cormen, C. H. Leiserson, R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[3] M. R. Garey, D. S. Johnson. Computers and Intractability. A Guide to the Theory on
NP–Completeness. W. H. Freeman and Company, 1979.

[4] Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Romero-Campero, F.J.: Solving SAT
with Membrane Creation. Accepted paper for CiE 2005.

[5] Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Romero-Campero, F.J.: A linear so-
lution for QSAT with Membrane Creation. Submitted, 2005.

[6] Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Riscos-Núñez, A.: A fast
P system for finding a balanced 2-partition, DOI: 10.1007/s00500-004-0397-0
Soft Computing, in press. See also M. A. Gutiérrez-Naranjo, M. J. Pérez-
Jiménez, A. Riscos-Núñez. An Efficient Cellular Solution for the Partition Prob-
lem. In Proceedings of the Second Brainstorming Week on Membrane Com-
puting, University of Seville, February 2–7, 2004, pp. 237–246. Available at:
http://www.gcn.us.es/Brain/bravolpdf/AGPART.pdf

[7] G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998. Available at: http://www.tucs.fi/Publications/techreports/TR208.php

[8] G. Păun. Computing with Membranes. An Introduction. Bulletin of the EATCS,
67:139–152, February 1999.

[9] G. Păun. Computing with Membranes. A variant: P Systems with Polarized Mem-
branes. International Journal on Foundations of Computer Science, 11(1):167–182,
2000. See also CDMTCS Technical Report 098, University of Auckland, 1999. Avail-
able at: http://www.cs.auckland.ac.nz/CDMTCS

6

[10] G. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.

[11] Păun, Gh.; Pérez-Jiménez, M.J.: Recent computing models inspired from biology:
DNA and membrane computing, Theoria, 18, 46 (2003), 72–84.

[12] G. Păun, G. Rozenberg. A Guide to Membrane Computing. Theoretical Computer
Science, 287(1):73–100, 2002.

[13] M. J. Pérez-Jiménez, A. Riscos-Núñez. A linear solution for the Knapsack problem
using active membranes. In C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg and
A. Salomaa (eds.), Membrane Computing, Lecture Notes in Computer Science, vol.
2933, Springer-Verlag, Berlin, 2004, pp. 250–268.

[14] M. J. Pérez-Jiménez, A. Riscos-Núñez. Solving the Subset-Sum problem by active
membranes. New Generation Computing, to appear.

[15] Pérez-Jiménez, M.J.; Romero-Campero, F.J.: Solving the BIN PACKING problem by
recognizer P systems with active membranes, Proceedings of the Second Brainstorming
Week on Membrane Computing, Gh. Păun, A. Riscos, A. Romero and F. Sancho
(eds.), Report RGNC 01/04, University of Seville, 2004, 414–430.

[16] Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division,Proceedings of the 5th Workshop
on Descriptional Complexity of Formal Systems, DCFS 2003, E. Csuhaj-Varjú, C.
Kintala, D. Wotschke and Gy. Vaszyl (eds.), 2003, 284-294.

[17] A. Riscos-Núñez. Cellular programming: efficient resolution of NP–complete numer-
ical problems. Ph. D. Thesis, University of Seville, Department of Computer Science
and Artificial Intelligence, 2004.

[18] R. L. Rivest, A. Shamir, L. M. Adleman. A Method for Obtaining Digital Signa-
tures and Public–Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

[19] P systems web page http://psystems.disco.unimib.it/

7

