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The design of a novel strategy based on the model reference adaptive control method for the stabilisation of a second-
order linear time-delay system with unknown parameters is presented. The proposed approach is developed under the
assumption that only one state of the system is available, and the sign of the control gain is known. First, the integral
operator is applied to obtain a new representation of the original system, where the whole state is known. The use of
the integral operator decomposes the control problem into two subproblems that are solved by using the model reference
adaptive control method and the backstepping procedure. The effectiveness of the proposed approach is illustrated through
an academic example and a practical application case regarding a chemical reactor recycle system.
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1. Introduction
Time delays are parametric descriptions in systems where
the process involves transportation of material, energy
or information. The infinite-dimensional property of
time-delay systems has given rise to modifications of
the existing stability analysis techniques and control

*Corresponding author

methods developed for delay-free systems. Stabilisation
and control of time-delay systems is a topic of growing
interest due to the variety of practical applications that
involve time lags. Many research works have been
devoted to the control of time-delay systems, using,
for example, the sliding-modes technique (Mathiyalagan
and Sangeetha, 2019), predictor approaches (Nguyen,
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2018), Lyapunov-based techniques (Fang and Park, 2013;
Hua et al., 2022), adaptive control (Jia et al., 2018),
flatness-based control (Bekcheva et al., 2017), attractive
ellipsoid method-based control (Mera et al., 2014), among
others.

The task is further complicated when the system
parameters are unknown and the state is partially
available for measurements. Under this scenario,
adaptive control techniques constitute efficient solutions.
This paper presents a control design method for the
regulation and trajectory tracking problem of a class of
linear time-invariant time-delay systems with parametric
uncertainties based on the model reference adaptive
control (MRAC) method applying an integral operator.
This approach is an efficient tool for dealing with
parametric uncertainties in various dynamic systems,
including linear and nonlinear, single and multivariable,
continuous and discrete, deterministic and stochastic ones
(Åström and Wittenmark, 2008).

Some adaptive control techniques have been
developed to estimate parameters in time-delay systems.
For instance in the works of Orlov et al. (2003; 2009),
the synthesis of an adaptive parameter identifier for
linear dynamic systems with delays in the state and
in the control input is presented. The system state is
assumed to be available for measurements; necessary
and sufficient conditions for the system parameters and
delays to be identifiable are provided. Once the parameter
identifiability is guaranteed, the proposed adaptive
identifier achieves simultaneous online identification of
the system parameters and delays. Theoretical results are
supported by numerical simulations (Orlov et al., 2003)
and an experimental study case is provided (Orlov
et al., 2009).

In the work of Yuan et al. (2019), an adaptive control
scheme for switched time-delay systems that can handle
impulsive behaviour in both states and time-varying
delays is proposed. The key idea is to construct a
Lyapunov function with a time-varying coefficient that
guarantees that it will be non-increasing at the switching
instants. A practical application example is used to
illustrate the effectiveness of the method.

Yuan et al. (2018) also address the robust adaptive
stabilisation of uncertain switched time-varying delay
systems with unknown disturbances in a high-order
form. The proposed design guarantees global asymptotic
stability for arbitrary switching. A numerical example
illustrates the effectiveness of the proposed method.

In the work of Evesque et al. (2003), the problem
of adaptive control in the presence of large time delays
is considered. The proposed control consists of a
reduced-order controller that depends on the relative
degree of the plant, rather than its order, combined
with a Posicast control structure. It is shown that the
architecture is amenable to adaptation, leading to stability

within a bounded domain for a small time delay. Stable
adaptive laws are generated by using high-order tuners
and a Lyapunov–Krasvoskii functional that guarantees the
closed-loop stability.

Niculescu and Annaswamy (2003) propose a
continuous-time adaptive control for systems whose
relative degree does not exceed two. The controller
structure corresponds to a modified Smith controller
to handle plants that may be open-loop unstable. A
Lyapunov–Krasovskii functional derived for a model
transformation of the original system is used to derive
stability properties of the closed-loop system, which
results in semi-global stability despite the time delay, and
leads to the asymptotic convergence of the output error to
zero. The controller is also shown to be robust against
disturbances.

The design of MRAC for a class of linear multi-input
multi-output (MIMO) systems with delays has been
addressed by Mirkin and Gutman (2005; 2010). First
(Mirkin and Gutman, 2005), the trajectory tracking
task for a class of invariant time-delay systems is
solved through a controller whose structure is established
on an error equation parameterisation based on the
standard MRAC structure for plants without delay.
The proposed control technique includes an additional
adaptive feedforward control component as an output
of a dynamical system driven by the reference signal.
Further (Mirkin and Gutman, 2010), an output feedback
adaptive control scheme that uses feedback actions based
on the Lyapunov–Krasovskii approach is applied to design
the adaptation algorithms and to prove the stability of
a non-linear system with an unknown time-varying state
delay with external disturbances.

Adaptive control techniques have been developed
also for systems with a time delay in the input signal,
(see, e.g., Yao et al., 2019; Mirkin et al., 2008). In
the work of Yao et al. (2019), the adaptive control
problem for nonlinear systems with unknown parameters
is considered; the Padé approximation method is used
to deal with the input delay. A controller is designed
based on the backstepping technique that guarantees the
boundedness of all the closed-loop signals; the tracking
error converges to the predefined stable dynamics. Finally,
a simulation example is given to verify the effectiveness of
the proposed scheme. Mirkin et al. (2008) develop a state
feedback Lyapunov-based design of direct MRAC for a
class of non-linear systems with an external disturbance
and with both input and state delays. The procedure is
based on reference trajectories prediction; the proposed
controller attempts to anticipate the future states. The
stability analysis is based on a Lyapunov–Krasovskii-type
functional. In the work of Bresch-Pietri et al. (2012),
an adaptive control scheme based on a backstepping
transformation for linear uncertain time-delay systems is
presented. The proposal, based on a Lyapunov analysis, is
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capable of addressing a collection of classic problems of
equilibrium regulation. The effectiveness of the proposed
approach is illustrated through numerical simulations of a
second-order plant in which there is no knowledge of the
actuator state.

It is important to point out that the aforementioned
research works propose adaptive control schemes to solve
stabilisation or trajectory tracking problems by estimating
the parameters of uncertain time-delay systems. All
of them assume that the whole state of the system is
available. Unlike what can be found in the literature,
this paper proposes a simple solution to the problem
of regulation and trajectory tracking for a class of
second-order linear time-delay systems with unknown
parameters in which total access to the states is
unavailable. The proposed method, based on MRAC
together with the backstepping procedure, does not allow
the estimation of the actual parameters of the system, but
it guarantees the convergence of the state to the desired
reference signal. Considering that only the state x(t) is
available, and, inspired by the work of Aguilar-Ibañez
et al. (2021), the integral operator is used to reconstruct
the non-available state. Numerical examples are provided
to highlight the effectiveness of the proposed method.

The contributions of this paper regarding the existing
literature can be summarised in the following points:

• To the best of the authors’ knowledge, the problem
stated here has not been addressed before, i.e., there
are no research works that propose a solution for the
stabilisation of a time-delay system considering the
lack of access to the whole state and under unknown
system parameters.

• The use of an observer or state estimator is not
required since the full state of the offered system
representation is available. This representation
is derived from the integration over time of the
original functional differential equations describing
the second-order time-delay system.

• The proposed solution is simple since the proposed
representation, given by a cascade connection of two
subsystems (see Eqns. (6) and (7)), allows splitting
the control problem into two stages. In the first one,
an MRAC-based method, along with an appropriate
stability analysis using a Lyapunov–Krasovskii
functional, is applied to guarantee the asymptotic
stability of the first subsystem. In the second stage,
the backstepping technique allows stabilising the
overall system.

Throughout the paper, the following notation is used:
matrix transposition is denoted by the superscript T , Rn

denotes the n-dimensional Euclidean vector space, the
Euclidean norm for vectors and the induced norm for

matrices are used, both denoted by || · ||, and C[t0 −
h, t0] → R

n is the Banach space of continuous functions
with the norm ||xt|| = maxθ∈[t0−h,t0] |x(t+ θ)|.

2. Problem statement

Consider a second-order linear time-delay system of the
form

ẍ(t) = a1x(t) + ahx(t − h) + a2ẋ(t) + bu(t), (1)

where x(t) ∈ R is the system state variable, u(t) ∈ R is
the system input, h is a known and constant time delay,
a1, ah and a2 ∈ R and b > 0 ∈ R are unknown constants.
The initial conditions of the system are represented by the
continuously differentiable function φ(θ), ∀θ ∈ [−2h, 0].

In the system (1), it is assumed that the state
ẋ(t) is not available for measurements. In practical
application problems, it is well known that the derivative
of the state (velocity) is not always available due to
sensor limitations. Adding velocity sensors can increase
the cost and complexity of a control system. Even
when velocity measurements are available, they can be
noisy or prone to errors, making them unreliable for
control purposes. In practice, it is more convenient to
rely on position measurements and use Luenberger or
reduced-order observers to reconstruct the non-available
state. In the proposed approach, instead of using state
observers, the integration operator is applied as explained
in Section 2.1.

In this work, the trajectory tracking control problem
is addressed. The objective is to establish a control law
such that x(t) → xref(t), where xref(t) is a given smooth
reference trajectory. The proposed adaptive controller
design approach is based on the results for delay-free
systems presented by Aguilar-Ibañez et al. (2021; 2013)
and Ortega et al. (2003). Critical assumptions to achieve
the control goals are presented below.

Assumption 1. The first and second time derivatives
of the reference trajectory xref(t) are bounded and
continuous.

Assumption 2. The initial condition is continuous and is
such that

∫ t0−h

t0−2h φ(s) ds is bounded.

Assumption 3. The state x(t) and the delayed state
x(t− h) are available for all t > 0.

To address the adaptive tracking problem, the
following error function is considered:

e(t) = x(t) − xref(t),
.
e(t) = ẋ(t)− ẋref(t).

(2)
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2.1. Control design. This section presents the
controller design to address the adaptive trajectory
tracking problem of the system (1).

In order to reach the control goal, the non-available
state

.
x(t) is reconstructed through the use of the

integration operator over Eqn. (1). Hence, integrating both
the sides of Eqn. (1), from t0 − h to t, the following
expression is obtained:

.
x(t) =a1

∫ t

t0−h

x(s) ds + ah

∫ t

t0−h

x(s− h) ds

+ a2x(t) + a3 + bv(t),

where a3 = −a2x(t0−h)+
.
x(t0−h) and the new control

v(t) is given by

v(t) =

∫ t

t0−h

u(s) ds.

Then it is possible to rewrite the error equation as

.
e(t) =a1

∫ t

t0−h

x(s) ds+ ah

∫ t

t0−h

x(s − h) ds

+ a2x(t) + a3 + bv(t)− ẋref(t). (3)

Note that Eqn. (3) can be written as
.
e(t) = aTH(t, t0 − h) + bv(t), (4)

where a is a vector of unknown parameters given by

a =
[
a1 ah a2 a3 1

]T
,

and H(t, t0 − h) is defined as

H(t, t0 − h)

=
[ ∫ t

t0−h

x(s) ds

∫ t

t0−h

x(s− h) ds

x(t) 1− ẋref(t)
]T

. (5)

Hence, the extended system is written as
.
e(t) = aTH(t, t0 − h) + bv(t), (6)
.
v(t) = u(t). (7)

The integrator backstepping technique will be
applied to the system (6)–(7). This system can be viewed
as a cascade connection of two components; one is (6),
with v(t) as input, and the other is (7). Then, a state
feedback control law v(t) = σ(x) such that the origin
of

ė(t) = aTH(t, t0 − h) + bσ(x) (8)

is asymptotically stable must be designed.
Since H(t, t0 − h) is available for measurements, it

is possible to apply the MRAC method as follows.

Consider the following parameterisation:

b−1

(

−aTH − e(t)−
∫ t

t0−h

e(s) ds

)

= HT θ∗, (9)

where θ∗ ∈ R
5 is the ideal vector, in which all the

parameters are constant and known. Define the adaptive
controller σ(x) as

σ(x) = HT (t, t0 − h)θ̂, (10)

where θ̂ is an estimate of the ideal vector θ∗. Then, in order
to find the evolution of θ̂, Eqn. (8) can be written in terms
of Eqns. (9) and (10) as

.
e(t) = −e(t)−

∫ t

t0−h

e(s) ds

+ bHT (t, t0 − h)Δθ, (11)

where Δθ = θ̂ − θ∗.
The next step consists in finding the adaptive

evolution of the parameters in vector θ̂ such that the
trajectories of the system (11) satisfy e(t) → 0 and
.
e(t) → 0.

It is well known that the Lyapunov method is
effective in determining the stability of a given system.
For a delay-free system, this requires the construction of
a Lyapunov function V (t, x(t)), which could be seen as a
measure that quantifies the deviation of the state x(t) from
the trivial solution 0. In the case of time-delay systems,
the state at time t required to specify the future evolution
of the system beyond t is the value of x(t) in the interval
[t − h, t], i.e., xt(θ) = x(t + θ), θ ∈ [−h, 0]. Then,
it is natural to expect that, for a time-delay system, the
corresponding Lyapunov function should be a functional
V (t, xt) depending on xt, which also should measure
the deviation of xt from the trivial solution 0. Such a
functional is known as a Lyapunov–Krasovskii one (Gu
et al., 2003).

The Lyapunov–Krasovskii theorem given below
states the conditions to guarantee the asymptotic stability
of a time-delay system.

Theorem 1. (Gu et al., 2003, Proposition 5.2, p. 148) A
time-delay system is asymptotically stable if there exists a
bounded quadratic Lyapunov–Krasovskii functional V (φ)
such that, for some ε > 0, it satisfies

V (φ) ≥ ε||φ(0)||2,
and its derivative along the system trajectories,

V̇ (φ) = V̇ (xt)
∣
∣
∣
xt=φ

,

satisfies
V̇ (φ) ≤ −ε||φ(0)||2.
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The proof of Theorem 1 can be found in the work of
Gu et al. (2003).

Now, in view of Theorem 1, to analyse the
stability of the system (11) and find the adaptive
evolution of the parameters in vector θ̂, the following
Lyapunov–Krasovskii functional is considered:

V0 =
1

2b
e2(t) +

1

2b

(∫ t

t0−h

e(s) ds

)2

+
1

2
ΔθTΛΔθ,

(12)

with a constant Λ > 0. As the ideal vector θ∗ is constant,
the time derivative of V0 along the trajectories of the
system (11) leads to

.

V 0 = −1

b
e2(t) + e(t)HT (t, t0 − h)Δθ

+
.

θ̂TΛΔθ.

(13)

The following adaptation function:
.

θ̂T = −e(t)Λ−1HT (t, t0 − h) (14)

allows one to express Eqn. (13) as
.

V 0 =− 1

b
e2(t). (15)

It can be concluded that e(t) ∈ L∞ ∩ L2, Δθ ∈
L∞ and so is θ̂, and

∫ t

t0−h
e(s) ds ∈ L∞, as t →

∞. Subsequently, it is demonstrated that each term
of

.
e(t) defined in (11) is bounded. Assumption 1,

together with e(t) ∈ L∞ and
∫ t

t0−h e(s) ds ∈ L∞,

implies that
∫ t

t0−h x(s) ds ∈ L∞ and all the elements of
H(t, t0 − h), given in (5), are bounded. For the second
element of H(t, t0 − h), note that

∫ t

t0−h
x(s − h) ds =

∫ t0−h

t0−2h
φ(s) ds+

∫ t−h

t0−h
x(s) ds, where the second term has

already been proven to be bounded and, if Assumption 2
holds, the first term is also bounded. Therefore, it can
be concluded that

.
e(t) ∈ L∞. Finally, from Barbalat’s

lemma with (15) and
.
e(t) ∈ L∞, it is concluded that

e(t) → 0. Moreover,
.

θ̂ ∈ L∞ with
.

θ̂ → 0, thus ensuring
that all the signals are bounded.

Proposition 1 given below summarises the above
idea.

Proposition 1. Consider the system (8). Then, the MRAC
law

σ(x) = HT (t, t0 − h)θ̂, (16)

where θ̂ evolves according to
.

θ̂ = −e(t)Λ−1H(t, t0 − h) = �(t, t0 − h),

ensures, for any initial condition, that limt→∞e(t) = 0
and limt→∞

.
e(t) = 0, with all signals bounded.

Remark 1. Note that there are no restrictions on
the magnitude of the plant delay since the stability
analysis is time-delay independent. That is, the negativity
of the Lypaunov–Krasovskii derivative is guaranteed
regardless of the delay value by appropriately choosing
the adaptation function.

Once the control law σ(x) guarantees the asymptotic
stability of the system (6), the next step consists in
designing a control law u(t) to stabilise the overall
system (6)–(7). By adding and subtracting bσ(x) on the
right-hand side of Eqn. (6), the equivalent representation
is obtained

.
e(t) = [aTH(t, t0 − h)

+ bσ(x)] + b[v(t)− σ(x)], (17)
.
v(t) = u(t), (18)

where v =
∫ t

t0−h u(s) ds.
Changing the variable ξ = v − σ(x), Eqns. (17) and

(18) can be rewritten as

.
e(t) =[aTH(t, t0 − h) + bσ(x)] + bξ, (19)
.

ξ(t) =z, (20)

where z = u− σ̇.
The system (19)–(20) is similar to the initial system

(6)–(7), except that now the first component has an
asymptotically stable origin when the input ξ is zero.
This feature allows us to design the adaptive control u(t)
that stabilises the extended system (6)–(7). Proposition 2
states a proposal for such an adaptive control u(t).

Proposition 2. Consider the system (19)–(20), with an
asymptotically stable origin when the input ξ is zero and
its dynamics defined in Proposition 1.

Consider also the errors defined as ξ = v−σ(x) and
p̃ = p̂− p ∈ R

5, where

p =

[
a
b

]

, p̂ =

[
â

b̂

]

.

Then, the adaptive control

u(t) = −κ0ξ − Φ(t, t0 − h), (21)

where

Φ(t, t0 − h) =e(t)− xθ̂1 − x(t− h)θ̂h

− θ̂2

(
HT (t, t0 − h)â+ b̂v + ẋref(t)

)

−HT (t, t0 − h)�(t, t0 − h)

+ ẍref(t)θ̂4, (22)

θ̂ = [θ̂1 θ̂h θ̂2 θ̂3 θ̂4]
T , (23)
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and

.

p̂ = −κ1θ̂2

[
H(t, t0 − h)

v

]

ξ, (24)

with κ0, κ1 > 0, ensures the stability property of the sys-
tem (11), with e(t) → 0 as long as t → ∞, for the ex-
tended system with (global) boundedness of all signals.

Proof. Substituting Eqns. (9) and (16) into (19) yields

.
e(t) = −e(t)−

∫ t

t0−h

e(s) ds

+ bHT (t, t0 − h)Δθ + bξ.

(25)

To make the convergence analysis, the following
Lyapunov–Krasovskii functional is proposed:

VT = V0 +
1

2κ1
||p̃||2 + 1

2
ξ2. (26)

Hence, the time derivative of VT along the trajectories
of (25) satisfies, after using once again Eqn. (14), the
following:

.

V T = V̇0 + e(t)ξ +
1

κ1
p̃T

.

p̂

+ ξ
(
u− ḢT (t, t0 − h)θ̂

−HT (t, t0 − h)�(t, t0 − h)
)
. (27)

Notice that in view of (23) we get

ḢT (t, t− h)θ̂ = x(t)θ̂1 + x(t− h)θ̂h

+
.
x(t)θ̂2 − ẍref(t)θ̂4.

(28)

On the other hand, ẋ(t) can be written in terms of â, b̂ and
p̃ as

.
x(t) = âTH + b̂v

− p̃T
[

H(t, t0 − h)
v

]

+ ẋref(t).
(29)

Then, by substituting (15), (28) and (29) into (27), and in
view of (21)–(24) , we deduce that

.

V T = −1

b
e2(t)− κ0ξ

2.

Once again, it is concluded that e(t) → 0 and ξ → 0, as
long as t → ∞, with the set of signals {p̃, φ, e, ξ} ∈ L∞.
According to the definition of p̃, one can also conclude
that p̂T = [âT , b̂] is bounded. �

Figure 1 shows a simplified block diagram to
illustrate the general idea of the proposed control
approach.

Fig. 1. Simplified block diagram of the proposed control ap-
proach.

Remark 2. In order to implement the proposed
control scheme, the plant under consideration should
have the structure defined in Eqn. (1), which plays a
significant role in physics and engineering since it allows
modelling several physical systems like mechanical
and electromechanical oscillators, electric circuits, and
structural vibrations.

3. Numerical examples
3.1. Academic example. Consider the unstable
time-delay system with unknown parameters described by
Eqn. (1). For simulations, the following parameters are
considered: a1 = 2, ah = 1, a2 = 8, b = 2. The time
delay is h = 2, and the initial conditions are given by
(φ(t), φ̇(t)) = (−1, 2).

The control task consists in reaching the equilibrium
point (x(t), ẋ(t)) = (5, 0). By using Propositions 1
and 2, the control objective is achieved. Figure 2 shows
the obtained simulation results. The controller gains are
chosen as κ0 = 25, κ1 = 0.6. It should be highlighted
that the controller effectively stabilises the second-order
system with a negligible steady-sate error. Note in Fig. 3
that, even when the parameter estimates converge to
constant values after t = 2.5, they do not correspond to
the actual parameters values. In Fig. 4(a) one can see
the behaviour of the control signal. Figure 4(b) shows
the error signal, whose magnitude is rapidly approaching
zero.

Consider now the trajectory tracking problem where
xref(t) = sin 5t. Propositions 1 and 2 are applied to
achieve the stated control task. Figures 5 and 6 show
the obtained simulation results, considering the controller
gains κ0 = 25, κ1 = 0.5.

Note that the controller effectively makes the
unstable second-order system reach the desired reference.

Figures 6(a) and (b) show the controller trajectory
and the error of the system, respectively. Note that
although the error does not converges to zero, it remains
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Fig. 2. Trajectories of the controlled system.
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Fig. 3. Estimated parameters.

close to this value in spite of the instability of the plant.
One condition that might be seen as a strong

restriction of the proposed approach is the requirement
of knowing the time-delay value of the plant. In the
following example, it is shown that the proposed control
scheme is robust against uncertainties in the time delay.
Simulations of the system are developed by assuming that
the time-delay value used in the adaptation function (14)
does not correspond to the delay-value of the plant, i.e.,
the plant has a delay h = 2 while in the adaptation
function we consider h = 1.85. Figure 7 (a) shows the
output of the controlled system. It is evident that, despite
not using the exact value of the plant delay, the control
task is achieved. However, the magnitude of the control
signal is considerably increased (see Fig. 7 (b)).
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(b) error signal

Fig. 4. Control and error signals obtained in simulation.
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Fig. 5. Trajectories of the controlled system, reaching the refer-
ence xref(t) = sin 5t.

As mentioned before, there are no research works
that propose a solution for the stabilisation of a
time-delay system considering the lack of access to
the whole state and under unknown system parameters.
However, in order to assess the performance of the
proposed controller, a comparison with the controller
proposed by Aguilar-Ibañez et al. (2021) was developed.
Numerical simulations results of the system under
consideration in closed loop with the controller presented
by Aguilar-Ibañez et al. (2021) are shown in Fig. 8. To
apply this controller, the time delay was set to zero.
Note that the system trajectories converge to the reference
values in a short period of time. However, the controller
exhibits oscillations of significant magnitude, which are
inconvenient from a practical perspective.
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Fig. 6. Trajectory tracking problem: control and error signals.

3.2. Practical application example: A chemical reac-
tor recycle system. Chemical reactor recycle systems
are often used in chemical industry when the reaction
is autocatalytic (i.e., if one of the reaction products is
also a catalyst for the same or a coupled reaction), or
when it is required to keep isothermal operation of the
reactor. Recycle reactors allow increasing the overall
conversion and give rise to costs reduction. In these
systems several operations are involved, the main being
the separation of the input to be recycled from the yields
and the transportation through pipes. These operations
introduce time delays in the system.

The study case addressed by Phoojaruenchanachai
et al. (1998) as well as Ali and Mahmoud (2022) is used
to illustrate the effectiveness of the proposed approach.
It is important to recall that even the overall model does
not match the second order time-delay system under
consideration; the proposed analysis can be applied to
stabilise one of the system states.

In this example, an irreversible reaction A → B with
a negligible heat effect takes place in the two-stage reactor
system. Temperature is maintained constant; thus only the
composition of product streams from two reactors, c1, c2
needs to be controlled. The material balance equations for
the reactor system include uncertainties in the system (δk1
and δk2). The control objective is to steer c1 and c2 to a
given set point (c1s, c2s). The system states are defined
as x1 = c1 − c1s and x2 = c2 − c2s; then, (c1, c2) →
(c1s, c2s) whenever (x1, x2) → (0, 0).
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(a) output
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Fig. 7. Trajectories of the controlled system under an uncer-
tainty in the delay.

The recycle reactor model is given by the time-delay
matrix equation (30) describing the dynamics of the two
system states:

ẋ(t) = Ax(t) +Ahx(t − h) +Bu(t), (30)

where

A =

[−2.3333 + δk1 0
0.25 −3 + δk2

]

,

Ah =

[
0 0.25
0 0

]

, B =

[
0.4
0

]

,

with h = 1, c1s = 0.5, c2s = 1, δk1 = 5 and δk2 = 0.5.

The proposed control approach is used to stabilise
the state x2 of the chemical system, i.e, the output of
the system is defined as y(t) = Cx(t), where C =
[0 1]. The transfer function of the system (30) allows
determining the relation between the state x2(t) and the
control input u(t). This relation gives rise to the equation

ẍ2(t) = a1x2(t)+ ahx2(t− h)+ a2ẋ2(t)+ bu(t), (31)

where a1 = −(δk1 − 2.3333)(δk2 − 3), ah = 0.0625,
a2 = δk1 + δk2 − 5.3333 and b = 0.1.

Note that the dynamics of this system state are
described by a second-order time-delay equation of
the form (1). To implement the proposed control
control approach, it is assumed that the parameters
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Fig. 8. Trajectories of the system defined in Section 3.1 in
closed loop with the controller proposed by Aguilar-
Ibañez et al. (2021).

of (31) are unknown. The control objective, as
discussed above, consists in reaching the equilibrium
point (x2(t), ẋ2(t)) = (0, 0).

The controller gains are chosen as κ0 = 100,
κ1 = 10. The effectiveness of the proposed approach
in stabilising the reactor system is illustrated in Fig. 9.
Note that in about 8 seconds the system trajectories are
driven close to the equilibrium. Figure 10 shows the
corresponding control signal.

4. Conclusions
In this paper, the adaptive stabilisation problem of an
uncertain second-order linear time-delay system was
solved. The proposed approach was developed under the
assumption that the system position is always available
and the sign of the control gain is known. The integral
operator was applied to obtain a new representation of
the original system, where the whole state is known.
The use of the integral operator allows one to divide
the original control problem into two subproblems: one
consists in using the MRAC method to stabilise the new
uncertain subsystem, the other applies the backstepping
procedure to stabilise the whole extended system. It
should pointed out that the stabilisation of the extended
system is equivalent to the stabilisation of the original
uncertain system.
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Fig. 9. Trajectories of the controlled system.
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Fig. 10. Control signal u(t) applied to the reactor system.

Numerical simulations of an academic and a practical
application example demonstrate the effectiveness of the
proposed approach, both for the regulation task and for the
trajectory tracking problem. Future work contemplates
the design of stabilising controllers based on the proposed
scheme for a more general class of systems (higher-order
and MIMO systems, among others).
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acknowledges the support from the project HOMPOT,
grant P20 00597, within the PAIDI 2020 framework of
the European ERDF financing scheme.

References
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