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Abstract
We exhibit three examples showing that the “time-and-band limiting” commutative property
found and exploited by D. Slepian, H. Landau and H. Pollak at Bell Labs in the 1960s, and
independently by M. Mehta and later by C. Tracy and H. Widom in Random matrix theory,
holds for exceptional orthogonal polynomials. The property in question is the existence of
local operators with simple spectrum that commute with naturally appearing global ones. We
illustrate numerically the advantage of having such a local operator.

Keywords Time-band limiting · Exceptional orthogonal polynomials · Bispectral property

Mathematics Subject Classification 33C45 · 33C47 · 33E30 · 42C05

1 A brief historical introduction

The interest of one of us in what is now called the “bispectral problem” posed and solved
in [16] arose from an effort to understand and extend a mathematical miracle, uncovered by
D. Slepian, H. Landau and H. Pollak at Bell Labs back in the 1960s, [44, 45, 56–60]. It is of
obvious importance in signal processing and it was motivated by work of C. Shannon, see
[54]. This is mentioned in the introduction to [16] and is recalled in the next few lines.

For an unknown signal f (t) supported in [–T,T] one observes its Fourier transform F f (k)
for frequencies k in the band [−W,W]. The numerically stable reconstruction of f from
this data leads to the study of an integral operator in L2 (−T , T ) with kernel given by
K (t, s) = sinW(t−s)/(t−s). One needs to compute numericallymanyof its eigenfunctions,
and this gives a very ill-conditioned problem because the eigenvalues are (except for about
4TW of them) very close together. Themiracle in question is that one can exhibit a selfadjoint
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second order differential operator that commutes with the integral operator, has a simple and
well spread out spectrum resulting in a common set of eigenfunctions. One has replaced a
very ill-posed problem by a very well posed one.

The topic of exceptional orthogonal polynomials has developed into an active area of
research in the last few years. The literature is large and we just mention a few papers,
[17–22, 41, 50, 53]. The potential applications of these polynomials are quite varied: they
provide a vast extension of the classical orthogonal polynomials of Jacobi, Laguerre and
Hermite which feature in countless areas of mathematics, both pure and applied. They each
give a basis of polynomials that are joint eigenfunctions of a fixed differential operator L of
order two

Lpn(x) = λn pn(x)

The main difference with the classical ones is that the index n, that indicates the degree of
pn , needs not run over the entire set 0, 1, 2, 3, . . .. A way to increase the chances that this
larger class of polynomials will be widely used is to study the extent to which they share
certain properties with their classical counterparts. Such an effort will necessarily develop in
an exploratory fashion. This is the spirit of this paper.

The hope at the time of [16] was that situations exhibiting the highly unusual “bispectral
property”, to be defined below, would give rise to extensions of the commutativity miracle
mentioned above beyond the Fourier case exploited by the Bell Labs group. One says that
one has a “bispectral situation” when a differential operator L has eigenfunctions f (x, k)
that satisfy a differential equation in the spectral parameter k, i.e. we have

L f (x, k) = �(k) f (x, k), (1)

as well as

B f (x, k) = �(x) f (x, k), (2)

where B is a differential or difference operator acting on k. The spectral parameter k runs
over a discrete or continuous set.

Several tools were used in [16] to classify all the situations when L has order two and B
is a differential operator of arbitrary order. They include, among other things, the so called
Darboux processes, the so called ad-conditions, as well as a careful study of the monodromy
properties of L . The main surprise was the observation that the rational solutions of the
Korteweg-deVries equation play a important role in half of the cases found in [16]. The role
of its master symmetries was observed in a later paper [66].

The case when k is a discrete variable and B is a second order difference operator, as in the
case of the classical orthogonal polynomials, was considered in a series of papers [27–29, 31],
where the Darboux process was applied to either the semi-infinite or doubly infinite banded
matrix B to obtain the Krall polynomials or functions that extend them. Here the role of the
KdV equation is taken up by nonlinear evolutions such as the Toda flows. The appearance of
these integrable isospectral systems when B is a differential or a difference operator came
about in these papers by using the full power of the Darboux process (see also [38, 40]).
Two earlier papers by M. Reach [51, 52], based on his UC Berkeley thesis 1987, deal with
applying the Darboux process to the second order operator L , as in [16], but allowing B to
be a difference recursion of arbitrary order. Just as in [16] this leads to increasing orders in
the recursion relation given by B. See also [22, 41] where one has a similar situation.

This is not the place to review in detail the developments just mentioned, and we just
recall the very important contributions by G. Wilson, [64, 65], A. Kasman and M. Rothstein,
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[42], as well as those of B. Bakalov, E. Horozov and M. Yakimov, [2–4]. More references
can be found in [25, 30, 39].

It is clear that a certain set of common tools were used both in the study of the bispectral
problem as well as in the study of exceptional orthogonal polynomials. We just mention a
few of these. Apparently the first explicit mention of the bispectral property in the second
area is made in [53] (see Sect. 4 as well as the acknowledgments in this reference). It appears
that the first paper to exploit the Darboux process in connection with exceptional orthogonal
polynomials is [50]. The role of trivial monodromy has appeared in later papers such as [19,
20]. One can see points of contact between the considerations in [22, 41] and those in the
bispectral problem as mentioned by these authors (see also [20]). There are many differences
between these two topics: all considerations in the bispectral problem are of a local nature,
whereas in the case of exceptional orthogonal polynomials the issue of the completeness of
these polynomials in some appropriate Hilbert space is of importance.

Making heavy use of the bispectral property, the paper [24] establishes that the commu-
tativity phenomenon alluded to above holds for the classical orthogonal polynomials. The
paper [26] shows that the same property holds in connection with the “even family” in [16],
the one connected with the master symmetries of the KdV equation. A general strategy to
connect bispectrality and the commutativity property is given in [32]. The results in [24]
were done by a “bare hands” approach. A more streamlined general method was developed,
many years later, in [7–10].

The trivial cases of bispectrality when both physical and frequency space are the real
line are given by Bessel and Airy operators (the Bessel case includes Fourier analysis).
They have featured in important problems of mathematical physics, such as potential theory,
electromagnetism and optics for a very long time. Both cases lead to integral operators
admitting a commuting differential operator. For the Bessel case this was proved by D.
Slepian, see [58]. The Airy case was observed by C. Tracy and H. Widom in the context
of Random matrix theory, see [62]. In [9] one considers deformations of the Airy integral
operator which preserve the commutativity property. For the Bessel case see [26]. For very
recent numerical work on the eigenfunctions of the Airy integral operator which exploits the
existence of the commuting one see [55]. This work has applications both in Random matrix
theory as well as in optics.

In view of these more recent papers, and once one notices that exceptional orthogonal
polynomials give a bispectral situation and are connected to the classical ones by applications
of the Darboux process, the results in the present paper are not totally unexpected. However,
the nature of the explicit results given here makes it worthwhile presenting them separately.
One should mention that there are matrix valued versions of the commutativity property too,
see [11, 12, 33–35].

A last historical remark: many ideas appear again and again in the development of any
area of mathematics and the issue of giving appropriate credit takes complicated turns. It
is nice to be able to single out a paper by V. Bargmann, [1], where several of the concerns
and issues in modern spectral theory originate. The very nice paper by C. Quesne [50] starts
by referring to that pioneering paper. In fact, the introduction to her paper offers a rather
instructive view of a rich area where many tools appear over and over again. A very complete
discussion of the work of V.Bargmann, M.G. Krein, V.A. Marchenko, I.M. Gelfand and B.M.
Levitan (among others) is given in the book [13].

In conclusion, we mention that the phenomenon mentioned above (in its original Fourier
version) has found a rather unexpected use in a series of papers byA.Connes and collaborators
in connection with the Riemann zeta function. For the most recent push in this direction, see
[14]. For a commentary on this paper see [37]. For a recent use of this commutativity property
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(again in its original Fourier form) in connection with the Bethe ansatz and entanglement,
see [5, 6, 15] and its references. It is interesting that many of the kernels that appear in
connection with the bispectral problem play an important role in Random matrix theory,
see [62, 63]. For deformations of these kernels that preserve both phenomena see [7–10].
These observations argue for approaching the relatively new area of exceptional orthogonal
polynomials by casting a wide net.

The commutativity phenomenon alluded to above was extended to the case of classical
orthogonal polynomials defined on a finite set, see [48, 49]. It was later observed byR. Perline
that the explicit form of the commuting operator could be given a simple and unified form,
see [47].

It was subsequently seen, see [33, 36] that this simple form of Perline applies unchanged
to other situations. In [36] one observes that (as mentioned by R. Perline) the simple form of
the commuting operator may result in one that does not have simple spectrum. This happens
for the so called Bannai-Ito polynomials. In [36] one shows that a more complicated form of
the commuting operator, still built with an appropriate extension of Perline’s construction,
yields one with simple spectrum.

Since the examples of exceptional orthogonal polynomials that we consider here, namely
Jacobi, Laguerre and Hermite, involve recursion relations of orders five and seven respec-
tively, the simple form put forward by R. Perline has to be modified. This point will be
illustrated in some of the examples below.

2 The contents of the paper

In Sect. 3 we recall the definitions of the operator of time-band-time limiting as well as
the operator of band-time-band limiting. In Sect. 4 we consider the case of the exceptional
Hermite polynomials which do not depend on free parameters. In Sect. 5 we consider the
simplest instance of the exceptional Jacobi polynomials. These ones depend on the usual
parameters α and β and some of our results are given in terms of these parameters. Some
results, which have been checked for multiple values of the parameters, are illustrated by
a specific (but arbitrary) choice of them. In Sect. 6 we consider an instance of exceptional
Laguerre polynomials. Finally, in Sect. 7, in the spirit of [11, Section 6], we conclude by
exploiting the numerical pay-off of the results of the previous sections.

3 The operators of time and band limiting

We start with a very general setup of the time-band limiting problem for orthogonal poly-
nomials (see for instance [24]) which will be applied later on to the different examples of
sequences of exceptional orthogonal polynomials discussed in this paper.

Let w = w(x) be a weight function in the open interval (a, b), for which all the moments∫ b
a xnw(x)dx , n ≥ 0, are finite. Let (pn(x))n≥0 be a sequence of real valued orthonormal
polynomials with respect to the weight w(x). Since we will be dealing with exceptional
orthogonal polynomials, we do not assume that deg pn = n. Consider the following two
Hilbert spaces: The space L2((a, b), w(x)dx), denoted here by L2(w), of all measurable
functions f (x), x ∈ (a, b), satisfying

∫ b
a f 2(x)w(x)dx < ∞ and the space �2(N0) of all

real valued sequences (cn)n∈N0 such that
∑∞

n=0 c
2
n < ∞.
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The map F : �2(N0) −→ L2(w) given by

(cn)
∞
n=0 �−→

∞∑

n=0

cn pn(x)

is an isometry. If the polynomials are dense in L2(w), this map is unitary with the inverse
F−1 : L2(w) −→ �2(N0) given by

f (x) �−→ cn =
∫ b

a
f (x)pn(x)w(x)dx .

We denote our map by F to remind the reader of the usual Fourier transform. Here N0

takes up the role of “frequency space” and the interval (a, b) the role of “physical space”.
The band limiting operator, at level N acts on �2(N0) by simply setting equal to zero all

the components with index larger than N . We denote it by χN . The time limiting operator , at
level T , acts on L2(w) by multiplication by the characteristic function of the interval (a, T ],
T ≤ b. This operator will be denoted by χT .

Consider the problem of determining a function f from the following data: f has support
on the finite set {0, . . . , N } and its Fourier transform F f is known on the set (a, T ]. This
can be formalized as follows

χTF f = g = known, χN f = f .

We can combine the two equations into

E f = χTFχN f = g.

To analyze this problem we need to compute the singular vectors (and values) of the
operator E : �2(N0) −→ L2(w). These are given by the eigenvectors of the operators

E∗E = χNF−1χTFχN and S2 = EE∗ = χTFχNF−1χT .

The operator E∗E , acting in �2(N0) is just a finite dimensional matrix M , and each entry
is given by

(M)m,n = (E∗E)m,n =
∫ T

a
pm(x)pn(x)w(x)dx, 0 ≤ m, n ≤ N .

The second operator S2 = EE∗ acts in L2((a, T ), w(x)dx) by means of the integral kernel

k(x, y) =
N∑

j=0

p j (x)p j (y).

Consider now the problem of finding the eigenfunctions of E∗E and/or EE∗. For arbitrary
N and T there is no hope of doing this analytically, and one has to resort to numericalmethods.
This is a remarkably ill-conditioned problem since most of the eigenvalues are crowded
together. Of all the strategies one can dream of for handling this problem, none sounds so
appealing as that of finding a differential operatorwith simple-and spread out-spectrumwhich
would have the same eigenfunctions as the original operators. This is exactly what Mehta as
well as Slepian, Landau and Pollak did when dealing with the real line and the actual Fourier
transform. They discovered (the analog of) the following properties:

• For each N , T there exists a symmetric matrixL with a small number of diagonals, with
simple spectrum, commuting with M .
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• For each N , T there exists a selfadjoint differential operator D, with simple spectrum,
commuting with the integral operator S2 = EE∗.
In this paper we will see instances of exceptional orthogonal polynomials where this

phenomenon holds. Once more we will see that the “bispectral property”, first considered in
[16], guarantees the commutativity of these two operators, a global and a local one.

For an up-to-date treatment of the important issue of computing numerically the eigen-
functions of D, see [46]. For the case of the Discrete Fourier Transform (DFT), see [23].

4 The exceptional Hermite polynomials

We consider the family of exceptional Hermite polynomials defined by Ĥ0 = 1,

Ĥn = Hn + 4nHn−2 + 4n(n − 3)Hn−4, n ≥ 3,

where Hn are the classical Hermite polynomials given by the Rodrigues formula

Hn = (−1)nex
2
Dn
x e

−x2 , n = 0, 1, 2 . . . .

These polynomials can also be defined by means of a determinant (see for instance [20]):

Ĥn = 1

8(n − 1)(n − 2)
det

⎛

⎝
Hn H ′

n H ′′
n

H1 H ′
1 H ′′

1
H2 H ′

2 H ′′
2

⎞

⎠ , n 
= 1, 2.

The exceptional Hermite polynomials satisfy the orthogonality relation:
∫ ∞

−∞
Ĥm(x)Ĥn(x)

e−x2

(1 + 2x2)2
dx =

√
π2nn!

(n − 1)(n − 2)
δn,m, n 
= 1, 2.

4.1 Bispectral operators

Let us now consider the orthonormal sequence of exceptional Hermite orthogonal polyno-

mials given by H̃n =
√

(n − 1)(n − 2)
4
√

π
√
2nn! Ĥn .

The exceptional polynomials H̃n satisfy the differential equation

H̃ ′′
n −

(

2x + 8x

1 + 2x2

)

H̃ ′
n + 2nH̃n = 0

and the recurrence relation, written explicitly in [17] for a different normalization:

αn−3 H̃n−3 + βn−1 H̃n−1 + βn H̃n+1 + αn H̃n+3 = �(x)H̃n, n ≥ 0, (3)

where the coefficients αn and βn and the function �(x) are given by:

αn =
√
2

3

√
(n + 3)(n − 1)(n − 2), βn = √

2(n + 1)n(n − 2), �(x) = 4x3

3
+ 2x .

(4)

Here, we understand that H̃1(x) = H̃2(x) = 0 as well as H̃−2(x) = H̃−1(x) = 0.

Notice that �′(x) = 2(2x2 + 1) = 1

2
det

(
H1 H ′

1
H2 H ′

2

)

. This allows, in the spirit of [16], to

relate �(x) to the appropriate Sato’s τ function.
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If we write

�(x) = (H̃0(x), H̃3(x), H̃4(x), . . .)
t

and B for the semi-infinite heptadiagonal symmetric matrix:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 α0 0 . . . 0 . . .

α0 0 β3 0 α3 0 . . .

0 β3 0 β4 0 α4 0 . . .

0 0 β4 0 β5 0 α5 0 . . .

0 α3 0 β5 0 β6 0 α6 0 . . .

0 0 α4 0 β6 0 β7 0 α7 0 . . .
...

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

one has B�(x) = �(x)�(x) (see (2)), where the expression of �(x) is given in (4).
From the other side one has L�(x) = �(n)�(x), see (1), where

L = d2

dx2
−

(

2x + 8x

1 + 2x2

)
d

dx
(6)

and �(n) is the diagonal matrix whose entries are λn = −2n, n = 0, 3, 4, . . ..

4.2 Time and band limiting

Here,we define the N×N matrixM of truncated inner products depending on a real parameter
T , whose entries are given by:

Mm,n =
∫ T

−∞
H̃m(x)H̃n(x)

e−x2

(1 + 2x2)2
dx, n,m = 0, 3, 4, . . . , N + 1.

For fixed values of the parameters N and T one looks for a “narrow banded” commuting
matrix L .

One finds that there exists an heptadiagonalmatrixL commuting with M . If we consider
for instance the normalization LN ,N = 0 and LN ,N−3 = 1, this matrix is unique.

We display here the symmetric time-band limiting matrix M of size 7 that appears in the
Hermite case. Here and in what follows, I will denote the identity matrix of appropriate size.
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M−
(
1 + Er f (T )

2

)

I

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−T 1√
3

T√
2

2T 2−1√
10

1√
3

T (2T 2+3)
3

(
4 T 4+12 T 2+3

)

2
√
6

√
2 T 3 (

2 T 2+5
)

√
15

T√
2

(
4 T 4+12 T 2+3

)

2
√
6

1
4 T

(
4T 4+12T 2+3

)
(
8 T 6+20 T 4+10 T 2+5

)

4
√
5

2T 2−1√
10

√
2 T 3 (

2 T 2+5
)

√
15

(
8 T 6+20 T 4+10 T 2+5

)

4
√
5

T
5 (5+5T 2+8T 4+4T 6)

T
(
2 T 2−3

)

3
√
2

8 T 6+12 T 4−18 T 2−3
6
√
6

T
(
8 T 6+12 T 4−6 T 2+3

)

12
16 T 8+16 T 6+60 T 2+15

12
√
5(

4 T 4−12 T 2+3
)

2
√
42

T 3
(
4 T 4−21

)

3
√
14

(
16 T 8−56 T 4−7

)

8
√
21

T 3
(
8 T 6−4 T 4−14 T 2+35

)

2
√
15

√
7

T
(
4 T 4−20 T 2+15

)

4
√
30

(
16 T 8−32 T 6−120 T 4+72 T 2+9

)

24
√
10

T
(
16 T 8−32 T 6−88 T 4+40 T 2−15

)

16
√
15

32 T 10−80 T 8−80 T 6+200 T 4−150 T 2−25
80

√
3

T
(
2 T 2−3

)

3
√
2

4 T 4−12 T 2+3
2

√
42

8 T 6+12 T 4−18 T 2−3
6
√
6

T 3
(
4 T 4−21

)

3
√
14

T
(
8 T 6+12 T 4−6 T 2+3

)

12
16 T 8−56 T 4−7

8
√
21

16 T 8+16 T 6+60 T 2+15
12

√
5

T 3
(
8 T 6−4 T 4−14 T 2+35

)

2
√
15

√
7

T
36

(
16T 8+120T 2+27

) 32 T 10−48 T 8+336 T 4+126 T 2+63
24

√
21

32 T 10−48 T 8+336 T 4+126 T 2+63
24

√
21

T
(
16T 10−48T 8+40T 6+252T 4+77T 2+84

)

84

T
(
32 T 10−112 T 8+48 T 6+408 T 4−150 T 2+45

)

48
√
15

64 T 12−320 T 10+464 T 8+1120 T 6−420 T 4+1260 T 2+315
96

√
35

T
(
4 T 4−20 T 2+15

)

4
√
30

(
16 T 8−32 T 6−120 T 4+72 T 2+9

)

24
√
10

T
(
16 T 8−32 T 6−88 T 4+40 T 2−15

)

16
√
15

32 T 10−80 T 8−80 T 6+200 T 4−150 T 2−25
80

√
3

T
(
32 T 10−112 T 8+48 T 6+408 T 4−150 T 2+45

)

48
√
15

64 T 12−320 T 10+464 T 8+1120 T 6−420 T 4+1260 T 2+315
96

√
35

T
(
64T 12−448T 10+1040T 8+928T 6−1284T 4+3460T 2+735

)

960

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−e−T 2

√
π

(
2 T 2 + 1

) .

For N = 7 we have the following expression for the corresponding commuting matrix
L
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
2T

(
14T 2+27

)

√
3

14 0 0 0 0 0

14 −
5T

(
22T 2+21

)

4
√
3

5
(
2T 2+19

)

2
√
2

5
√

5
2 T

5√
2

0 0

0
5
(
2T 2+19

)

2
√
2

−
T

(
26T 2+1

)

√
3

2
√

5
3

(
3T 2 + 14

)
6
√
3T

√
7 0

0 5
√

5
2 T 2

√
5
3

(
3T 2 + 14

)
−

T
(
46T 2−27

)

2
√
3

3
2

√
15

(
2T 2 + 5

)
3
√
35T
2 1

0 5√
2

6
√
3T 3

2
√
15

(
2T 2 + 5

)
−√

3T
(
6T 2 − 5

) √
7

(
5T 2 + 7

)
2
√
5T

0 0
√
7 3

√
35T
2

√
7
(
5T 2 + 7

)
−

T
(
42T 2−29

)

4
√
3

√
35

(
6T 2+5

)

2
√
3

0 0 0 1 2
√
5T

√
35

(
6T 2+5

)

2
√
3

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One may check that this matrix has simple spectrum.
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Let us write BN for the truncated matrix of size N × N made up to the first N rows and
columns of B and �N the diagonal N × N matrix �N = diag(0,−6,−8, . . . ,−2(N + 1)).
We write

ad X(Y ) = XY − Y X (7)

for the usual commutator and (ad X)n (Y ) = ad X
(
(ad X)n−1 (Y )

)
, n ≥ 2.

Remark 4.1 The following relation holds true for every value of N , N ≥ 1:

− 1

40
(ad �N )4 (BN ) + (ad �N )2 (BN ) − 18

5
BN = 0.

where 0 is the zero matrix of size N × N .

A non obvious consequence of this is that if one tries to write the commuting matrixL in
terms of BN and �N for arbitrary values of N and T , in the spirit of Perline [47], one would
need to use monomials of degree higher than five. We will face a much better situation in the
next section.

Remark 4.2 Interestingly, one can see that using the expression of �(x) in (4) and the one of
L in (6), one obtains

− 1

40
(ad L)4 (�) + (ad L)2 (�) − 18

5
� = 0.

in the spirit of M. Reach in [51, 52], who was the first to consider mixed bispectral situations
involving differential and difference operators.

Remark 4.3 We point out that we have made no use of the Darboux process which has always
played an important role in terms of the bispectral property. For the case of exceptional
Hermite polynomials discussed here we notice that the differential operator L in (6)

is Darboux connected, see [19, Theorem 1.2 and Definition 3.7], to the one for classical
Hermite polynomials, namely

H = d2

dx2
− 2x

d

dx
,

by the relation

LS = SH,

with

S = (2x2 + 1)
d2

dx2
− 4x

d

dx
+ 4.

5 The exceptional Jacobi polynomials

5.1 Bispectrality

Let α and β be the classical real Jacobi parameters, with α, β > −1 and α 
= β.
We write

a = β − α

2
, b = β + α

(β − α)
, c = b + 1

a
. (8)
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We denote by p̂(α,β)
n (x) the sequence of exceptional Jacobi polynomials introduced in

[21], where the set of missing degrees is equal to {0}. These polynomials are orthogonal in
(−1, 1) with respect to the weight

ρ(x) = (1 − x)α(1 + x)β

(x − b)2
.

We use the expression

p̂(α,β)
n (x) = b p(α,β)

n−1 (x) − p(α,β)
n−2 (x)

2 n + β + α − 2
− p(α,β)

n−1 (x) (x − b)

2
, n ≥ 1,

for the exceptional Jacobi polynomials p̂(α,β)
n in termsof the traditional Jacobi polynomials

p(α,β)
n (x).
It is very well known that the Jacobi polynomials are bispectral, i.e., they satisfy the

recursion (see for instance [61, Chapter IV])

cn p
(α,β)
n−1 (x) + bn p

(α,β)
n (x) + an p

(α,β)
n+1 (x) = xp(α,β)

n (x), n = 0, 1, 2, . . . ,

with an, bn, cn given below and p(α,β)
−1 = 0, p(α,β)

0 = 1, as well as the differential equation

(1 − x2)(p(α,β)
n (x))′′ + (β − α − (α + β + 2)x)(p(α,β)

n (x))′(x)
= −n(n + α + β + 1)p(α,β)

n (x), n = 0, 1, 2, . . . . (9)

The values of an, bn, cn above are given by

an = 2 (n + 1) (n + β + α + 1)

(2 n + β + α + 1) (2 n + β + α + 2)
, bn = β2 − α2

(2 n + β + α) (2 n + β + α + 2)

and cn = 2 (n + α) (n + β)

(2 n + β + α) (2 n + β + α + 1)
.

In this section we observe that the exceptional Jacobi polynomials p̂(α,β)
n (x) are also

bispectral. They satisfy the five term recursion relation

ên p̂
(α,β)
n−2 (x)+d̂n p̂

(α,β)
n−1 (x)+ĉn p̂

(α,β)
n (x)+b̂n p̂

(α,β)
n+1 (x)+ân p̂

(α,β)
n+2 (x)=(x − b)2 p̂(α,β)

n (x),

(10)

where the explicit expressions of the entries ên , d̂n , ĉn , b̂n and ân are given below, as well as
the differential equation (see [21, Section 2])

Lα,β p̂
(α,β)
n (x) = (n − 1)(α + β + n) p̂(α,β)

n (x), n = 1, 2 . . . , (11)

where the operator Lα,β is given by

Lα,β = (x2 − 1)
d2

dx2
+ 2a

(
1 − bx

b − x

) (

(x − c)
d

dx
− 1

)

, (12)

with the parameters a, b and c given in (8).
The existence of a five term recursion relation was established in [53]. This can be

expressed by saying that the vector

�(x) = ( p̂(α,β)
1 (x), p̂(α,β)

2 (x), p̂(α,β)
3 (x), . . .)t (13)
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satisfies the relation

B̂�(x) = (x − b)2�(x),

where B̂ is the pentadiagonal matrix where its n − th row is given by

(. . . 0, 0, 0, ên, d̂n, ĉn, b̂n, ân, 0, 0, . . .).

The matrix B̂ is not symmetric, but it can be symmetrized into a matrix B with B =
D B̂D−1, where the diagonal matrix D with entries μi , i = 1, 2, . . ., gives rise to a sequence
of orthonormal exceptional Jacobi polynomials, that written in terms of a vector �̃(x) as in
(13), reads as follows:

B�̃(x) = (x − b)2�̃(x). (14)

The entries of the recurrence relation (10) are given as follows:

ân = 4 n (n + 1) (n + β + α) (n + β + α + 1)

(2 n + β + α − 1) (2 n + β + α) (2 n + β + α + 1) (2 n + β + α + 2)
,

b̂n = − 16n (β + α) (n + α) (n + β) (n + β + α)

(β − α) (2 n + β + α − 2) (2 n + β + α − 1) (α + β + 2n) (α + β + 2n + 2)
,

ĉn = −2 n (n + 1) (n + β − 1) (n + β + 2)

2 n + β + α + 1
+ 4 n2 (n + β − 1) (n + β + 1)

2 n + β + α

−4 (n − 1)2 (n + β − 2) (n + β)

2 n + β + α − 2
+ 2 (n − 2) (n − 1) (n + β − 3) (n + β)

2 n + β + α − 3

+ 4β2

(β − α)2
− 4β

β − α
,

d̂n = − 16 (β + α) (n + α − 2) (n + α) (n + β − 2) (n + β)

(β − α) (2 n + β + α − 4) (2 n + β + α − 2) (2 n + β + α − 1) (2 n + β + α)
,

ên = 4 (n + α − 3) (n + α) (n + β − 3) (n + β)

(2 n + β + α − 4) (2 n + β + α − 3) (2 n + β + α − 2) (2 n + β + α − 1)
.

Finally, the expression for the ratio

(
μn+1

μn

)2

is given by

n (n + α) (n + β) (n + β + α) (2 n + β + α + 1)

(n + α − 1) (n + α + 1) (n + β − 1) (n + β + 1) (2 n + β + α − 1)

and this determines the diagonal matrix D with positive coefficients up to a scalar.
We have by now identified the differential operator L and the difference operator B as

well as the diagonal operators �(k) = �(n) and �(x) = (x − b)2 (see (1) and (2)) that give
us a bispectral situation for a sequence of orthonormal exceptional Jacobi polynomials.

5.2 The commutingmatrix

We find a narrow banded matrix L that commutes with the band-time-band limiting matrix
of inner products. This is illustrated in the case of size N = 7, the band limiting parameter
T = 1/3 and the Jacobi parameters α = 3 and β = 4:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 316897
2544

√
4290

26486
√

2
429

583 − 969
√

7
1430

1166 0 0 0 0

26486
√

2
429

583 − 200311
√

5
858

6996
82042

√
14
143

7579 − 5491
7579

√
143

0 0 0

− 969
√

7
1430

1166
82042

√
14
143

7579 − 21492811
159159

√
4290

2081089
√

7
2145

37895 − 148257
385840

√
65

0 0

0 − 5491
7579

√
143

2081089
√

7
2145

37895 − 24836371
220480

√
4290

19323
√

14
65

3445 − 3249
√

3
130

16960 0

0 0 − 148257
385840

√
65

19323
√

14
65

3445 − 7219271
89040

√
4290

323
√

154
65

265 − 19
√

7
3

2544

0 0 0 − 3249
√

3
130

16960
323

√
154
65

265 − 437291
10176

√
4290

1

0 0 0 0 − 19
√

7
3

2544 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The commutingmatrixL of size N is unique oncewe ask forLN ,N = 0 andLN ,N−1 = 1.
As in the previous section, one writes BN for the truncated matrix of size N × N made

up to the first N rows and columns of B and �N the diagonal N × N matrix whose entry
in the position (n, n) is equal to the eigenvalue λn = (n − 1)(n + α + β) in the differential
equation (11).

Attempting to express the matrixL above as a linear combination of very simple mono-
mials in terms of BN and �N , with N = 7, one obtains

L = γ1 I + γ2�N + γ3BN + γ4�
2
N + γ5 (�N BN + BN�N ) + γ6

(
BN�2

N + �2
N BN

)

+γ7�N BN�N + γ8
[(

�3
N BN + BN�3

N

) − (
�N BN�2

N + �2
N BN�N

)]
, (15)

where

γ1 = 7387129

53 2
5
2 3

3
2 5

3
2
√
11

√
13

, γ2=− 4796873

371 2
9
2 3

5
2 5

3
2
√
11

√
13

, γ3=− 116603
√
3

53 2
15
2

√
5

√
11

√
13

,

γ4 = − 323
√
11

371 2
9
2 3

5
2
√
5

√
13

, γ5 = 7429 3
5
2

371 2
19
2 5

3
2
√
11

√
13

, γ6 = 77843

371 2
15
2 3

5
2 5

3
2
√
11

√
13

,

γ7 = − 305881

371 2
17
2 3

5
2 5

3
2
√
11

√
13

,

and

γ8 = − 323

371 2
19
2 3

5
2
√
5

√
11

√
13

.

This expression, of course, can be written in terms of commutators and anti-commutators
as in Remark 4.1.

It is worth pointing out that a similar combination, with the same monomials as above,
holds true for arbitrary size N ≥ 7. This yields a non trivial extension of the results in [47].
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5.3 The commuting differential operator

For given values of N and T , consider the integral kernel

KN (x, y) =
N∑

i=1

p̂(α,β)
i (x) p̂(α,β)

i (y)

|| p̂(α,β)
i ||2

acting on L2(−1, T ).
In perfect agreement with the expression of L given in (15) one can build a differential

operator commuting with the integral operator with the kernel given above, by taking an
appropriate linear combination in terms of the operators L = Lα,β and �(x) = (x − b)2

(see (12) and (14)). The linear combination involves the following operators:

L, �, L2, L� + �L, L2� + �L2, L�L, (L�L2 + L2�L) − (L3� + �L3).

This operator can be written in a more explicit form, namely

1

ρ(x)

(
d2

dx2
A (x)

d2

dx2
+ d

dx
B(x)

d

dx
+ C (x)

)

(16)

where

ρ(x) = (1 − x)α(1 + x)β

(x − b)2

is the orthogonality weight of the exceptional Jacobi polynomials p̂(α,β)
n (x) displayed above

and the functions A (x), B(x), C (x) have the form

A (x) = (x − 1)α+2(x + 1)β+2(x − T )2

(x − b)2
, B(x) = (x − 1)α+1(x + 1)β+1(x − T )

(x − b)4
P3(x),

C (x) = (x − 1)α(x + 1)β

(x − b)5
P5(x).

Notice that the differential operator given above in (16) is symmetric in L2((−1, T ),

ρ(x)dx), with a domain that includes all smooth enough functions in this space. The appro-
priate vanishing of the coefficients A(x) and B(x) at −1 and T make it unnnecesary (in the
process of integration by parts) to restrict to functions that satisfy certain boundary condi-
tions. A careful look at an appropriate selfadjoint extension of this symmetric operator is a
delicate point that, to the best of our knowledge, has only been addressed in [43] in the case
of the Fourier expansions of Slepian, Landau and Pollak. From our point of view, the only
important point is that the eigenfunctions of the integral operator lie in the domain of this
extension.

Here P3(x) and P5(x) are polynomials in x of degree three and five respectively.
One can describe the dependence of P3(x) and P5(x) on the parameters T and N in more

detail, namely

P3(x) = q3(N )x3 + (q2(N ) + σ2T )x2 + (q1(N ) + σ1T )x + q0(N ) + σ0T ,

with qi , i = 0, . . . , 3, quadratic polynomials in N and σi , i = 0, 1, 2, constants. Moreover,
q3 is up to a multiplicative constant (N − 1)(N + α + β + 1).

In the case of P5(x) one gets

P5(x) = δ5(N )x5 + (δ4(N ) + λ4(N )T )x4 + (δ2(N ) + λ2(N )T + γ2T
2)x2

+(δ1(N ) + λ1(N )T + γ1T
2)x + δ0(N ) + λ0(N )T + γ0T

2.
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By adding to C (x) a constant one can make, as above, one of the coefficients of P5(x)
vanish. Here δ5(N ) is up to a multiplicative constant equal to (N − 1)N (N + α + β)(N +
α + β + 1), the coefficients δi , i = 0, . . . 4, are polynomials in N of degree four (not as
nice as δ5), λi , i = 0, 1, 2, 4, are polynomials in N of degree two, and γi , i = 0, 1, 2, are
constants independent of N .

Remark 5.1 Using the notation in (7) one can see that the ad conditions in [51, 52] expressing
the bispectral property take the following form in this case

(ad L1)
5 (�) − 10 (ad L1)

4 (�) + (ad L1)
3 (�) (33 − 20L1)

+ (ad L1)
2 (�) (−40 + 64L1) + 16 ad L1 (�)

(I − 5L1 − 4L2
1

) = 0,

where I is the identity operator and L1 = L − (α + β + 1)2

4
I is a proper shift of L . The

operator �(x) = (x − b)2 is the same as above.
This more complicated form of the ad conditions in [51, 52] arises because the eigenvalue

in the Jacobi case is a quadratic function of n.

Remark 5.2 For the case of exceptional Jacobi polynomials discussed here we notice that
the operator Lα,β in (12) is Darboux connected to the one for classical Jacobi polynomials,
namely

Jα,β = (x2 − 1)
d2

dx2
− (β − α − (α + β + 2)x)

d

dx
,

by the relation

Lα,βS = S Jα,β,

with

S = S2(x)
d2

dx2
+ S1(x)

d

dx
+ S0(x),

where

S2(x) = (x2 − 1)((β − α)x − β − α),

S1(x) = (β − α)(α + β + 1)x2 − 2(β(β + 1) + α(α + 1))x + (β − α)(α + β + 1),

S0(x) = αβ((β − α)x − β − α − 2).

6 The exceptional Laguerre polynomials

Let α > 0 and L(α)
n (x), n ≥ 0, denote the classical Laguerre polynomials orthogonal with

respect to the weight e−x xα in the interval (0,+∞). We consider the sequence of exceptional
Laguerre polynomials L̂(α)

n (x) introduced in [21], orthogonal with respect to the weight

e−x xα

(x + α)2

where the set of missing degrees is {0}.
These polynomials can be expressed in terms of the classical Laguerre polynomials by

the relation (see [21, section 6.2])

L̂(α)
n (x) = −(x + α + 1)L(α)

n−1 + L(α)
n−2, n = 1, 2, . . . .
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The squared norms of these polynomials are given by

||L̂(α)
n (x)||2 = (α + n)�(n + α)

(α + n − 1)(n − 1)! .

This expression is essentially in [21, section 6.2]). We write
(
L̃(α)
n (x)

)

n≥1
for the sequence

of orthonormal polynomials.
Here the relevant operators L = Lα and �(x) = �α(x) (see (1) and (2)) are given by

�α = (x + α)2 and

Lα = −x
d2

dx2
+

(
x − α

x + α

) (

(x + α + 1)
d

dx
− I

)

. (17)

Remark 6.1 In terms of L and � the ad conditions in [51, 52] take, for this case, the simple
form (see (7) for the notation)

(ad L)5 (�) − 5 (ad L)3 (�) + 4 ad L(�) = 0.

Turning our attention to the commuting property, we define the N × N matrix M of
truncated inner products depending on a real parameter T , whose entries are given by:

Mm,n =
∫ T

0
L̃(α)
m (x)L̃(α)

n (x)
e−x xα

(x + α)2
dx, n,m = 1, 2, . . . , N .

For each fixed value of the parameters N and T one looks for a “narrow banded” commuting
matrix L .

We exhibit the commuting matrixL of size N = 7, for the special choice of the Laguerre
parameter α = 7.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−√
7

(
3 T 2+16 T−260

)

110
√
2

− 6 (T+19)
55

√
5

11
√
2

0 0 0 0

− 6 (T+19)
55 − 11 T 2+32 T−1232

66
√
14

− 2
√
5 (T+17)
11

√
7

2
√
2√

3
√
7

√
11

0 0 0

√
5

11
√
2

− 2
√
5 (T+17)
11

√
7

− 23 T 2+8 T−3060
165

√
14

− 2
√
3 (T+15)√
5

√
7

√
11

18
√
2

55
√
7

0 0

0 2
√
2√

3
√
7

√
11

− 2
√
3 (T+15)√
5

√
7

√
11

− 6 T 2−14 T−893
55

√
14

− 2
√
3 (T+13)√
5

√
7

√
11

√
13

11
√
7

0

0 0 18
√
2

55
√
7

− 2
√
3 (T+13)√
5

√
7

√
11

− 25 T 2−128 T−3964
330

√
14

−
√
26(T+11)√

3
√
5

√
7

√
11

1√
330

0 0 0
√
13

11
√
7

−
√
26(T+11)√

3
√
5
√
7

√
11

− 13 T 2−104 T−2100
330

√
14

−
√
26 (T+9)

55

0 0 0 0 1√
330

−
√
26(T+9)
55 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As before, with a proper normalization this matrix is unique.

Remark 6.2 For the case of exceptional Laguerre polynomials discussed here we notice that
the differential operator Lα in (17) is Darboux connected to the one for classical Laguerre
polynomials, namely

Lα = −x
d2

dx2
− (α + 1 − x)

d

dx
,

by the relation

LαS = SLα,

with

S = x(x + α)
d2

dx2
− (x2 − α2 − α)

d

dx
− α(x + α + 1).
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7 The benefit of having a commuting local matrix

The previous sections have exhibited, for a collection of examples of exceptional orthogonal
polynomials, a pair of matrices. The first one, a full matrix M = MT ,N , is obtained by
forming the inner products of the normalizedOPover a restricted range in physical space, thus
implementing “time limiting” with parameter T . In the resulting N ×N matrix the parameter
N implements “band limiting”. In each case the second matrix, denoted by L = LT ,N , is
a narrow banded one that commutes with the first matrix, and has simple spectrum. From
a numerical point of view the entire purpose of the search for this second matrix is that it
reduces the problem of computing the eigenvectors of the first one, a seriously ill-conditioned
one, into a very well conditioned one.

The eigenvectors ofMT ,N are of paramount importance since they give the singular vectors
of the signal processing problem at hand, as described in Sect. 1.

We display below the results of some small size numerical computations that illustrate
the problem of computing the eigenvectors of a full matrix, such as MT ,N , some of whose
eigenvalues are very close together. In each case, we give the eigenvalues of both the full
matrix MT ,N and those of the narrow banded matrixLT ,N . It should be clear that in the case
when N is large the problems indicated below get to be much worse. Our point is that they
already appear for small values of N .

We use the QR algorithm as implemented in LAPACK. In each of the three situations,
Hermite, Jacobi and Laguerre, we will denote by XM the matrix of eigenvectors of MT ,N

(normalized and given as columns of XM . We will denote by YL the matrix of eigenvectors
of LT ,N (normalized and given as columns of YL ).

In theory the eigenvectors of MT ,N should agree (up to order and signs) with those of
LT ,N . If we compute the matrix of inner products given by

Y T
L XM

we expect to have the identity matrix up to some permutation and possibly some signs due
to the normalization of the eigenvectors which are the columns of XM and YL .

7.1 Hermite

The choice of parameters is N = 7 and T = 5.
The eigenvalues of MT ,N are

1., 1., 1., 1., 1., 1., 0.999989,

and those of LT ,N are

−2186.9,−2127.47,−1985.6,−1690.49,−1227.68,−611.685, 100.033.

The matrix Y T
L XM is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0663098 0.384538 0.914298 −0.108586 0.00078648 0.0000796039 −0.0000275025
0.250947 0.784559 −0.396329 −0.405483 −0.000552959 −0.0000929769 −0.0000926722

−0.568584 0.481897 −0.0828753 0.661528 0.000385822 0.000140271 0.000264937
0.780602 0.0661256 −0.0106201 0.621429 −0.000970967 −0.000161057 −0.000249407
0.00106371 9.69168 × 10−6 −0.000916543 0.000209371 0.999999 −0.00028544 −0.000399834
0.000223739 −0.000014601 −0.0000999801 −0.0000216885 0.000285012 1. −0.000257904
0.000370889 −0.0000278978 7.33262 × 10−6 −0.0000607604 0.000399533 0.000257706 1.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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7.2 Jacobi

The choice of parameters is given by α = 4, β = 3, N = 7 and T = 1/3.
The eigenvalues of MT ,N are

0.00271069, 0.0397751, 0.752568, 0.977212, 1.0016, 1.0, 1.0.

Notice that the value 1.0016 above is due to numerical instability. Those of LT ,N are

−225.02,−131.013,−47.8296, 180.78, 22.1365, 119.864, 74.8259.

The matrix Y T
L XM is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.00747678 −0.00879137 −0.00787297 0.997507 0.00605771 0.0686547 −0.00573508
0.0299278 −0.0351898 −0.0315137 0.239956 0.0242519 0.968588 −0.0232993
0.188064 −0.221129 −0.198037 0.0204167 0.154553 −0.0312631 0.922623
0.470392 −0.553098 −0.49561 0.00362164 0.476008 −0.00544977 0.0235557

−0.533333 0.6271 0.556811 2.82016 × 10−4 −0.110716 −4.23774 × 10−4 0.00171454
0.643064 −0.753535 −0.136571 −7.37868 × 10−7 3.89179 × 10−4 1.10886 × 10−6 −4.50479 × 10−6

−0.994134 0.108155 9.28542 × 10−5 4.00526 × 10−10 −2.1141 × 10−7 −6.01908 × 10−10 2.44529 × 10−9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7.3 Laguerre

The choice of parameters is given by α = 7, N = 7 and T = 1/2.
The eigenvalues of MT ,N are

1.0856 × 10−4, 6.4646 × 10−9, 2.4992 × 10−13,−7.9725 × 10−17,−1.8132 × 10−18,

9.8169 × 10−17, 6.469 × 10−17,

and those of LT ,N are

169.43, 119.107, 78.6334, 46.531, 21.5219, 2.5574,−11.0609

The matrix Y T
L XM is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4.53595 × 10−14 7.10889 × 10−15 −3.33066 × 10−15 4.84889 × 10−14 4.16888 × 10−14 −4.76174 × 10−13 −1.0
−2.24211 × 10−9 2.66194 × 10−10 1.39646 × 10−9 −1.14752 × 10−9 −1.08174 × 10−8 0.999999 −4.76896 × 10−13

6.62053 × 10−5 −1.75441 × 10−5 −6.23886 × 10−5 −2.52534 × 10−4 0.999999 1.08165 × 10−8 4.19664 × 10−14

0.218337 0.447717 0.653743 0.569647 1.78046 × 10−4 1.13123 × 10−10 3.85524 × 10−14

0.423228 0.637769 −0.0176169 −0.643286 −1.80397 × 10−4 6.32598 × 10−11 −7.10542 × 10−15

−0.104047 0.513037 −0.717294 0.459842 8.72632 × 10−5 1.1602 × 10−9 2.35263 × 10−14

−0.873152 0.359929 0.240438 −0.224153 2.24938 × 10−5 −2.64713 × 10−9 −4.8397 × 10−14

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Observe that some of the entries of these matrices Y T
L XM are indeed very close to the

theoretically correct values, while others are terribly off. The reason is that a few eigenvalues
of the full matrix of inner products MT ,N are just too close together. This produces numerical
instability in the computation of the corresponding eigenvectors. On the other hand, all the
eigenvalues of the commuting matrix LT ,N are nicely separated and the corresponding
eigenvectors can be trusted.

In summary, a good way to obtain reliable numerical values for the eigenvectors of the
global matrix M is to forget about M altogether and to compute numerically the eigenvectors
ofL . Not only we will then be dealing with a very sparse matrix for which the QR algorithm
works very fast (most of the work is avoided) but the problem is numerically very well
conditioned.
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8 Conclusions

The classical work of Slepian, Landau and Pollak has found, over the years, innumerable
applications in various forms of signal processing reaching all the way to geophysics. This
was extended in [24] when one consideres not Fourier expansions but expansions in terms
of classical orthogonal polynomials.

In this paperwe show that expansions in termsof someexceptional orthogonal polynomials
exhibit the same basic commutativity property, and we illustrate the numerical importance of
this algebraic fact. Future applications involving exceptional orthogonal polynomials could
benefit from the results in this paper.
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