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Abstra
t. Membrane Computing is a 
omputational model inspired in the stru
ture and

fun
tion of living 
ells and tissues. In this paper we use Membrane Computing te
hniques

to solve the Homology Groups of Binary 2D Image (HGB2I) Problem. This is a 
lassi
al

problem in Homology Theory whi
h tries to 
al
ulate the number of 
onne
ted 
omponents

and the representative 
urves of the holes of these 
omponents of a given binary 2D image.

To this aim, we use a family of P systems whi
h solves all the instan
es of the problem in

the framework of Tissue-like P systems with 
atalysts.

Introdu
tion

Natural Computing studies new 
omputational paradigms inspired from Nature. It ab-

stra
ts the way in whi
h Nature a
ts, 
on
eiving new 
omputing models from natural phe-

nomena in physi
s, 
hemistry and biology

1

. The �eld is growing rapidly and 
urrently there

are many open resear
h lines based on Nature, o�ering solutions to many 
lassi
al 
omputa-

tional problems from a new perspe
tive. From this new paradigm, we 
an 
ite areas su
h as

Cellular Automata [29℄, Geneti
 algorithms [15℄, Neural Networks [21℄, DNA-based mole
ular


omputing [1℄, Swarm Intelligen
e [11℄ or Membrane Computing [24, 25℄ among others. All

these 
omputational paradigms have in 
ommon the use of an alternative way of en
oding

the information, adapted to the bio-inspired substrate and the use of intrinsi
 parallelism of

natural pro
esses.

In this paper we use te
hniques from Membrane Computing

2

. This new resear
h area

was born from the assumption that the pro
esses taking pla
e within the 
ompartmental

stru
ture of a living 
ell 
an be interpreted as 
omputations [25℄. In parti
ular, it fo
uses on

membranes, whi
h are involved in many rea
tions taking pla
e inside various 
ompartments

of a 
ell. Biologi
al membranes are mu
h more than mere barriers that de�ne 
ompartments.

They a
t as sele
tive 
hannels of 
ommuni
ation between di�erent 
ompartments as well as

between the 
ell and its environment [2℄.

The 
omputational devi
es in Membrane Computing are 
alled P systems. Roughly speak-

ing, a P system 
onsists of a membrane stru
ture, in the 
ompartments of whi
h one pla
es

multisets of obje
ts whi
h evolve a

ording to given rules. In the most extended model, the

rules are applied in a syn
hronous non-deterministi
 maximally parallel manner, but some

other semanti
s are being explored.

Membranes divide the Eu
lidian spa
e into regions, whi
h 
ontains obje
ts. Obje
ts

evolve a

ording to lo
al rea
tion rules. Su
h obje
ts 
an be des
ribed by symbols or by

1

An introdu
tion on Natural Computing 
an be found in [16℄.

2

We refer to [25℄ for basi
 information in this area, to [27℄ for a 
omprehensive presentation and the web

site [30℄ for the up-to-date information.
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strings of symbols from a given alphabet. These obje
ts 
an also pass through membranes,

under the 
ontrol of spe
i�
 rules.

We will fo
us here on a P system model 
alled (be
ause of their membrane stru
ture)

Tissue-like P systems. This P system model has two biologi
al inspirations (see [20℄): in-

ter
ellular 
ommuni
ation and 
ooperation between neurons. The 
ommon mathemati
al

model of these two me
hanisms is a net of pro
essors dealing with symbols and 
ommuni-


ating these symbols along 
hannels spe
i�ed in advan
e. The 
ommuni
ation among 
ells

is based on symport/antiport rules

3

. Symport rules move obje
ts a
ross a membrane to-

gether in one dire
tion, whereas antiport rules move obje
ts a
ross a membrane in opposite

dire
tions.

Homology theory is a bran
h of algebrai
 topology that attempts to distinguish between

spa
es by 
onstru
ting algebrai
 invariants that re�e
t the 
onne
tivity properties of the

spa
e. The �eld has it origins in the work of Poin
aré. Homology groups (related to the

di�erent n-dimensional holes, 
onne
ted 
omponents, tunnels, 
avities, et
.) are invariants

from Algebrai
 Topology whi
h are frequently used in Digital Image Analysis and Stru
tural

Pattern Re
ognition. In some sense, they re�e
ts the topologi
al nature of the obje
t in

terms of the number and 
hara
teristi
s of its holes.

This is not the �rst time in whi
h life-based methods are applied to Algebrai
 Topology. In

1996, J. Chao and J. Nakayama 
onne
ted Natural Computing and Algebrai
 Topology using

Neural Networks [7℄ (extended Kohonen mapping). Some years after, K.G. Subramanian et

al. presented in [6, 5℄ two works where Digital Image and Natural Computing were linked.

In 2009, Christinal et al. presented in [9℄ a new way to obtain the Betti numbers of a

binary 2D and 3D digital image. In this paper, we present a new te
hnique to get not only

the Betti numbers, we obtain the representative 
urves of the homology group H1 of a binary

2D digital image too.

The ne
essary time to 
al
ulate the homology groups of 2D digital images with basi
 P

systems de�ned in Se
tion 2 is logarithmi
 with respe
t to the input data (O(n)). This

involves an improvement with respe
t to the algorithms development by S. Peltier et al. in

[28℄, where they use irregular graphs pyramids with a time 
omplexity of O(n5/3).
The paper is organized as follows: �rstly, we present our bio-inspired formal framework.

Next, we brie�y re
all the Homology Groups of Binary 2D Image (HGB2I) Problem. In

the next Se
tion, we present our solution in the framework of tissue-like P systems with


atalysts. Finally, some 
on
lusions are presented.

1. Formal Framework

In tissue-like P systems the membrane stru
ture is a general undire
ted graph. The edges

of su
h graph are not given expli
itly, but they are dedu
ed from the set of rules. From the

seminal de�nition of tissue P systems, several resear
h lines have been developed and other

variants have arisen (see, for example, [3, 4, 14, 18, 26℄).

In this paper, we endow tissue-like P systems with 
atalysts. Catalyti
 P systems were

introdu
ed in [24℄. The main feature of these P systems is the presen
e of obje
ts in mem-

branes su
h that they are not 
onsumed by the appli
ation of the rule, but their presen
e

3

This way of 
ommuni
ation for P systems was introdu
ed in [22℄.
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in the membrane is ne
essary for the triggering (see, e.g., [12, 13, 19, 17℄. Next we provide

the de�nition of tissue-like P systems with 
atalysts:

De�nition 1.1. A tissue-like P system with 
atalysts of degree q ≥ 1 is a tuple of the form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

(1) Γ is a �nite alphabet, whose symbols will be 
alled obje
ts.

(2) E ⊆ Γ is a �nite alphabet representing the set of the obje
ts in the environment

available in an arbitrary large amount of 
opies.

(3) w1, . . . , wq are strings over Γ representing the multisets of obje
ts asso
iated with

the 
ells in the initial 
on�guration.

(4) R is a �nite set of 
atalyti
 rules of the following form: (cat | i, u/v, j) for i, j ∈
{0, 1, 2, . . . , q}, i 6= j and cat, u, v ∈ Γ∗

. The length of a 
atalyti
 rule is de�ned as

|u| + |v|. The 
atalyst cat is modi�ed by the appli
ation of the rules and cat and v

an be empty.

(5) i0 ∈ {0, 1, 2, . . . , q} denotes the output region, whi
h 
an be the environment (i0 = 0)
or the region inside a 
ell (1 ≤ i0 ≤ q).

Informally, a tissue-like P system with 
atalysts of degree q ≥ 1 
an be seen as a set

of q 
ells (ea
h one 
onsisting of a single membrane) labeled by 1, 2, . . . , q. The 
ells are

the nodes of a virtual graph, where the edges 
onne
ting the 
ells are determined by the


ommuni
ation rules of the system, i.e., as usual in tissue-like P systems, the edges linking


alls are not provided expli
itly: If a rule (cat | i, u/v, j) is given, then 
ells i and j are


onsidered linked.

The appli
ation of a 
atalyti
 rule (cat | i, u/v, j) 
onsists on the trade of the multiset u
(initially in the 
ell i) against the multiset v (initially in j). The trade 
an also be between

one 
ell and the environment, labelled by 0. The rule is applied if in the 
ell with label i the
obje
ts of the set cat are present (
atalyst). If the 
atalyst is empty, then the rule is 
alled

a 
ommuni
ation rule.

In our de�nition, all obje
ts in the alphabet 
an a
t as 
atalysts, depending on the

applied rule. Rules are used as usual in the framework of membrane 
omputing, that is,

in a maximally parallel way (a universal 
lo
k is 
onsidered). In one step, ea
h obje
t in a

membrane 
an only be used for one rule (non-deterministi
ally 
hosen when there are several

possibilities), but any obje
t whi
h 
an parti
ipate in a rule of any form must do it, i.e., in

ea
h step we apply a maximal multiset of rules.

A 
on�guration is an instantaneous des
ription of the P system and it is represented as a

tuple (w1, . . . , wq). Given a 
on�guration, we 
an perform a 
omputation step and obtain

a new 
on�guration by applying the rules in a parallel manner as it is shown above. A

sequen
e of 
omputation steps is 
alled a 
omputation. A 
on�guration is halting when

no rules 
an be applied to it. The output of a 
omputation is 
olle
ted from its halting


on�guration by reading the obje
ts 
ontained in the output 
ell.

Example 1.2. Let us 
onsider the following tissue-like P system with 
atalyst of degree 3,

Π = (Γ, E , w1, w2, w3,R, i0) where Γ = {a, b, c, d, e}, E = {d}, w1 = a, w2 = bd and w3 = ce.
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The set R has four rules:

R1 ≡ (c | 2, b/a, 1) R2 ≡ (e | 3, c/d, 2) R3 ≡ (3, d/a, 0) R4 ≡ (3, d/b2, 0)

The output region is i0 = 3. A

ording to the set of rules, 
ell 2 is linked to 
ells 1 and 3 and


ell 3 is linked to the environment. The 
omputation starts from the initial 
on�guration

C0 = (w0, w1, w2). Rule R1 
annot be applied in this initial 
on�guration, sin
e the 
atalyst

c does not appear in 
ell 2. Rules R3 and R4 
annot be applied, sin
e obje
t d is not pla
ed

on 
ell 3. In this initial 
on�guration we only 
an apply rule 2, sin
e obje
ts e and c are

pla
ed in membrane 3 and d is pla
ed in membrane 2. After applying this rule we obtain a

new 
on�guration. C1 = (w′

0, w
′

1, w
′

2) with w′

1 = a, w′

2 = cb and w′

3 = de. Now, rule 2 
an

be applied by inter
hanging obje
ts a and b, be
ause the 
atalyst c is pla
ed on 
ell 2. The


ommuni
ation rules 3 and 4 
an be applied, sin
e d appears in 
ell 3 and the environment


ontains obje
ts a and b, but only one of them 
an be applied, and it is non-deterministi
ally


hosen. In we 
hoose rule 3, then the new 
on�guration is C2 = (w′′

0 , w
′′

1 , w
′′

2 ) with w′′

1 = b,
w′′

2 = ac and w′′

3 = ae. No more rules 
an be applied and the 
omputation �nishes. The

output of the 
omputation is the multiset in 
ell 3 in the halting 
on�guration w′′

3 = ae. If
we 
hoose rule 4, the obtained 
on�guration is the same, but w′′

2 = b2e.

2. Cal
ulating Homology Groups

In a binary 2D image, the 
omputation of homology groups 
an be redu
ed to a pro
ess of

bla
k and white 
onne
ted 
omponents labeling. The di�erent bla
k 
onne
ted 
omponents

are the generators of the 0-dimensional homology group of the bla
k part of the image

whereas the 
losed bla
k 
urves surrounding the di�erent white 
onne
ted 
omponents of

the image are the generators of its 1-dimensional homology group.

In order to formalize this problem we will 
onsider a ordered

4

set of n2
pixels P = {(i, j) :

1 ≤ i, j ≤ n}. An image on P with 
olors in the �nite set C is a mapping I : P → C. As

usual, su
h image 
an be written as a set of pairs ((i, j), x) where i, j ∈ {1, . . . , n} and

a = I(i, j). To simplify we denote aij . As we 
onsider in this paper to work with binary

images, we take C = {b, w} where b 
odi�es bla
k and w white.

The new te
hnique for P systems presented in this paper 
onsist to assign to ea
h obje
t


odifying a pixel a label. So, we our obje
ts pass to be of the form (aij , (i, j)). We will see

below how to use these labels to solve our problem with P systems.

From a formal point of view we 
an formulate our problem as follows,

Homology Groups of Binary 2D Image (HGB2I) Problem: Given a binary 2D

digital image, 
al
ulate the number of bla
k 
onne
ted 
omponents and the representative


urves of the holes of these 
omponents.

We have de
ide to 
onsider in this paper the 4-adja
en
y for bla
k pixels and the 8-

adja
en
y for white pixels. The only one reason to do this 
hoi
e is the 
omputational


omplexity from a membrane models point of view. It is easier for this type of models works

with 8-adja
en
y for bla
ks and 4 for whites. Moreover, in this last 
ase the systems are very

similar to the systems show below. Then, we have de
ided to present the membrane solution

of HGB2I problem for the 4-adja
en
y for bla
k pixels and the 8-adja
en
y for white pixels.

4

We 
onsider the lexi
ographi
 order for N
2
in P .



A NEW WAY TO OBTAIN HOMOLOGY GROUPS IN BINARY 2D IMAGES USING MEMBRANE COMPUTING5

2.1. A membrane solution of HGB2I Problem. In order to provide a logarithmi
-

time uniform solution to the our problem, we design a family of tissue-like P systems with


atalyst, Π. Given an image I of size n2
, we take the system of the family Π(n) to work

with I. The input data (image I) is 
odi�ed by a set of obje
ts Aij with A = B ∨W and

1 ≤ i, j ≤ n.
The family of P systems is de�ned as follows:

Π(n) = (Γ,Σ, E , ω1, ω2, ω3, ω4,R1, . . . ,R19, {R15,R17} > R10, iin, i0)

where:

• Γ = {zi : 1 ≤ i ≤ n+ 6} ∪
{Bij, bij , b

′

ij , b̄ij ,Wij , wij , w
′

ij , (bij , (k, l)), (wij , (k, l)) : 1 ≤ i, j, k, l ≤ n} ∪
{(pij , (0, 0)), (pji, (0, 0)) : i = 0, n+ 1, 0 ≤ j ≤ n+ 1} ∪
{Aijkl, Zijkl : (1, 1) ≤ (i, j) < (k, l) ≤ (n, n)}.

• Σ = {bij , wij : 1 ≤ i, j ≤ n}.
• E = Γ− Σ.
• ω1 = ∅.
• ω2 = {z1}.
• ω3 = {z1, (pij , (0, 0)), (pji, (0, 0)) : i = 0, n+ 1, 0 ≤ j ≤ n+ 1}.
• ω4 = ∅.
• The sets of rules are:

� R1 ≡ (1, Aij/aija
′

ij , 0) for 1 ≤ i, j ≤ n.
For ea
h pixel of our input image we generate two 
opies with these rules.

� R2 ≡ (1, aij/λ, 2) for 1 ≤ i, j ≤ n.
� R3 ≡ (1, a′ij/λ, 3) for 1 ≤ i, j ≤ n.
With the last two types of rules, the �rst 
opies of our pixels are sent to 
ell 2

and the se
ond 
opies of our pixels are sent to 
ell 3.

From this point, we have two parallel pro
esses. A pro
ess asso
iated to 
ell 2

(to 
al
ulate H0) and the se
ond one asso
iated to 
ell 3 (to 
al
ulate H1):

� Rules asso
iated to the H0 pro
ess:

◦ R4 ≡ (2, zi/zi+1, 0) for 1 ≤ i ≤ n+ 1.
These rules generate a 
ounter that will be used in the output of the

system.

◦ R5 ≡ (2, bij/(bij , (i, j)), 0) for 1 ≤ i, j ≤ n.
These rules add labels to bla
k pixels in order to work with them.

◦ R6 ≡ (2, (bij , (k, l))(bi′j′ , (k
′, l′))/(bij , (k, l))(bi′j′ , (k, l))Aklk′l′ , 0) for (1, 1)≤

(k, l) < (k′, l′) ≤ (n, n), 1 ≤ i, j, i′, j′ ≤ n and (i, j), (i′, j′) adja
ent pixels.
◦ R7 ≡ (2, (bij , (k, l))(bi′j′ , (k

′, l′))/(bij , (k
′, l′))(bi′j′ , (k

′, l′))Ak′l′kl, 0) for
(1, 1) ≤ (k′, l′) < (k, l) ≤ (n, n), 1 ≤ i, j, i′, j′ ≤ n and (i, j), (i′, j′)
adja
ent pixels.

The two last types of rules 
hange the labels of adja
ent pixels, we need

all the adja
ent bla
k pixels to have the same label, so we will know that

they are all in the same 
onne
ted 
omponent.

◦ R8 ≡ (Aijkl|2, (bi′j′ , (k, l))/(bi′j′ , (i, j)), 0) for 1 ≤ i, j, k, l, i′ , j′ ≤ n.
In these rules we introdu
e 
atalysts, and pro
ess be
omes faster. The



6DANIEL DÍAZ-PERNIL

1
, MIGUEL A. GUTIÉRREZ-NARANJO

2
, PEDRO REAL

1
, ANDVANESA SÁNCHEZ-CANALES

1


atalyst has been 
reated when the pixel labeled by (k, l) traded its label

for (i, j), so (i, j) and (k, l) are adja
ent pixels and other pixels with these

labels 
an be 
hanged.

◦ R9 ≡ (zn+2|2, (bij , (i, j))/λ, 4).
With these rules we send one pixel for ea
h 
onne
ted 
omponent to the


ell 2.

� Rules asso
iated to H1 pro
ess:

◦ R10 ≡ (3, zi/zi+1, 0) for 1 ≤ i ≤ n+ 5.
This rule 
ounts the number of steps of the pro
ess. We will use this to

start the Deleting Stage after n+2 steps, and the Segmenting Stage after

n+ 4 steps.

◦ R11 ≡ (3, wij/(wij , (i, j)), 0) for 1 ≤ i, j ≤ n.
These are the only rules used in the Label Allo
ation Stage. These rules

add labels to white pixels in order to work with them.

◦ R12 ≡ (3, (wij , (k, l))(wi′j′ , (k
′, l′))/(wij , (k, l))(wi′j′ , (k, l))Zklk′l′ , 0) for (1, 1) ≤

(k, l) < (k′, l′) ≤ (n, n), 1 ≤ i, j, i′, j′ ≤ n and (i, j), (i,′ j′) adja
ent pixels.
◦ R13 ≡ (3, (wij , (k, l))(wi′j′ , (k

′, l′))/(wij , (k
′, l′))(wi′j′ , (k

′, l′))Zk′l′kl, 0) for
(1, 1) ≤ (k′, l′) < (k, l) ≤ (n, n), 1 ≤ i, j, i′, j′ ≤ n and (i, j), (i′ , j′)
adja
ent pixels.

These two set of rules are used in Label Conversion Stage to 
ompare two

adja
ent white pixels, and 
hange the label of one of them. We need all

the adja
ent white pixels to have the same label.

◦ R14 ≡ (Zijkl|3, (wi′j′ , (k, l))/(wi′j′ , (i, j)), 0) for 1 ≤ i, j, k, l, i′, j′ ≤ n.
The 
atalyst Zijkl a
ts to be
ome the pro
ess faster. It has been 
reated

when the pixel labeled by (k, l) traded its label for (i, j), so (i, j) and (k, l)
are adja
ent pixels and other pixels with these labels 
an be 
hanged.

◦ R15 ≡ (zn+3|3, (pij , (0, 0))(wkl , (k
′, l′))/(pij , (0, 0))(pkl, (0, 0))Z00kl , 0) for

(i, j), (k, l) 8-adja
ent pixels, 0 ≤ i, j ≤ n+ 1, 1 ≤ k, l, k′, l′ ≤ n.
These rules are used in Deleting Stage to delete white pixels whi
h are

out of the 
onne
ted bla
k 
omponent. By using 8-adja
en
y, we be
ome

outer white pixels into pink pixels, in order to di�erentiate them from

the interior white pixels (holes). We will refer to the obje
ts pij as pink

pixels.

◦ R16 ≡ ((Z00ij |3, (wi′j′ , (i, j))/(pi′j′ , (0, 0)), 0) for , 1 ≤ i, j, i′, j′ ≤ n.
A new 
atalyst a
ts in the same way, trading white exterior pixel for pink

pixels. In this way, the Deleting Stage takes only 2 step.

◦ R17 ≡ (zn+5|3, (wij , (i
′, j′))bkl/(wij , (i

′, j′))b̄kl, 0) for 1 ≤ i′, j′, i, j, k, l ≤ n
and (i, j), (k, l) 8-adja
ent pixels.

In the Segmenting Stage a bla
k pixel is marked if it and a white pixel

are 8-adja
ent pixels. It starts after n+ 2 steps.

◦ R18 ≡ (3, b̄ij/λ, 4) for 1 ≤ i, j ≤ n.
At the end, in the Answer Stage, bla
k marked pixels are sent to mem-

brane number 4, so we obtain whi
h bla
k pixels are 
ontaining the holes.
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◦ R19 ≡ (zn+6|3, (wij , (i, j))/λ, 4) for 1 ≤ i, j ≤ n.
We want to obtain the number of holes too, so these rules send one white

pixel for ea
h hole to membrane number 4.

• iin = 1 is the input 
ell.

• i0 = 4 is the output 
ell.

We will also use priorities among rules. Rules from sets R15 and R17 are applied before

rules from the set R10.

Figure 1. A simple example of the pro
ess to obtain H0

Ea
h system of the family implements the following stages:

(1) Input Stage: When the obje
ts Aij (with A = B ∨W ) arrive to 
ell 1 the �rst type

of rules are applied. We 
hange these obje
ts by obje
ts aij and a′ij (with a = b∨w).

In the next step, we send obje
ts aij to 
ell 2 and obje
ts a′ij to 
ell 3. From this

point we have two parallel pro
esses: The �rst pro
ess o

ur in 
ell 2, and it is

dedi
ated to obtain the number of bla
k 
onne
ted 
omponents (H0). The se
ond

one is lo
ated in 
ell 3 and is dedi
ated to generate the representative 
urves of the

holes of the bla
k 
onne
ted 
omponents. Moreover, system will give us the number

of these holes (H1).

(2) H0 Pro
ess: It begins when obje
ts aij arrive to 
ell 2.

(a) Label Allo
ation Stage: Cell 3 trades obje
ts bij against others with the form

(bij, (i, j)) with the environment. The white obje
ts are not transformed.

(b) Label Conversion Stage: We 
an 
ompare the bla
k adja
ent pixels by using 
at-

alyst, and we trade the label of the greatest pixel against the label of the other

pixel; i.e. (i, (bij , (i
′, j′))(bkl, (k

′, l′))/(bij , (i
′, j′))(bkl, (i

′, j′))Ai′j′k′l′ , j), where

(i, j) and (k, l) are adja
ent pixels. Moreover, we 
an see a new obje
t ar-

riving to 
ell i. It is a 
atalyst and it is used to 
odify if two labels must be


ompared. Later, they are 
onne
ted, and one of them 
an be 
hanged by the

other one, as we 
an see in the Figure 1.

(
) Answer Stage: In the step n+2, the obje
t zn+2 arrives to the 
ell 1 due to the


ounter. It is used by the system as a 
atalyst, and the obje
ts with the form

(bij, (i, j)) are sent to the output 
ell representing ea
h one to a bla
k 
onne
ted
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omponent. The P system have used n+2 steps to obtain the number of bla
k


onne
ted 
omponents of an n2
image.

Figure 1 shows a sequen
e of 
on�gurations of the pro
ess to obtain H1 for input

data given by the 
on�guration C0 of the pi
ture.

Figure 2. Representative 
on�gurations of a simple example to obtain H1

(3) H1 pro
ess: It begins when obje
ts a′ij arrive to 
ell 3.

(a) Label Allo
ation Stage: Cell 3 trades obje
ts w′

ij against others with the form

(wij, (i, j)) with the environment.

(b) Label Conversion Stage: We 
ompare the label of two white adja
ent pixels, and

we trade the label of the greatest pixel against the label of the other pixel; i.e., we

use rules with the form (i, (wij , (i
′, j′))(wkl, (k

′, l′))/(wij , (i
′, j′))(wkl, (i

′, j′))Zi′j′k′l′ , j),
where (i, j) and (k, l) are adja
ent pixels. Moreover, we 
an see a new obje
t

arriving to 
ell i, Zi′j′k′l′ . It is a 
atalyst and is used to 
odify when two labels

must be 
ompared. Then, the labels are 
onne
ted, and one of them 
an be


hanged by the other one, as we 
an see in C7 in the Figure 2.

(
) Deleting Stage: Initially, system keeps in 
ell 1 a set of obje
ts 
odifying the

frame of the input image (p0i, pn+1i, pi0, pin+1 for i = 0, . . . , n + 1) with the

label (0, 0) asso
iated. When the input data is introdu
ed in the system, the

white pixels not 
ontained inside of bla
k 
onne
ted 
omponents are sent to the

environment to trade against of obje
ts with the form of the frame. We need

a linear number of steps with respe
t to n to eliminate all the possible white

pixels. We 
an see the result in C11 in the Figure 2.
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(d) Segmenting Stage: This part begins when deleting stage �nishes due to the


ounter zi (rules R1). If there are white pixels in 
ell 1 in this step are in a hole.

The P system takes pairs of adja
ent pixels, one bla
k and the other white,

adding a mark to the bla
k pixels of these pairs. Then, we have marked the

bla
k pixels adja
ent to a hole. We need a 
onstant number of steps to segment

an image with P systems. Figure 2 shows in C12 how the holes of the image

are 
odi�ed.

(e) Answer Stage: We send the marked bla
k pixels to output 
ell in the following

step to be marked. So, we obtain, the representative 
urves of the holes in the

image I. We also send white pixels whi
h keep their labels, there is only one

pixel for ea
h 
onne
ted white 
omponent, ie, for ea
h hole in the image. We

only need one step more with respe
t to the segmenting stage.

Figure 3. Initial and fourth 
on�guration

2.2. Example. In this se
tion we will show with a simple example our te
hnique to obtain

the homology groups H0, and H1 of a 2D image by using membrane 
omputing. Let us


onsider the �rst image in Figure 3 whi
h have 9× 9 pixels. The bla
k pixels represent two


onne
ted 
omponents, the white pixels represent the exterior of the 
omponents and the

holes, one in ea
h 
onne
ted 
omponent. In the initial 
on�guration we have 4 
ells. There

is one obje
t Aij (with A = B ∨ W ) in 
ell 1 
odifying ea
h pixel. At the beginning of

the pro
ess the system dupli
ates these elements and sends one 
opy to the membrane 2

on order to 
al
ulate H0, and the other 
opy to the membrane 3 in order to 
al
ulate H1.

These two pro
esses are working at the same time, so we obtain a parallel system.

The pro
ess to 
al
ulate H0 is the following one: The 
ell 1 has the obje
t z1 working as

a 
ounter, it allow us start a di�erent stage after the ne
essary number of the steps. In the
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Figure 4. Con�gura
iones C10 y C12

third step labels (i, j) are added to obje
ts aij , we need these labels to 
hange them within


hange the original position of the pixels. In the fourth step (
on�guration C4 in Figure 3)

the label 
onversion stage lets start. The aim is to have all the pixels in the same 
onne
ted


omponent with the same label. Rules R6, R7 
hanged the label of two adja
ent pixels, to

be
ome these in the same label. These rules 
reated 
atalysts to be
ome the pro
ess faster.

A 
atalyst represents that two labels are lo
ated in adja
ent pixels, and it a
ts in subsequent

steps 
hanging, at the same time, the labels of several pixels. In our example, we need seven

steps from the beginning of the stage until have bla
k pixels with the 
orre
t label. We


an see in 
on�guration C10 in Figure 4 all the bla
k pixels of ea
h 
onne
ted 
omponent

with the same label. When the 
ounter rea
hes the appropriate subindex, a representative

obje
t for ea
h 
onne
ted 
omponent is sent to 
ell 4. We obtain two obje
ts (b22, (2, 2)),
(b26, (2, 6)), so our image has two 
onne
ted 
omponents.

The pro
ess to 
al
ulate H1 is the following one: The beginning of this pro
ess is the

same of the previous one. In the 
ell 3, white pixels are 
hanging its labels until all the

pixels in the exterior of the pi
ture have the same label, and all the pixels in the holes of the


omponents have also the same label (see 
on�guration C12). In the 12th step the deleting

stage lets start. We need to know how many holes there are, so we have to "delete" white

exterior pixels. We add a pink frame around the pi
ture, pink pixels a
ts in white exterior

pixels be
oming them into pink pixels too. By using 
atalysts we only need two step to 
olor

pixels in pink. The 
on�guration C14 (see Figure 5) shows us the result. With the rules

R17 we 
an also mark bla
k pixels adja
ent to white pixels, in order to obtain information

not only about how many holes there are, but about the shape of these holes.
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Figure 5. Con�guration C14

2.3. Complexity and Ne
essary Resour
es. Bearing in mind the size of the input data

is O(n2), the amount of ne
essary resour
es for de�ning the systems of our two families and

the 
omplexity of our problems 
an be observed in the following table:

HGB2I Problem

Complexity

Number of steps of a 
omputation n+ 9

Ne
essary Resour
es

Size of the alphabet O(n4)
Initial number of 
ells 4

Initial number of obje
ts O(n)
Number of rules O(n6)
Upper bound for the length of rules of the systems 5

3. Con
lusions and Future Works

Digital Imagery, treated by te
hniques of Algebrai
 Topology, 
an be suitable for Mem-

brane Computing te
hniques. The starting point is that su
h problems 
an be treated

lo
ally by a set of pro
essors, the information 
an be split into little pie
es and expressed as

(multi)sets of obje
ts and the 
omputation steps 
an be pro
essed by re-writing-type rules.

In many 
ases, the same sequential algorithm must be applied in di�erent regions of the

image whi
h are independent. All these features lead us to 
onsider parallel bio-inspired


omputational models to deal with Digital Imagery.

This paper 
an be seen as a �rst attempt of formalizing the bridges between Membrane

Computing and Algebrai
 Topology presented re
ently by Cristinal et al. [8, 9, 10℄. Many

resear
h lines are open. In this paper, we have showed that the homologi
al groups to 2D

images 
an be obtained by using tissue-like P systems with 
atalyst, but a deeper study is

ne
essary. The resear
h lines related to the most suitable P system model for Homology

Theory problems or whi
h are the most relevant features of P systems whi
h 
an represent

the nature of the problems are open. From the Algebrai
 Topology point of view, the
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question is to �nd new representations and new problems whi
h 
an be expressed and dealt

with Membrane Computing te
hniques.

In future we wish to to use P systems to obtain more homologi
al information: homology

groups, spanning trees, homology gradient ve
tor �eld, et
. Until now, this homologi
al

information is typi
ally 
al
ulated using sequential algorithms or, in the best 
ase, par-

tially parallel algorithms. Then, we 
an use P systems in some resear
h �elds where the

homologi
al information is important: 2D, 3D and 4D Image, Roboti
s, et
.
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