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Dr. Mr. José Maŕıa Fernández Ponce

Dr. Mr. Franco Pellerey

iii



iv



UNIVERSITY OF SEVILLE

Date: June 2010
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Preface

Lifetime distributions are of great importance in the theory of stochastic modelling,

renewal theory, reliability and survival analysis. As was pointed out by Kochar and

Wiens (1987), the ageing of a physical or biological system is known as the phe-

nomenon by which an older system has a shorter remaining lifetime, in some stochas-

tic sense, than a newer one. Many criteria of ageing (e.g. IFR, DMRL and NBUE

notions) have been developed in the literature over many years and have been char-

acterized by different methods. Analogous multivariate versions have also been sug-

gested and studied. It is worth mentioning that many of these methods are included

within the framework of stochastic ordering.

This work fundamentally deals with two problems: the problem of studying new

multivariate ageing notions and the problem of characterizing them by means of a

multivariate dispersion function. Two concepts are taken as a starting point: the mul-

tivariate quantiles and the upper-corrected orthant. The first concept, also known

as standard construction, was introduced for the first time by O’Brien (1975) and it

has been widely used in simulation theory as well as in multivariate stochastic order-

ings. The second concept was given by Fernández-Ponce and Suárez-Lloréns (2003).

They provided the notion of the upper-corrected orthant associated with the stan-

dard construction and obtained the important result that the cumulated probability

in this region does not depend on the distribution. These concepts, together with the

work by Fernández-Ponce et al. (1998), where the univariate ageing notions are char-

acterized through the excess-wealth function, gave the basis for the development of

this research. Obviously, numerous significant results in the reliability and stochastic

xiii



xiv

order areas are considered, in order to achieve our proposals.

This work is structured in four chapters. Chapter 1 is introductory and presents

the state-of-the-art in univariate and multivariate ageing notions. In particular, some

works in which stochastic comparisons are used to characterize these notions are

summarized. Quantiles and their generalizations, as well as the univariate excess-

wealth function are also considered in this chapter.

Chapter 2 aims to give a multivariate excess-wealth concept, based jointly on

the work by Fernández-Ponce et al.(1998) and Fernández-Ponce and Suárez-Lloréns

(2003). It starts by introducing notions and preliminaries which will be used through

the work. Then, given the importance of the upper-corrected orthant in this research,

attention is focused on providing new results about this concept. The relationships

between the support of a random vector, the upper-corrected orthant and the right-

upper orthant at a point, are established. Finally, in the last two sections, the multi-

variate excess-wealth function and the multivariate excess-wealth order are studied.

This function is defined in terms of the upper-corrected orthant and it is shown that

it preserves the same properties which are verified by the univariate version.

The definitions of new multivariate ageing properties are the topic of Chapter

3. From new generalizations of the hazard rate and mean residual life functions,

multivariate versions of the IFR, DMRL and NBUE ageing notions are presented,

together with the chain of implications between them. Following the development in

Fernández-Ponce et al. (1998), characterizations of this new property are given in

terms of the multivariate excess-wealth function. Finally, these multivariate notions

allow the definition of a new ordering to compare the ageing of two random vectors.

Finally, in Chapter 4, an application of a particular multivariate lifetime distribu-

tion is considered in oncology. Patient age and tumor size at spontaneous detection

of the tumor, play an important role in the prevention of cancer. There is increasing

interest in the early detection of chronic diseases, with the expectation that earlier

diagnosis, combined with therapy, result in more cures and longer survivals. The

process of tumor development can be explained in terms of patient age at the onset



xv

of the tumor (time from the patient is born until the first tumor cell appears) and

the sojourn time (time from the first tumor cell appearing until the detection of the

tumor). A non-deterministic exponential model that relates the sojourn time to the

tumor size at spontaneous detection is suggested and studied in this chapter. In the

process of estimating the parameters in this model, a constraint is used which repre-

sents an inherent multivariate ageing property of the lifetime distributions considered.

The proposed model is illustrated using two real databases.

Sevilla, April 2010.



xvi



Chapter 1

Introduction

1.1 Univariate life distributions and generalizations

In reliability theory, lifetime of systems and components are frequently studied through

univariate concepts of ageing. There exist several concepts of statistical aging for

studying life distributions. The most usual reliability measures associated with a

nonnegative random variable X, which usually represents the life-length of a unit

or system, are the mean residual life and the failure rate (hazard) function. Their

definitions are given below. Let X be a nonnegative univariate random variable with

survival function FX and finite mean µX . The mean residual life function of X is

defined as

µX(x) =

∫∞
x
FX(t) dt

FX(x)
, x ∈ R+

and the failure (hazard) rate function of X is defined as

rX(x) = lim
h→0

P{x < X ≤ x+ h|X > x}
h

=
fX(x)

F̄X(x)
, x ∈ R+.

1



1.1. UNIVARIATE LIFE DISTRIBUTIONS AND GENERALIZATIONS

When F is absolutely continuous, the failure rate can alternatively be expressed as

rX(x) =
∂{− log[F̄X(x)]}

∂x
, x ∈ R+.

Among the univariate life distribution classes that have been extensively examined in

the literature, the following are considered: increasing failure rate (IFR), decreasing

mean residual life (DMRL) and new better than used in expectation (NBUE). The

definitions of these classes and their dual classes are recalled here (see, for example,

Barlow and Proshan, 1975 and Kochar and Wiens, 1987).

Definition 1.1.1. Let X be a nonnegative univariate random variable with finite

mean µX , mean residual life function µX(x) and failure rate rX(x). Then,

i) X is said to have a new better[worse] than used in expectation (NBUE)[NWUE]

distribution if µX(x) ≤ [≥]µX for all x ≥ 0.

ii) X is said to have a decreasing [increasing] mean residual life (DMRL)[IMRL]

distribution if µF (x) is decreasing [increasing].

iii) X is said to have an increasing[decreasing] failure rate (IFR) [DFR] distribution

if rX(x) is increasing [decreasing].

It is well-known (see Kochar and Wiens, 1987) that

IFR ⇒ DMRL ⇒ NBUE.

Exponential distribution is the most fundamental distribution in reliability theory.

Note that the hazard rate of the exponential distribution with parameter λ is just

λ and its mean residual life is 1/λ. Thus, one of its properties, which makes it

especially important, is that the remaining life of the used component is independent

2



1.1. UNIVARIATE LIFE DISTRIBUTIONS AND GENERALIZATIONS

of its initial age. That is, this distribution has the “memoryless” property, which

ensures that it belongs to each above defined class, with equality in each defined

inequality. Moreover, is the only life distribution which verifies this property.

The univariate ageing properties given in Definition 1.1.1 have been characterized by

different approaches, including stochastic comparisons. Stochastic comparisons are

approaches for making comparisons among various probability distributions. Shaked

and Shanthikumar (2007) is an excellent source on this topic. Barlow and Proschan

(1975) established several equivalent relationships between the classifications of life-

time distributions (particularly the IFR and NBUE distributions and their dual ver-

sions) and various partial orderings. Kochar and Wiens (1987) focused on the NBUE

and DMRL distributions. Kochar (1989) examined the extension of the DMRL

and related partial orderings of the life distribution. Fagiuolli and Pellerey (1993)

defined new partial orders and discussed the relevance of these orderings in age-

ing properties classification. Belzunce et al. (1996) gave characterizations of the

IFR(DFR) and DMRL(IMRL) classes, for a non-negative random variable, in terms

of the dispersive orders and using the residual lifetime Xt = (X − t|X > t) for all

t ∈ {t : P (X > t) > 0}. Later, Pellerey and Shaked (1997), aging by means of disper-

sive order and the residual lifetime, extended the results in Belzunce et al. (1996) but

using a different method and when the random variable need not be non-negative.

Di Crescenzo (1999) used dual orders to characterize some lifetime distributions.

Another approach for characterizing lifetime distributions is by using some particular

functions. For example, Fernández-Ponce et al. (1998) gave the relationship between

some classes of lifetime distribution and the univariate excess-wealth function. The

definition and some properties of this function will be recalled in the next section.

3



1.1. UNIVARIATE LIFE DISTRIBUTIONS AND GENERALIZATIONS

Some more works on ageing property are emphasized here. Di Crescenzo and Pellerey

(1998) studied lifetimes of components operating in random environment and Di

Crescenzo (1999) provided some preservation results of ageing properties under a

proportional reversed hazards model. Lillo (2000) gave an approach to identify pro-

perties associated with measures for ageing (the mean residual life and the failure

rate functions). Lillo (2005) also studied the relationship between the mean and me-

dian residual life functions and characterized some criteria for ageing by means of the

median residual life function. Klar and Müller (2003) gave a new class of life distri-

butions and showed that this new class can be characterized by expected remaining

lifetimes after a family of random times, thus generalizing the notion of NBUE. Wei

and Hu (2007) characterized several ageing notions by using the spacing between

record values.

These ageing notions have been generalized in the multivariate case by several au-

thors. For this, various multivariate analogues of the hazard or failure rate have been

considered. Basu (1971) and Puri and Rubin (1974) extended the hazard rate con-

cept to the multivariate case by a single scalar quantity calculated as the quotient

between the joint density function and the joint survival function. On the other hand,

Johnson and Kotz (1975) affirmed that the basic idea underlying the univariate def-

inition is that of the rate of decrease in survivors with an increase in the value of

X and when there are two or more variates this rate depends on which variate is

changed. Therefore, a different rate for each variate is necessary. Based on this idea,

they defined the concept of the multivariate hazard gradient and extended the IFR

property. In Marshall (1975), some properties of the multivariate hazard gradient are

studied, and some examples are given to show the usefulness of the hazard gradient

4



1.2. THE UNIVARIATE EXCESS-WEALTH FUNCTION

in characterizing distributions. Roy (1994) and Roy (2001) introduced and studied

multivariate versions of the IFR, DMRL and NBUE properties, together with their

chain of implication and gave some equivalent definitions and characterization results.

It also worth mentioning others papers where the multivariate lifetime distributions

have been studied and characterized, for example, the paper by Block and Sampson

(1988); Shaked and Shanthikumar (1987); Shaked and Shanthikumar, (1990); Scarsini

and Shaked (1999); Hu et al. (2001a) and Hu and Wei (2001b), Bassan et al. (2002);

Bassan and Spizzichino (2005a, 2005b), among others.

1.2 The univariate excess-wealth function

Let X be a random variable with a finite mean µX , distribution function FX , survival

function F̄X = 1 − FX and quantile function F−X defined as F−X (u) = infx{F (x) ≥

u} for all u ∈ (0, 1). Fernández-Ponce et al. (1998) and, independently, Shaked

and Shanthikumar (1998) defined the excess-wealth (ew) function (or right-spread

function) and studied some of its important properties. The ew function of X is

defined as

S+
X(u) = E[(X − F−X (u))+]

= E{max[X − F−X (u), 0]}

=

∫ ∞
F−X (u)

F̄X(t)dt for all u ∈ [0, 1]. (1.2.1)

The ew function has been named in different ways in the literature and has been used

for different purposes in diverse fields such as actuarial science, insurance, economics

and reliability. Fernández-Ponce et al. (1998) used the ew function to characterize

different classes of ageing distribution which are really important in reliability theory

5



1.2. THE UNIVARIATE EXCESS-WEALTH FUNCTION

and survival analysis. In particular, these authors characterized the IFR, DMRL

and NBUE. These characterizations are obtained comparing, in different stochastic

sense, the underline distribution with the negative exponential distribution. Note

that the ew function of the negative exponential distribution with parameter λ at a

point u ∈ (0, 1) is 1−u
λ

. Again using the ew function, Fernández-Ponce et al. (1996)

proposed a test statistic for testing exponentiality versus the DMRL alternative and

another test for testing exponentiality versus the NBUE alternative.

From (1.2.1), the ew function can be interpreted as a measure of dispersion to the

right of every quantile F−X (u). So, this function is considered as a tool that defines a

dispersive order and compares two distributions in terms of their variability. In the

literature, several partial orders have been defined to compare the dispersion of two

distributions. Examples of these orders are the convex (≤cx), increasing [decreasing]

convex (≤icx)[≤dcx] and dispersive order (≤dis). The definitions of these orders are

recalled. See Shaked and Shanthikumar (2007) for a comprehensive discussion of

these and other stochastic orders, as well as theirs properties and the relationships

between them.

Definition 1.2.1. Let X and Y be two random variables with distribution functions

FX and FY , respectively. Then, X is said to be smaller than Y in the sense of

1) the convex order (X ≤cx Y ) if E[h(X)] ≤ E[h(Y )] for all convex function for

which the expectations exist.

2) the increasing [decreasing] convex order (X ≤icx [≤dcx]Y ) if E[h(X)] ≤ E[h(Y )]

for all increasing [decreasing] convex function for which the expectations exist.

3) the dispersive order (X ≤disp Y ) if F−X (β) − F−X (α) ≤ F−Y (β) − F−Y (α) for all

0 < α < β < 1.

6



1.2. THE UNIVARIATE EXCESS-WEALTH FUNCTION

The excess-wealth order (or equivalently, right-spread order) was defined indepen-

dently by Fernández-Ponce et al. (1998) and Shaked and Shathikumar (1998). The

definition is the following.

Definition 1.2.2. Let X and Y be two random variables. It is said that X is smaller

than Y in the excess-wealth order (denoted by X ≤ew Y ) if

S+
X(u) ≤ S+

Y (u) for all u ∈ (0, 1).

Fernández-Ponce et al. (1998) based the definition of this order on the observation

(see Muñóz-Pérez, 1990) that

X ≤disp Y ⇔ (X − F−X (u))+ ≤st (Y − F−Y (u))+ for all u ∈ (0, 1) (1.2.2)

where ≤st denote the usual stochastic order. Recall that, given two random variables

X and Y , then X ≤st Y if E[h(x)] ≤ E[h(Y )] for all increasing function h for which

the expectations exist. Obviously, the ew order is weaker than the dispersive order

(see Fernández-Ponce et al. ,1998 and Shaked and Shathikumar, 1998).

In the past few years, many works have been devoted to studying the ew order and

its relationship with several variability orders. Kochar and Carrière (1997) showed

that two random variables are equivalent in terms of ew order if and only if either

are identically distributed or they differ by a location parameter. Assuming that X

and Y are two random variables with finite mean and 0 as the common left endpoint

of their supports, they also gave an alternative short proof of the implication

X ≤ew Y ⇒ X ≤icx Y (1.2.3)

which was proved by Shaked and Shantikumar (1998) in a quite involved and lengthy

manner. Furthermore, these authors showed that if X1 and X2 (Y1 and Y2) be two

7



1.2. THE UNIVARIATE EXCESS-WEALTH FUNCTION

independent copies of X (Y ) then, the relationship X ≤ew Y ⇒ X1−X2 ≤cx Y1− Y2

holds. Belzunce (1999) gave a characterization of ew order similar to (1.2.2) when

the st order is replaced by the icx order. That is,

X ≤ew Y ⇔ (X − F−X (u))+ ≤icx (Y − F−Y (u))+ for all u ∈ (0, 1), (1.2.4)

and he gave some applications of this characterization in reliability theory. Kochar et

al. (2002) showed that the ew order is closed under increasing convex transformation,

which was a significant extension of the result (1.2.3). Some applications of the ew

order in reliability are also considered in this paper. For instance, they show that if

X ≤ew Y , then a parallel system of n components having independent lifetimes which

are copies of Y has a larger lifetime in the sense of the ew order than a similar system

of n components having independent lifetimes which are copies of X. Furthermore, if

Y is an exponential random variable and X has an NBUE distribution with the left

endpoint of its support being 0, then upper bounds on the mean and on the variance

of the lifetime of the parallel system having independent lifetime which are copies of

X can be obtained. Later, Li (2006) showed that the total life of a parallel system

with i.i.d exponential components is smaller in the ew order than an exponential life

with the same mean as the system. They also gave upper bound for the mean and

the variance of the life length of a parallel system with i.i.d. NBUE components.

Applications of the ew function and ew order can also be found in the literature about

insurance and actuarial science. It is usually interesting to make risk comparisons

and therefore measures which consider the right-tail risk have been defined. Denuit

and Vermandele (1999) considered a slight modification of the ew function and the

ew order and applied them in these fields. In the context of insurance, the ew trans-

formation can be thought of as describing the situation of a reinsurer in a stop-loss

8



1.2. THE UNIVARIATE EXCESS-WEALTH FUNCTION

treaty where the deducible du is chosen in such a way that the probability for the

claim amount being smaller that du is equal to u, that is F−X (u) = du. Considering

two risks X and Y , then when X ≤ew Y , the reinsurer will prefer to cover X than Y

by a stop-loss treaty with deductibles du1 and du2 chosen in such way that F−X (u) = du1

and F−Y (u) = du2 , because the ratio of the expected reinsurance benefit to the expected

total claims is always smaller with X than with Y (see Denuit and Vermandele, 1999

for details). In actuarial science, the ew function S+
X(u) is usually called expected

shortfall at level u and represents the expected shortfall of the portfolio with loss X

and solvency capital requirement F−X (u). Recall that the shortfall of the portfolio with

loss X and solvency capital requirement F−X (u) is defined as max[X − F−X (u), 0] and

it can be interpreted as that part of the loss that cannot be covered by the company

(see Denuit et al., 2005 and Dhaene et al., 2008). Recently, Sordo (2008) introduced

a class of risk measures which include the expected shortfall as particular case and

characterized the comparison of random variable according to the measures in this

class in terms of the ew order. The relationship of the ew order to the usual stochas-

tic order is derived in Sordo (2009a). Moreover, Sordo proved that if two random

variables have the same finite support and are ordered in the sense of the ew order,

then these variables have the same distribution. Sordo (2009b) gave another charac-

terization of the ew order in terms of a class of measure which is defined considering

convex real functions. It is worth noting that whereas Sordo (2008) characterized the

excess-wealth order by means of the spread of a risk throughout its distribution, in

Sordo (2009b) he focused on the tail risk.

9



1.3. ON QUANTILES AND THEIR MULTIVARIATE GENERALIZATIONS

1.3 On quantiles and their multivariate general-

izations

It is well-known that, given a value u ∈ (0, 1), the uth quantile of a univariate

distribution X is a point that partitions the support of X into two sets such that the

probability of the set to the left of the quantile is approximately u and the probability

of the set to the right of the quantile is approximately (1 − u). If X is a random

variable with absolutely continuous distribution FX , then the quantile function at a

point u ∈ (0, 1), denoted by F−X (u), is defined as

F−X (u) = inf{x : F (x) ≥ u} for all u ∈ [0, 1]. (1.3.1)

Quantiles of univariate data are frequently used in the construction of descriptive

statistics, for example, the median, the interquartile range and several measures of

skewness and kurtosis based on percentiles. Perhaps, the most important particular

case of the quantile is the median, given that the median is the central point which

minimizes the average of the absolute deviations. That is, if X1, . . . , Xn is a sample of

observations of real-values, then the sample median is the argument which minimizes

the sum
∑m

i=1 |Xi − Θ|. So, it can be considered as a nonparametric and robust

estimate for the centre of a distribution.

Many of the works on generalizing quantiles to multivariate distributions have concen-

trated on the particular case of the median. Here, some generalization of the concept

of median into higher dimensional settings are reviewed. In 1909, Weber defined the

L1 median by minimizing the multivariate version of the absolute residuals. It was

proved that this median has uniqueness properties, however, it does not possess the

10



1.3. ON QUANTILES AND THEIR MULTIVARIATE GENERALIZATIONS

property of affine equivariance. An interesting alternative to the L1 median was pro-

vided by Oja (1983) who gave a class of measures which includes a generalization

of the univariate median. This author defined the multivariate simplex median by

minimizing the sum of volumes of simplices with vertices on the observations. In

spite of Oja’s median not having the uniqueness properties of the L1 median, it has

the advantage of affine equivariance (see Oja, 1983 for further details). Later, and

based on the definition of Oja’s simplex median, Brown and Hettmanspeger (1987,

1989) introduced another notion of bivariate quantile. Liu (1988,1990) defined the

simplicial depth median maximizing an empirical simplicial depth function. Their

definition was motivated by the idea that the univariate median can be characterized

by its lying in the greatest number of intervals constructed from the data points.

That is, it can be viewed as being deep inside the data cloud. An excellent review of

these works is given by Small (1990).

Chaudhuri (1996) investigated a notion of quantiles based on the geometric configura-

tion of the multivariate data clouds. These geometric quantiles are defined minimizing

the sum of the extended loss function which was used by Koenker and Bassett (1978)

to estimate the uth regression quantile in a linear regression setup. Chakraborty and

Chaudhuri (1999) emphasized three fundamental properties of the univariate median

and gave an excellent review of which of these properties are preserved by different

versions of the multivariate median. The robustness of the transformation retrans-

formation medians was also considered in detail by these authors.

However, the above definitions of multivariate quantile do not satisfy the kind of

probability cumulation condition given in (1.3.1) because their definitions do not

involve the cumulative probability distribution. This fact motivated Chen and Welsh

11



1.3. ON QUANTILES AND THEIR MULTIVARIATE GENERALIZATIONS

(2002) to define the bivariate quantiles as points which satisfy natural generalizations

of the cumulative probability. These author gave a first definition fixing a natural

direction in R2 from south to north. Then they developed a second definition of

bivariate quantile points which allows the distribution of the variable to specify the

appropriate direction.

Another concept, closely connected with the univariate quantile function, is the

u−quantile. Let X be a random vector in Rn with absolutely continuous distribution

function (cdf) F (·). The multivariate u-quantile for X, or the regression representa-

tion, was introduced by O’Brien (1975), Arjas and Lehtonen (1978) and Rüschendorf

(1981). The definition is as follows. Let un = (u1, . . . , un) be a vector in [0, 1]n, the

multivariate u-quantile for X, denoted by
∧
x (un), is defined as

∧
x1 (u1) = F−X1

(u1),

∧
x2 (u2) = F−

X2|X1=
∧
x1(u1)

(u2),

...

∧
xn (un) = F−

Xn|
⋂n−1
j=1 Xj=

∧
xj(uj)

(un), (1.3.2)

where F−(u) = inf{x : F (x) ≥ u} and ui = (u1, . . . , ui) for all i = 1, . . . , n.

This last construction, named standard construction, is widely used in simulation

theory and can be interpreted as an extension of the quantile function on Rn. Note

that the standard construction depends on the choice of the ordering of the marginal

distributions. This concept has been frequently used in studying the dispersion of a

multivariate random variable. Rüschendorf (1981) used it for the stochastic compar-

ison of risks with respect to supermodular ordering which is of particular interest in
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many applications. Li et al. (1996) used this representation as a tool for the construc-

tion of multivariate distributions with given non-overlapping multivariate marginals.

Shaked and Shanthikumar (1997) also proposed the standard construction as a useful

tool for the stochastic comparison of random vectors. Müller and Scarsini (2001) used

the multivariate u-quantile for the stochastic comparison of random vectors with a

common copula. Shaked and Shanthikumar (1998) defined a multivariate dispersive

order based on a particular transformation by means of this construction. More re-

cently, Fernández-Ponce and Suárez-Lloréns (2003) used the standard construction

to define a new multivariate dispersive order. This new order is defined through the

concept of conditional quantiles which are more widely separated. That is, let X and

Y be two random vectors in n, X is said to be less than Y in a dispersion sense,

denoted as X ≤Disp Y, if

‖ x̂(v)− x̂(u) ‖2≤‖ ŷ(v)− ŷ(u) ‖2

for all u and v in (0, 1)n. This concept depends on the permutation of the margins for

multivariate distributions and it is a generalization of the well-known univariate d. o.

(≤disp). They provided a characterization through a multivariate contraction function

under several regularity conditions. This order possesses an excellent property which

is that the contraction function which is used for its characterization is a unique

function.

As will be seen in following chapters, the notion of u-quantile will be a fundamental

tool throughout this work.

13
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1.4 General Objectives

The general objective of this work is to define and study new multivariate ageing pro-

perties following the guidelines given by Fernández-Ponce and Suárez-Lloréns (2003).

We draw on the concepts in Fernández-Ponce and Suárez-Lloréns (2003) to gener-

alize the development in Fernández-Ponce et al. (1998) about univariate lifetime

distribution.

Following the classical development in multivariate research in the reliability field, it

will be necessary:

• to provide new results and properties of the corrected orthant given by Fernández-

Ponce and Suárez-Lloréns (2003).

• to generalize the excess-wealth function to the multivariate case and study what

univariate properties remain in higher dimension.

• to define, using the multivariate excess-wealth (mew) function, the correspond-

ing ordering and study the relationship with other dispersive orders defined in

the literature.

• to define new multivariate ageing properties and to characterize them by means

of the mew function as that was developed by Fernández-Ponce et al. (1998) in

the univariate case.

This work is organized as follows. In Chapter 2 some necessary notions and definitions

are summarized which will be used later. The upper-corrected orthant of a random

vector at a point is introduced and some particular examples are studied. Interesting

properties of this orthant in terms of the u− quantiles are obtained. The conditionally

14
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increasing[decreasing] in sequence (CIS)[CDS] property, which plays an important role

throughtout this work, is characterized by means of the upper-corrected orthant and

the monotonicity of the u-quantile. The mew function together with some of its

properties is also defined. At the end of the chapter a new multivariate ordering is

considered. In Chapter 3, attention is focused on new multivariate ageing properties.

Different multivariate ageing properties are defined and characterized by the mew

function. Following a development similar to that in the univariate case, several

ordering for multivariate lifetime distributions are studied and used to characterize

the multivariate ageing through the vector with independent exponential components.

Finally, in Chapter 4 an application of a particular ageing property is studied in

oncology.
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Chapter 2

A Generalization of the

Excess-Wealth Concept

Abstract

In the univariate case, the excess-wealth function or right spread function

has been used to characterize some aging notions and to define a dispersive

ordering to compare two probability distributions in terms of their variabil-

ity. In this chapter, the concept of excess-wealth function is extended to the

multivariate case in terms of the upper-corrected orthant and the multivariate

u-quantile. Also studied is a multivariate order, based on these functions, and

which is weaker than the multivariate dispersive order.
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2.1 Introduction

Comparisons among univariate random variables in some stochastic sense have been

extensively studied by many authors during the last thirty years. Many applications of

these stochastic orderings exist, from economic theory to reliability and queuing the-

ory (see Barlow and Proshan, 1978; Stoyan, 1983; Shaked and Shanthikumar, 2007).

In particular, variability orders for univariate distributions have found a profound in-

terest among researchers. Among these types of orders, the dispersion ordering (d.o.)

has been well studied. Two interesting papers on the d.o. are those by Shaked (1982)

and Deshpandé and Kochar (1983). This order was characterized through the number

of crossings and the corresponding changes of sign for the distribution functions (see

Hickey, 1986; Muñóz-Pérez, 1990 and Saunders, 1984). Dispersion ordering has also

been studied for lifetime distributions with aging properties. Bartoszewicz (1995)

characterized the d.o. using the Total Time on Test (TTT) transforms and found a

relationship between the order based on the mean residual lives and the d.o. (see also

Bartoszewicz, 1997). Kochar (1996) studied the d.o. among order statistics from DFR

distributions. Also, as was pointed out in Section 1.1, different characterizations for

IFR and DFR random variables can be seen in Pellerey and Shaked (1997). Kochar

and Wiens (1987) defined other types of lifetime distributions weaker than IFR ones.

Thus, a characterization in the dispersion sense for these distributions needed a new

d.o. weaker than the classic d.o. For this reason, Fernández-Ponce et al. (1998) gave

the concept of right-spread function which characterized the aging notions in Kochar

and Wiens (1987). In a parallel direction and independently, Shaked and Shanthiku-

mar (1998) defined the same function which they called the excess-wealth function.

Both papers contain the analysis of a new weak d.o. termed excess-wealth order
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by Shaked and Shanthikumar (1998) and by right-spread order by Fernández-Ponce

et al. (1998) . Later, several authors characterized lifetime distributions using this

partial order (see Section 1.2).

Several interesting results have also been shown for multivariate distributions. Shaked

and Shanthikumar (1997) studied supermodular stochastic orders and positive depen-

dence of random vectors. They applied the results to problems of optimal assembly

of reliability systems, optimal allocation of minimal repair efforts, and optimal alloca-

tion of reliability systems. Bassan and Spizzichino (1999) compared distributions of

residual lifetimes of dependent components of different ages. Their approach yielded

several multivariate notions which were based on one-dimensional stochastic compar-

isons. Müller and Scarsini (2001) found conditions under the stochastic order for

random vectors which implied that any positive linear combinations of the compo-

nents of one of them is dominated in the convex order by the same positive linear

combination of the components for the other random vector. This problem had a

motivation in the comparison of portfolios in terms of risks. The conditions for the

above dominance would concern the dependence structure of the two random vectors

X and Y, i.e. the two random vectors would have a common copula and would be

conditionally increasing. Rüschendorf (2004) extended some of the results on the

comparison of multivariate risk vectors with respect to supermodular and related or-

derings. Colangelo et al. (2005) studied new notions of positive dependence with are

associated to multivariate stochastic orders of positive dependence.

However, the multivariate d.o. has not been studied so extensively. It is worth

mentioning the papers of Giovagnoli and Wynn (1995), Kosheroy and Mosler (1997)

and more recently that of Fernández-Ponce and Suárez-Lloréns (2003) in this area.
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This chapter is organized as follows. In Section 2 some notation and preliminaries are

given. In Section 3, we further study some properties of the multivariate quantiles

which were introduced in the Fernández-Ponce and Suárez-Lloréns (2003) paper. In

Section 4, we extend the concept of the excess-wealth function to the multivariate

case. In the last section the excess-wealth order for multivariate distributions is

defined and is shown to be weaker than the multivariate d.o..

2.2 Notation and preliminaries

Some notations are given here which will be used throughout the chapter. Fundamen-

tally, random vectors will be dealt with which take on values in Rn. The space Rn is

endowed with the usual componentwise partial order, which is defined as follows. Let

x = (x1, · · · , xn) and y = (y1, · · · , yn) be two vectors in Rn; and therefore x ≤ y if

xi ≤ yi for i = 1, · · · , n. Throughout the chapter “increasing” means “non-decreasing”

and “decreasing” means “non-increasing” . Particularly, a function φ : Rn −→ Rn

is said to be an increasing function when φ(x) ≤ φ(y) for x ≤ y. The notation ∼st

stands for equality in law. The vector of ones will be denoted by 1, i.e. 1 = (1, · · · , 1)

and the corresponding zeros by 0. The dimension of 1 will be clear from the expression

in which it appears. The multiple integral
∫
A
F (t1, . . . , tn)dt1 . . . dtn will be denoted

as
∫
A
F (t)dt. The dimension of a random vector is clear from the context and unless

otherwise stated it is assumed that it is n.

Let X be a random vector in Rn with distribution function (cdf) FX(·). Fernández-

Ponce and Suárez-Lloréns (2003) defined several concepts for a multivariate ran-

dom vector which will be used later. The first concept is the multivariate x-rate

vector, denoted by
[
?
x(x)

]
, and defined as

?
x(x1) = P (X1 ≤ x1), .....,

?
x(xn) =
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P (Xn ≤ xn |
⋂n−1
j=1 Xj = xj). The second concept is the right-upper orthant at a

point z, denoted by C(z), and it is defined as C(z) = {x ∈ Rn : z ≤ x}. Finally, the

upper-corrected orthant at point z for the random variable X, denoted as RX(z), is

defined as

RX(z) = {x ∈ Rn : x1 ≥ F−X1
[
?
x1(z1)], . . . , xn ≥ F−

Xn|
⋂n−1
j=1 Xj=xj

[
?
xn(zn)]}.

In fact, only vectors of nonnegative variables with unlimited supports on the right

were considered by Fernández-Ponce and Suárez-Lloréns (2003). As we will also

consider vectors of lifetimes having limited supports, we will consider a different

notion, that is a generalization of the upper-corrected orthant to our case. For its

definition it should be recalled that the support of a random vector X is defined as

Supp(X) = {x ∈ Rn : P [X ∈ Bx(ε)] > 0 for all ε > 0} where Bx(ε) is the centred

ball at x with radius ε.

Definition 2.2.1. Given a random vector X, its upper-corrected orthant at

z ∈ Supp(X) is defined as

RX(z) = {x ∈ Supp(X) : x1 ≥ F−X1
[
?
x1(z1)], . . . , xn ≥ F−

Xn|
⋂n−1
j=1 Xj=xj

[
?
xn(zn)]}.

It is easily shown that if X is a random vector with independent components then

the upper-corrected orthant at z coincide with the intersection between Supp(X) and

the corresponding right-upper orthant at z.

Example 2.2.1. Let X = (X1, X2) be a bivariate vector with Supp(X) = A ∪B and

a joint density function given by

f(x1, x2) =


1
2

if (x1, x2) ∈ A

1 if (x1, x2) ∈ B

0 otherwise
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where A and B are:

A = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}

B = {(x1, x2) ∈ R2 : 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2− x1}

The marginal X1 has the following distribution function:

FX1(x1) =



0 if x1 < 0

1
2
x1 if x1 ∈ [0, 1)

1 + (2− x1)(x1

2
− 1) if x1 ∈ [1, 2)

1 if x1 ≥ 2

and the conditioned variable X2|X1 = x1 has a uniform distribution U[0,1] if

x1 ∈ [0, 1) and a uniform distribution U [0, 2− x1] if x1 ∈ [1, 2].

For this particular bivariate vector, the upper-corrected orthant for z = (z1, z2) is the

following set:

RX(z) =

 R1(z) if z ∈ A

R2(z) if z ∈ B

where

R1(z) = {x ∈ Supp(X) : {x1 ∈ [z1, 1];x2 ∈ [z2, 1]} ∪

{x1 ∈ [1, 2];x2 ∈ [z2(2− x1), 2− x1]}}

R2(z) =

{
x ∈ Supp(X) : x1 ∈ [z1, 2];x2 ∈

[
z2

2− z1

(2− x1), 2− x1

]}
The upper-corrected orthant of X in z = (0.6, 0.6) is represented in Figure 2.1 (a).

In order to point out the concept of upper-corrected orthant, it is also displayed in

different points in Figure 2.1 (b). N

22



2.2. NOTATION AND PRELIMINARIES

Figure 2.1: (a) The upper-corrected orthant of X in (0.6,0.6) (b) The upper-corrected orthant of
X in (0.25,0.5) (red line), (0.5, 0.9)(green line), (1.3, 0.5)(yellow line) and (1.5, 0.25) (blue line).

Remark 2.2.1. Note that if t1 ≤ t2 then it could not be held that RX(t2) ⊂ RX(t1).

For example, let X be a bivariate random vector with joint density function given by

fX(t) =


2/3 if t is in the triangle with vertices (0, 0), (0, 1) and (1, 1);

4/3 if t is in the triangle with vertices (0, 0), (1, 0) and (1, 1);

0 otherwise

Let t1 = (1
2
, 1

2
). By straightforward computations, it is verified that

RX(t1) =

{
x ≥ 1

2
, y ≥ x+ 1

3

}
.

Now, consider t2 = (2
3
, 1

2
). It holds that t1 ≤ t2, and t2 ∈ RX(t2). But, t2 6∈ RX(t1).

Thus RX(t2) * RX(t1). N

From now on, assume that the following regularity conditions (RC) are verified by

every cdf F .

1. F is a continuous function.

2. The x̂(u) vector is differentiable at each component. That is, the derivatives

∂x̂i(ui)
∂ui

exits for all i = 1, · · · , n.
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3. The conditional distribution of Xi to X1, . . . , Xi−1 (Fi|1,...,i−1
) is a continuous

and strictly increasing function for i = 1, . . . , n. For convenience F1|0 = F1.

4. F−Xi|X1,...,Xi−1
(0) <∞ for all i = 1, . . . , n.

It is easy to verify that under the regularity conditions above there exists a biunivocal

relationship between vectors u ∈ [0, 1]n and the points x ∈ Supp(X).

The proof of the next result directly follows from Fernández-Ponce and Suárez-Lloréns

(2003). This result is the main reason of interest in the notion of upper-corrected

orthant.

Proposition 2.2.2. Let X be a random vector. Then

P
{

X ∈ RX[
∧
x(un)]

}
=

n∏
j=1

(1− uj).

This result means that the probability associated with the upper-corrected orthant

at the u−quantile does not depend on the distribution function.

2.3 The upper-corrected orthant: some new pro-

perties

As it can be seen in Proposition 2.2.2, the upper-corrected orthant plays a similar role

in the multivariate setting as the upper quantile-interval for univariate distributions,

being P [X ∈ RX(x̂(u))] = P [X ≥ F−X (u)] = 1 − u in the univariate case. Thus it is

very interesting to obtain several properties for the upper-corrected orthant.

Proposition 2.3.1. Let un and vn be two vectors in (0, 1)n with un ≤ vn. Then

RX [x̂(vn)] ⊂ RX [x̂(un)] .
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Proof. The proof is by mathematical induction. If u1 ≤ v1, then x̂1(u1) ≤ x̂1(v1).

Hence the proposition is obviously true for n = 1. Suppose now that the proposition

is true for n = m. To complete the induction argument, the same conclusion with

n = m + 1 has to be proved. Let um+1 and vm+1 be two vectors in (0, 1)m+1 with

um+1 ≤ vm+1. If tm+1 ∈ RXm+1 [x̂(vm+1)] then

tm ∈ RXm [x̂(vm)] and tm+1 ≥ x̂m+1|tm(vm+1).

Consequently, tm ∈ RXm [x̂(um)] and tm+1 ≥ x̂m+1|tm(um+1). Thus the result is ob-

tained. �

This proposition means that the upper-corrected orthant is a decreasing set in terms

of the u-quantile. Note that this result generalizes an equivalent property for the

upper intervals at the corresponding u-quantiles in the univariate case.

Now, the relationship between the support of X and the concept of the upper-

corrected orthant are given.

Proposition 2.3.2. Let X be a random vector verifying the (RC). Then,

RX [x̂(0)] = Supp(X).

Proof. This proposition is only proved for bivariate random vectors. By using

the induction argument, it can trivially be shown for multivariate random vectors.

Obviously, the inclusion RX [x̂(0)] ⊂ Supp(X) is verified.

Conversely, assume that t2 ∈ Supp(X), i.e. P [X ∈ Bt2(ε)] > 0 for all ε > 0. Let

Ct2 be a square such that Bt2(ε) ⊂ Ct2 and µ(Ct2) = 4ε2, with µ(·) the Lebesgue

measure in R2. Hence it is obtained that

P {X1 ∈ (t1 − ε, t1 + ε]} > P (X ∈ Ct2) > 0 and t1 > F−1 (0).
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However if it were held that t2 < F−2|t(0) for all t ∈ (t1 − ε′, t1 + ε′] and for all

0 < ε′ < δ = t1 − F−1 (0) then P [X ∈ Ct(δ)] = 0 would be verified, which is an

impossible equality. Consequently, by reduction to the absurd, it can be obtained a

value t(ε′) in (t1− ε′, t1 + ε′] for each ε′ < δ such that t2 ≥ F−2|t(ε′)(0). Thus by taking

ε′ ↓ 0 and by using (3) in RC, it is obtained that t2 ≥ F−2|t1(0). Hence t2 ∈ RX [x̂(0)] ,

i.e. Supp(X) ⊂ RX [x̂(0)] . And the result is proved with this last inclusion. �

Proposition 2.3.3. Let X be a random vector and x be a point in Supp(X). If

t is a point in RX(x), then RX(t) ⊂ RX(x).

Proof. It is easily shown that if x and t are points in Supp(X) then there exist

only two vectors un,vn ∈ (0, 1)n such that x = x̂(un) and t = x̂(vn).

If t is a point in RX(x),

t1 ≥ x̂1(u1), t2 ≥ x̂2|t1(u2), . . . , tn ≥ x̂n|tn−1(un).

Then ti = x̂i|ti−1
(vi) ≥ x̂i|ti−1

(ui) for i = 2, . . . , n. Therefore, from (3) in RC, it is

obtained that un ≤ vn. And the result follows by using Proposition 2.3.1. �

It is well-known that the univariate quantile function is an increasing function, i.e.

u ≤ v if, and only if F−(u) ≤ F−(v). This property is not verified by the u-quantile

for random vectors, in general. However if a type of dependence is held then this

property can be verified. This type of dependence must be based on the growth of

the corresponding conditional distributions. We refer to the CIS property given in

the following definition.
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Definition 2.3.1. A random vector X = (X1, . . . , Xn) is said to be conditionally

increasing (decreasing) in sequence, CIS(CDS), if Xi is stochastically increasing (de-

creasing) in X1, . . . , Xi−1 for i = 2, . . . , n. That is,

(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≤st [≥st](Xi|X1 = x′1, . . . , Xi−1 = x′i−1)

whenever xj ≤ x′j, j = 1 . . . , i− 1.

Before giving the condition under which the monotony of the u-quantile holds, it is

necessary to give some previous results where the CIS(CDS) property is characterized

in terms of the upper-corrected orthant.

Theorem 2.3.4. X is a CIS random vector if and only if RX(x) ⊂ C(x)

for all x ∈ Rn.

Proof. First, we prove the sufficient condition. The proof will be by mathematical

induction. The proposition is obviously true for n = 1. Assume that the proposition

is true for n = m. We now need to show that it is true for n = m+ 1. if x̂(um) � tm

then, given that X is CIS,

x̂m+1|x̂m(um)(um+1) ≤ x̂m+1|tm(um+1)

However, we know that if tm+1 ∈ RX[x̂(um+1)] then tm+1 ≥ x̂m+1|tm(um+1). Therefore

tm+1 ∈ C[x̂(um+1)]. Hence we have completed the proof by the induction argument.

The necessary condition is also proved by mathematical induction. The proposition

is obviously true for n = 1. Assume that the proposition is true for n = m. It is

sufficient to prove that

FXm+1|
⋂m
j=1 Xj=xj

(xm+1) ≥ FXm+1|
⋂m
j=1 Xj=tj

(xm+1) for all xj ≤ tj, j = 1, . . . ,m

(2.3.1)
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If tm+1 ∈ RX(x), then ts ≥ F−
Xs|

⋂s−1
j=1 Xj=tj

[FXs|
⋂s−1
j=1 Xj=xj

(xs)] for s = 1, . . . ,m+ 1. In

particular, if tm+1 = F−Xm+1|
⋂m
j=1Xj=tj

[FXm+1|
⋂m
j=1 Xj=xj

(xm)], given that

RX(x) ⊂ C(x) for all x ∈ Rn, it holds that

F−1
Xm+1|

⋂m
j=1 Xj=tj

[FXm+1|
⋂m
j=1Xj=xj

(xm)] ≥ xm+1. (2.3.2)

Now, from FXm+1|
⋂m
j=1 Xj=xj

(x) is an increasing function in x, by solving the inequality

(2.3.2), the inequality (2.3.1) is obtained. �

Theorem 2.3.5. X is a CDS random vector if and only if C(x)∩Supp(X) ⊂ RX(x)

for all x ∈ Rn

Proof. First, we prove the sufficient conditions. The proof will be obtained by

mathematical induction. The proposition is obviously true for n = 1. Assume that

the proposition is true for n = m. Now we need to show that it is true for n = m+ 1.

If tm+1 ∈ C(xm+1) ∩ Supp(X), then tm+1 ≥ xm+1. Since X is CDS, it follows that

FXm+1|
⋂m
j=1 Xj=tj

(xm+1) ≥ FXm+1|
⋂m
j=1 Xj=xj

(xm+1) for all xj ≤ tj, j = 1, . . . ,m

(2.3.3)

On the other hand, given that FXm+1|
⋂m
j=1 Xj=tj

(x) is increasing in x,

FXm+1|
⋂m
j=1Xj=tj

(tm+1) ≥ FXm+1|
⋂m
j=1 Xj=tj

(xm+1). (2.3.4)

From (2.3.3) and (2.3.4) it holds that

FXm+1|
⋂m
j=1 Xj=tj

(tm+1) ≥ FXm+1|
⋂m
j=1 Xj=tj

(xm+1).

And given that F−Xm+1|
⋂m
j=1 Xj=tj

is an increasing function, then

tm+1 ≥ F−Xm+1|
⋂m
j=1 Xj=tj

[FXm+1|
⋂m
j=1Xj=xj

(xm+1)].
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Therefore, tm+1 ∈ RX(x).

The necessary condition is also proved by mathematical induction. The proposition

is obviously true for n = 1. Assume that the proposition is true for n = m, then it is

sufficient to prove that

FXm+1|
⋂m
j=1 Xj=tj

(xm+1) ≥ FXm+1|
⋂m
j=1 Xj=xj

(xm+1) for all xj ≤ tj, j = 1, . . . ,m

(2.3.5)

If tm+1 ∈ C(x) ∩ Supp(X) ⊂ RX(x), then for s = 1, . . . ,m + 1, ts ≥ xs and ts ≥

F−
Xs|

⋂s−1
j=1 Xj=tj

[FXs|
⋂s−1
j=1 Xj=xj

(xs)]. In particular, if tm+1 = xm+1, it holds that

xm+1 ≥ F−Xm+1|
⋂m
j=1 Xj=tj

[FXm+1|
⋂m
j=1Xj=xj

(xm+1)],

and, given that FXm+1|
⋂m
j=1Xj=tj

(x) is an increasing function in x, the inequality (2.3.5)

is obtained. Thus, X is CDS. �

Now, we study the monotonicity of the x̂(u) when the vector X has the CIS or CDS

property.

Theorem 2.3.6. X is a CIS random vector if and only if x̂(u) � x̂(v) whenever

u � v.

Proof. For the sufficient condition, see Rubinstein et al. (1985).

The necessary condition will be by mathematical induction. From Theorem 2.3.4, it

is sufficient to prove that RX(x) ⊂ C(x). The statement is obviously true for n = 1.

Assume that the proposition is true for n = m. Let tm+1 ∈ RX(x), that is,

ts ≥ F−
Xs|

⋂s−1
j=1 Xj=tj

[FXs|
⋂s−1
j=1 Xj=xj

(xs)] for s = 1, . . . ,m+ 1.
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In particular, for s = m+ 1, it holds

tm+1 ≥ F−Xm+1|
⋂m
j=1Xj=tj

[FXm+1|
⋂m
j=1 Xj=xj

(xm+1)]

and, given that FXm+1|
⋂m
j=1 Xj=tj

(x) is increasing in x, it follows

FXm+1|
⋂m
j=1 Xj=tj

(tm+1) ≥ FXm+1|
⋂m
j=1Xj=xj

(xm+1).

Now, let tj = x̂(vj), xj = x̂(uj) for j = 1, . . . ,m and vm+1 = FXm+1|
⋂m
j=1 Xj=tj

(tm+1)

and um+1 = FXm+1|
⋂m
j=1Xj=xj

(xm+1). Then by hypothesis, x̂(vm+1) ≥ x̂(um+1), that

is

F−1
Xm+1|

⋂m
j=1Xj=x̂(vj)

[FXm+1|
⋂m
j=1Xj=x̂(vj)(tm+1)] ≥

F−1
Xm+1|

⋂m
j=1Xj=x̂(uj)

[FXm+1|
⋂m
j=1Xj=x̂(uj)(xm+1)].

and therefore, tm+1 ≥ xm+1 and the result is obtained. �

Theorem 2.3.7. X is a CDS random vector if and only if u ≤ v for all x̂(u) � x̂(v).

Proof. Suppose that X is a CDS random vector. The proof will be by mathematical

induction. The proposition is obviously true for n = 1. Assume that the proposition

is true for n = m. If X is a CDS random vector, then

F−Xm+1|
⋂m
j=1Xj=x̂(uj)

(um+1) ≥ F−Xm+1|
⋂m
j=1 Xj=x̂(vj)

(um+1) (2.3.6)

for all uj ≤ vj, j = 1, . . . ,m. If x̂(um+1) � x̂(vm+1), then by definition

F−Xm+1|
⋂m
j=1Xj=x̂(uj)

(um+1) ≤ F−Xm+1|
⋂m
j=1Xj=x̂(vj)

(vm+1). (2.3.7)
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Finally, from (2.3.6) and (2.3.7) and given that F−Xm+1|
⋂m
j=1 Xj=x̂(vj)

(u) is increasing in

u, it follows that vm+1 ≥ um+1 and the result is obtained.

Conversely, suppose that x̂(um+1) � x̂(vm+1) implies that um+1 ≤ vm+1. In the light

of Theorem 2.3.5, it is sufficient to prove that C(x) ⊂ RX(x) for all x ∈ Rm.

Let tm+1 ∈ C(x), that is,

ts ≥ xs for s = 1, . . . ,m+ 1. (2.3.8)

In particular, for s = m+ 1 and from the regularity conditions, the inequality (2.3.8)

is equivalent to

F−Xm+1|
⋂m
j=1Xj=tj

[FXm+1|
⋂m
j=1 Xj=tj

(tm+1)] ≥ F−Xm+1|
⋂m
j=1 Xj=xj

[FXm+1|
⋂m
j=1 Xj=xj

(xm+1)].

(2.3.9)

Now, if tj = x̂(vj), xj = x̂(uj) for j = 1, . . . ,m and vm+1 = FXm+1|
⋂m
j=1Xj=tj

(tm+1),

um+1 = FXm+1|
⋂m
j=1 Xj=xj

(xm+1), the inequality (2.3.9) can be written

F−Xm+1|
⋂m
j=1Xj=x̂(vj)

(vm+1) ≥ F−Xm+1|
⋂m
j=1 Xj=x̂(uj)

(um+1). (2.3.10)

Moreover, by hypothesis the above inequality implies that vm+1 ≥ um+1, and given

that FXm+1|
⋂m
j=1 Xj=tj

(x) is increasing in x, it follows that

tm+1 ≥ F−Xm+1|
⋂m
j=1Xj=tj

[FXm+1|
⋂m
j=1 Xj=xj

(xm+1)].

Therefore, tm+1 ∈ RX(x) and the result is obtained. �

In Remark 2.2.1, it was proved that if x ≤ x′, then it could not be held that RX(x′) ⊆

RX(x). However, if X has the CDS property, it can be proved that this last inclusion

holds. Recall that, by definition, x ≤ x′ if and only if C(x′) ⊆ C(x). So, the following

31



2.3. THE UPPER-CORRECTED ORTHANT: SOME NEW PROPERTIES

results give the relationship between the right-upper orthant and the upper-corrected

orthant.

Proposition 2.3.8. Let X be a CDS random vector. If C(x′) ⊆ C(x), then

RX(x′) ⊆ RX(x).

Proof. From the Proposition 2.3.3, it is sufficient to prove that x′ ∈ RX(x).

For n = 2, by definition,

RX(x) = {z ∈ Supp(X) : z1 ≥ F−X1
[
?
x1(x1)], z2 ≥ F−X2|X1=z1

[
?
x2(x2)]}.

Now, if x = (x1, x2) ≤ x′ = (x′1, x
′
2), it holds that

x′1 ≥ F−X1
[
?
x1(x1)]

x′2 ≥ F−X2|X1=x1
[
?
x2(x2)] ≥ F−X2|X1=x′1

[
?
x2(x2)]}

where the last inequality follows due to of fact that X is CDS. Therefore, x′ ∈ RX(x).

Now, assume that the proposition is true for n = m, we need to show that for

m + 1. Let x′ = (x′1, . . . , x
′
m, x

′
m+1) ∈ RX(x) . If x = (x1, . . . , xm, xm+1) ≤ x′ =

(x′1, . . . , x
′
m, x

′
m+1), it holds that

x′m+1 ≥ F−Xm+1|
⋂m
j=1 Xj=xj

[
?
xm+1(xm+1)]} ≥ F−Xm|

⋂m
j=1 Xj=x

′
j
[
?
xm+1(xm+1)]}

so, by mathematical induction, the assumption is obtained. �

Proposition 2.3.9. If X is CIS and RX(x′) ⊆ RX(x), then C(x′) ⊆ C(x).

Proof. For n = 2. If R(x′) ⊂ R(x), it holds that x′ ∈ R(x). Then, x′1 ≥ x1 and
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x′2 ≥ F−X2|X1=x′1
[FX2|X1=x1(x2)] (2.3.11)

Since X is CIS, X2|X1 = x1 ≤st X2|X1 ≤ x′1. Therefore,

FX2|X1=x1(x2) ≥ FX2|X1=x′1
(x2) (2.3.12)

Thus, from (2.3.11) and (2.3.12), it follows that

FX2|X1=x′1
(x′2) ≥ FX2|X1=x′1

(x2).

Finally, given that FX2|X1=x′1
(·) is an increasing function in (·), x′2 ≥ x2, and the result

is obtained. �

For concluding this section, we show the relationship between the upper- corrected

orthant of two random vectors with the same dependence structure in the sense they

have the same copula. A copula C is a cumulative distribution function with uniform

marginals on [0,1], Furthermore, it is shown that if H is an n-dimensional distribution

function with marginals F1, . . . , Fn, then there exists an n-copula C such that for all

x ∈ Rn, it holds that

H(x1, . . . , xn) = C[F1(x1), . . . , Fn(xn)].

Moreover, if F1, . . . , Fn are continuous, then C is unique. For more details about

copulas, see Nelsen (1999).

Proposition 2.3.10. Let X and Y be two bivariate random vectors with the same

copula C. Then there exist two real strictly increasing functions, h1 and h2, such that

h[RX(x̂(u))] = RY[ŷ(u)] for all u ∈ [0, 1]2 and h = (h1, h2).
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Proof. It is well-known that if X and Y have the same copula C then there exist

two strictly increasing functions, h1 and h2, such that Y ∼st (h1(X1), h2(X2)). Thus

it is easily shown that

F−Y1
(u1) = h1(F−X1

(u1))

F−
Y2|Y1=F−Y1

(u1)
(u2) = h2[F−

X2|X1=F−1 (u1)
(u2)]

Therefore the result is directly obtained. �

2.4 The multivariate excess-wealth function

In this section, the univariate excess-wealth function given in Section 1.2 is generalized

to the multivariate case. It is also studied what properties of the ew function are

preserved in higher dimensions.

We start introducing the concept of the multiple expectation associated with a random

vector X.

Definition 2.4.1. Let X be a nonnegative random vector, then the multiple expec-

tation associated with X, when it exists, is defined as the real value

µX =

∫
Supp(X)

P [X ∈ RX(t)] dt.

Note the multivariate expectation associated with X depends on the ordering of the

marginal distributions because of the definition of the upper-corrected orthant.

More especially, it is interesting to obtain an expression for the bivariate expectation

function easier to hand. Let X = (X1, X2) be a bidimensional random vector with

density function fX(x1, x2). Obviously, it holds that

x̂(u1, u2) = [F−X1
(u1), F−

2|F−X1
(u1)

(u2)]
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and

RX(x̂(u1, u2)) = {x ∈ Supp(X) : x1 ≥ F−X1
(u1), x2 ≥ F−X2|X1=x1

(u2)}.

Furthermore, let t = (t1, t2) be a point in Supp(X) then it is easily shown that

P [X ∈ RX(t)] =

∫ +∞

t1

∫ +∞

F−
X2|X1=w1

(FX2|X1=t1
(t2))

f(w1, w2)dw2dw1

=

∫ +∞

t1

fX1(w1)

[∫ +∞

F−
X2|X1=w1

(FX2|X1=t1
(t2))

fX2|X1=w1(w2)dw2

]
dw1.

=

∫ +∞

t1

fX1(w1)
[
F̄X2|X1=w1(F−X2|X1=w1

(FX2|X1=t1(t2)))dw2

]
dw1

=

∫ +∞

t1

fX1(w1)F̄X2|X1=t1(t2)dw1

= P (X1 > t1)P (X2 > t2|X1 = t1). (2.4.1)

Observing the equality (2.4.1), the upper-corrected orthant in a point t could be

defined as the set RX(t) such that P [X ∈ RX(t)] = P (X1 > t1)P (X2 > t2|X1 = t1).

Consequently, under straightforward calculations is easily obtained by using (2.4.1)

that

µ̄X = νX −
∫ +∞

0

F1(t)F−X2|X1=t(0)dt,

where νX =
∫∞

0
F1(t)E[X2|X1 = t]dt. Particularly, if X represents a non-negative

lifetime random variable then

µ̄X ≤ νX,

and the equality is held if Supp(X) = [0,+∞)2.

Now, we give the definition of the multivariate excess-wealth function.

Definition 2.4.2. Let X be a nonnegative random vector with finite multiple expec-

tation. The multivariate excess-wealth function associated to X is defined as

S+
X(u) =

∫
RX[

∧
x(u)]

P [X ∈ RX(t)] dt.
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By using (2.4.1), for all (u1, u2) ∈ (0, 1)2, the bivariate excess-wealth function can be

expressed as

S+
X(u1, u2) =

∫ ∞
F−1 (u1)

F̄1(t1) · S+
X2|X1=t1

(u2)dt1. (2.4.2)

Several interesting properties for the multivariate excess-wealth function can be shown

as in the univariate case.

Proposition 2.4.1. Let X be a nonnegative random vector with finite multiple ex-

pectation, then

i) S+
X(u) is a decreasing and a shift invariant function.

ii) 0 ≤ S+
X(u) ≤ S+

X(0) = µ̄X for all u in [0, 1]n.

iii) If the components of X are independent, then S+
X(u) =

n∏
i=1

S+
Xi

(ui).

Proof.

i) Firstly, by using the proposition 2.3.1, it follows that if un � vn, then

RX[x̂(vn)] ⊂ RX[x̂(un)].

From this, it immediately follows that the multivariate excess-wealth function

is decreasing.

Finally, it is easy to show that

RX+c[x̂ + c(un)] = RX[x̂(un)] + c and RX+c[(tn)] = RX[(tn − c)] + c

Consequently, the multivariate excess-wealth function is a shift invariant func-

tion.
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ii) -iii) The proofs are trivial and therefore are omitted.

Example 2.4.2. The bivariate vector as defined in Example 2.2.1 is considered. By

straightforward calculus it is possible to show that the bivariate excess-wealth function

of this vector has the following expression:

S+
X(u1, u2) =


f1(u1, u2) if 0 ≤ u1 ≤ 1/2

f2(u1, u2) if 1/2 ≤ u1 ≤ 1

0 otherwise

where 0 ≤ u2 ≤ 1 and

f1(u1, u2) =
1

2

(
−1

4
+

1

2
u2 −

1

4
u2

2

)(
1− 4u2

1

)
+

9

16
− u1 − u2 (1− 2 u1)

+
1

2
u2

2 (1− 2u1)− 1

8
u2 +

1

16
u2

2.

f2(u1, u2) = −0.5, u2 + u2 u1 − 0.5u2, u1
2 + 0.25− 0.5u1 + 0.25u1

2 + 0.25u2
2

−0.5u2
2u1 + 0.25u2

2u1
2.

In Figure 2.2 we can see the graphic of the excess-wealth function for the vector X.

N

Now, we give the relationship between the multivariate excess-wealth function and

the probability associated to the upper-corrected orthant at the u−quantile.

Proposition 2.4.3. Let X = (X1, X2) be a bidimensional random vector with density

function fX(x1, x2) and excess-wealth function S+
x (u1, u2). Then

P{X ∈ RX[
∧
x(u)]} = fX[x̂(u)]

∂2S+
X(u1, u2)

∂u2∂u1
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Figure 2.2: The excess-wealth function of X.

Proof. Differentiating (2.4.2), it is easily shown that

∂2S+
X(u1, u2)

∂u2∂u1

=
P (X ∈ RX[

∧
x(u)])

fX(x̂(u))
for all (u1, u2) in (0, 1)2. (2.4.3)

Consequently, the result is obtained. �

2.5 The multivariate excess-wealth ordering

In this section, the multivariate excess-wealth ordering is defined and some of its

properties are studied, as that was done by Fernández-Ponce et al. (1998) and Shaked

and Shanthikumar (1998) in the univariate case. Moreover, we give the relationship

between this order and the multivariate d.o. defined by Fernández-Ponce and Suárez-

Lloréns (2003).

Definition 2.5.1. Let X and Y be two nonnegative random vectors with finite mul-

tiple expectations. Then, X is said to be smaller than Y in the sense of multivariate
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excess-wealth order (X ≤ew Y) if

S+
X(u) ≤ S+

Y(u) for all u in (0, 1)n

The notation ∼ew means that (X ≤ew Y) and (Y ≤ew X). The following theorem

gives some closure results.

Theorem 2.5.1. i) Let X(1), . . . ,X(m) be a set of independent random vectors and

let Y(1), . . . ,Y(m) be another set of independent random vectors. If X(i) ≤ew

Y(i) for i = 1, . . . ,m then (X(1), . . . ,X(m)) ≤ew (Y(1), . . . ,Y(m)).

ii) Let {X(j) : j = 1, 2 . . .} and {Y(j) : j = 1, 2, . . .} be two sequences of random

vectors such that X(j) →st X and Y(j) →st Y as j → ∞, where →st denotes

convergence in distribution. If X(j) ≤ew Y(j) for j = 1, 2, . . . then X ≤ew Y.

Proof.

i) It is trivial by using Definition 2.5.1 and iii) of the Proposition 2.4.1 and by

mathematical induction on the dimension of each of the independent random

vectors X(i) and Y(i).

ii) First, we prove that if X(j) →st X then x̂(j)(u)→ x̂(u).

Let x̂(j)(u) = [x̂
(j)
1 (u1), . . . , x̂

(j)
n (un)] the multivariate u-quantile, where

x̂
(j)
s (us) = [F

(j)

Xs|
⋂s−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(us)]
− for s = 1, . . . , n, F−(u) = inf{x : F (x) ≥

u} and us = (u1, . . . , us) for all s = 1, . . . , n.

Assume that X(j) →st X, that is, limj→∞ F
(j)(x1, . . . , xn) = F (x1, . . . , xn)

where F (j) and F are the joint distribution functions of Xj and X, respec-

tively. We have to prove that x̂
(j)
s (us) → x̂s(us) for s = 1, 2, . . . , n. The proof

is by mathematical induction. For n = 1,
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lim
j→∞

[F
(j)
X1

(u1)]− = lim
j→∞

inf[x1 : F
(j)
X1

(x1) > u1]

= inf[x1 : lim
j→∞

(F
(j)
X1

(x1)) > u1]

= inf[x1 : FX1(x1) ≥ (u1)] = [F−X1
(u1)]

where the second equality follows from the distribution function is absolutely

continuous. Therefore, the proposition holds for n = 1. Now, assume that the

proposition is true for n− 1. We need to show that it is true for n.

lim
j→∞

x̂(j)
n (un) = lim

j→∞
[F

(j)

Xn|
⋂n−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(un)]−

= lim
j→∞

inf[xn : F
(j)

Xn|
⋂n−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(xn) > un] (2.5.1)

Given that F
(j)

Xs|
⋂s−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(xs) is an absolutely continuous and strictly in-

creasing function for all j and for s = 1, . . . , n, the right-side in (2.5.1) can be

written as

inf[xn : lim
j→∞

F
(j)

Xn|
⋂n−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(xn) > un]. (2.5.2)

Now, by applying the monotone convergence theorem and as the stochastic

convergence is closed under marginalization, the following equality is obtained

lim
j→∞

F
(j)

Xn|
⋂n−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(xn) = lim
j→∞

∫ xn

−∞

f (j)[x̂
(j)
1 (u1), . . . , x̂

(j)
n−1(un−1), t]

f (j)[x̂
(j)
1 (u1), . . . , x̂

(j)
n−1(un−1)]

dt

=

∫ xn

−∞
lim
j→∞

f (j)[x̂
(j)
1 (u1), . . . , x̂

(j)
n−1(un−1), t]

f (j)[x̂
(j)
1 (u1), . . . , x̂

(j)
n−1(un−1)]

dt

=

∫ xn

−∞

f [x̂1(u1), . . . , x̂n−1(un−1), t]

f [x̂1(u1), . . . , x̂n−1(un−1)]
dt

= FXn|
⋂n−1
r=1 Xr=x̂r(ur)

(xn). (2.5.3)
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Consequently, from (2.5.2) and (2.5.3), it holds that

lim
j→∞

x̂(j)
n (un) = inf[xn : lim

j→∞
F

(j)

Xn|
⋂n−1
r=1 X

(j)
r =x̂

(j)
r (ur)

(xn) > un]

= inf[xn : FXn|
⋂n−1
r=1 Xr=x̂r(ur)

(xn) > un]

= x̂n(un)

and by mathematical induction, it is proved that x̂(j)(u)→ x̂(u) .

It is easy to prove that if X(j) →st X then RX(j)

[
x̂(j)(u)

]
→ RX [x̂(u)] for

all u in (0, 1)n. Now by using the monotone convergence theorem and the fact

that µX(j) < +∞ for all j, it follows that S+
X(j)

(u)→ S+
X(u). Thus the result is

obtained.

�

An interesting property is now proved for the bivariate case which can be easily

generalized for any dimension. This result was proved in the univariate case by

Kochar and Carrière (1997).

Theorem 2.5.2. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors.

1. If X ∼st Y + c then X ∼ew Y

2. If X ∼ew Y then f [x̂(u)] = g [ŷ(u)] for all u in (0, 1)2 where f(·) and g(·) are

the corresponding density functions for X and Y, respectively.

Proof.

1. Trivial, since the multivariate excess-wealth function is shift invariant.
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2. Suppose X ∼ew Y, i.e. it holds

∫
RX[x̂(u)]

P [X ∈ RX(t)] dt =

∫
RY[ŷ(u)]

P [Y ∈ RY(t)] dt. (2.5.4)

Since X and Y satisfy the regularity conditions, it follows that the quantiles

x̂(u) and ŷ(u) are differentiable with respect to u = (u1, u2) at each component.

Consequently, differentiating both side of (2.5.4) with respect to u = (u1, u2)

we get

∂x̂1(u1)

∂u1

·
∂x̂2|x̂1(u1)(u2)

∂u2

=
∂ŷ1(u1)

∂u1

·
∂ŷ2|ŷ1(u1)(u2)

∂u2

for all (u1, u2) in (0, 1)2. That is

fX1 [x̂1(u1)] · fX2|x̂1(u1)

[
x̂2|x̂1(u1)(u2)

]
= gY1 [ŷ1(u1)] · gY2|ŷ1(u1)

[
ŷ2|ŷ1(u1)(u2)

]
or equivalently fX [x̂(u)] = gY [ŷ(u)] for all u in (0, 1)2.

�

The following example shows that the multivariate excess-wealth order is weaker

than the multivariate dispersive order (≤Disp) given by Fernández-Ponce and Suárez-

Lloréns (2003).

Example 2.5.3. Suppose that X = (X1, X2) is a bivariate exponential random vector

such that X1 and X2 are independent, X1 ∼st Exp(2) and X2 ∼st Exp(1). Similarly,

assume Y = (Y1, Y2) is a bivariate exponential random vector such that Y1 and Y2 are

independent with Y1 ∼st Exp(1/3) and Y2 ∼st Exp(3). Consequently, it holds that

X1 <Disp Y1 and Y2 <Disp X2
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which implies, from Corollary 3.3 in Fernández-Ponce and Suárez-Lloréns (2003),

that X 6<Disp Y. Furthermore, by using iii) of Proposition 2.4.1, it holds

S+
X(u1, u2) =

1

2
(1− u1)(1− u2) ≤ (1− u1)(1− u2) = S+

Y(u1, u2)

for all (u1, u2)in (0, 1)2, i.e. X ≤ew Y.

We finish this section giving a sufficient condition for the excess-wealth order between

two vectors with the same copula.

Theorem 2.5.4. Let X and Y be two absolutely continuous random vectors with the

same copula C. If Xi ≤disp Yi for all i, then X ≤ew Y.

Proof. By using Theorem 2 in Arias-Nicolás et al (2005) we know that there exist

two expansion functions, h1 and h2, such that

h1(X1) ∼st Y1 and h2(X2) ∼st Y2.

From (2.4.2), it follows

S+
Y(u1, u2) =

∫ ∞
F−Y1

(u1)

F̄Y1(t)S+
Y2|Y1=t(u2)dt

=

∫ ∞
h1(F−X1

(u1))

P (X1 > h−1
1 (t))S+

h2(X2)|X1=h−1
1 (t)

(u2)dt

=

∫ ∞
F−X1

(u1)

P (X1 > x)S+
h2(X2)|X1=x(u2)dh1(x)

≥
∫ ∞
F−X1

(u1)

P (X1 > x)S+
h2(X2)|X1=x(u2)dx (2.5.5)

where (2.5.5) follows directly by using the fact that h1 is an expansion function, that

is dh1(x)
dx
≥ 1.

Now, note that
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S+
h2(X2)|X1=x(u2) =

∫ ∞
F−
h2(X2)|X1=x

(u2)

P (h2(X2) > t|X1 = x)dt

=

∫ ∞
h−1

2 (F−
X2|X1=x

(u2))

P (X2 > h−1
2 (t)|X1 = x)dt

=

∫ ∞
F−
x2|X1=x

(u2)

P (X2 > w|X1 = x)dh2(w)

≥
∫ ∞
F−
X2|X1=x

(u2)

P (X2 > w|X1 = x)d(w)

= S+
X2|X1=x(u2) (2.5.6)

Therefore, from (2.5.5) and (2.5.6), it follow that S+
Y(u1, u2) ≥ S+

X(u1, u2). �
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Chapter 3

Multivariate Lifetime Distributions

Abstract

The lifetime distributions are of great importance in the theory of stochas-

tic modeling, renewal theory, reliability analysis and quality control. In the

literature, several lifetime distributions and their properties have been defined.

Characterizations of these distributions, based on some different orderings, have

been also studied. In this chapter, new properties for multivariate lifetime dis-

tributions, based on the upper-corrected orthant, are defined and some charac-

terizations in terms of the multivariate excess wealth functions are studied.
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3.1 New characterizations of lifetime distributions

In this section, we propose a multivariate version of the univariate aging proper-

ties, based on the concept of upper-corrected orthant, together with their chain of

implication. The relationship between these properties and the multivariate excess

wealth function are given following the ideas in Fernández-Ponce et al. (1998) for

the univariate case.

First we give new generalizations of the univaritate mean residual life and the failure

rate. Let X be a nonnegative random vector. By using Proposition 2.3.3, it is easy

to see that if X is an n-dimensional random variable and t ∈ RX(x) then

P [X ∈ RX(t)|X ∈ RX(x)] =
P [X ∈ RX(t)]

P [X ∈ RX(x)]

This equality enables us to define the total expected residual life in x in the following

form.

Definition 3.1.1. Let X be an n-dimensional random variable. The total expected

residual life of X in x is defined as the following real value,

µX(x) =
1

P{X ∈ RX(x)}

∫
RX(x)

P [X ∈ RX(t)] dt (3.1.1)

for all x ∈ Supp(X).

Note there exists a closed relationship between the total expected residual life function

and the multivariate excess wealth function. In fact, we can see that

µX(x̂(u)) =
S+

x (u)∏n
i=1(1− ui)

. (3.1.2)

Now, a new multivariate version of the failure rate function is considered.
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Definition 3.1.2. Let X = (X1, X2, . . . , Xn) be an n-dimensional random variable.

The multivariate corrected failure rate of X is given by

rc(z) = lim
h→0

P [X ∈ C(z,h)|X ∈ RX(z)]

h1 · · ·hn
where, h = (h1, . . . , hn),0 = (0, . . . , 0) and C(z,h) is the set given by

C(z,h) = {x ∈ Rn : x1 ∈ [z1, z1 + h1], xj ∈ [ϕ1(xj, z);ϕ2(xj, z)] for j = 2, . . . , n}

where
ϕ1(xj, z) = F−1

Xj |
⋂j−1
i=1 Xi=xi

(FXj |
⋂j−1
i=1 Xi=zi

(zj))

and

ϕ2(xj, z) = F−1

Xj |
⋂j−1
i=1 Xi=xi

(FXj |
⋂j−1
i=1 Xi=zi

(zj + hj)).

Equivalently, the multivariate corrected failure rate can be expressed as

rc(z) =
f(z)

P [(X ∈ RX(z))]
. (3.1.3)

In fact, for the bivariate case,

rc(z) = lim
h→0

P [X ∈ C(z,h)|X ∈ RX(z)]

h1 · h2

=
1

P [(X ∈ RX(z))]
lim
h→0

P [X ∈ C(z,h)]

h1 · h2

(3.1.4)

The limit in (3.1.4) can be expressed as

lim
h→0

P [X ∈ C(z,h)]

h1 · h2

= lim
h→0

1

h1 · h2

∫ z1+h1

z1

∫ ϕ2(xj ,z)

ϕ1(xj ,z)

f(x1, x2)dx2dx1

= lim
h→0

1

h1 · h2

∫ z1+h1

z1

fX1(x1)

∫ ϕ2(xj ,z)

ϕ1(xj ,z)

fX2|X1=x1(x2)dx2dx1

= lim
h1→0

1

h1

∫ z1+h1

z1

fX1(x1) lim
h2→0

∆hFX2|X1=z1(z2)

h2

dt2

= lim
h1→0

1

h1

∫ z1+h1

z1

fX1(x1)fX2|X1=z1(z2)dx1

= fX1(z1)fX2|X1=z1(z2)

= f(z)
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where ∆hFX2|X1=z1(z2) = FX2|X1=z1(z2 + h2) − FX2|X1=z1(z2). So, we obtained the

equation (3.1.3).

Note that for the bidimensional case, it follows rc(z1, z2) = rX1(z1)rX2|X1=z1(z2). In

general, it holds that

rc(z) =
n∏
i=1

rXi|
⋂i−1
j=1Xj=zj

(zi). (3.1.5)

Note also, that in the univariate case it holds S+
X(u) =

∫ 1

u
1

rX [x̂(z)]
dz. It is easy to see,

from the Definition 2.4.2, that S+
X(u) can be written as

S+
X(u) =

∫ 1

u1

. . .

∫ 1

un

[rc(x̂(z))]−1dz. (3.1.6)

In the equation below, we can see how (3.1.6) is obtained for the bivariate case.

S+
X(u) =

∫ +∞

F−1
1 (u1)

∫ +∞

F−
X2|X1=t1

(u2)

P (X1 > t1)P (X2 > t2|X1 = t1)dt2dt1

=

∫ 1

u1

∫ 1

u2

(1− z)(1− w)
dzdw

f1[F−1
1 (z)]fX2|X1=F−1

1 (z)[F
−1

X2|X1=F−1
1 (z)

(w)]

=

∫ 1

u1

∫ 1

u2

(1− z)(1− w)

fX[x̂(z, w)]
dzdw

=

∫ 1

u1

∫ 1

u2

1

{rc[x̂(z, w)]}
dzdw (3.1.7)

where the first equality follows by changing z = F1(t1) and w = F2|x1=F−1
1 (z)(t2).

Note that making this change, it follows t1 = F−1
1 (z), t2 = F−1

2|x1=F−1
1 (z)

(w) and the
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Jacobian matrix is

J =

 ∂
∂z
F−1

1 (z) 0

∂
∂z
F−1

2|x1=F−1
1 (z)

(w) ∂
∂w
F−1

2|x1=F−1
1 (z)

(w)


=

∂

∂z
F−1

1 (z)
∂

∂w
F−1

2|x1=F−1
1 (z)

(w)

=
1

f(F−1
1 (z))f2|x1=F−1

1 (z)(F
−1

2|x1=F−1
1 (z)

(w))
.

The next result shows that the only bivariate vector with exponential marginals and

a constant corrected multivariate failure rate is that whose components are indepen-

dent. This result can be generalized on the multivariate case.

Theorem 3.1.1. Let X = (X1, X2) be a nonnegative random vector with exponential

marginals. Then X has a constant rc(x) if and only if X1 and X2 are independent.

Proof. Obviously, if X1 and X2 are independent and have exponential distributions,

it holds that rc(x) is constant.

Now, assume that X1 and X2 have exponential distributions. If rc(x) = c for all

x = (x1, x2) then from (3.1.5) it follows that rX2|X1=x1(x2) = c/λ1, where λ1 is the

parameter of the distribution of X1. Given that the only univariate distribution

with a constant failure rate is the exponential distribution, it follows that, for all x1,

X2|X1 = x1 has an exponential distribution with parameter c/λ1. That is, X1 and

X2 are independent. �

For marginals not necessary exponentials, we get the following result.

Theorem 3.1.2. Let X = (X1, X2) be a nonnegative random vector. If the corrected

failure rate of X is constant, that is rc(x) = c, then rX2|X1(x2) = h(x1) does not

depend on x2.
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Proof. Suppose the corrected failure rate of X is constant. Then, it follows that

rc(x) = rX1(x1)rX2|X1=x1(x2) = c.

Thus, rX2|X1=x1(x2) = c/rX1(x1) = h(x1), where h(x) is a function which does not

depend on x2. �

The next example shows that the corrected failure rate does not determine the dis-

tribution of X.

Example 3.1.3. Let X = (X1, X2) be a nonnegative random vector such that X1 has

density and survival functions given, respectively, by

fX1(x1) = x1e
−x

2
1
2 and F̄X1(x1) = e−

x2
1
2 for x1 > 0,

and X2|X1 = x1 has an exponential distribution with parameter 1
x1

. The corrected

failure rate of X is

rc(x, y) = rX1(x1)rX2|X1=x1(x2) = 1.

Therefore, there exits a vector with marginals not exponential and dependent such that

its rc is constant. Thus, this example shows that the corrected failure rate does not

determine the distribution of X, given that it is possible to find two vectors with the

same rc (for example, the vector with i.i.d marginals and with distribution Exp(1)).

M

Similarly to the univariate case and considering the above definitions, we can define

new concepts of “multivariate lifetime distributions”.

Definition 3.1.3. Let X be a nonnegative n-dimensional random variable satisfying

the regularity conditions (RC) and with finite total expectation residual life µX(x)

and multivariate failure rate function rc(x).
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(a) X is said to have a Corrected Multivariate Increasing [Decreasing] Failure Rate

(CMIFR)[CMDFR] distribution if the function rc(x) is increasing [decreasing]

in x for all x ∈ Supp(X).

(b) X is said to have a Corrected Multivariate Decreasing [Increasing] Mean Resid-

ual Life (CMDMRL)[CMIMRL] distribution if µX(x) is decreasing [increasing]

in x for all x ∈ Supp(X).

(c) X is said to have a Corrected Multivariate New [Worse] Better than Used in

Expectation (CMNBUE)[CMNWUE] distribution if

νX ≥ [≤]µX(x). (3.1.8)

In the univariate case the multivariate corrected failure rate, rc(x), and the total ex-

pected residual life, µX(x) coincide with the hazard rate function rX(x) and the mean

residual life, µX(x), respectively. Therefore, the concepts of corrected multivariate

lifetime distributions and the usual concept of univariate lifetime distributions are

equivalent.

Example 3.1.4. Let (X1, X2) be the nonnegative random vector defined as in Exam-

ple 2.2.1. The total expected residual life of X is given by

µX(x) =


(x2−1)(2x2

1−8x1+7)

8(x1−2)
if (x1, x2) ∈ A

1
8
(x1 − 2)(x1 + x2 − 2) if (x1, x2) ∈ B

In particular, µX(0) = µX = 7/16. Moreover, the total expected residual life is

decreasing in x. In fact, if (x1, x2) ∈ A,

∂

∂x1

µX(x) =
(x2 − 1)(2x2

1 − 8x1 + 9)

8(x1 − 2)2
and

∂

∂x2

µX(x) =
2x2

1 − 8x1 + 7

8(x1 − 2)
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which are negative for all (x1, x2) ∈ A and if (x1, x2) ∈ B,

∂

∂x1

µX(x) =
1

8
(2x1 + x2 − 4) and

∂

∂x2

µX(x) =
1

8
(x1 − 2)

which are also negative for all (x1, x2) ∈ B. Thus, the random vector X is CMDMRL.

Moreover, given that µX(x) is decreasing, for all x ≥ 0, νX = µX ≥ µX(x), that is,

X is also CMNBUE.

In the same way, it can be proved that the bivariate corrected failure rate of X given

by rc(x) = 1
(2−x1)(1−x2)

if x ∈ A and rc(x) = 1
(1−x1/2)(2−x1−x2)

if x ∈ B, is increasing

in x. Thus, the bivariate vector X is CMIFR.

4

Example 3.1.5. Let X = (X1, X2) be a nonnegative random vector such that X1 has

a uniform distribution U [0, 1] and the conditional variable X2|X1 = x1 has a uniform

distribution U [0, x1] if x1 ∈ [0, 0.5) and has a uniform distribution U [1 − x1, 1] if

x1 ∈ [0.5, 1].

The upper-corrected orthant for x = (x1, x2) is the following set:

RX(x) =

 R1(x) if 0 ≤ x1 < 0.5 and 0 ≤ x2 < x1

R2(x) if 0.5 ≤ x1 < 1 and 1− x1 ≤ x2 < 1

where

R1(x) = {t ∈ Supp(X) : t1 ∈ [x1, 0.5]; t2 ∈ [
x2

x1

t1, t1]} ∪

{t ∈ Supp(X) : t1 ∈ [0.5, 1]; t2 ∈ [1 + t1(
x2

x1

− 1), 1]}

R2(x) =

{
t ∈ Supp(X) : t1 ∈ [x1, 1]; t2 ∈

[
1 +

t1
x1

(x2 − 1), 1

]}
The total expected residual life of X is given by
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µX(x) =

 µ1(x) if 0 < x1 < 0.5 and 0 < x2 < x1

µ2(x) if 0.5 ≤ x1 < 1 and 1− x1 ≤ x2 < 1

where

µ1(x) =
−x5

1

6
+ x4

1(1
4

+ x2

3
) + x1x2

6
+ x3

1(−1
2
− x2

6
)x2 − x2

2

12
+ x2

1(− 1
12

+
x2

2

4
)

(x1 − 1)x1(x1 − x2)

µ2(x) =
(x1 − 1)2(1 + 2x1)(x2 − 1)2

12(1− x1)x1(1− x2)

The total expected residual life function is not increasing or decreasing. In fact, if

x1 = (0.3, 0.2), x2 = (0.4, 0.3) and x3 = (0.7, 0.8), it holds that µ(x1) = 0.0311 >

0.022 = µ(x2) and µ(x2) = 0.022 < 0.036 = µ(x3). Therefore, the random vector

X has not a CMDMRL or CMIMRL distribution. However, after some calculous, it

can be show that νX = 0.125 ≥ µX(x) for all x, so it holds that X has a CMNBUE

distribution.

The bivariate corrected failure rate of X is given by

rc(x) =


1

(1−x1)(x1−x2)
if x ∈ A

1
(1−x1)(1−x2)

if x ∈ B

For x1 = (0.3, 0.2), x2 = (0.4, 0.3) and x3 = (0.6, 0.8), it holds that rc(x1) < rc(x2)

and rc(x3) < rc(x2). Therefore, the random vector X does not have a CMIFR or

CMDFR distribution.

4

Two properties of closure for the CMNBUE, CMDMRL and CMIFR distributions

are now given.
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Proposition 3.1.6. 1) If X and Y are CMNBUE [CMDMRL, CMIFR] distri-

butions and X,Y are independent, then (X,Y) is a CMNBUE [CMDMRL,

CMIFR] distribution.

2) If X is a CMNBUE [CMDMRL, CMIFR] distribution, then the vector

aX = (a1X1, . . . , anXn) is a CMNBUE [CMDMRL, CMIFR] distribution.

Proof.

1) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two independent CMNBUE

vectors and Z = (X,Y). It is easily proved that

P [Z ∈ Rz(z)] = P [X ∈ Rx(z1)]P [Y ∈ RY(z2)] (3.1.10)

and ∫
Rz(z)

P [Z ∈ Rz(t)]dt =

∫
RX(z1)

P [X ∈ Rt(t)]dt

∫
RY(z2)

P [Y ∈ Rt(t)]dt

(3.1.11)

where z = (z1, . . . , zn, zn+1, . . . , zn+m), z1 = (z1, . . . , zn) and z2 = (zn+1, . . . , zn+m).

From (3.1.10) and (3.1.11) it follows

µ̄Z(z) = µ̄X(z1)µ̄Y(z2), (3.1.12)

and given that X and Y are CMNBUE, it holds µ̄Z(z) ≤ νXνY = νZ. Therefore,

Z is CMNBUE.

Now, we consider that X and Y are CMDMRL. Then µ̄X(z1) and µ̄Y(z2) are

decreasing in z1 and z2, respectively. So, from (3.1.12) it holds that µ̄Z(z) is

decreasing in z. That is, Z is CMDMRL.

Finally, if X and Y are CMIFR, then rc,Z(z) = rc,X(z1)rc,Y(z2) is decreasing in

z and therefore, the assumption is obtained.
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2) Let X = (X1, . . . , Xn) be a CMNBUE distribution and a = (a1, . . . , an) with

ai > 0 for i = 1, . . . , n. Denote Y = (a1X1, . . . , anXn). It is easily proved that

P [Y ∈ RY(t)] = P [X ∈ Rx(t′)] (3.1.13)

where t′ = (t1/a1, . . . , tn/an), and∫
RY(y)

P [Y ∈ RY(t)]dt =
n∏
i=1

ai

∫
RX(y′)

P [X ∈ RX(w)]dw (3.1.14)

where y′ = (y1/a1, . . . , yn/an).

From (3.1.13) and (3.1.14) it follows

µ̄Y(y) =
n∏
i=1

aiµ̄X(y′), (3.1.15)

and given that X is CMNBUE, it holds µ̄Y(y) ≤
∏n

i=1 aiνX = νY for all y.

Thus, Y is CMNBUE.

Now, we consider that X is CMDMRL. Then µ̄X(x) is decreasing in x. So, from

(3.1.15) it holds that µ̄Y(y) is decreasing in y. That is, Y is CMDMRL.

Finally, If X is CMIFR, then rc,Y(y) = 1∏n
i=1 ai

rc,X(y′) is also increasing in y

and therefore, the assumption is obtained.

�

A property of the CMNBUE distributions is now given. It will be showed that if X1

and X2 have NBUE distributions and ϕ is a nonnegative function, the random vector

(X1, ϕ(X1) + X2) has a CMNBUE distribution. However, if the NBUE property is

replaced by the DMRL or IFR property, then, in general, it could not be held that

the vector (X1, ϕ(X1) +X2) has a CMDMRL or CMIFR distribution, respectively.
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Theorem 3.1.7. Let X1 and X2 be two independent and NBUE univariate distribu-

tions and let ϕ : R→ R be a nonnegative function. Hence (Z1, Z2) = (X1, ϕ(X1)+X2)

has a CMNBUE distribution.

Proof. Let F1 and F2 be the corresponding distribution functions of the random

variables X1 and X2, respectively. It is easily shown that

ν(Z1,Z2) =

∫ ∞
0

F 1(t)E(ϕ(X1) +X2|X1 = t)dt

=

∫ ∞
0

ϕ(t)F 1(t)dt+ E(X1)E(X2). (3.1.16)

Obviously, the Supp(Z1, Z2) = {(z1, z2) ∈ R2 : z1 > 0, z2 − ϕ(z1) > 0}.

Then, using (3.1.1), if (z1, z2) ∈ Supp(Z1, Z2), it is obtained that

µ(Z1,Z2)(z1, z2) =
1

F 1(z1)F 2(z2 − ϕ(z1))

∫ ∞
z1

F 1(t1)dt1

∫ ∞
z2−ϕ(z1)

F 2(t2)dt2

= E(X1 − z1|X1 > z1)E [X2 − (z2 − ϕ(z1))|X2 > (z2 − ϕ(z1))]

for all z2 > ϕ(z1). Furthermore, by using the fact that X1 and X2 have NBUE distri-

butions, E(X1 − z1|X1 > z1)E [X2 − (z2 − ϕ(z1))|X2 > (z2 − ϕ(z1))] ≤ E(X1)E(X2)

holds.

Consequently, from (3.1.16) and using the fact that ϕ(X) is a nonnegative function,

it is easily deduced that

ν(Z1,Z2) > E(X1)E(X2) ≥ µ(Z1,Z2)(z1, z2) for all (z1, z2) in Supp(Z1, Z2).

Thus, the random vector (Z1, Z2) = (X1, ϕ(X1) + X2) is CMNBUE by using (c) in

Definition 3.1.3. �
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Remark 3.1.1. Note that if X1 and X2 are two independent and IFR univariate

distributions, it could not be held that Z = (Z1, Z2) = (X1, ϕ(X1)+X2) has a CMIFR

distribution. For example, let Xi be a random variable with a uniform distribution on

[0, 1], for i = 1, 2 and let ϕ be the identity function. The bivariate corrected failure

rate of Z is given by

rc(z1, z2) =
fZ(z1, z2)

P [(Z ∈ RZ(z1, z2))]
=
fX1(z1)fx2(z2 − z1)

F̄1(z1)F̄2(z2 − z1)

= rx1(z1)rx2(z2 − z1)

=
1

(1− z1)

1

(1− z2 + z1)
.

Now, if z = (0.1, 0.8) and z′ = (0.5, 0.9) it holds that rc(z) ≥ rc(z
′), and therefore

rc(z) is not an increasing function.

Similarly, we can prove that if X1 and X2 are two independent and DMRL univariate

distributions, it could not be held that Z = (Z1, Z2) = (X1, X1 +X2) has a CMDMRL

distribution. In fact, after simple calculus, one can see that

µ(Z1,Z2)(z1, z2) =
(1− z1)(1− z2 + z1)

4
.

If z = (0.1, 0.7) and z′ = (0.3, 0.7) it holds that µ(Z1,Z2)(z) ≤ µ(Z1,Z2)(z
′), and therefore

µ(Z1,Z2)(z) is not a decreasing function in z.

N

The following results give a necessary and sufficient condition for the CMNBUE

property of X, based on the multivariate excess- wealth function. It can be considered

as a generalization of Corollary 3.1. (c) in Fernández-Ponce et at. (1998).

Theorem 3.1.8. Let X be a random vector verifying the regularity conditions (RC).

X is a CMNBUE distribution if and only if

S+
X(u) ≤ νX

n∏
j=1

(1− uj) for all u ∈ [0, 1]n.
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Proof. Firstly, assume that X has a CMNBUE distribution. By (c) in Defini-

tion 3.1.3, νX ≥ µX(x) holds for all x ∈ Supp(X). From (RC) defined in Section 2.2,

it is also known that for each x ∈ Supp(X), only one vector u ∈ [0, 1]n exists such

that x = x̂(u). Now, by using the equality (3.1.2) and the Proposition 2.2.2, the result

holds. Conversely, if S+
X(u) ≤ νX

n∏
j=1

(1 − uj) for all u ∈ [0, 1]n and X verifies the

regularity conditions, then it is easily seen that X has a CMNBUE distribution. �

Analogous results to Theorem 3.1.8 can be shown for the CMDMRL and CMIRF

properties. However, additional conditions should be considered. This is due to the

aging properties are defined in the support of the vector X while the multivariate

excess wealth function is defined in u ∈ [0, 1]n. As we can see in (3.1.2) and (3.1.7)

it is possible to establish a relationship between the function S+
X and the functions

µX and rc evaluated in the u-quantile, respectively. Because of this, to obtain results

where the CMDMRL and CMIRF properties and the function S+
X are related, it is

necessary to impose that the vector X is CDS or CIS.

The previous problem can be solved by considering the multivariate aging notions

based on the quantile approach, so obtaining the following definitions.

Definition 3.1.4. Let X be a non-negative random variable with finite total expec-

tation µ̄X and multivariate failure rate function rc(x).

(a) X is said to have a Quantile-Corrected Multivariate Increasing [Decreasing]

Failure Rate (Q-CMIFR)[Q-CMDFR] distribution if the function rc[x̂(u)] is

increasing [decreasing] in u for all u ∈ [0, 1]n.

(b) X is said to have a Quantile-Corrected Multivariate Decreasing [Increasing]
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Mean Residual Life (Q-CMDMRL)[Q-CMIMRL] distribution if µ̄X[x̂(u)] is de-

creasing [increasing] in u for all u ∈ [0, 1]n, i.e. if µ̄X[x̂(v)] ≤ µ̄X[x̂(u)] for all

u ≤ v.

(c) X is said to have a Quantile-Corrected Multivariate New [Worse] Better than

Used in Expectation (Q-CMNBUE)[Q-CMNWUE] distribution if

µX[x̂(0)] ≥ [≤]µX[x̂(u)] for all u ∈ [0, 1]n. (3.1.17)

where 0 denotes the vector of zeros, i.e. 0 = (0, . . . , 0).

For the prosecution we recall the definition of different kinds of convexity. We also

need some preliminary results. The proof of the first is based on elemental calculus

and therefore omitted.

Definition 3.1.5. Let f be a R−valued function on Rn. The function f is said to

be a componentwise convex function if it is convex in each argument when the other

arguments are held fixed.

Definition 3.1.6. A function f : Rn → R is said to be directionally convex if for any

xi ∈ Rn, i = 1, 2, 3, 4 such that x1 ≤ x2,x3 ≤ x4 and x1 + x4 = x2 + x3, then

f(x1) + f(x4) ≥ f(x2) + f(x3).

If the gradient vector f ′(x) = [f ′1(x), . . . , f ′n(x)] exists, then f is directionally convex

if and only if f ′ is increasing (see it was shown in Brunk, 1964)

Proposition 3.1.9. Let H(x) =
∫ c1
x1
· · ·
∫ cn
xn
h(t)dt for some constants ci, and xi ≤ ci.

Then H(x) is directionally convex if and only if h(x) is decreasing in x.

Proposition 3.1.10. Let h : R+n → R+ be decreasing in each argument. Then∫ c1
x1
···
∫ cn
xn

h(t)dt∏
i(ci−xi)

is decreasing in x = (x1, . . . , xn).
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Proof. Let G(i,x) =
∫ c

0
1[x,c](t)g(i, t)dt, where

g(i, t) =

{
h(t) if i = 1,

1 if i = 2,

and

1[x,c](t) =

{
0 if t 6∈ [x, c],

1 if t ∈ [x, c].

Recall that a positive real function f(x,y) defined on X × Y is said to be MTP2 in

(x,y) if the ratio f(x1,y)
f(x2,y)

is decreasing in y whenever x1 ≤ x2. It is easy to verify that,

under the assumptions on h, the function g(i, t) defined above is MTP2 in (i, t), while

the function 1[x,c](t) is clearly MTP2 in (x, t) for every fixed c. Thus the multivariate

version of the Basic Composition Formula can be applied (see Karlin and Rinott

(1980) for details), obtaining that G(i,x) is MTP2 in (i,x), i.e., that

G(1,x)

G(2,x)
=

∫ c1
x1
· · ·
∫ cn
xn
h(t)dt∏

i(ci − xi)

is decreasing in x. �

The following result gives the relationship between the convexity of S+
X(u) given

in Definition 3.1.6 and the Q-CMIFRL property. This result can be considered as a

generalization of Corollary 3.1 (a) in Fernández-Ponce et al. (1998), where the authors

proved that a univariate random variable X is IFR if, and only if, the univariate

associated excess-wealth function is a convex function.

Corollary 3.1.11. Let X be a random vector satisfying the regularity conditions

(RC). X is Q-CMIFR if and only if S+
X(u) is a directionally convex function.

Proof. Trivial by using (3.1.6) and Proposition 3.1.9 . �
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The next corollary is immediately obtained since the directional convexity implies the

componentwise convexity.

Corollary 3.1.12. Let X be a random vector satisfying the regularity conditions

(RC). If X is Q-CMIFR then S+
X(u) is a componentwise convex function.

The relationship between the Q-CMDMRL property and the S+
X(u) function is given

in the following results.

Theorem 3.1.13. X is Q-CMDMRL if and only if
S+

X(u)∏
i(1− ui)

is decreasing in u.

Proof. The results is obtained from equality P [X ∈ RX(x̂(u))] =
∏
i

(1− ui) and

equation (3.1.2). �

For the next theorems, we need to give some previous definitions and results about

different sorts of convexity from a point x0.

Definition 3.1.7. Let f be a R−valued function on Rn. It is said to be an n-convex

function from x0 ∈ Rn if for any finite collection of different points {x1, . . . ,xn} with

xi ≤ xi+1, i = 1, . . . , n and xn+1 = x0, it holds that

f

(
n+1∑
i=1

λixi

)
≤

n+1∑
i=1

λif(xi) for λi ≥ 0 and
n+1∑
i=1

λi = 1

Definition 3.1.8. Let f be a R−valued function on Rn. It is said to be a convex

function from x0 ∈ Rn if

f(λx + (1− λ)x0) ≤ λf(x) + (1− λ)f(x0)

when x ≤ x0 and for all λ ∈ [0, 1].
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Remark 3.1.2. Note that there is no relation between the Definition 3.1.7 and the

Definition 3.1.8. In fact, in Definition 3.1.7, the convexity from a point x0 is defined

for a point x, while the n-convex given in Definition 3.1.8 is defined for a collection

of n different points.

The following result shows that the convexity from a point x0 is closed under increas-

ing and convex transformations.

Proposition 3.1.14. Let f be a R−valued function on Rn and let ϕ be an R−valued

function on R. If f is a convex function from x0 and ϕ is an increasing and convex

function, then ϕ ◦ f is a convex function from x0.

Proof. By using the fact that f is a convex function from x0 and ϕ is an increasing

function, it holds

(ϕ ◦ f)(λx + (1− λ)x0) = ϕ [f(λx + (1− λ)x0)]

≤ ϕ [λf(x) + (1− λ)f(x0)] .

Thus, by using the fact that ϕ is a convex function, we obtain

(ϕ ◦ f)(λx + (1− λ)x0) ≤ λ[ϕ ◦ f(x)] + (1− λ)[ϕ ◦ f(x0)].

Consequently, (ϕ ◦ f) is a convex function from x0. �

Example 3.1.15. Let φ : (0, 1)2 7→ (0, 1) be the function such that for (u1, u2) ∈

(0, 1)2, we have φ(u1, u2) = (1− u1)k1(1− u2)k2 . It is easily shown that φ(·) is convex

from e = (1, 1) if, and only if, k1 + k2 ≥ 2 and ki > 0 for i = 1, 2.

The relationship between the Q-CMDMRL properties and the convexity of S+
X is

stated in the following results.
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Theorem 3.1.16. Let X be a random vector verifying the regularity conditions (RC).

If S+
X(u) is a n-convex function from e then X has a Q-CMDMRL distribution.

Proof. Let u = (u1, u2) ≤ v = (v1, v2). Define 4u = (1 − u1)(1 − u2),

4v = (1− v1)(1− v2), 4v ≤ 4u. Let w be such that w = αu + βv + (4u−4v)e,

where

α = min

{
(4u−4v)(1− v2)

v2 − u2

,4v,
(4u−4v)(1− v1)

v1 − u1

}
. (3.1.18)

Let see that w ≤ v. In fact,

αu + βv + (4u−4v)e ≤ v⇔

αu + (4u−4v)e ≤ (1− β)v ⇔
αu

α + (4u−4v)
+

(4u−4v)e

α + (4u−4v)
≤ v

But, the last inequality is true since α is chosen as in (3.1.18). Therefore, from

S+
X(u) is a decreasing function, S+

X(w) ≥ S+
X(v) and, in light of the fact that S+

X(·) is

n-convex from e,

S+
X(w) ≤ αS+

X(u) + βS+
X(v)⇔

(1− β)S+
X(v) ≤ αS+

X(u)⇔

S+
X(v) ≤ α

α +4u−4v
S+

X(u) ≤ 4v

4u
S+

X(u) (3.1.19)

Therefore, from (3.1.19) and (3.1.2), it follows that µ̄X[x̂(v)] ≤ µ̄X[x̂(u)], for all

u ≤ v, that is, X has a Q- CMDMRL distribution. �

Theorem 3.1.17. Let X be a random vector verifying the regularity conditions (RC).

If X has a Q-CMDMRL distribution then S+
X(u) is a convex function from e.
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Proof. From (3.1.2), X has a Q-CMDRML distribution if and only if

S+
X(u)

P {X ∈ RX[x̂(u)]}

is a decreasing function in u. Therefore, for all λ ∈ [0, 1] and u∗ = λu+(1−λ)e > u,

it holds

S+
X(u∗)

P {X ∈ RX[x̂(u∗)]}
≤ S+

X(u)

P {X ∈ RX[x̂(u)]}
. (3.1.20)

Using Proposition 2.2.2 it is clearly shown that

P {X ∈ RX[x̂(u∗)]} = λn
n∏
j=1

(1− uj)

or equivalently,

P {X ∈ RX[x̂(u∗)]}
P {X ∈ RX[x̂(u)]}

= λn.

Thus, the inequality (3.1.20) holds if and only if S+
X(u∗) ≤ λnS+

X(u). Being λnS+
X(u) ≤

λS+
X(u) + (1− λ)S+

X(e), it follows that S+
X(u) is a convex function from e. �

Finally the same result in Theorem 3.1.8 is given for the Q-CMNBUE property.

Theorem 3.1.18. X is Q-CMNBUE if and only if
S+
X(u)∏
i(1−ui)

≤ S+
X(0) for all u ≥ 0.

Proof. It is enough to observe that for all u ∈ [0, 1]n it is µ̄X[x̂(u)] =
S+
X(u)∏
i(1−ui)

,

and that, in particular, it holds µ̄X(x̂(0)) = S+
X(0). The assertion now follows from

definition above of Q-CMNBUE property. �

Remark 3.1.3. The previous results can be held for the notions of CMIFR, CMDMRL

and CMNBUE if additional conditions are considered. For the different results, these

conditions are the following:
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i) The sufficient condition in Corollary 3.1.11 is verified if Q-CMIFR is replaced

for the CMIFR property whenever X is CIS. However, the necessary condition is

held for the property CMIFR whenever X is CDS. Because of this, the Corollary

3.1.12 holds whenever X is CIS.

ii) The sufficient condition in Theorem 3.1.13 is verified if Q-CMDMRL is re-

placed for the CMDMRL property whenever X is CIS. However, the necessary

condition is held for the property CMDMRL whenever X is CDS.

iii) Theorem 3.1.16 is verified if Q-CMDMRL is replaced for the CMDMRL property

whenever X is CDS.

iV) Theorem 3.1.17 is verified if Q-CMIFR is replaced for the CMIFR property

whenever X is CIS.

3.1.1 The corrected hazard gradient

As was seen in Section 1.1, the univariate failure rate can be defined in terms of a

derivative and in terms of a limit. This failure rate was extended to the bivariate case

by using different methods. The first, uses the bivariate failure rate function defined

by Basu (1971) by

r(x1, x2) = lim
h1→0,h2→0

P{x1 < X1 ≤ x1 + h1;x2 < X2 ≤ x2 + h2|X1 > x1;X2 > x2}
h1h2

=
f(x1, x2)

F̄ (x1, x2)
.

The second option uses the hazard gradient defined by Johnson and Krotz (1975) by

h(x1, x2) = [h1(x1, x2), h2(x1, x2)]
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where

hi(x1, x2) = − ∂

∂xi
ln F̄ (x1, x2) for i = 1, 2.

In Definition 3.1.2, the corrected multivariate failure rate is considered in a similar

way to the bivariate failure rate defined by Basu (1971) and some results are given.

However, in this subsection, a new definition of corrected hazard rate, similar of the

hazard rate defined by Johnson and Kotz (1975) is given.

Let X = (X1, X2, . . . , Xn) be a non-negative random vector with a partial differ-

entiable survival function F̄ , that is, the partial derivatives ∂F̄ (x1,...,xn)
∂xi

exits for all

i = 1, · · · , n. The function R(x1, . . . , xn) = −ln{P [X ∈ RX(x1, . . . , xn)]} is called

corrected hazard function of X and the corrected hazard gradient of X is defined by

the following vector of partial derivatives

hc(x) = (R1(x), . . . , Rn(x))

where Ri(x) = Ri(x1, . . . , xn) = ∂R(x1,...,xn)
∂xi

for i = 1, 2, . . . , n.

For simplicity, we only work in the bivariate case. All results can easily be generalized

for any dimension. From now on, we consider X = (X1, X2) a bivariate random vector

with corrected hazard function given by

R(x1, x2) = −ln[P (X1 > x1)P (X2 > x2|X1 = x1)]

= −lnP (X1 > x1)− lnP (X2 > x2|X1 = x1).
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The corrected hazard gradient has the following expression:

R1(x1, x2) =
∂(−lnP (X1 > x1)

∂x1

− ∂lnP (X2 > x2|X1 = x1)

∂x1

= r1(x1)− r̂(x2|x1),

R2(x1, x2) =
∂ − lnP (X2 > x2|X1 = x1)

∂x2

= r(x2|x1)

where r1(x1) and r(x2|x1) are the hazard rate of X1 and X2|X1 = x1, respectively

and r̂(x2|x1) = ∂lnP (X2>x2|X1=x1)
∂x1

.

Considering this generalization of the hazard rate function, we extend the univariate

IFR property following the idea in Johnson and Kotz (1975).

Definition 3.1.9. Let X = (X1, X2) be a nonnegative bivariate random vector with

corrected hazard gradient hc(x) = (R1(x), R2(x)). The vector X is said to have a Cor-

rected Bivariate Increasing Hazard Rate (CBIHR) distribution if Ri(x) is increasing

in xi for all x = (x1, x2) and each i.

Example 3.1.19. Let X be the bivariate random vector given in Example 2.2.1. If

x ∈ A, the corrected hazard gradient hc(x) = (R1(x), R2(x)) is defined as

Ri(x) =
1

1− xi
, for i = 1, 2

and if x ∈ B, then

R1(x) =
x2

(2− x1 − x2)(2− x1)
− 1 and R2(x) =

1

2− x1 − x2

.

After straightforward calculus, it can be proved that Ri, i = 1, 2 is increasing in xi for

all x = (x1, x2) and each xi, that is, X has a CBIHR distribution. 4
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Similarly to the corrected failure rate function, it can be proved that the only bivari-

ate random vector with exponential marginal and a constant corrected hazard rate

gradient is that with independent components.

Theorem 3.1.20. Let X = (X1, X2) be a nonnegative random vector. Then X has a

constant corrected hazard rate gradient if and only if X1 and X2 are independent and

exponential.

Proof. Obviously, if X1 and X2 are independent and have exponential distributions,

it holds that hi(x1, x2) is constant for i = 1, 2.

Now, assume that hi(x1, x2) = c. Then

∂ lnP [X ∈ RX(x1, x2)]

∂xi
= −ci for i = 1, 2,

or equivalently,

P [X ∈ RX(x1, x2)] = e−c1x1g(x2)

P [X ∈ RX(x1, x2)] = e−c2x2g(x1)

This implies that

P [X ∈ RX(x1, x2)] ∼ e−c1x1−c2x2 .

Moreover, given that P [X ∈ RX(x1, x2)] = F̄1(x1)F̄X2|X1=x1(x2) it follows that X1

and X2 are independently and exponentially distributed. �

In order to see the relationship between the CBIHR property and the CBIFR and

CBDMRL properties, we provide some definitions and results of a generalization of

n-convex functions.
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Definition 3.1.10. Let u0, u1, . . . , un be of class Cn[a, b]. Then {ui}ni=0 is an Ex-

tended Completed Tchebycheff (ECT) system on [a, b] if and only if for k = 0, 1, . . . , n

we have W (u0, u1, . . . , uk) > 0 on [a, b], where W (u0, u1, . . . , uk) denotes the Wron-

skian of the functions u0, u1, . . . , uk , i.e.

W (u0, u1, . . . , un) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u0 u′0 . . . u
(k)
o

u1 u′1 . . . u
(k)
1

...
... . . .

...

uk u′k . . . u
(k)
k

∣∣∣∣∣∣∣∣∣∣∣∣∣
Example 3.1.21. Let ui(t) = ti, i = 0, 1, . . . , n. Then {ui(t)}ni=0 is an ECT sys-

tem on [a, b]. It is sufficient to note that for all k = 0, 1, . . . , n, the Wronskian

W (u0, u1, . . . , uk) is the determinant of a lower triangular matrix with nonnegative

diagonal elements. 4

Definition 3.1.11. Let F̄ (x|θ) be a survival function which depends on a parameter

θ ∈ Θ ⊆ R+. It is said that F̄ (x|θ) is a Wronskian survival function with respect to

θ if

(i) the system of function {F̄ (x|θ); ∂F̄ (x|θ)
∂θ
} is an ECT system, and

(ii) the system of function {F̄ (x|θ); −∂F̄ (x|θ)
∂x

} is an ECT system.

Proposition 3.1.22. F̄ (x|θ) is a Wronskian survival function with respect to θ if,

and only if,

(i) lnF̄ (x|θ) is a convex function in θ.

(ii) The function r(x|θ) is a nondecreasing function in θ.

Proof.
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(i) From Definition 3.1.22, F̄ (x|θ) is a Wronskian survival function with respect to

θ if, and only if, W ({F̄ (x|θ); ∂
∂θ
F̄ (x|θ)}) > 0.

Now, by taking ϕ(x, θ) = lnF̄ (x|θ), it is obtained that

∂ϕ(x, θ)

∂θ
=

∂F̄ (x|θ)
∂θ

F̄ (x|θ)

and

∂2ϕ(x, θ)

∂θ2
=

F̄ (x|θ)∂
2F̄ (x|θ)
∂θ2 −

(
∂F̄ (x|θ)
∂θ

)2

[
F̄ (x|θ)

]2
=

W ({F̄ (x|θ); ∂
∂θ
F̄ (x|θ)})[

F̄ (x|θ)
]2 > 0

obtaining the result.

(ii) The proof is similar to (i) and therefore is omitted.

�

Example 3.1.23. Let X1  U [0, 1] and X2|X1 = t1  U [t1, 1]. Then, F̄X2|X1=t1 is a

Wronskian survival function with respect to X1 = t1. In fact, it is easy to prove that

lnP (X2 > t2|X1 = t1) = ln
1− t2
1− t1

is convex in t1

and

r(t2|t1) =
1/(1− t1)

(1− t2)/(1− t1)
=

1

1− t2
for all t2 > t1 is constant in t1.

Therefore, from Proposition 3.1.22 the assertion is obtained. 4

A property of the Wronskian functions is that if X1, . . . , Xn are independent and

identically distributed random variables with Wronskian survival function, then the
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minimum of this set also has a Wronskian survival function. It can be shown in the

next proposition.

Proposition 3.1.24. Let X1, . . . , Xn be independent and identically distributed ran-

dom variables with Wronskian survival function F̄ (x|θ). Then, Y = min{X1, . . . , Xn}

has a Wronskian survival function.

Proof. Let Y = min{X1, . . . , Xn}. The functions ln F̄Y (y|θ) and r(y|θ) are given,

respectively, by

ln F̄Y (y|θ) = ln[F̄ (y|θ)]n

= n ln F̄ (y|θ)

and

r(y|θ) = n
[F̄ (y|θ)]n−1

[F̄ (y|θ)]n
f(y|θ)

= n
f(y|θ)
F̄ (y|θ)

= nr(y|θ).

Given that F̄ (x|θ) is a Wronskian survival function with respect to θ, it is easily

showed that ln F̄Y (y|θ) is a convex function and r(y|θ) is a nondecreasing function

in θ. Therefore, from Proposition 3.1.22 it follows that Y has a Wronskian survival

function . �

For the next statement, we recall the definition of an MTP2 function.

Definition 3.1.12. A function f(x) defined on R = R1×R2× . . .×Rn where each

Ri is totally ordered, is said to be Multivariant Totally Positive of order 2 (MTP2) if

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y)
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where, for all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

x ∨ y = (max(x1, y1),max(x2, y2) . . .max(xn, yn))

and

x ∧ y = (min(x1, y1),min(x2, y2) . . . (xn, yn)).

Note that the above definition is equivalent to saying that the determinant of the

matrix (
f(x,y) f(x,y′)

f(x′,y) f(x′,y′)

)
is nonnegative for all choices x < x’ and y < y’.

One of the operations that preserve the MTP2 property is the composition formula

(see for example Karlin and Rinott, 1980). That is, supposing that f(x,y) is MTP2

in R1 ×R2 and g(y, z) is MTP2 over R2 ×R3, where R1,R2 and R3 are subsets of

possibly different Euclidean spaces, then

h(x, z) =

∫
f(x,y)g(y, z)dz is MTP2 over R1 ×R3.

Now, we can give the following relationship between the BIHR property and the aging

properties considered in Definition 3.1.3

Proposition 3.1.25. Let X = (X1, X2) be a nonnegative bidimensional random vec-

tor such that

(i) X is CDS

(ii) The survival function of X2|X1 = t1 is Wronskian respect to t1, for all t1 ∈ R+.

If X is CBIHR, then X is CBDMRL.
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Proof. If X is CBIHR, by Definition 3.1.9 we know that

R1(t1, t2) = r1(t1)− ∂

∂t1
lnP (X2 > t2|X1 = t1) and R2(t1, t2) = r(t2|t1)

are nondecreasing functions in t1 and t2, respectively. By using (ii) and from Proposi-

tion 3.1.22, it is immediately obtained that r1(t1) is a nondecreasing function. There-

fore, the corrected bivariate failure rate function

rc(t1, t2) =
f(t1, t2)

P [X ∈ R(t1, t2)]
= r1(t1) · r(t2|t1)

is a nondecreasing function in (t1, t2), that is, X is CBIFR.

Now, we define the following function:

h(i,y) =

{
f(y) if i = 2

P [X ∈ Rx(y)] if i = 1
, g(y,x) = 1{y∈Rx(x)}.

It holds that

h(1,y)

h(2,y)
≥ h(1,y′)

h(2,y′)
with y ≤ y′ since rc(y) is increasing in y.

Thus h(i,y) is MTP2 in (i,y).

On the other hand, since X is CDS and from Proposition 2.3.8, if x1 ≤ x2 and

y1 ≤ y2, it follows that Rx(x2) ⊆ RX(x1) and Rx(y2) ⊆ Rx(y1). Therefore, it holds

1{y1∈Rx(x1)}1{y2∈Rx(x2)} ≥ 1{y1∈Rx(x2)}1{y2∈Rx(x1)}.

Thus, g(y,x) is MTP2.

Now, by applying the composition formula it follows that

H(i,x) =

∫
h(i,y)g(y,x)dy =

∫
Rx(x)

h(i,y)dy
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is MTP2 for i = 1, 2. Therefore

H(1,x)

H(2,x)
=

∫
Rx(x)

P [X ∈ Rx(y)]dy∫
Rx(x)

f(y)dy

=

∫
Rx(x)

P [X ∈ Rx(y)]dz

P [X ∈ Rx(x)]

is decreasing in x. Thus, the assertion is obtained. �

Remark 3.1.4. Note that we have proved in the previous proposition that if X has a

CBIHR distribution then X also has a CBIFR distribution, whenever X2|X1 = t1 is

Wronskian with respect to t1. Moreover, if X is CDS and has a CBIHR distribution,

then X has a CBDMRL distribution. In the next section, we give other relationships

among the lifetime property for the multivariate case.

3.2 Relations between different multivariate life-

time distributions

Similarly to the univariate case, the same relationship between the multivariate life-

time distributions can be given. Here, we state the relationship between the lifetime

distributions given in the above section.

Proposition 3.2.1. If X is CDS and has a CMIFR distribution, then X has a

CMDMRL distribution.

Proof. It should be shown that µX(x) is decreasing in x for all x ∈ Supp(X) or

equivalently,

∫
RX(x) P [X∈RX(z)]dz

P [X∈RX(x)]
is decreasing in x.
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Let h(i, z) and g(z,x) be two functions defined by

h(i, z) =

{
f(z) if i = 2

P [X ∈ Rx(z)] if i = 1
, g(z,x) = 1{z∈Rx(x)}.

It is easy to prove that h(i, z) is MTP2 in the sense of the Definition 3.1.12 because

X is CMIFR, i.e., because rc(z) = fX(z)
P{X∈RX(z)} is increasing in z. Moreover, given that

X is CDS and by the Proposition 2.3.8 , it holds that g(z,x) is also MTP2. Now, by

applying the composition formula it follows that

H(i,x) =

∫
h(i, z)g(z,x)dz =

∫
Rx(x)

h(i, z)dz

is MTP2, and therefore

H(1,x)

H(2,x)
=

∫
Rx(x)

P [X ∈ Rx(z)]dz∫
Rx(x)

f(z)dz

=

∫
Rx(x)

P [X ∈ Rx(z)]dz

P [X ∈ Rx(x)]

is decreasing in x. Thus, the assertion is obtained. �

Proposition 3.2.2. If X has a CMDMRL distribution, then X has a CMNBUE

distribution.

Proof. The assertion follows immediately from the definitions of the two classes.

�

Proposition 3.2.3. If X has a Q-CMIFR distribution, then X has a Q-CMDMRL

distribution.
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Proof. From Definition 3.1.4, X is Q-CMDMRL if the function

µ̄X(x̂(u)) =
S+

X(u)

Πn
j=1(1− uj)

is decreasing in u for all u ∈ (0, 1)n.

As was seen in (3.1.6), S+
X(u) can be written as S+

X(u) =
∫ 1

u1
. . .
∫ 1

un
{rc[x̂(z)]}−1dz.

SinceX is Q-CMIFR, [rc(x̂(z)]−1 is decreasing in z for z ∈ [0, 1]n and from Proposition

3.1.10

S+
X(u)

Πn
j=1(1− uj)

=

∫ 1

u1
. . .
∫ 1

un
[rx(x̂(z))]−1dz

Πn
j=1(1− uj)

is also decreasing in u. Therefore, the assertion is obtained. �

Proposition 3.2.4. If X has a Q-CMDMRL distribution, then X has a Q-CMNBUE

distribution.

Proof. Immediate and therefore it is omitted. �

Finally, some relationships among the lifetime distribution given in Definition 3.1.3

and 3.1.4 are stated.

Proposition 3.2.5. The following assertions hold

i) If X is CIS and has a CMIFR distribution, then X has a Q-CMIFR distribution.

ii) If X is CDS and has a Q-CMIFR distribution, then X has a CMIFR distribu-

tion.

Proof.

(i) Let u and v be such that u ≤ v. Since X is CIS, then x̂(u) ≤ x̂(v). By using

that X is CMIFR, it follows that rx[x̂(u)] ≤ rx[x̂(v)] for all u ≤ v. Thus, X is

Q-CMIFR.
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(ii) The proof of this part is based on the same lines.

�

Proposition 3.2.6. The following assertions hold

i) If X is CIS and has a CMDMRL distribution, then X has a Q-CMDMRL

distribution.

ii) If X is CDS and has a Q-CMDMRL distribution, then X has a CMDMRL

distribution.

Proof.

i) Assume that X has a CMDMRL distribution. Let u and v be two vectors in

[0, 1]n, such that u ≤ v. By using the fact that X is CIS, it holds x̂(u) ≤ x̂(v).

Thus, µX[x̂(u)] ≥ µX[x̂(v)] for all u ≤ v. Consequently, X has a Q-CMDMRL

distribution.

ii) Let x and y be two points in Supp(X) such that x ≤ y. There exist two

vectors u and v in [0, 1]n such that x = x̂(u) and y = x̂(v). Given that X

is CDS, applying Theorem 2.3.7, it holds that u ≤ v. Moreover, from X has

a Q-CMDMRL distribution, it follow µX[x̂(u)] ≥ µX[x̂(v)]. Thus, X has a

CMDMRL distribution.

�

Proposition 3.2.7. If X has a Q-CMNBUE distribution , then X has a

CMNBUE distribution.
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Proof. If X has a Q-CMNBUE distribution, then µX[x̂(u)] ≤ µX[x̂(0)] for all u ∈

[0, 1]n. Now, from the regularity conditions, for each u ∈ [0, 1]n, there exists only

one point x ∈ Supp(X) such that x = x̂(u) and given that µX[x̂(0)] = µX ≤ νX, it

follows that µX(x) ≤ νX for all x and therefore, the result is obtained. �

Remark 3.2.1. Note that if the Supp(X) = C(0), then µX = νX and, therefore, the

Q-CMNBUE and CMNBUE properties are equivalent.

Consequently, the following relationship among the previous aging notions is held:

CMIFR
CDS−→ CMDMRL −→ CMNBUE.

CDS ↑↓ CIS CDS↑↓ CIS ↑
Q− CMIFR −→ Q− CMDMRL −→ Q− CMNBUE

Note that the properties CIS and CDS assure that if u,v ∈ [0, 1]n with u ≤ v,

then x = x̂(u) ≤ x̂(u) = y with x,y ∈ Supp(X) and viceversa, respectively. These

conditions are necessary given that the CMIFR, CMDMRL and CMNBUE properties

are defined on Supp(X) and, however, the Q-CMIFR, Q-CMDMRL and Q-CMNBUE

properties are defined on [0, 1]n.

3.3 The aging properties for order statistics

As seen in Definition 2.2.1. the upper-corrected orthant depends on the ordering

of the marginal distribution and, therefore, all properties or results given in terms

of the upper-corrected orthant also depend on this ordering. This property is es-

pecially useful to study random vectors where the marginals have a natural order.
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In light of this fact, it is interesting to study the multivariate aging properties of

the vector of order statistics. Let X1, X2, . . . , Xn be independent random variable

and let X(1) ≤ X(2) ≤ . . . ≤ X(n) denote the corresponding order statistics. Order

statistics play an important role in statistic and reliability theory (see, for instance,

David, 1970, Balakrishnan and Rao 1998a, 1998b). In reliability theory, k-out-of-n

systems functions if, and only if, at least k of its n components functions. That is,

the distribution function of the lifetime of this system is the same as that of the

(n− k + 1)st order statistic in a set of n nonnegative random variables. That shows

that the study of k-out-of-n systems is equivalent to the study of order statistics. In

particular, the parallel and series systems are 1-out-of-n and n-out-of-n systems and

their distribution functions are the same as that of X(1) and X(n), respectively.

In this section, our proposal is to study the aging properties of the bivariate vector

X = (X(1), X(2)) where X(1) = min{X1, X2} and X(2) = max{X1, X2} when X1 and

X2 are two independent and identically distributed (i.i.d) random variables with a

common distribution function which possesses different univariate ageing properties.

From now on, suppose that X1 and X2 are two i.i.d. random variables with a common

distribution function F (·), survival function F̄ (·), failure rate r(·) and excess-wealth

function S+(·). It is known that

fX(1)
(t1) = 2f(t1)F̄ (t1),

F̄X(1)
(x1) = [F̄ (x1)]2,

f(X(1),X(2))(t1, t2) = 2f(t1)f(t2) whenever t1 ≤ t2,

F̄X(2)|X(1)=t1(t2) =
F̄ (t2)

F̄ (t1)
whenever t1 ≤ t2.

Note that X is CIS, given that F̄X(2)|X(1)=t1(t2) is increasing in t1.

With straightforward calculation it can be verified that for t1 ≤ t2

79



3.3. THE AGING PROPERTIES FOR ORDER STATISTICS

RX(t1, t2) =

{
(x, y) ∈ Supp(X) : x ≥ t1, y ≥ F̄−

(
F̄ (x)F̄ (t2)

F̄ (t1)

)}
,

P [X ∈ RX(t)] = F̄ (t1)F̄ (t2) if t1 ≤ t2,

rc(t1, t2) =

{
0 if t2 < t1

2r(t1)r(t2) if t2 ≥ t1,

νX =

∫ +∞

0

[F̄ (t1)]2E[X(2)|X(1) = t1]dt1

and

µ̄X(t1, t2) =
1

P [X ∈ RX(t)]

∫ ∞
t1

dx

∫ ∞
F̄−
(
F̄ (x)F̄ (t2)

F̄ (t1)

) P [X ∈ RX(x, y)]dy.

Moreover, it is easy to prove that

x̂(1)(u1) = F−
[
1− (1− u1)1/2

]
,

x̂(2)|t1 = F− [u2 + (1− u2)F (t1)]

where F−(u) = inf{x : F (x) ≥ u} and

S+
X(u1, u2) =

∫ 1

u1

(1− v1)1/2S+
[
1− (1− u2)(1− v1)1/2

]
dF−

[
1− (1− v1)1/2

]
.

Consider that F (·) has the IFR aging property. Then, the corrected hazard rate of X,

given by rc(t1, t2) = 2r(t1)r(t2), is clearly increasing in (t1, t2). Therefore, the vector

X = (X(1), X(2)) is CMIFR. Furthermore, X is also CBIHR. In fact, for t1 ≤ t2

r(1)(t1) =
f(1)(t1)

F̄(1)(t1)
= 2

f(t1)

F̄ (t1)
= 2r(t1)
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r̂(t2|t1) =
∂lnF̄X(2)|X(1)=t1(t2)

∂t1

=
∂

∂t1
ln
F̄ (t2)

F̄ (t1)
= − ∂

∂t1
lnF̄ (t1)

= r(t1)

r(t2|t1) = − ∂

∂t2
ln
F̄ (t2)

F̄ (t1)

= r(t2).

Therefore, R1(t1, t2) = r(1)(t1) − r̂(t2|t1) = r(t1) and R2(t1, t2) = r(t2|t1) = r(t2) are

increasing in (t1, t2).

As the vector X is CIS, from i) in Proposition 3.2.5, it follows that X also has a

Q-CMIFR distribution and from Proposition 3.2.3 and 3.2.4, X has a Q-CMDMRL

and Q-CMNBUE distribution. Finally, using Proposition 3.2.7 it is proved that X

has a CMNBUE distribution.

In the particular case that F (·) is the negative exponential distribution with param-

eter λ, it is easy to check that

µX =
1

2λ2
, νX =

3

4λ2

x̂1(u) =
1

λ
ln
[
(1− u)−1/2

]
,

x̂2(u, v) =


1
λ

ln
[

(1−u)−1/2

(1−v)

]
if u ≥ 1− (1− v)2,

0 if u < 1− (1− v)2,

and

S+
X(u, v) =

{
(1−u)(1−v)

2λ2 if u ≥ 1− (1− v)2,

0 if u < 1− (1− v)2.
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3.4 Orders for multivariate lifetime distributions

The univariate ageing properties NBUE, DMRL, IFR and so on, have been used

to compare the relative ageing of two arbitrary life distributions. We review some

of these comparisons. (see Kochar and Wiens (1987) and Kochar (1989) for more

details.).

Definition 3.4.1. Let X and Y be two random variables with finite means and

strictly increasing on their support. Let rX (rY ) and µX (µY ) be the failure rate

function and the mean residual life of X (Y ), respectively.

(i) X is said to be more IFR than Y (X �IFR) if

rX [F−X (u)]

rY [F−Y (u)]
is non-decreasing in u ∈ (0, 1) (3.4.1)

(ii) X is said to be more DMRL than Y (X �DMRL Y ) if

µX [F−X (u)]

µY [F−Y (u)]
is non-increasing in u ∈ (0, 1) (3.4.2)

(iii) X is said to be more NBUE than Y (X �NBUE Y ) if

µX [F−X (u)]

µY [F−Y (u)]
≤ E[X]

E[Y ]
for all u ∈ (0, 1) (3.4.3)

All these orderings have the property that if F̄Y (x) = e−λx is the exponential distri-

bution, then

X ≤P Y if and only if FX has the property P

for P ∈ { IFR, DMRL,NBUE}.

Now, we define the corresponding multivariate corrected orderings by using the def-

inition of multivariate ageing properties. We use these orderings to characterize the
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Q-CMIFR, Q-CMDMRL and Q-CMNBUE properties by means of the multivariate

exponential distribution with independent and exponential marginals.

Definition 3.4.2. Let X and Y be two random vectors with finite multiple expec-

tation and strictly increasing on their support. Let rX (rY) and µX (µY) be the

multivariate failure rate function and the total expected residual life of X (Y), re-

spectively.

(i) X is said to be more Q-CMIFR than Y (X �Q−CMIFR Y) if

rX(x̂(u))

rY(ŷ(u))
is non-decreasing in u ∈ (0, 1)n. (3.4.4)

(ii) X is said to be more Q-CMDMRL than Y (X �Q−CMDMRL Y) if

µX(x̂(u))

µY(ŷ(u))
is non-increasing in u ∈ (0, 1)n. (3.4.5)

(iii) X is said to be more Q-CMNBUE than Y (X �Q−CMNBUE Y) if

µX(x̂(u))

µY(ŷ(u))
≤ µX

µY

for all u ∈ (0, 1)n. (3.4.6)

Theorem 3.4.1. Let X and Y be two random vectors with finite multiple expectation

and strictly increasing on their support. If F̄Y(y) = e−
∑n
i=1 λiyi is the multivariate

exponential distribution with independent and exponential marginals, then

i) X �Q−CMIFR Y if, and only if, X is a Q-CMIFR distribution.

ii) X �Q−CMDMRL Y if, and only if, X is a Q-CMDMRL distribution.

iii) X �Q−CMNBUE Y if, and only if, X is a Q-CMNBUE distribution.

Proof.
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i) From (3.4.4), X �Q−CMIFR Y if, and only if, rX(x̂(u))
rY(ŷ(u))

is non-decreasing in u ∈

(0, 1)n. Given that Y has independent and exponential marginals, from Theo-

rem 3.1.1 it follows rY(ŷ(u)) =
n∏
i=1

λi = c. Therefore,

X �Q−CMIFR Y if and only if
rX(x̂(u))

c
is non-decreasing in u ∈ (0, 1)n.

or equivalently, see Definition 3.1.4,

X �Q−CMIFR Y if and only if X is a Q-CMIFR distribution.

ii) From (3.4.5), X �CMDMRL Y if and only if µX(x̂(u))
µY(ŷ(u))

is non-increasing in u ∈

(0, 1)n. Given that Y has independent and exponential marginals, it follows

that µY(ŷ(u)) = 1∏n
i=1 λi

= c for all u ∈ (0, 1)n . Therefore,

X �Q−CMDMRL Y if and only if cµX(x̂(u)) is non-increasing in u ∈ (0, 1)n,

Or equivalently, see Definition 3.1.4,

X �Q−CMDMRL Y if and only if X is a Q-CMDMRL distribution.

iii) From (3.4.6), X �Q−CMNBUE Y if and only if µX(x̂(u))
µY(ŷ(u))

≤ µX

µY
for all u ∈ (0, 1)n.

Given that Y has independent and exponential marginals, it follows that

µY(ŷ(u)) = µY. Therefore,

X �Q−CMNBUE Y if and only if µX(x̂(u)) ≤ µX for all u ∈ (0, 1)n.

Or equivalently, see Definition 3.1.4,

X �Q−CMNBUE Y if and only if X is a Q-CMNBUE distribution.

2
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Fernández-Ponce et al. (1998) have shown that the univariate NBUE, DMRL and

IFR partial orderings given in Definition 3.4.1 can be conveniently expressed in terms

of their univariate excess-wealth function. In the next theorem, we express the corre-

sponding multivariate orderings in terms of their multivariate excess-wealth function

following the development in Fernández-Ponce et al. (1998).

Theorem 3.4.2. Let X and Y be two random vector satisfying the regularity con-

ditions and with multivariate excess-wealth functions S+
X(u) and S+

Y(u), respectively.

Then

(i)

X ≤Q−CMIFR Y ⇐⇒
∂n

∂u1...∂un
S+

x (u)
∂n

∂u1...∂un
S+

y (u)
is non-increasing in u.

(ii)

X ≤Q−CMDMRL Y ⇐⇒ S+
X(u)

S+
Y(u)

is non-decreasing in u.

(iii)

X ≤Q−CMNBUE Y ⇐⇒ S+
X(u)

S+
Y(u)

≤ µ̄x

µ̄y

.

Proof.

(i) From equation (2.4.3),

∂nS+
X(u)

∂un . . . ∂u1

= [rX(x̂(u))]−1.

The required result follows from this, the regularity conditions and (3.4.4).

(ii) From (3.1.2)

µX(x̂(u)) =
S+

x (u)∏n
i=1(1− ui)

.

The required result follows from this, the regularity conditions and (3.4.5).
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(iii) The required result follows from (3.1.2), the regularity conditions and (3.4.5).

�

Finally, we conclude this section with another multivariate stochastic order, the

CMMRL order. As was mentioned in Section 3.1, equation (3.1.2), there is a closed

relationship between the total expected residual life evaluated in u−quantile and the

multivariate excess-wealth function. We show that, under some conditions, multi-

variate excess-wealth ordering implies the generalized multivariate mean residual life

(CMMRL) ordering. First, we give the definition of the CMMRL ordering.

Definition 3.4.3. A random vector X is said to be smaller than another random

vector Y in the corrected multivariate mean residual life (X �CMMRL Y) if

µX(t) ≤ µY(t) for all t.

For the next statement, recall the definition of the strong stochastic order (see Shaked

and Shanthikumar (1994), Chapter 6).

Definition 3.4.4. Let X and Y be two random vectors. It is said that X is smaller

than Y in the strong stochastic order (X ≤sst Y) if

X1 ≤st Y1

[X2|X1 = x1] ≤st [Y2|Y1 = y1] whenever x1 ≤ y1

and in general, for i = 2, . . . , n,

[Xi|X1 = x1, . . . , Xi−1 = xi−1] ≤st [Yi|Y1 = y1, . . . , Yi−1 = yi−1]

whenever xj ≤ yj, j = 1, 2, . . . , i− 1.
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Theorem 3.4.3. Let X and Y be two random vectors satisfying the regularity con-

ditions and such that X ≤sst Y.

a) If X ≤CMMRL Y and either X or Y is CMIMRL, then X ≤ew Y.

b) If X ≤ew Y and either X or Y is CMDMRL, then X ≤CMMRL Y.

Proof.

(a) Since X ≤sst Y, it follows that x̂(u) ≤ ŷ(u) for all u in (0, 1)n . Suppose that

Y is CMIMFR . Then µY[x̂(u)] ≤ µY[ŷ(u)]. If X ≤CMMRL Y it holds that

µX[x̂(u)] ≤ µY[x̂(u)] for all u. Therefore,

µX[x̂(u)] ≤ µY[ŷ(u)] for all u ∈ (0, 1)n. (3.4.7)

Finally, from the inequalities (3.4.7) and (3.1.2), the assertion is obtained.

(b) The proof in this part is on the same lines and, therefore, it is omitted.

�

This theorem generalizes a result in Fernández-Ponce et al.(1998) where the univariate

excess-wealth order and the mrl order are related. Considering again the relation-

ship in (3.1.2), a sufficient condition under which Q-CMNBUE ordering implies ew

ordering can be given.

Theorem 3.4.4. If X ≤Q−CMNBUE Y and µ̄X ≤ µ̄Y, then X ≤ew Y.

Proof. It follows from (3.1.2) that X ≤Q−CMNBUE Y if, and only if, for all

u ∈ (0, 1)n

S+
X(u)

S+
Y(u)

≤ µ̄X

µ̄Y

.
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Since µ̄X ≤ µ̄Y, it follows S+
X(u) ≤ S+

Y(u) for all u ∈ (0, 1)n. Hence, the result. �
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Chapter 4

An Interesting Application

Abstract

Patient age and tumor size at the spontaneous detection of the tumor play

an important role in the prevention of cancer. Tumor size is one of the most

powerful predictors of tumor behavior in cancer. Hence, it is incorporated in

almost all clinical reports. In describing the natural history of cancer, the

process of tumor development can be explained in terms of the age at tumor

onset (time from the patient is born until the first tumor cell appears) and the

sojourn time (time from when the first tumor cell appearing until the detection

of the disaster). A non-deterministic exponential model that relates the sojourn

time to the tumor size at spontaneous detection is studied. We use a constraint

in this model which represents an inherent multivariate aging property of the

lifetime distributions considered. The proposed model is illustrated using two

real databases.
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4.1 A brief history

The natural history of cancer is of great scientific interest in its own right. It can be

characterized by parameters of initiation, promotion and progression stages of tumor

development, with the structure of the latter stage being dependent on a specific

mechanism of cancer detection. There is increasing interest in early detection of

chronic diseases with the expectation that earlier diagnosis combined with therapy

results in more cures and longer survivals.

Possible changes in post-treatment survival may be affected by a number of clinical

covariates which can be measured at the time of diagnosis and treatment. For ex-

ample, the multivariate distribution of covariates at the time of diagnosis provides a

link between the natural history of breast cancer and post-treatment (cancer-specific)

survival. As a result, a great number of trials have been carried out in cancer sites,

especially breast, colon, prostate and lung cancers. These trials generate data which

can be used to estimate the sensitivity of the examinations, the sojourn time dis-

tribution of the preclinical state, and other characteristics of the screening cohort.

Estimates of these parameters are important in planning public health programmes

in order to extend proven benefit to large populations, as well as in designing future

early-detection trials. Several authors have developed different models to study early

detection trials during the last decades. There are many papers in the literature on

this topic. For example, Albert et al. (1978a) and Albert et al. (1978b) developed a

comprehensive model of the natural history of cancer in a general population based

setting which included a cohort setting as a special case. Tsodikov and Müller (1998)

developed a model of carcinogenesis for fractionated and continuous exposures. They
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introduced a surface statistical model by making assumptions about the hazard func-

tion of the time of tumor latency. Bartoszyński et al. (2001) gave a wide spectrum

of problems associated with stochastic modeling of cancer detection. They discussed

marginal distributions of tumor size and age at detection, as well as associated esti-

mation problems, and also gave the joint distribution of those two random variables

and their randomized counterpart. Explicit formulas for the marginal distributions

of tumor size and age of an individual at detection were shown not to be sufficient

for the complete utilization of the information contained in the corresponding sam-

ple observations for estimation of parameters describing the natural history of the

disease; their joint distribution is required in order to develop pertinent methods for

statistical inference based on maximum likelihood. However, this joint distribution is

partially known in real problems.

Gregori et al. (2002) introduced a new goodness-of-fit test based on the concept of

hazard rate, point processes and martingale theory. This test is designed for two-

stage stochastic models of carcinogenesis. From the statistical point of view, the

basic problems of data analysis in carcinogenesis studies are no different from those

in parametric survival analysis. Tsodikov et al. (2003) considered the utility of

the bounded cumulative hazard model in cure rate estimation which is an appealing

alternative to the widely used two-component mixture model.

More recently, it is worth mentioning the following papers. McIntosh and Urban

(2003) proposed computationally simple longitudinal screening algorithms to model

the behaviour of a biomarker (substances that can be found in the body when cancer

is present, for example the PSA tumor marker in prostate cancer and the CA 15− 3

tumor marker in breast cancer) that can be implemented with data that is obtainable
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in a short period of time. Davidov and Zelen (2004) studied over-diagnosis in early-

detection programmes (over-diagnosis refers to the situation where screening detects

a disease that would have otherwise been undetected in a person’s lifetime), in which

disease would not have been diagnosed because the individual would have died of

other causes prior to its clinical onset. They analysed an idealized early-detection

programme and derived the mathematical expression for the probability of overdiag-

nosis. Shen and Zelen (2005) assumed that the schedule of a screening programme

was periodic and that the sojourn time in the preclinical state had a piecewise density

function. Modeling the preclinical sojourn time distribution as a piecewise density

function resulted in robust estimation of the distribution function. They estimated

the piecewise density function and the examination sensitivity using both generalized

least squares and maximum likelihood methods.

Hanin and Yakovlev (2007) studied the problem of identifiability of the joint distri-

bution of age and tumor size at detection in the presence of an arbitrary screening

schedule. Several identifiability results had been reported before by Albert et al.

(1978a), Albert et al. (1978b) and Bartoszynski et al. (2001), but all of them were

concerned with a model of cancer detection in absence of screening. Hanin and

Yakovlev (2007) completed the model given by Bartoszynski et al. (2001) describing

the impact of screening on the natural history of cancer.

Ghosh (2006) laid out a framework for the analysis of data on tumor size and metas-

tases with covariates. Considering the equivalence of the observed data structure

with those from the field of survival analysis, the author characterized non-parametric

maximum likelihood estimators of the distribution for tumor size at which metasta-

sis transitions occur and their associated asymptotic properties. He presented two
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scenarios where the distribution of tumor size is identifiable (in the case I scenario

detection of the cancers is not affected by the presence of metastases and in the case

II scenario cancers are detected immediately when the metastasis occurs). These

correspond to the situations in which tumor size is treated as a right-censored and

an interval-censored random variable, respectively. Later, under the case I scenario,

Ghosh(2008) modeled the effect of the tumor size on the risk of metastasis using a bi-

nary regression model with monotonicity constraints and developed general inference

procedures for this model.

4.2 Modeling the age and tumor size at detection

The literature on mathematical modeling and optimization of cancer screening is

extensive with almost all of the published work having been focused on the time

history of cancer. According to a conventional staging of cancer, it progresses through

the following phases

1. Tumor latency that ranges from the birth of an individual to the appearance of

the first clonogenic tumor cell. Such a random event is called onset of disease

and will be denoted by T .

2. Once the tumor emerges (and therefore becomes detectable), it enters the pre-

clinical stage which starts at the moment of tumor detection. The time spent

in the preclinical stage is referred to as sojourn time and is denoted by W .

3. A treated tumor progresses through a post-treatment stage that results either

in cure or death or tumor recurrence.
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Figure 4.1: Time history of cancer

Progression of the disease through the aforementioned stages is viewed as irreversible.

For each individual, the natural history of the disease is characterized by a random

vector Z = (T,W ). Associated with a population of individuals at time t is a vector

(Z,A(t)) where A(t) is the age for an individual at time t.

Albert et al. (1978a) and Albert et al. (1978b) studied the age and tumor size at

detection. They assumed that the models for tumor detectability can be synthesized

by first modeling the behavior of tumor growth over time and superimposing a model

for detection probability as a function of tumor size. Hanin and Boucher (1999) used

this model to approach the problem of optimal cancer screening.

As mentioned earlier, let T be the age at tumor onset and W be the time of sponta-

neous detection of the tumor measured from the onset of disease. Define a random

variable S to represent tumor size (the number of cells in a tumor) at spontaneous

detection. Hanin and Boucher (1999) supposed that the law of tumor growth is de-

scribed by a deterministic function f : [0,∞) −→ [1,∞) with f(0) = 1, such that

S = f(W ). It is assumed that

(a) random variables T and W are absolutely continuous and independent.
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(b) function f is differentiable and f
′
> 0.

(c) the hazard rate for spontaneous detection of the tumor is proportional to the

current tumor size with a non-negative coefficient. That is, rW (w) = αS(w) =

αf(w), where α is a non-negative constant.

From the assumption (c), it follows that the survival function, ḠW (w), for the random

variable W is given by

ḠW (w) = exp

{
−
∫ w

0

rW (u)du

}
= exp

{
−α
∫ w

0

f(u)du

}
= e−αΦ(w)

where Φ(t) =
∫ t

0
f(u)du.

In like manner, the survival function of the tumor size S = f(W ) is

F̄S(s) = ḠW [Ψ(s)] = e−αΦ(Ψ(s)) (4.2.1)

where Ψ(t) is the inverse function for f(t). In the special case of deterministic expo-

nential growth with rate λ0, it follows from (4.2.1) that tumor size at detection S has

a translated exponential distribution with unknown parameter λ0. So, the survival

function of S is given by

F S(s) = exp{−λ0(s− 1)} for s ≥ 1.

Sample values of the random vector Y = (S, T + W ) with components interpreted

as tumor size at spontaneous detection and age, respectively, can be observed. In

the particular case of exponential tumor growth, the joint density function for the

random variable Y is easily obtained (see Bartoszynski et al., 2001). However, natural

questions arise for this model of tumor incidence:
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I Can this formulation be a real model for the relationship between S and W?

I Furthermore, the condition c) on f is too strong since it is assumed that W

has an IFR distribution. This condition can be extended by imposing another

survival property.

Under these considerations, our objectives are the following.

1. To estimate the parameters in a non-deterministic model which relates the vari-

ables S and W .

2. To analyse the unknown random variable T plus a unknown random delay,

which will be denoted by ∆.

For our model, the following hypothesis are considered.

C1. The unknown variables W and T have NBUE distributions.

Note that this property is an intuitive survival property for the random variable

W , as well as the random variable T . In fact, W has an NBUE distribution if

E(W ) ≥ E(W −w|W > w) holds for all w in R. This inequality indicates that

the mean time of spontaneous detection of tumor measured from the onset of

disease is greater than or equal to the mean residual time of spontaneous tumor

detection by assuming that this time is greater than w. Similarly, if T has an

NBUE distribution, then the mean time from the birth of an individual to the

appearance of the first tumor cell is greater than, or equal to, the mean residual

time to the appearance of the first tumor cell by assuming that this time is

greater than t.
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From a nonparametric point of view, it should be noted that the NBUE property

of W is more general that the IFR property of W which is assumed by Bar-

toszynski et al (2001). Thus, under this hypothesis, more possible distributions

are included to describe the variable W .

C2. The distribution of tumor size S is unknown but it is assumed that the logarithm

of S has an NBUE distribution.

C3. In contrast to Bartoszynski et al (2001), a non-deterministic exponential tumor

growth is assumed. So, the relationship between S and W can be modeled as

W = α + β lnS + ∆ (4.2.2)

where β > 0 and ∆ is a random delay which is independent of S.

C4. It is assumed that T + ∆ has an NBUE distribution.

Consequently, we have a random sample of size n from a homogeneous population:

yi = (si, vi) i = 1, · · · , n with vi = ti + wi and wi = α + βLnsi + δi

and where si and vi represent the tumor size and the age at detection for the ith

patient, respectively. Note that the values of ti and wi are completely unknown.

From the relationship vi = ti + α + βLnsi + δi for all i, it follows that

ti + δi = vi − α− β ln si for i. (4.2.3)

For simplicity, the value ti + δi will be denoted by ηi for i = 1, . . . , n as sample values

of the variable T + ∆, where T is the time at onset and ∆ is the nonnegative random

time in (4.2.2).
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It is easy to show, by using Theorem 3.1.7 and taking X1 = lnS, X2 = T +α+∆ and

φ(X1) = β ∗X1, that the random vector (lnS, T + α + β lnS + ∆) has a CMNBUE

distribution. That means that the multiple expectation associated to the vector

with component logarithm of tumor size and age at detections is greater than or

equal to the total expected residual life of this vector in any particular value of the

vector (ln s, v). This property enables a condition to be established in the problem of

estimating the parameters α and β in the model given in 4.2.2.

Therefore, from a conservative point of view, to estimate the above parameters is

equivalent to estimating α and β such that the sum
∑n

i=1 ηi is minimum under the

constraints ηi > 0 and (lnS, T + α + β lnS + ∆) ∈ FCMNBUE for all i, where the

notation (ln si, ti + α + β ln si + δi) ∈ FCMNBUE for all i indicates that the random

sample is obtained from a CMNBUE multivariate distribution. This problem can be

formulated as

min
n∑
i=1

ηi

s.t. ηi ≥ 0 for all i

(ln si, ti + α + β ln si + δi) ∈ FCMNBUE for all i (4.2.4)

In order to break down the model more easily, the restriction (4.2.4) must be expressed

in a different way. Next, it is shown that, using Theorem 3.1.8, it holds that

(lnS, T + α + β lnS + ∆) is CMNBUE if, and only if,

S+
lnS(u1)

E(lnS)(1− u1)
·

S+
T+∆(u2)

E(T + ∆)(1− u2)
≤ 1 +

α

E(T + ∆)
+ β

E(ln2 S)

E(lnS)E(T + ∆)
(4.2.5)

for all (u1, u2) ∈ [0, 1]2.

Denote L = lnS, and consider H = (L, α + βL+ T + ∆), then by definition

S+
H(u1, u2) =

∫ ∞
F−L (u1)

F̄L(t1) · S+
α+βL+T+∆|L=t1

(u2)dt1. (4.2.6)
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First, we obtained the expression of S+
α+βL+T+∆|L=t1

(u2). By definition, we know that

S+
α+βL+T+∆|L=t1

(u2) =

∫ ∞
F−
α+βL+T+∆|L=t1

(u2)

F̄α+βL+T+∆|L=t1(t2)dt2. (4.2.7)

Then, using the following trivial equality

F̄α+βL+T+∆|L=t1(t2) = F̄T+∆(t2 − α− βt1) (4.2.8)

and replacing (4.2.8) in (4.2.7), it follows that

S+
α+βL+T+∆|L=t1

(u2) =

∫ ∞
F−
α+βL+T+∆|L=t1

(u2)

F̄T+∆(t2 − α− βt1)dt2

=

∫ ∞
F−T+∆(u2)+α+βt1

F̄T+∆(t2 − α− βt1)dt2

=

∫ ∞
F−T+∆(u2)

F̄T+∆(r)dr

= S+
T+∆(u2) (4.2.9)

Thus, by replacing (4.2.9) in (4.2.6), it holds that

S+
H(u1, u2) =

∫ ∞
F−L (u1)

F̄L(t1) · S+
T+∆(u2)dt1

= S+
L (u1)S+

T+∆(u2).

Now, let the expression of νH be obtained. By definition, we have that

ν(L,α+βL+T+∆) =

∫ +∞

0

F̄L(t1)E[α + βL+ T + ∆|L = t1]dt1

=

∫ +∞

0

F̄L(t1)[α + βt1 + E[T + ∆]]dt1

= αE[L] + β

∫ +∞

0

F̄L(t1)t1dt1 + E[T + ∆]E[L] (4.2.10)
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where ∫ +∞

0

F̄L(t1)t1dt1 =

∫ +∞

0

∫ +∞

t1

t1fL(y)dydt1

=

∫ +∞

0

∫ y

0

t1fL(y)dt1dy

=

∫ +∞

0

fL(y)
y2

2
dy

=
1

2
E[L2] (4.2.11)

Finally, if (4.2.11) is replaced in (4.2.10), it follows that

ν(L,α+βL+T+∆) = αE[L] + β
E[L2]

2
+ E[T + ∆]E[L]

= E[L]E[T + ∆]

{
1 +

α

E[T + ∆]
+ β

E[L2]

2E[L]E[T + ∆]

}
Therefore, from Theorem 3.1.8,

H = (lnS, T + α + β lnS + ∆) is CMNBUE if and only if

S+
H(u1, u2) ≤ νH(1− u1)(1− u2) for all (u1, u2) ∈ (0, 1)2

or, equivalently, if

S+
lnS(u1)

(1− u1)E[lnS]

S+
T+∆(u2)

(1− u2)E[T + ∆]
≤ 1 +

α

E[T + ∆]
+ β

E[ln2 S]

E[lnS]E[T + ∆]

for all (u1, u2) ∈ [0, 1]2, and the inequality (4.2.5) is obtained.

In particular, the inequality (4.2.5) is held for (0, 0). Moreover, by assumption, the

variables lnS and T + ∆ have NBUE distributions, so their corresponding univariate

excess wealth functions S+
lnS(u1) and S+

T+∆(u2) are decreasing for all u1 and u2. More-

over, it holds that S+
lnS(u1) ≤ E(lnS)(1−u1) for all u1, S+

T+∆(u2) ≤ E(T +∆)(1−u2)

for all u2 and S+
lnS(0) = E(lnS), S+

T+∆(0) = E(T + ∆) (see Fernández-Ponce et al.,
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1998). Therefore, by taking into account that E(T + ∆) > 0, the inequality (4.2.5)

is equivalent to

0 ≤ α + β
E(ln2 S)

E(lnS)
.

Thus, the problem for estimating α and β is the following linear programming prob-

lem:

min
n∑
i=1

ηi

s.t. ηi ≥ 0 for all i

0 ≤ α + β
E(ln2 S)

E(lnS)
.

Given that the distribution of lnS is unknown, the values E(ln2 S) and E(lnS) are

also unknown. Considering the asymptotic property of
∑n
i=1 ln2 si∑n
i=1 ln si

as an estimator of

E(ln2 S)
E(lnS)

, this problem can be solved by replacing the last constraint with the following

inequality

0 ≤ α + β

n∑
i=1

ln2 si

n∑
i=1

ln si

. (4.2.12)

Note that our model is not exactly a parametric regression model since the ‘residual’

random variable is non-negative. Neither can non-regular regression (see Smith, 1994)

be used since the hypothesis on the tail of the distribution function for the errors

cannot be verified for NBUE distributions in general. Consequently, this problem

must be solved by using a different model.

Recall that quantile regression is a regression model in which a specified conditional

quantile of the outcome variable is expressed as a linear function of subject charac-

teristics. This is in contrast to the ordinary least squares regression, in which the
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mean of a continuous response variable is expressed as a linear function of a set of

independent variables. If θ is a parameter in (0, 1), the θth regression quantile is

denoted by B∗(θ) and is the solution set to

min
α,β

n∑
i=1

c(yi − (α + βxi) : θ)

where

c(e : θ) =

{
θ|e| if e > 0

(1− θ)|e| if e < 0

For the special case of median regression, with θ = 0.5, it reduces to the least absolute

deviation estimation. Positive residuals are weighted more heavily than negative

residuals if one wants to model a quantile that lies above the 0.5th quantile, while

the converse is true if one wishes to model a quantile that lies below the 0.5 quantile.

In particular, the smallest regression quantile is denoted by B∗ and it is defined by

B∗ = {(α, β) : (α, β) ∈ B∗(θ) and sign(yi − α− βx1) ≥ 0, i = 1, . . . , n}.

The specified quantile of the distribution of the dependent variable, conditional on

the predictor variable values is given by

Qyi(θ|xi) = α(θ) + β(θ)xi,

where Qyi(θ|·) denotes the θ-quantile of the conditional distribution of yi. Therefore,

the regression parameter β(θ) denotes how the specified quantile changes with a

one-unit change in x. In contrast to the least squares regression, the coefficients

for the quantile regression cannot be explicitly estimated, given that an closed-form

expression does not exist . An iterative algorithm must be used to estimate the

parameters (see Koenker and Basset, 1978 and Koenker and D’Orey, 1987).
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Now, note that the values of α and β that minimize the sum of ηi for all ηi > 0

can be obtained by solving the problem of the smallest regression quantile when the

values ηi = vi−α−β ln si for i = 1, . . . , n are considered as the values of the residual

variable.

Thus, it can be concluded that, from a conservative point of view, estimating the

parameters in our model is equivalent to solving a particular problem of quantile

regression. Moreover, it is possible to analyse the unknown variable T + ∆ by means

of the residuals obtained in this quantile regression.

4.3 An application to real datasets

4.3.1 Example 1. German breast cancer study data

Materials and Methods

From July 1984 to December 1989, the German Breast Cancer Study Group initially

recruited 720 patients with primary node positive breast cancer into the Compre-

hensive Cohort Study (Schmoor et al., 1996). Some of the variables considered for

each patient were: date of diagnosis, patient’s age at diagnosis, tumor size (tumor

diameter in mm), tumor grade and number of nodes involved. The study itself which

was realized by this group is not of interest for the present purpose. Our attention

is focused on two variables: age at detection and tumor size. The 686 patients who

completed the data for the standard factors of age and tumor size are analysed in

this study.

Tumor size, initially given in mm, was transformed into the number of tumor cells

per cm3. For this, we assume the tumor is a symmetric ball in R3 and consider that
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approximately 1012 tumor cells exist per cm3, (see Spanish Society of Medical website,

http://www.seom.org/). A descriptive analysis was realized for tumor size as well

as patient’s age at detection. The NBUE property for both variables was confirmed

by using a statistical test given by Fernández-Ponce et al. (1996). The plots of their

univariate excess-wealth functions were also used to recognize this property.

The parameters in the model that relates the variables sojourn time (W ) and tumor

size (S) were estimated by using the model proposed in the above section. Minimum

quantile regression results in a line that represents the relationship between the log-

arithm of tumor size and the age at detection. The residuals of this regression are

considered as the estimation of the age at tumor onset plus a random delay for each

patient.

All statistical analyses were performed using R software. In particular, the quantreg

package was used to solve the problems of quantile regression (see Appendix A in

Koenker, 2005 and website http://cran.r-project.org/web/packages/quantreg/

index.html).

Results

The mean and median patient age in this series was 53 years (interquartile range: 46-

61) with a standard deviation of 10.12. The mean tumor size was 2.5317×1016 tumor

cells (interquartile range: 4.1888× 1015− 2.2449× 1016) with a standard deviation of

5.9614× 1016. Considering the variable logarithm of tumor size, it was obtained that

the mean logarithm of tumor size is 29.8999 (interquartile range: (20.0634−30.7422)),

the median was 29.73286 and the standard deviation 1.3765.

The box-and-whisker plots of the age and the logarithm of tumor size are shown in

Figure 4.2, respectively. The p-values for the Shapiro-Wilk normality test was 0.00
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for both cases, therefore the normality hypothesis is rejected for both variables.

Figure 4.2: Box-and-whisker plots of age (left) and logarithm of tumor size (right).

The plots of the empirical excess-wealth (ew) functions of the age and logarithm of

tumor size are given in Figure 4.3. It can be observed that the empirical ew function

of the age variable is under the line from the point (1, 0) to point (0, µV ), where

µV is the sample mean age. Note that this line corresponds to the ew function of

an exponential distribution with parameter λ = µV . Similarly, this occurs for the

logarithm of tumor size. This property is always verified for all variables having an

NBUE distribution. Moreover, the NBUE property of age and the logarithm of tumor

size were checked by means of the test for NBUE alternatives given by the Fernández-

Ponce et al. (1996). The statistic for this test, Ψ(Fn(t)), is based on the empirical

ew function and it has really interesting asymptotic properties. For patient’s age

Ψ(Fn(t)) = 0.4741 is obtained and Ψ(Fn(t)) = 0.4942 is obtained for the logarithm

of tumor size. Therefore, both random variables have an NBUE distribution (see

critical values for NBUE alternatives in Table 4.1). In contract with these variables,

the tumor size variable S does not have this ageing property, but it has the dual
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property. In Figure 4.3 c), it can be seen that the empirical ew function is on the line

from the point (1,0) to point (0, µS), where µS is the sample mean of tumor size.

Figure 4.3: (a) Empirical ew function of age (blue line) and empirical ew function for exponential
with parameter equal to mean age (b) Empirical ew function of logarithm tumor size (blue line)
and empirical ew function for exponential with parameter equal to mean logarithm tumor size (c)
Empirical ew function of tumor size (blue line) and empirical ew function for exponential with
parameter equal to mean tumor size.

When the constraint (lnS, T + α + β lnS + ∆) ∈ FCMNBUE was not included in the

quantile regression problem, the estimates intercept and slope of the smallest quantile

regression line were α̂ = −36.035670 and β̂ = 2.022514, respectively. It should be

added that the smallest regression quantile is obtained for θ = 0.0001 (for values of
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n α
0.1 0.05 0.01

400 0.0549 0.0732 0.0925
450 0.0544 0.0715 0.0910
475 0.0543 0.0661 0.0876
500 0.0532 0.0654 0.0818
600 0.0434 0.0570 0.0737
650 0.0425 0.0535 0.0736
700 0.0401 0.0532 0.0721

Table 4.1: Critical value for NBUE alternative with different significance levels and sample size.

θ bigger than 0.0001, some residuals are negative and for values of θ smaller than

0.0001, they are obtained the same residuals and the same quantile regression line).

The mean and the standard deviation for the residual variable obtained from the

quantile regression were 28.5640 and 10.4756, respectively. A 95 percent confidence

interval for this mean was (27.77813; 29.34988) and the standard error was 0.4002.

Recall that, from a conservative point of view, the ith residual in the quantile re-

gression is considered as the estimation of the value ti + δi . Therefore, it would be

said that the mean age at appearance of the first tumor cell plus a random delay was

approximately 28.5640 years, when the CMNBUE constraint is not considered. It

was also proved that the variable T + ∆ has an NBUE distribution, given that the

value of statistic for the test for NBUE alternatives was Ψ(Fn(t)) = 0.4305.

Figure 4.4 shows the scatterplot of the logarithm of tumor size vs the age of the

patients at detection. Superimposed on the plot is the 0.0001-quantile regression line

in blue, when the CMNBUE constraint is not considered.

On the other hand, if the property (lnS, T+α+β lnS+∆) ∈ FCMNBUE is included as

a constraint in the quantile regression problem, the estimated intercept and slope are
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Figure 4.4: Scatterplot of the age at detection vs the logarithm of the tumor size. The red line
is the 0.0001-quantile regression line considering the CMNBUE constraint and the blue line is the
0.0001-quantile regression line without considering the CMNBUE constraint.

α̂ = −23.80051 and β̂ = 1.58865, respectively. The mean and the standard devia-

tion for the residual variable obtained from the quantile regression were 29.3038 and

10.3288, respectively. A 95 percent confidence interval for this mean was (28.52852

30.07825 ) and the standard error was 0.3946. Therefore, if the multivariate ageing

property is considered, it could be concluded that the mean age at the first tumor

cell appearance plus a random delay is approximately 29.30 years. In Figure 4.4, the

0.0001-quantile regression line when the CMNBUE constraint is considered is also

drawn in red.

Table 4.2 shows different estimated quantiles for the variable T + ∆ when the CMN-

BUE property is not, and is, considered in the quantile regression problem.
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Q(0.05) Q(0.25) Q(0.5) Q(0.75) Q(0.95)
Case 1 10.81 20.89 28.54 36.90 45.00
Case 2 11.96 21.85 29.38 37.56 45.35

Table 4.2: Quantiles of the estimated variable T + ∆ when the CMNBUE property of vector
(lnS, T +α+ β lnS + ∆) is not considered (case 1) and is considered (case 2) as a constraint in the
quantile regression problem.

Considering the estimations of the parameters α, β having included the multivariate

ageing property in the linear program problem, the patients’s age at detection is

approximate for different tumor sizes by using the relationship V̂ = α̂+β̂ lnS+T + ∆,

where T + ∆ is the estimation of the mean of the variable T + ∆ obtained as the

mean of the residuals in the quantile regression. Table 4.3 shows the results. In

the third and forth columns, the age at detection is also given when the variable

T +∆ is estimated by the lower and upper values of the confidence interval for T + δ,

respectively.

Finally, a descriptive analysis is also made when the logarithm of tumor size variable

is put into groups. Estimations for the variable T + ∆ are shown in Table 4.4 for

different logarithm of tumor size groups. Note that for low values of the logarithm

of the tumor size, the estimated quantiles of the variable T + ∆ when the CMNBUE

constraint is not considered are higher than these quantiles when this constraint is

considered. This inequality is inverted for high values of the logarithm of the tumor

size.

Considering only the residuals for values of the logarithm of tumor size in the first

group in Table 4.4 (that is, lnS between 23 and 28, o approximately, the tumor di-

ameter having values between 3 and 14 mm), the age at detection is also approximate
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Tumor size V̂ V̂l V̂u Tumor size V̂ V̂l V̂u
(mm) (mm)

3 42.63 41.86 43.41 16 50.61 49.84 51.39
4 44.00 43.23 44.78 18 51.17 50.40 51.95
5 45.07 44.29 45.84 20 51.67 50.90 52.45
6 45.94 45.16 46.71 25 52.74 51.96 53.51
7 46.81 46.03 47.58 30 53.61 52.83 54.38
8 47.31 46.53 48.08 40 54.98 54.20 55.75
9 47.87 47.09 48.64 50 56.04 55.27 56.82
10 48.37 47.60 49.15 60 56.91 56.14 57.69
12 49.24 48.46 50.01 70 57.64 56.87 58.42
14 49.98 49.21 50.76 80 58.28 57.51 59.06

Table 4.3: Approximate age at detection for different values of tumor size using the relationship
V = α+ β lnS + T + ∆ . V̂ represents the approximate age at detection when T + ∆ is considered
as an estimator of the variable T + ∆. V̂l and V̂u represent the approximate age at detection when
the variable T + ∆ is estimated by the lower and upper values of the confidence interval for T + ∆,
respectively.

when the CMNBUE constraint is considered. See Table 4.5. In this case, a 95 percent

confidence interval for the mean of T + ∆ is (28.93157, 34.02738).

Conclusions

Data from the Comprehensive Cohort Study performed by the German Breast Cancer

Study Group are analysed in order to estimate the parameters in the non-deterministic

model which describes the tumor growth when the patient’age at detection and the

tumor size are known. Several descriptive statistics of the time onset variable plus

a random delay were also obtained. For this propose, the model studied in Section

4.2 was applied. In order to realize how the multivariate ageing CMNBUE property

influences in our results, the linear programming problem is solved in two different

cases. In the first case the CMNBUE property is not included as a constraint in the

problem whereas it is included in the second case.
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Case 1 Case 2
Logarithm of Estimated Estimated Estimated Estimated
tumor size residual mean residual median residual mean residual median
lnS T + ∆ QT+∆(0.5) T + ∆ QT+∆(0.5)
23-28 31.9400 31.11791 31.47947 30.87292
28-30 30.93755 30.92949 31.38098 31.39608
30-33 25.52009 24.94253 26.76001 25.96104

Table 4.4: Estimated residual mean and median for different values of the logarithm of tumor size
when the CMNBUE property is not (case 1) and is (case 2) considered as a constraint.

The hypothesis of the model are actually confirmed. The initially assumed NBUE

property of the age V and the logarithm of tumor size lnS are checked as well as the

NBUE property of the estimated variable T + ∆.

Under a non-deterministic exponential tumor growth, and from a conservative point

of view, the estimations of parameters in the model (4.2.2) were α̂ = −36.0356 and

β̂ = 2.0225 when the multivariate property was not included as a constraint and

α̂ = −23.80051 and β̂ = 1.58865 when this property was included.

Estimations of the values ti + δi, defined as in (4.2.3), were obtained as the residuals

of the smallest quantile regression of the response variable V and the independent

variable lnS. If the residuals in the regression are analysed without considering a

classification of the value of the logarithm of the tumor size, then it is shown that

the multivariate ageing property CMNBUE of vector (lnS, T +α+β lnS+∆) causes

higher estimations of the time of appearance of the first tumor cell plus a random

delay (see Table 4.2). However, if the residuals are analysed putting the logarithm of

tumor size variable into groups, then it can be observed that the multivariate ageing

property causes lower estimation for the logarithm of tumor size less than a particular

value (see Table 4.4). Graphically, this fact can be observed by means of the quantile

regression lines in Figure 4.4. The lines cut each other at the point 28.2 and for
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Tumor size V̂T+∆ V̂lower V̂upper
(mm)
3 44.80 42.26 47.36
4 46.17 43.63 48.73
5 47.23 44.70 49.79
6 48.10 45.56 50.66
7 48.84 46.30 51.40
8 49.47 46.94 52.03
9 50.04 47.50 52.59
10 50.54 48.00 53.09
12 51.41 48.87 53.96
14 52.14 49.60 54.70

Table 4.5: Estimations of age in detection for different values of tumor size considering only tumors
with diameter between 3 and 14 mm. V̂T+∆ represents the estimated age in detection when T + ∆
is considered as an estimator of the variable T + ∆. V̂lower and V̂upper represent the estimated age
in detection when the variable T + ∆ is estimated by the lower and upper values of the confidence
interval for T + ∆, respectively.

values of logarithm of tumor size smaller than this point, the quantile regression line

considering the CMNBUE property is on the quantile regression line obtained without

including this property.

Given that the CMNBUE property appears as an inherent property of the vector

(lnS, V ), attention was focused on the approximate age at detection, when this con-

straint is considered. Some interesting conclusions about the age at detection can

be obtained from Table 4.3. Mammography is a well-known test commonly used in

breast cancer screening. The main advantage of mammography is that it can find

tumors that are too small to palpated and allows an early diagnosis to be obtained.

However, the mammography has some disadvantages. False-negatives test results

frequently occur in young women because, in this group, the breast tissue is more

dense. The same occurs with the false-positives. They are more common in younger
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women, women with a family history of breast cancer or women who have had pre-

vious breast biopsies. In addition, mammography exposes the breast to radiation

which is considered as a risk factor for breast cancer. For women younger that 50

years of age, the risks from a radiation exposure or a false-positive test result may be

greater that the benefits provided by annual mammogram screening. In light of these

disadvantages of mammography in breast cancer screening, the test is recommended

every two years in women between the ages of 50 and 74 years. (See, for example, the

National Cancer Institute (USA) website http://www.cancer.gov, and the Spanish

Society of Medical Oncology website http://www.seom.org/). However, the results

in Table 4.3 show that tumors of a smaller size (tumor diameter between 3 mm and

14 mm) are detected at ages of less than 50 years. It is worth noting that the 40

percent of women in this study were younger than 50 years of age. Clear evidence

is shown for the need to consider breast cancer screening in women younger than 50

years of age. However, given the disadvantages presented by mammography, other

tests should be considered for younger women. This fact would justify the time and

capital investment needed in research for new techniques to detect breast cancer and

to consider younger women for breast cancer screening.

4.3.2 Example 2. Prostate cancer data

Materials and Methods

The data used in this example came from the Veterans Administration Cooperative

Urological Research Group’s (VACURG) studies (see Bay (1972) and Bay (1973) and

the references therein). The VACURG was organized in 1960. The original group

consisted of 14 hospitals, all of which had full-time urologists on their staffs at the
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time. The purpose of the group was to conduct large-scale, prospective, statistically

randomized clinical trials of treatment of urological disorders. There were three con-

secutive studies of treatment for cancer of the prostate. In the first the patients were

admitted from 1960 until 1967, in the second study, from 1967 to 1969 and in the

third study the patients were admitted from 1969 to 1972. The main purpose of this

group was a study of the common treatments then in use for cancer of the prostate,

since there was no general agreement about the best way to treat these patients. For

our study, we only consider those patients that were admitted in the second study

with stage III and IV tumors (stage III tumors are locally extended without evidence

of distant metastasis and stage IV tumors have distant metastases). The data were

taken from Andrews and Herzberg (1985). Initially, There were 506 patients but we

only considered the 475 patients who completed the data for the age and tumor size

variables.

Tumor size, initially given in cm2 from rectal examination, was transformed to the

number of tumor cells per cm3. For this, the tumor was assumed to be a symmetric

ball in R3 and it was considered that there were approximately 1012 tumor cells per

cm3, (see Spanish Society of Medical Oncology website, http://www.seom.org/). A

descriptive analysis was made for tumor size as well as patient’s age at detection. The

NBUE property for both variables was confirmed by using a statistical test given by

Fernández-Ponce et al. (1996). The plots of their univariate excess-wealth functions

were also used to recognize this property.

The smallest quantile regression results in a line that represents the relationship

between the logarithm of tumor size and the age at detection. The residuals of this

regression are considered as the estimation of the age at tumor onset plus a random
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delay for each patient.

All statistical analyses were performed using R software. In particular, the quantreg

package was used to solve the problems of quantile regression (see Appendix A in

Koenker, 2005 and website http://cran.r-project.org/web/packages/quantreg/

index.html).

Results

The median age and the mean were 73 and 71.56 year, respectively (interquartile

range: 70-76) and standard deviation was 6.98. The mean tumor size was 5.2194×1013

tumor cells (interquartile range: 8.4104×1012−7.2392×1013) and standard deviation:

6.4931× 1013. Considering the logarithm of tumor size variable, it was obtained that

the mean logarithm of tumor size was 30.8064 (interquartile range: 29.7605-31.9131),

the median was 30.9431 and the standard deviation was 1.4023.

The box-and-whisker plots of the age and the logarithm of tumor size are shown in

Figure 4.5, respectively. The p-values for the Shapiro-Wilk normality test was 0.00

for both cases, therefore the normality hypothesis is rejected for both variables.

The plots of the empirical excess-wealth (ew) functions of the age and logarithm of

tumor size are given in Figure 4.6. It can be observed that the empirical ew function of

the age variable is under the line from the point (1,0) to point (0, µV ), where µV is the

sample mean age. Note that this line corresponds to the ew function of an exponential

distribution with parameter λ = µV . Similarly, it occurs for the logarithm of tumor

size. This property is always verified for all variables having an NBUE distribution.

Moreover, the NBUE property of age and the logarithm of tumor size was checked by

means of the test for NBUE alternatives given by the Fernández-Ponce et al. (1996).

The statistic for this test , Ψ(Fn(t)), is based on the empirical ew distribution and
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Figure 4.5: Box-and-whisker plots of age (left) and logarithm of tumor size (right).

it has really interesting asymptotic properties. It is obtained that Ψ(Fn(t)) = 0.4901

for age and Ψ(Fn(t)) = 0.4949 for logarithm of tumor size. Therefore, both random

variables have an NBUE distribution (see critical values for NBUE alternatives in

Table 4.1). In contract with these variables, the variable tumor size S does not have

this ageing property, but the dual property. In Figure 4.6 c),it can be seen that the

empirical ew function is on the line from the point (1,0) to point (0, µS), where µS is

the sample mean of tumor size.

When the constraint (lnS, T + α + β lnS + ∆) ∈ FCMNBUE was not included in

the quantile regression problem, the estimates intercept and slope of the minimum

quantile regression line were 35.4520 and 0.4327, respectively.

The mean and the standard deviation for the residual variable obtained from the

quantile regression was 22.78415 and 7.011316, respectively. A 95 percent confidence

interval for this mean was (22.15201; 23.41628) and standard error was 0.3217. Recall

that, from a conservative point of view, the ith residual in the quantile regression is

considered as the estimation of the value ti + δi . Therefore, it would be said that the
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Figure 4.6: (a) Empirical ew function of age (blue line) and empirical ew function for exponential
with parameter equal to mean age (b) Empirical ew function of logarithm tumor size (blue line)
and empirical ew function for exponential with parameter equal to mean logarithm tumor size (c)
Empirical ew function of tumor size (blue line) and empirical ew function for exponential with
parameter equal to mean tumor size.

mean age at appearance of the first tumor cell plus a random delay was approximately

22.78415 years, when the CMNBUE constraint is not considered. It was also proved

that the variable T+∆ has an NBUE distribution, given that the value of the statistic

for the test for NBUE alternatives was Ψ(Fn(t)) = 0.4562.

The Scatterplot of the logarithm of tumor size vs the age of the patients at detection

is given in Figure 4.7. Superimposed on the plot is the 0.0001-quantile regression line

in red.
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Figure 4.7: Scatterplot of the age at detection vs the logarithm of the tumor size. The line red is
the 0.0001-quantile regression line without considering the CMNBUE property as a constraint

If the property (lnS, T + α + β lnS + ∆) ∈ FCMNBUE is included as a constraint in

the quantile regression problem, the estimated intercept and slope are the same as

that in the above case. This is due to the data initially verify the CMNBUE property.

Note that the estimated values of α and β are positive and therefore they verify the

constraint (4.2.12). Therefore, for this particular set of data, all results obtained

when the multivariate ageing property is included as a constraint in the problem are

the same as that when this property is not included.

Considering the estimations of the parameters α, β and the estimation of the mean

of the variable T +∆ obtained as the mean of the residuals in the quantile regression,

the patients’s age at detection is approximate for different tumor sizes using the

relationship V̂ = α̂ + β̂ lnS + T + ∆. Table 4.6 shows the results. In the third

and forth columns, the approximate age at detection is also given when the variable
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T +∆ is estimated by the lower and upper values of the confidence interval for T + δ,

respectively.

Tumor size V̂ V̂l V̂u
(mm)
11 70.03 69.40 70.67
12 70.14 69.52 70.78
13 70.25 69.62 70.88
14 70.35 69.72 70.98
15 70.43 69.81 71.07
16 70.52 69.89 71.15
17 70.60 69.97 71.23
18 70.67 70.04 71.31
19 70.74 70.11 71.38
20 70.81 70.18 71.44
30 71.33 70.71 71.97
40 71.71 71.08 72.34
50 72.00 71.37 72.63

Table 4.6: Approximate age at detection for different values of tumor size using the relationship
V = α+ β lnS + T + ∆ . V̂ represents the approximate age at detection when T + ∆ is considered
as an estimator of the variable T + ∆. V̂l and V̂u represent the approximate age at detection when
the variable T + ∆ is estimated by the lower and upper values of the confidence interval for T + ∆,
respectively.

Conclusions

Data from the Veterans Administration Cooperative Urological Research Group’s

(VACURG) studies were analysed in order to estimate the parameters in the non-

deterministic model which describes the tumor growth when the patient’age at de-

tection and the tumor size are known. Several descriptive statistics of the time onset

variable plus a random delay were also obtained. For this propose, the model studied

in Section 4.2 was applied. In order to realize how the multivariate ageing property
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CMNBUE influences in our results, the linear programming problem is solved in two

different cases. In the first case the CMNBUE property is not included as a con-

straint in the problem whereas it is included in the second case. It is shown that

the obtained results are the same in both cases given that the considered set of data

initially verified this multivariate ageing property.

The hypothesis of the model are actually confirmed. The initially assumed NBUE

property of the age variable V and the logarithm of tumor size variable lnS are

checked as well as the NBUE property of the estimated variable T + ∆.

Under a non-deterministic exponential tumor growth, and from a conservative point

of view, the estimations of parameters in the model (4.2.2) were α̂ = 35.4520 and

β̂ = 0.4328. Estimations of the values ti + δi were obtained as the residuals of the

smallest quantile regression of the response variable V and the independent variable

lnS. As a result of these estimations, mean age of appearance of the first tumor cell

plus a random delay was approximately 22.78 years.

The patients’ ages at detection were also approximate for different values of tumor

size. The results in Table 4.6 are consistent with the current research on prostate can-

cer. In most men with prostate cancer, the disease grows very slowly and patients do

not experience symptoms during the early stage. Therefore this kind of cancer is usu-

ally detected in older men (around 70 years of age). Different clinical trials to prevent

and to screen for prostate cancer had been, and are being, developed. Two screening

tests are commonly used to detect prostate cancer in the absence of symptoms. These

are the digital rectal examination (DRE), in which a doctor palpates the prostate

through the rectum to find hard or lumpy areas, and a blood test that detects a sub-

stance made by the prostate called prostate-specific antigen (PSA). Together, these
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tests can detect many prostate cancers that have not produced symptoms. However,

the decision to screen can be controversial. Prostate cancer can develop into a fatal,

painful disease, but it can also develop so slowly that it may never cause problems

during the man’s life. The majority of men with early prostate cancer diagnosis have

a good rate of survival after their diagnosis. Even without treatment, many of these

men may not die of prostate cancer, but rather will live with it until they eventually

die of some other cause. Neither of the screening tests for prostate cancer is perfect.

The DRE and PSA are associated with false positives and false negatives. Using the

DRE and PSA together will miss fewer cancers but also increases the number of false

positives and subsequent biopsies in men without cancer. Moreover, treatment for

prostate cancer with surgery or radiation often leaves patients with sexual impotence

and urinary incontinence. Different organizations are supporting research to learn

more about screening for prostate cancer and to determine whether screening with

PSA tests and DREs reduces the death rate from this disease. Researchers are also as-

sessing the risks of screening. (see the National Cancer Institute and Sociedad (USA)

website ,http://www.cancer.gov/cancertopics/types/prostate and the Spanish

Society of Medical Oncology website, http://www.seom.org/).
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Conclusions

This last epigraph briefly summarizes the conclusions which are obtained in this

work. As was pointed out in the Introduction, the univariate ageing properties and

the stochastic orderings are closely connected. In the same way, an close link exits

between the ageing properties of a random variable and its ew function. An important

element which is presented in this relationship is the quantile function. The aim of

this work is to generalize these relationships to the multivariate case.

In Chapter 2, the upper-corrected orthant concept, introduced by Fernández-Ponce

and Suárez-Llorenz (2003) is studied in depth. This concept together with the u−

quantile allow the multivariate version of the ew function to be defined. That was

shown that interesting properties of the univariate ew function are preserved in the

multivariate case. Using the multivariate ew function, a new multivariate dispersive

order was defined and proved to be weaker than that defined by Fernández-Ponce

and Suárez-Lorenz (2003). As a particular case, this order between vectors with the

same dependence structure is studied, that is, vectors which have the same copula.
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Chapter 3 contains the fundamental results of our work. The concepts of median

residual life and failure rate are generalized in terms of the probability of the upper-

corrected orthant. The new multivariate versions of the NBUE, DMRL and IFR

distributions are defined and a chain of implications established between them. Given

that the multivariate ageing properties are defined in support of the considered vector

and that the mew function is defined in the region [0, 1]n, additional conditions of the

vector, e.g. the CIS property, had to be considered to get a characterization of the

multivariate lifetime distributions in terms of the mew function. Finally, orderings

for multivariate life distribution are presented.

In Chapter 4, the CMNBUE property is applied in oncology. This property appears

as an inherent property of the vector whose components describe the logarithm of

the tumor size and the age of the patient at detection. We studied the effect of

this property when the parameters in a non-deterministic model which describe the

growth of tumor size are estimated in two real database. This work reflects the need

to develop research in all scientific fields in order to decrease the minimum patient’age

in official medical examinations.

Finally, in considering the numerous applications of the ageing property and the

excess-wealth function in the univariate dimension, in areas such as economics, re-

liability and survival analysis, in the future, it is in our interests to generate these

applications in multivariate cases.
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