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ABSTRACT
This chapter is devoted to the study of numerical NP-complete problems
in the framework of cellular systems with membranes, also called P
systems (P� un, 1998). The chapter presents efficient solutions to the subset
sum and the knapsack problems. These solutions are obtained via families
of P systems with the capability of generating an exponential working
space in polynomial time. A simulation tool for P systems, written in
Prolog, is also described. As an illustration of the use of this tool, the
chapter includes a session in the Prolog simulator implementing an
algorithm to solve one of the above problems.



116   Cordón-Franco, Gutiérrez-Naranjo, Pérez-Jiménez, & Riscos-Núñez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
The race to miniaturize silicon microchips to get more and more powerful

(smaller and faster) processors is expected to hit its own physical limits very
soon. This is why it is necessary to look for new unconventional models of
computation. One of the main research lines in this direction is focusing on
obtaining new computational paradigms inspired from various well-established
natural phenomena in physics, chemistry, and biology. This approach is
generically known as natural computing.

This chapter is part of the framework of one of these nature-inspired
models, namely, cellular computing with membranes. This model abstracts
from the structure and the functioning of a living cell. At the moment it is just at
the theoretical level, and it is not likely that it would be implemented in vivo in
the near future. However, some simulations in silico (i.e., software implemen-
tations) have been recently presented, written in various programming lan-
guages (Java, C, Scheme, etc.). Although they are not able to actually
implement the massive parallelism inherent to the original model, these ap-
proaches may be regarded as a proof of concept for this new computational
paradigm in dealing with hard problems and as a tool that is able to support both
research and pedagogical purposes.

The simulator presented here is written in Prolog, and it was created with
the aim of assisting in theoretical research in cellular computing. That is, it is not
intended to get an efficient implementation, but to be an intuitive tool that
provides faithful and detailed information about the computations taking place
within cellular systems. More interestingly, during the development of this tool
simulator, we realised that we needed new information that helped the formal
verification process of cellular computing.

From Nature to Membrane Computing
In recent years the research field generically named natural computing has

been under enormous scrutiny and development. This discipline has started off
the investigation of both mathematical models and technological requirements
for the implementation of bio-inspired computing paradigms. The research
within this field studies the way nature computes, conceiving and abstracting
new paradigms and computing models.

There are several areas within natural computing that are now well
established. Genetic algorithms (or, more generally, evolutionary comput-
ing), introduced by J. Holland (1975), uses some operations inspired by
natural evolution and selection in order to improve the process of finding a good
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solution in a huge set of feasible candidate solutions. Neural networks,
introduced by W.S. McCulloch and W. Pitts (1943), were inspired by the
interconnections and the functioning of neurons in the brain. Molecular
computing is a research area concerned with the use of molecules as biological
hardware to perform computations. DNA-based molecular computing was
born when L. Adleman (1994), published a solution to an instance of the
Hamiltonian path problem by manipulating DNA strands in a lab.

We should mention here splicing systems, a notion introduced by T. Head
(1987), which constituted the theoretical precursor of this type of computation.
This model is not oriented toward performing computations; it is just a
formalization of the DNA strand recombinations via restriction enzymes. DNA
computing is a subarea of molecular computing that uses DNA strands to take
advantage of the huge parallelism provided by the biochemical reactions
occurring in a DNA solution. Membrane computing was introduced by P� un
(1998), and it is inspired from the structure and the functioning of molecules and
cells as living organisms able to process and generate information. Indeed, the
cells contain different vesicles, each of them delimited by membranes leading
to a hierarchical structure. Inside of these vesicles some chemical reactions
involving biochemical substances take place, modifying the substances con-
tained in them, but also generating a flow of biochemical elements among
different compartments that compose the cell. These processes at the cellular
level can be interpreted as computing processes.

When designing a formal system that abstracts the structure and function-
ing of a cell, there are two ways to follow one can describe, in as much detail
as possible, the processes that take place, with the aim of getting a deeper
understanding about cells; or one can extract the main characteristics that
define a cell, with the intention of obtaining a new computing model — simple
but powerful — that allows solving problems that are especially hard in other
more classical models. This second approach was the one followed by P� un
through transition P systems (1998). Since then, a number of variants of P
systems have been considered in the literature (see P� un, 2002, for a compre-
hensive exposition).

The notion of P systems is directly derived from one of the fundamental
components of the cell, the biological membrane. It is well-known that all of the
internal compartments that form a cell (even the cell itself) are delimited by
membranes. Nevertheless, these membranes do not generate tight compart-
ments, but they allow biological substances to pass through them, most of the
time in a selective manner. It is inside these compartments that chemical
reactions take place.
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Basically, a P system consists of a set of membranes, usually organized in
a hierarchical structure (Figure 1). There exists a skin membrane, which
embraces all the others, separating the system from the external environment.
The membranes that do not contain other membranes inside are called
elementary membranes. The regions delimited by the membranes (that is, the
space bounded by a membrane and the immediately lower membranes, if there
are any) can contain multiple copies of certain objects. By means of fixed
evolution rules associated with the membranes (or regions), these objects can
evolve producing new objects, and can even travel from one region to an
adjacent one, crossing the membranes that separate the system’s compart-
ments. Transition P systems offer two levels of parallelism: on the one hand, the
rules within a membrane are applied simultaneously; on the other hand, these
operations are performed in parallel in all of the regions of the system.

Each region can be seen as a computing unit (a processor), having its own
data (biological substances) and its local program (given by biochemical
reactions). So, the cell can be seen as an unconventional computing device.

Observe that a cellular computing system with membranes is not described
through a sequence of basic operations capable of being sequenced over an
input data in order to obtain a final result. Instead, a P system is a device whose
execution, as for Turing machines, modifies the content of the distinct compo-
nents that form it until reaching, if so, a halting state, when the system halts. In
that sense, this execution could be called user-independent since, once the
system is constructed, it is not necessary, in principle, to guide it.

Figure 1. Structure of a P system
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Prolog
The evolution of a P system has a lot of similarities with the execution of

a production system based on rules and, because of that, it seems natural to
consider a declarative language to simulate cellular computations. In this work
we use Prolog (PROgrammation en LOGique) to design a tool for representing
and experimenting with P systems in an effective way.

Prolog is a programming language based on clausal logic together with a
mechanism of theorem proving (clause resolution). A Prolog program can be
regarded as a set of first-order sentences expressing facts and rules. Providing
a comprehensive description of the Prolog language is, of course, beyond the
scope of this work (a good starting point can be Bratko, 2001, or
www.afm.sbu.ac.uk/logic-prog/).

Organization of the Chapter
The chapter is organized as follows: the following section is devoted to

briefly describing the class of P systems used in this chapter. In the next section,
two families of P systems with active membranes that solve in linear time the
subset sum and knapsack problems, respectively, are presented and a detailed
overview of the computation is given.

The second part of the chapter is devoted to the simulation of the P
systems. One section is dedicated to our simulator for P systems with active
membranes. After a short presentation about the way of representing P systems
in Prolog, the algorithm of the inference engine of the simulator is briefly
presented. Finally, we include a subsection showing a Prolog session of the
simulator performing the evolution of an instance of the knapsack problem.
Interested readers can find more details about the way the simulator works in
Cordón Franco et al. (2004).

At the end of the chapter, some conclusions and final remarks are
discussed.

RECOGNIZER P SYSTEMS
WITH ACTIVE MEMBRANES

Membrane division is inspired from cell division, a well-known process in
biology. The replication is one of the most important functions of a cell. In ideal
circumstances, by division it is possible to obtain 2n cells in n steps. That is,
membrane division is able to produce an exponential working space in a
polynomial time. This is actually the key feature of P systems with active
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membranes (P� un, 2002). This characteristic of the P systems allows a
significant speed-up in the computation process. Indeed, Zandron (2001) has
shown that if P≠NP, then a deterministic P system without membrane division
is not able to solve an NP-complete problem in polynomial time (moreover, this
result was generalized in Pérez Jiménez et al. 2004). This speed-up can be
especially relevant when dealing with real world problems, such as optimization
algorithms in a factory or algorithms to decrypt an encoded message.

Next, following P� un, we introduce the definition of P systems with active
membranes and electrical charges. We consider only 2-division for elementary
membranes, and we do not use cooperation or priority among rules (P� un,
2002).

Definition
A P system with active membranes and electrical charges is a tupleΠ

 =(Γ, H, µ , w1, …, wq, R) where:

• Γ  is a finite alphabet (the working alphabet) whose elements are called
objects.

• H is a finite set of labels for membranes.
• µ  is a membrane structure of degree q, with labels from H. Membranes

have electrical charges (0, + or –).
• w1, …, wq are multisets over Γ  describing the multisets of objects initially

placed in membranes from µ .
• R is a finite set of developmental rules of the following types:

a) [l a→  v]l 
β, where a∈Γ , v∈Γ   *, β∈ {0, +, –} (object evolution

rules). Internal rules associated with membranes and depending on
the label and the charge of the membranes. An object a can evolve
to a string v without modifying the polarity of the membrane.

b) [l a ]l 
β→  b[l  ]l 

γ, where a, b∈ Γ , β , γ ∈ {0,+,–} (communication
rules). An object a can get out of a membrane labelled by l and with
electrical charge β, possibly transformed in a new one b and,
simultaneously, the polarization of the membrane can be changed to
γ ; its label remains the same.

c) a [l ]l
β→  [l b ]l 

γ, where a, b∈ Γ , β, γ ∈ {0, + ,–} (communication
rules). An object a can get into a membrane labelled by l and with
electrical charge β, possibly transformed in a new one b and,
simultaneously, the polarization of the membrane can be changed to
γ ; its label remains unchanged.
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d) [l a ]l 
β→  b, where a, b∈ Γ , β∈  {0, +, –}, l ≠ skin (dissolution rules).

An object a in a membrane labelled by l and with electrical charge β,
is transformed in a new one b and, simultaneously, in the presence of
the object a, the membrane is dissolved.

e) [l a ]l 
β→  [l b ]l 

γ[l c ]l 
δ, where a, b, c∈ Γ , β, γ, δ ∈ {0, +, –}, l ≠

skin (2-division rules for elementary membranes). In the presence of
an object a, the membrane labelled by l and with electrical charge β,
is divided into two membranes, eventually allowing independent
transformation for the element a on each one of the resulting
membranes (i.e., objects b and c, respectively), and possibly the two
membranes produced have different polarizations (i.e.,γ  and δ ,
respectively).

Let us observe that the rules of the system are associated with labels (for
example, the rule [l a→  v]l 

β is associated with the label l∈ H). According to
rules of type (e), it follows that there may exist membranes in a system with the
same label.

The rules are applied according to the following principles:

1. Their use, according to the general framework of membrane computing,
is in a maximal parallel way. In one step, each object in a membrane can
only be used by one rule (nondeterministically chosen when there are
several possibilities), but any object that can evolve by a rule of any form
must do it (with restrictions).

2. If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is
never dissolved.

3. All of the elements that are not involved in any of the rules available remain
unchanged.

4. If a division rule is applied to a membrane and, at the same time, some
objects inside that membrane evolve through a rule of type (a), then in the
two new copies of the membrane we introduce the result of the evolution.
That is, we suppose that first the evolution rules of type (a) are used,
changing the objects, and then the division is produced, so that in the two
new membranes we introduce copies of the changed objects.

5. The rules associated with the label l are used for all membranes with this
label, whether or not the membrane is an initial one or it was obtained
through a division process. At one step, different rules can be applied to
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different membranes with the same label, but one membrane can be the
subject of only one rule of types (b), (c), (d), or (e).

6. The skin membrane can be electrically charged, but can never divide.

Hence, the rules of type (a) are applied in parallel; that is, all objects that
can evolve by such rules must do it, while the rules of type (b), (c), (d), and (e)
are used sequentially, in the sense that one membrane can be used by, at most,
one rule of these types in each step (time unit).

In this work we deal with decision problems, and therefore for each
instance of the problem, we are only interested in a binary answer (yes or no).
In this line, there is an underlying similarity between solving a decision problem
and solving a recognition problem for a certain language; deciding if an instance
has an affirmative or negative solution is equivalent to deciding if a word belongs
to the language or not.

We present in this section an adaptation of P systems as devices that
accept languages and decide upon some properties. These are called recog-
nizer P systems. This adaptation will allow us to efficiently attack some NP-
complete problems.

Definition
A P system with input is a tuple (Π ,Σ , iΠ ), where:

• Π  is a P system, with working alphabet Γ, with q membranes labelled by
1,…, q, and initial multisets w1, …, wq associated with them.

• Σ  is an (input) alphabet strictly contained in Γ.
• The initial multisets are over Γ –Σ .
• iΠ is the label of a distinguished (input) membrane.

Let m be a multiset over Σ . The initial configuration of (Π , Σ , iΠ ) with input
m is (µ , w1, ..., wiΠ  ∪  m, ..., wq). We have thus defined a class of P systems
that receive an input before starting the computations. As we intend to consider
P systems as black boxes, where we introduce an input and wait for the answer
without knowing about the inner processes, we can agree that the output of the
computation will be collected outside the P system (through the application of
rules of type (b) in the skin membrane). This leads to P systems with input and
with external output, which is the variant in which our recognizer systems are
included.
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Definition
A recognizer P system with active membranes is a P system with active

membranes, with input and with external output, (Π , Σ , iΠ ), such that:

• The working alphabet contains two distinguished elements: yes, no.
• All of its computations halt.
• If C is a computation of Π , then either an object yes or an object no (but

not both) has to be sent out to the external environment, and only in the
last step of the computation.

Let Π  be a recognizer P system, and let C be a computation of Π . Let w
be the multiset of objects that have been sent out during the computation C. We
define then the function Output as Output(C) = yes if yes∈ w and Output(C)
= no otherwise.

We say that C is an accepting computation (respectively, rejecting
computation) if the object yes (respectively, no) appears in the external
environment associated with the corresponding halting configuration of C —
that is, if yes = Output(C) (respectively, no = Output(C)).

Let us note that a recognizer P system is a confluent system in the following
sense: every computation with the same initial configuration has the same
output.

LINEAR SOLUTIONS TO
NP-COMPLETE PROBLEMS

Most of the P systems from the current literature address questions from
a formal language theory angle, mainly concerned with universality results and
solutions to classical NP-complete problems such as SAT or validity (P� un,
2002). We are interested not only in solving new problems, but also in doing
so in an efficient way. This is why we have chosen P systems with active
membranes because, as mentioned in the previous section, it is a model that
allows fast solutions to hard problems. We shall focus on the following
numerical NP-complete decision problems:

• Subset sum problem. Given a finite set, A, a weight function, w: A→N,
and a constant k∈ N, determine whether or not there exists a subset B⊆
A such that w(B)=k.
It is clear that we can assume that k≤  w(A); otherwise, the solution is
always negative.
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• Decision knapsack problem (0/1 bounded version). Given a knapsack
of capacity k∈ N, a finite set, A, a weight function, w: A→N, a value
function, v: A→N, and a constant, c∈ N, decide whether or not there
exists a subset of A such that its weight does not exceed k and its value
is greater or equal than c.

We shall use tuples (n, (w1, ... , wn), k) and (n, (w1, ..., wn), (v1, ..., vn),
k, c) to represent the instances of the subset sum problem and the knapsack
problem, respectively, where n stands for the size of A = {a1, ..., an}, wi =
w(ai), vi = v(ai) and k and c are the constants mentioned above.

We shall solve these problems via brute-force algorithms, using recognizer
P systems with active membranes with 2-division but without dissolution rules.
The solution to these problems may be broken down into several stages:

• Generation stage: a single specific membrane for every subset of A is
generated via membrane division.

• Calculation stage: in each membrane the functions w for the subset sum
problem or w and v for the knapsack one are evaluated over the
associated subset. This stage will take place in parallel with the previous
one.

• Checking stage: in each membrane, it is checked whether or not the
conditions of the problem for each function are satisfied (w(B) = k for the
subset sum problem or w(B) ≤ k and v(B) ≥ c for the knapsack one). This
stage cannot start in a membrane before the previous ones are over in that
membrane.

• Output stage: when the previous stages have been completed in all
membranes, the system sends out the answer (yes or no) to the environ-
ment.

We shall introduce two families of recognizer P systems with active
membranes using 2-division solving in linear time the subset sum problem and
the knapsack problem.

The Subset Sum Problem
The P systems presented here have a recursive description with respect to

the two parameters n and k. In order to express the family using only one
parameter (i.e., Π Π Π Π Π = {Π (t) : t∈N}), we shall use the polynomial-time
computable bijection ‹ n, k› = ((n+k)(n+k+1)/2)+n.
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For each (n, k)∈ N2 we consider the P system (Π (‹ n, k› ), Σ (n, k), i(n,
k)), where the input alphabet is Σ (n, k) = {x1, ..., xn}, and Π (‹ n, k› ) = (Γ
(n, k), {e, s}, µ , ms, me, R) is defined as follows:

• Working alphabet: Γ  (n, k) = {e0 ,..., en, z0,..., z2n+2k+2, q, q0,..., q2k+1, x0,...,
xn, a0, a, � 0, � , yes, no, #, d+, d_}.

• Membrane structure: µ = [s [e ]e ]s
• Initial multisets: ms = z0 ; me = e0 �  k
• Input membrane: i(n, k) = e
• The evolution rules from the set R are listed below, classified into several

groups that are briefly commented:

(R1) [e ei ]e
0 → [e q ]e

– [e ei ]e
+, for i = 0, ..., n,

[e ei ]e
+ →[e ei+1 ]e

0 [e ei+1 ]e
+, for i = 0, ..., n–1

The goal of these rules is to generate one membrane for each subset of A.
When an object ei (i < n) is present in a neutrally charged membrane, we pick
the element ai for its associated subset and divide the membrane. In the new
membrane where q appears, no further elements will be added to the subset,
but the other new membrane must generate membranes for other possible
subsets that are obtained by adding elements of index i+1 or greater.

(R2) [e x0→ � 0 ]e
0 ; [e x0→λ ]e

+; [e xi→xi-1 ]e
+, for i = 1, ..., n.

At the beginning, in the input multiset that is introduced before starting the
computation, objects xj (with 1≤  j≤ n) encode the weights of the correspond-
ing elements of A: for each aj we have wj copies of xj. Together with elements
added to the subset associated with the membrane, these rules calculate the
weight of such a subset.

(R3) [e q→q0 ]e
– ;  [e �  0→a0 ]e

– ;  [e �  →a ]e
–.

The occurrence of the objects q0, a0, and a marks the beginning of the
checking stage. The multiplicity of object a0 encodes the weight of the associated
subset, and the constant k is represented by the number of objects a.

(R4) [e a0 ]e
– →[e ]e

0 # ; [e a ]e
0 →[e ]e

– #.
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We compare the number of occurrences of objects a and a0, sending them
out of the membrane alternatively and changing the polarity of the membrane
each time. The two rules of this group describe this checking loop.

(R5) [e q2j →q2j+1 ]e
– , for j = 0, ..., k ; [e q2j+1 →q2j+2 ]e

0 , for j = 0, ...,
k–1.

Objects qi, with 0 ≤ i ≤ 2k+1, act as a counter for the checking stage,
controlling the number of checking loops that take place.

(R6) [e q2k+1 ]e
–→[e ]e

0 yes; [e q2k+1 ]e
0→[e ]e

0 #; [e q2j+1 ]e
–→[e ]e

– #, for
j = 0, ..., k–1.

Finally, these rules use the information given by the counter to deal with the
different checking results — the same number of objects a0 and a, objects a0
in excess, or more a objects than a0.

(R7) [s zi→zi+1 ]s
0 , for i = 0, ..., 2n+2k+1; [s z2n+2k+2 →d+ d– ]s

0.

There is another counter in the skin membrane that waits for all membranes
to finish their checking stage and then releases objects d+ and d– in the skin.

(R8) [s d+ ]s
0→[s ]s

+ d+ ; [s yes ]s
+→[s ]s

0 yes ; [s d–→no ]s
+ ; [s no ]s

+→[s
]s

0 no.

The answering process is now activated: first the object d+ acts as a query,
changing the polarity of the skin membrane, and then any possible object yes
that may be present in the membrane is sent out (notice that there is no conflict
because in this moment there are no objects no present in the skin, since the rule
d–→no needs a positive charge to be applied).

Let us recall that the evolution rules of Π (‹ n, k› ) are defined in a recursive
manner from the instance u. Furthermore, the necessary resources to build Π
(‹ n, k› ) from a given instance u = (n, (w1 ,..., wn), k) are the following:

• Size of the alphabet: 4n+4k+17∈Θ  (n+k)
• Number of membranes: 2∈Θ  (1)
• |ms|+|me| = k+2∈Θ (k)
• Sum of the lengths of the rules: 35n+27k+110∈Θ  (n+k)
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At this point, we would like to remark that the values of the main
parameters that determine the size of an instance (n and k) are encoded in the
system in a unary fashion. Indeed, n is the number of different objects ei (i ≠  0)
that belong to the alphabet and k is the number of copies of �  that are present
in the inner membrane at the beginning of the computation.

Please note that the weights of the elements of A are also introduced in an
unary fashion, through the input multiset. However, these weights do not
influence the amount of resources needed to build the system, nor the upper
bound for the number of steps of any computation. Indeed, let us (informally)
calculate this bound.

There is no synchronization among membranes for the generation stage.
This stage starts in the first step of the computation for the unique inner
membrane of the system, and then the new membranes created by division will
evolve independently. However, it can be proved that after 2n+1 steps no
more divisions will take place in the system. The last membrane to leave the
generation stage is the one whose associated subset is B = A. It is clear that this
membrane is also the last one to finish the calculation stage (in the same step).
After an additional step is performed, for renaming purposes, the membrane
associated with A appears.

Next, in order to complete the third stage, and regardless of its associated
subset, each membrane has to perform at most 2k+2 steps (see rules (R4),
(R5), and (R6)). The exact number of steps is less if w(B) < k, but we are
looking for an upper bound. Therefore, after 2n+2k+4 steps all of the inner
membranes have completed the first three stages.

Now let us focus on the skin membrane for the last stage. The counter zj
is working from the very beginning of the computation, and in the (2n+2k+3)-
th step it evolves into the objects d– and d+. The latter object then leaves the
system, preparing the skin to send out the final answer (by changing the charge
of the skin to positive). In this moment no rules are applicable in any inner
membrane, and the only ones that can be applied are the ones from (R8). Thus,
the total number of steps will be 2n+2k+5, if the answer is affirmative, or
2n+2k+6, otherwise. In this way we can say that the family ΠΠΠΠΠ = (Π (t))t ∈ N
solves the subset sum problem in linear time.

Notice that the answer will be sound because all of the checking stages for
all of the membranes have been completed (and, thus, all of the subsets have
been tested) before checking the presence of an object yes in the skin
membrane by rules (R8).
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The Knapsack Problem (0/1 Bounded Version)
As we did in the previous subsection for the subset sum problem, let us

present now a family of P systems that solves the knapsack problem. We shall
not again discuss the groups of rules; the reader is encouraged to get through
the list of rules and to find out how the computation develops in this case.

Now the relevant parameters for the design of the P systems are n, k, and
c. We shall consider a computable polynomial bijection between N3 and N
(e.g., the one induced by the pairing function ‹ x, y, z› = ‹ x, ‹ y, z› › ).

The family presented here is ΠΠΠΠΠ  = {(Π (‹ n, k, c› ),Σ (n, k, c), i(n, k, c))
: (n, k, c)∈N3}, where the input alphabet is Σ (‹ nkc› ) = {x1, ..., xn, y1, ..., yn},
and the P system Π (‹ n, k, c›) = (Γ (n, k, c), {e, s}, µ, ms, me, R) is defined
as follows:

• Working alphabet: Γ(n, k, c) = {a0, a, � 0, � , b0, b, b0, b, b 0, b , d+, d–, e0,
... ,en, q, q0, ..., q2k+1, r, r0, ..., r2c+1, x0, ..., xn, y0, ..., yn, yes, no, z0, ...,
z2n+2k+2c+6, #}.

• Membrane structure: µ = [s [e ]e ]s.
• Initial multisets: ms = z0 ;  me = e0  � k bc.
• Input membrane: i(n, k, c) = e.
• Evolution rules, R, with the following rules:

[e ei ]e
0→[e q ]e

– [e ei ]e
+ , for i = 0,..., n.

[e ei ]e
+→[e ei+1 ]e

0 [e ei+1 ]e
+ , for i = 0,..., n–1.

[e x0→� 0 ]e
0 ; [e x0→λ]e

+ ; [e xi→xi-1 ]e
+ , for i = 1,..., n.

[e y0→b0 ]e
0 ; [e y0 →λ]e

+ ; [e yi→yi-1 ]e
+ , for i = 1,..., n.

[e q→r q0 ]e
– ; [e � 0→a0 ]e

– ; [e � →a ]e
– ; [e b0→b 0 ]e

– ; [e b→b  ]e
–.

[e a0 ]e
–→[e ]e

0 # ; [e a ]e
0→[e ]e

– #.

[e q2j→q2j+1 ]e
– , for j = 0,..., k ; [e q2j+1→q2j+2 ]e

0 , for j = 0,..., k–1.

[e q2j+1 ]e
–→[e ]e

+ # , for j = 0,..., k.

[e r→r0 ]e
+ ; [e b 0→b0 ]e

+ ; [e b →b ]e
+ ; [e a→λ ]e

+.

[e b0 ]e
+→[e ]e

0 # ; [e b ]e
0→[e ]e

+ #.
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[e r2j→r2j+1 ]e
+ , for j = 0,..., c ; [e r2j+1→r2j+2 ]e

0 , for j = 0,..., c–1.

[e r2c+1 ]e
+→[e ]e

0 yes ; [e r2c+1 ]e
0→[e ]e

0 yes.

[s zi→zi+1 ]s
0 , for i = 0,... ,2n+2k+2c+5 ;  [s z2n+2k+2c+6→d+ d– ]s

0.

[s d+ ]s
0→[s ]s

+ d+ ; [s yes ]s
+→[s ]s

0 yes ; [s d–→no ]s
+ ; [s no ]s

+→[s ]s
0 no.

Before continuing, we would like to stress the fact that the evolution rules
of  Π (‹ n, k, c› ) are described in a recursive manner from the instance u. Let
us also list, as we did in the previous section, the resources needed to build Π
(‹ n, k, c› ):

• Size of the alphabet: 5n+4k+4c+28∈Θ (n+k+c)
• Number of membranes: 2∈Θ (1)
• |ms|+|me| = k+c+2 ∈Θ (k+c)
• Sum of the lengths of the rules: 40n+27k+20c+193∈ Θ (n+k+c)

Keeping in mind what was discussed about  the unary encoding of the
parameters and the number of steps of the computations for the subset sum
problem, we say that the family presented in this section solves the knapsack
problem in linear time.

An Overview of the Computation
This section is devoted to explaining the way the P systems described

earlier work to solve numerical problems. As the solutions presented for the
subset sum and knapsack problems are very similar, we shall only discuss the
first.

First of all, recall that to solve an instance u = (n, (w1, ..., wn), k) of the
subset sum problem we take the P system Π(‹ n, k› ) with input x1

w1... xn
wn . We

shall, therefore, refer to such P systems with these inputs from now on.
The purpose of the first stage (generation) is to get a single relevant

membrane for each subset of A (the concept of relevant membrane is given
below). This means 2n different relevant membranes in all.

In the first step of the computation, the rule [e e0 ]e
0→[e q ]e

– [e e0 ]e
+ is

applied. Then the generation and calculation stages continue on in parallel,
following the instructions given for the rules (R1) and (R2). These two stages
do not end in a membrane as long as an object ei (with 0 ≤ i ≤ n) belongs to
it and its charge is positive or neutral.
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Let us introduce the concept of subset associated with an internal mem-
brane through the following recursive definition:

• The subset associated with the initial inner membrane is the empty one.
• When an object ej appears in a neutrally charged membrane (with j < n),

then the j-th element of A is selected and added up to the previous
associated subset. Once the stage is over, the associated subset will not
be modified anymore.

• When a division rule is applied, the two newborn membranes inherit the
associated subset from the original membrane.

We shall also refer to a membrane as associated with its corresponding
subset.

After a division rule [e ei ]e
0→[e q ]e

– [e ei ]e
+ is applied, the two new

membranes will behave in a quite different way. On the one hand, in the
negatively charged membrane (we have marked such membranes in Figure 2
with a circle), the two first stages end, and in the next step the rules in the group
(R3) are applied, renaming the objects to prepare for the third stage. This step
is a significant moment, so we shall call relevant membranes those that have a
negative charge and contain an object q0. A relevant membrane will not divide
anymore during the computation, and its associated subset will remain un-
changed. On the other hand, the positively charged membrane will continue in
the generation stage. This stage will give rise to membranes associated with
subsets that are obtained by adding elements of index i+1 or greater to the
current one. Note that if i = n, then the membrane cannot continue the
generation stage, as there are no rules working for an object en in a positively
charged membrane (see the membranes surrounded by a diamond in Figure 2).
It makes sense that these membranes get blocked, as it is not possible to add
elements of indices greater than n.

Thus, as the indices of objects ei never decrease, we notice that the
relevant membranes are generated in a sort of “lexicographic order”, in the
following sense: if the j-th element of A has already been added to the
associated subset, then no element with index lower than j will be added later
to the subset associated with that membrane nor to the subsets associated with
its descendants. We can check that every subset of A will get a single relevant
membrane associated with it, but these membranes are not generated alto-
gether simultaneously. Indeed, we can also check that the membrane corre-
sponding to the subset {ai1, ..., air} will arise in the (ir+r+2)-th step.
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As noted earlier, the first two stages are carried out in parallel. Indeed,
there is only a gap of one step of computation between the moment when an
element is added to the associated subset and the moment when the new weight
of the subset is updated. It can be proved that in a positively charged membrane
[e ]e

+ where the object ei occurs, the multiplicity of object x1 is equal to the
weight of element ai+1∈A. Thus, when in the next step we apply (simulta-
neously) the rules [e x1→x0 ]e

+, [e x0→λ]e
+ and [eei]e→[eei+1]e

0[eei+1]e
+, each child

membrane will contain exactly w(ai+1) occurrences of x0.
In the case of the neutrally charged child, the element ai+1 is added to the

associated subset and, simultaneously, the weight of this subset is updated
because all of the objects x0 mentioned above will be transformed into w(ai+1)
copies of  � 0. The situation is different for the positively charged child, where
the element ai+1 will not be added to the associated subset or to any of the
subsets associated with the descendant membranes. In this case, we are not
interested in the weight of the object ai+1, so all the objects x0 present in the
membrane are removed, while w(ai+2) new copies of x0 are created. This
procedure goes on until getting into a relevant membrane, and then the number
of occurrences of object a0 will encode exactly the weight of the associated
subset and the membrane will be ready to begin the next stage (checking).

Figure 2. Membrane generation for n = 3
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For example, for a1, after two steps of computation we can see that there
are three inner membranes in the configuration, and one of them is a neutrally
charged membrane where the object e1 occurs (see Figure 2). Thus, the
element a1 is added to the associated subset. It can be proven that there are,
at that moment, w1 copies of x0 in the membrane. So, in the next step, at the
same time as the membrane divides, w1 objects � 0 will be generated in the
membrane by the rules in (R2). These rules will also modify the indices of all the
objects xi, with i > 0, so that w2 copies of x0 will be ready in the membrane in
the next step.

The purpose of the rules in (R4) is to compare the multiplicities of objects
a0 and a — that is, to perform the checking stage for w. They will be counted
one by one alternatively, changing the membrane charge each time from
negative to neutral and vice versa. In the case of the subset sum problem, the
checking is successful if and only if w(B) = k, then after 2k steps of the checking
stage we will not have any objects a or a0 and the charge will be negative. The
counter qi controls if the number of checking steps is actually equal to 2k, via
the rules in (R6). Let us describe in Table 1 how the third stage works in a
membrane associated with a subset B of weight wB.

Please observe that the index of qi coincides with the total amount of
copies of a and a0 that have already been erased during the comparison stage.

If B = {ai1, ..., air} with ir ≠ n, then there are in the multiset some objects
xj for 1 ≤ j≤ n– ir, but they are irrelevant for this stage and, therefore, they are
omitted.

If the number wB of objects a0 is equal to the number k of objects a, then
the result of this stage is successful. If the number of objects a0 is greater than
k, then every time that the rule [eq2j→q2j+1]e

– is applied (that is, for j = 0, ..., k),
the rule [e a0 ]e

–→[e ]e
0 # will also be applied. Thus, we can never find a situation

Table 1.

Multiset Charge Parity of qi 
q0 a0

wB ak − EVEN 
q1 a0

wB−1 ak 0 ODD 
q2 a0

wB−1 ak−1 − EVEN 
... ... ... 
q2j a0

wB−j ak−j − EVEN 
q2j+1 a0

wB−(j+1) ak−j 0 ODD 
... ... ... 
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in which the index of the counter qi is an odd number (namely, i = 2k+1) and
the charge is negative. This means that the rule that sends out an object yes to
the skin can never be applied, and even more, the membrane gets blocked (it
will not evolve anymore during the computation).

Finally, rules in (R7) and (R8) are associated with the skin membrane and
complete the output stage. The counter zi waits before releasing the objects d+
and d– to avoid the answer being sent out before all of the inner membranes have
finished their checking stages (or have been blocked). The generation and
calculation stages will last at most 2n+2 steps; after those steps, one transition
step is performed (rules in (R3)), and the checking process for w is bounded
by 2k+1. This makes 2n+2k+2 steps in all. After all of these steps are
performed, the output process is activated.

In that moment, the skin will be neutrally charged and will contain the
objects d+ and d–. Furthermore, some objects yes will be present in the skin if
and only if the checking stages have been successful in at least one inner
membrane.

The output stage then begins. First, the object d+ is sent out, giving positive
charge to the skin. Then the object d– evolves to no inside the skin and,
simultaneously, if any object yes is present in the skin, it will be sent out of the
system, giving neutral charge to the skin and making the system stop (in
particular, further evolution of object no is avoided).

If none of the membranes has successfully passed its checking stage, then
any object yes will not be present in the skin membrane when the output stage
begins. Thus, after generating an object no, the skin membrane will still have a
positive charge and will be sent out. In that moment, the system halts.

A PROLOG IMPLEMENTATION FOR P
SYSTEMS WITH ACTIVE MEMBRANES
Choosing a programming language for implementing a model of computa-

tion is not an easy decision. It is necessary to analyze the main difficulties to
develop such an implementation and look for a programming language with the
adequate features to solve them. As far as our model is concerned, formalizing
a configuration of a P system involves dealing with complex data structures. We
have to both represent the membrane structure of the P system and make
explicit the content of every membrane. Hence, the chosen language has to be
expressive enough to handle symbolic knowledge in a natural way.
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Moreover, the rules of a P system are nearer to a production system than
to a list of instructions to be executed in a sequential way. Thus, it seems natural
to choose a declarative language (the programmer specifies what is to be
computed) rather than an imperative one (the programmer specifies how
something is to be computed).

Prolog is expressive enough to handle symbolic knowledge in a quite
natural way and has the ability to evolve different configurations following a set
of rules in a declarative style. Aside from the based-tree data structure and the
use of infix operators defined ad hoc by the programmer, it allows us to imitate
natural language, and the user can follow the evolution of the system without any
knowledge of Prolog. We refer to the authors’ Web page for a detailed
description of the simulator (the Prolog files of the simulator, together with a
user manual, are freely available by e-mail from the authors and will soon be
found at www.gcn.us.es).

In the current version, our Prolog simulator for P systems with active
membranes consists of two different parts, as shown in Figure 3. The first part
is an inference engine. This is a Prolog program that takes as input an initial
configuration and the set of rules of a P system and carries out the evolution
process associated with the system. Let us emphasize that the inference engine
is completely general; that is, it does not depend on the considered P system
at all. The second part of the simulator (the program generator.pl) provides a
tool to automatically build the initial configurations and the sets of rules for
instances of some well-known NP-complete problems (e.g., SAT, validity,
subset sum, and knapsack problems).

Our simulator looks in the ordered set of rules for all those that are to be
applied, carries out the corresponding evolution step, and deterministically
obtains a unique new configuration. Consequently, our simulator only ensures
a correct simulation of evolutions of deterministic or confluent P systems.
Nevertheless, most of the usual algorithms that solve interesting problems are
covered.

In what follows, we describe the two parts of our P system simulator (the
inference engine and the program generator.pl). For the sake of simplicity,
we shall skip technical details.

Configuration Representation
The first decision related to the design of the simulator is the way to

represent the knowledge domain. The problem of representing a model into a
programming language is a universal question in computer science, but in this
case it has a double face: on one hand, the choice has to allow an efficient
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treatment of the data from a programmer’s point of view, and on the other hand,
the design has to be intuitive enough to be understood by users, regardless of
their knowledge of Prolog. These questions lead us to define several infix
operators that keep the logical notation of Prolog and allow the reading of the
information in English-like sentences. The usual notation for membranes and
rules by using subscripts and superscripts has been replaced by usual, plain-
text representation in English-like Prolog code.

In order to specify a configuration for a P system with active membranes,
it is necessary to explicitly represent the membrane structure and the content
of every membrane present in this structure. This involves representing the
label, electrical charge, and position of each membrane as well as its content.
Moreover, we shall also keep track of the current step of the computation.

In our model, the configuration of a P system in each step of the evolution
is a set of one-literal clauses, each of them representing one alive membrane
(a membrane that is still part of the current system and is not yet dissolved;
consequently, it  disappears for the next step of computation). Hence, each
clause will show a label, an electrical charge, a position, a multiset of objects,
and the current step of the computation, as well as the P system to which this
membrane belongs.

To achieve this step, the operators ::, ec, at, with and at_time are used.
Then, to denote that in the t-th step of its evolution the P system P has a

Figure 3. The Prolog simulator
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membrane at position [pos] with label h, polarization α, and m as the multiset,
we shall write:

P :: h ec α at [pos] with m at_time t

Rules Description
Next we present the general form of the different types of rules of a P

system with active membranes (where P is the name of the current P system):

a) [l a →  v]l
α   (where v = v1 … vn)

P rule a evolves_to [v1,...,vn] in l ec α.

b) [l a ]l
α → b[l  ]l

β

P rule a inside_of l ec α sends_out b of l ec β.

c) a [l ]l
α →  [l b ]l

β

P rule a out_of l ec α sends_in b of l ec β.

d) [l a ]l
α → b

P rule a inside_of l ec α dissolves_and_sends_out b.

e) [1 a ]l
α → [l b ]1

β [l c ]1
γ,

P rule a inside_of l ec α divides_into

    b inside_of l ec β and c inside_of l ec γ.

The Algorithm
The Prolog algorithm to simulate the evolution of a P system works in quite

naturally. The input of the program is the initial configuration of the membranes,
which is represented as a set of sentences (one-literal clauses with predicate
symbol ** and all of them at_time 0) and an appropriate set of rules.

Step 1.  Initialization. At the beginning, all membranes are set to applicable,
and for each membrane, their objects are split into two multisets: one usable
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multiset, containing all of the objects of the membrane, and one used multiset,
which is initially empty.

Step 2.  Transition. If an applicable membrane enabling the associated rules
to be applied exists, then these rules are applied in the following way:

(a)-stage. At this stage, only rules of type (a) are checked one by one. If an
object triggers the rule, then it is removed from usable to prevent one object
being used by two different rules at the same step. The multiset resulting from
the application of the rule is added to used. After this step, the membrane
remains applicable and new evolution rules can be applied. This stage ends
when no more rules of type (a) can be applied.

Non-(a)-stage. At this stage, only one rule of types (b), (c), (d), or (e) can be
applied. Let us remember that this simulation works with deterministic or
confluent P systems. The action depends on the type of rule to be applied:

• Send out rule. The element that triggers the rule is removed from the
usable multiset and the new one is added to the used multiset of the father
membrane. The membrane changes to not applicable mode. If the
element is sent out of the skin, then it is marked with the outside label.

• Send in rule. This rule  is the opposite of the send out rule. The element
that triggers the rule is removed from the usable multiset in the father
membrane and the new one is added to the used multiset. The membrane
changes to not applicable mode.

• Dissolution rule. The element that triggers the rule is removed from the
usable multiset and the new element obtained, together with the rest of the
elements of the membrane, is added to the used multiset of the father
membrane. The membranes inside the dissolved membranes become
children of the father membrane.

• Division rule. The element that triggers the rule is removed from the
usable multiset and the division creates two new membranes in not
applicable mode. One of them keeps the original position and the second
one gets a new position. The current version of the simulator can also deal
with 2-division rules of nonelementary membranes, although this feature
falls out of the scope of this work.

End step. When no more rules can be applied to membranes in applicable
mode, a new configuration (with at_time incremented by 1) is stored. At this
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moment no membrane is into applicable or not applicable mode. These modes
only make sense during the evolution step. Now the P system is ready for a new
step of the evolution.

Step 3.  End of computation. The evolution of the P system finishes when there
are no rules to be applied.

A PROLOG SESSION
In this section we present a brief description of how to use the simulator,

which consists of several Prolog files that are designed to run on SWI-Prolog
5.2.0, or above, available from www.swi-prolog.org.

In the sequel a session for one instance of the knapsack problem is shown.
We consider a set A = {a1, a2, a3, a4} (n = 4), with weights w(a1) = 3, w(a2)
= 2, w(a3) = 3, and w(a4) = 1, and values v(a1) = 1, v(a2) = 3, v(a3) = 3, and
v(a4) = 2. The question is to decide whether or not there exists B⊆ A such that
w(B) ≤ 3 (k = 3) and v(B) ≥ 4 (c = 4). According to the presentation above,
the P system that solves this instance is Π (‹4, 3, 4›) with input
x1

3x2
2x3

3x4y1y2
3y3

3y4
2.

The following two Prolog facts allow us to represent this initial configura-
tion (we have chosen the name p1 to denote the P system that solves this
instance of the problem). Note that we use ASCII symbols to represent the
objects of the alphabet:  a_ stands for � , b0g stands for b , q_ stands for r, and
so on.

p1 :: s ec 0 at [] with [z0] at_time 0.
p1 :: e ec 0 at[1] with [e0, a_, a_, a_, b_, b_, b_, b_,

x1, x1, x1, x2, x2, x3, x3, x3,
x4, y1, y2, y2, y2, y3, y3, y3,
y4, y4] at_time 0.

The simulator automatically generates these symbols from the data intro-
duced by the user and stores them in a text file. It may be observed that the
multiplicities of the objects xj and yj correspond to the weights and values of the
elements aj∈A, respectively. Also, there are three copies of a_ (k = 3) and four
copies of b_ (c = 4).

The simulator also generates the set of rules associated with the instance
of the problem. This generation is completed by instantiating several schemes
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of rules to the concrete values of the parameters. This produces a text file
containing the rules that can easily be edited, modified, or reloaded by the user.
The set of rules only depends on the parameters n, k, and c. Consequently, if
we want to solve several instances with the same parameters, we only need to
generate the set of rules once. In this example, we have obtained 89 rules. Some
of them are listed in the appendix at the end of this chapter.

To start with the simulation of the evolution of the P system p1 from the time
0, we enter the following command: evolve(p1,0). The simulator returns the
configuration at time 1 and the set of used rules indicating how many times they
have been used. Moreover, if the skin sends out any object, then this will be
reported to the user. The multisets are represented as lists of pairs obj-n, where
obj is an object and n is the multiplicity of obj in the multiset.

?- evolve(p1,0).

p1 :: s ec 0 at [] with [z1-1] at_time 1
p1 :: e ec -1 at [1] with  [a_-3, b_-4, q-1, x1-3, x2-2, x3-3,

x4-1, y1-1, y2-3, y3-3, y4-2] at_time 1
p1 :: e ec 1 at [2] with [a_-3, b_-4, e0-1, x1-3, x2-2, x3-3,

 x4-1, y1-1, y2-3, y3-3, y4-2] at_time 1

Used rules in the step 1:
  * The rule 1 has been used only once
  * The rule 57 has been used only once
Yes.

In this step only rules 1 and 57 have been applied. Rule 1 is a division rule,
the membrane labeled by e at position [1] divides into two membranes that are
placed at positions [1] and [2], rule 57 is an evolution rule, and z0 evolves to z1
in the skin membrane. To obtain the next configuration in the evolution of p1,
now we type:

?- evolve(p1,1).

p1 :: s ec 0 at [] with [z2-1] at_time 2
p1 :: e ec -1 at [1] with [a-3, bg-4, q0-1, q_-1, x1-3,

x2-2, x3-3, x4-1, y1-1, y2-3, y3-3, y4-2] at_time 2
p1 :: e ec 0 at [2] with [a_-3, b_-4, e1-1, x0-3, x1-2,

x2-3, x3-1, y0-1, y1-3, y2-3, y3-2] at_time 2
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p1 :: e ec 1 at [3] with [a_-3, b_-4, e1-1, x0-3, x1-2,
x2-3, x3-1, y0-1, y1-3, y2-3, y3-2] at_time 2

Used rules in the step 2:
  * The rule 6 has been used only once
  * The rule 14 has been used 3 times
  * The rule 15 has been used 2 times

 ...
  * The rule 22 has been used only once
  * The rule 25 has been used 4 times
  * The rule 26 has been used 3 times
  * The rule 58 has been used only once

In this step the first relevant membrane, associated with the empty set,
appears at position [1]. The membrane at position [2] will continue dividing to
generate new membranes. All of the subsets associated with the membrane’s
descendant membranes will contain the element a1. On the other hand, the
membrane at position [3] is responsible of the membranes corresponding to all
the nonempty subsets that do not contain a1. Notice that rules from (R2) have
been applied (see appendix). That is, the calculation stage has already begun.

The purpose of the first two stages of the system is to generate a single
relevant membrane for each subset of A (i.e., 2n = 24 = 16 relevant membranes
in all) and, in parallel, to calculate the weight and the value of such subsets.
Other nonrelevant membranes are generated as well, due to technical reasons.
These membranes are generated in the first 2n+2 = 10 steps of the computation.

We can go directly to the configuration at time 10, skipping the interme-
diate steps, by typing the following command:

?- configuration(p1,10).

...
p1 :: e ec -1 at [12] with [a-2, a0-2, b0g-5, bg-4, q2-1, q_-1]

at_time 10
...

p1 :: e ec -1 at [24] with [a-3, a0-9, b0g-9, bg-4, q0-1, q_-1]
  at_time 10

...
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Observe that the relevant membrane associated with the total subset
appears at position [24]. It is the last relevant membrane to be generated; that
is, no more division will take place in the rest of the computation and no new
relevant membranes will appear.

Let us focus on the membrane at position [12]. This membrane encodes the
subset {a2, a4}, which is the only solution for the instance considered in our
example. Two steps of the checking stage for w have already been carried out
(note the counter q2). In the next steps the membranes perform their checking
stages (for w and for v) that mainly consist of applying rules 27 and 28 (for w)
and rules 44 and 45 (for v). Let us focus now on the output stage.

?- configuration(p1,26).

p1 :: s ec 0 at [] with [# -127, z26-1] at_time 26
           ...
p1 :: e ec 0 at [12] with [q_9-1] at_time 26
           ...

The inner membrane at position [12] is now ready to send an object yes
to the skin membrane (see rule 56 in the appendix).

?- evolve(p1,26).

p1 :: s ec 0 at [] with [# -127, yes-1, z27-1] at_time 27
...

p1 :: e ec 0 at [12] with [] at_time 27
...

Used rules in the step 27:
  * The rule 56 has been used only once
  * The rule 83 has been used only once

Due to technical reasons, the counter in the skin will wait two more steps
before releasing the special objects d+ and d�.

?- configuration(p1,29).

p1 :: s ec 0 at [] with [# -127, d1-1, d2-1, yes-1] at_time 29
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In this step all inner processes are over. The only object that evolves is z28
(see the set of rules (R11) in the appendix, noting that 28 = 2n+2k+2c+6).

?- evolve(p1,29).

p1 :: s ec 1 at [] with [# -127, d2-1, yes-1] at_time 30
...

Used rules in the step 30:
* The rule 86 has been used only once

The P-system has sent out d1 at step 30

In this step the object d1 leaves the system and the skin gets a positive
charge.

?- evolve(p1,30).

p1 :: s ec 0 at [] with [# -127, no-1] at_time 31
...

Used rules in the step 31:
 * The rule 87 has been used only once
 * The rule 88 has been used only once

The P-system has sent out d1 at step 30
The P-system has sent out yes at step 31

In this step, the object yes is sent out of the system. To check the system
we try to evolve one more time, though this is a halting configuration.

?- evolve(p1,31).
No more evolution!
The P-system p1 has already reached a halting
configuration at step 31

Statistics
Figure 4 shows the evolution along the computation of several indices: the

number of membranes, the total number of objects in the P system, and the
number of applications of rules that take place. Note that at step nine, the
maximum number of membranes is reached, which corresponds to the maxi-
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mum number of objects in the P system. Recall that the generation stage ends
at time 2n+1 = 9. From this point, the number of membranes remains constant
because no membrane is divided or dissolved, but the number of objects in the
P system begins to decrease. Note also that after objects are renamed
(calculation stage), the number of applied rules decreases significantly since in
the next stage (checking for w) only two rules are applied in each relevant
membrane.

In the last steps of the computation, the total number of objects remains
almost unchanged because the checking stages are finished in all membranes
but one.

The reader is invited to run simulations for other instances of the problem
or to test her or his own approach involving P systems with active membranes.

This simulator is not intended to be an efficient software, but a useful
assistant that helps the formal verifications of cellular systems. In our example
(n = 4, c = 4, k = 3), with an AMD Athlon™ processor at 1.8 GHz and 480
MB RAM, the simulation took 12.23 seconds to perform 8,045,941 Prolog
inferences in order to simulate 31 cellular steps.

FINAL REMARKS
The first cellular solutions to NP-complete problems using P systems with

no input membrane have been described (see P� un, 2001; Zandron, 2001). In
such circumstances, specific P systems are built associated with each particular

Figure 4. Statistics of the simulation
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instance of the problem to solve. In this chapter, P systems with input are
designed, each of them allowing the process of a set of instances of the problem
(all those that have the same size, with respect to a predefined criterion).

Although P systems are in general nondeterministic devices, in this chapter
we consider recognizer P systems, which provide the same output for all of the
computations associated with the same input data. Thus, it is not relevant which
branch of the computation is actually chosen.

In this framework, we built solutions to some well-known numerical NP-
complete decision problems: the subset sum and the knapsack problems. An
implementation of these cellular solutions, using our Prolog simulator, is also
discussed.

The presented software can be used to deal with other solutions to NP-
complete problems that use active membranes. It suffices to provide the
auxiliary generator tool included in our simulator with the appropriate skeleton
of the solution (or, alternatively, to introduce ex profeso the system to be
simulated).

Although it is useful on many counts, the presented simulator is not efficient
from the computational point of view. First, it is designed to run on a single
sequential processor. Second, the instances of the problem are codified in 1-
ary form, via multisets. It seems rather natural that one of the future improve-
ments of the simulator will be adapting the tool to parallel Prolog.

Nevertheless, the current simulator has proven to be very useful for
debugging the process of formal verification of cellular designs. And since it
supplies a comprehensive description of P system evolutions, we believe that
it is quite suitable for educational purposes. In this direction, we are currently
working on developing a user-friendly variant with a graphical interface.
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APPENDIX
In what follows, we show some of the rules generated by the simulator for

the instance of the problem considered. Note that the number after ** is the
ordinal of the corresponding rule.

% Set (R1)
p1 rule e0 inside_of e ec 0 divides_into q inside_of e ec -1

and e0 inside_of e ec 1 ** 1.
            ...
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p1 rule e4 inside_of e ec 0 divides_into q inside_of e ec -1
and e4 inside_of e ec 1 ** 5.

p1 rule e0 inside_of e ec 1 divides_into e1 inside_of e ec 0
and e1 inside_of e ec 1 ** 6.

            ...
p1 rule e3 inside_of e ec 1 divides_into e4 inside_of e ec 0

and e4 inside_of e ec 1 ** 9.

% Set (R2)
p1 rule x0 evolves_to [a0_] in e ec 0 ** 10.

p1 rule y0 evolves_to [b0_] in e ec 0 ** 11.

p1 rule x0 evolves_to [] in e ec 1 ** 12.

p1 rule y0 evolves_to [] in e ec 1 ** 13.

p1 rule x1 evolves_to [x0] in e ec 1 ** 14.
             ...
p1 rule x4 evolves_to [x3] in e ec 1 ** 17.

p1 rule y1 evolves_to [y0] in e ec 1 ** 18.
            ...
p1 rule y4 evolves_to [y3] in e ec 1 ** 21.

% Set (R3)
p1 rule q evolves_to [q_, q0] in e ec -1 ** 22.

p1 rule b0_ evolves_to [b0g] in e ec -1 ** 23.

p1 rule a0_ evolves_to [a0] in e ec -1 ** 24.

p1 rule b_ evolves_to [bg] in e ec -1 ** 25.

p1 rule a_ evolves_to [a] in e ec -1 ** 26.
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% Set (R4)
p1 rule a0 inside_of e ec -1 sends_out # of e ec 0 ** 27.

p1 rule a inside_of e ec 0 sends_out # of e ec -1 ** 28.

% Set (R5)
p1 rule q0 evolves_to [q1] in e ec -1 ** 29.

p1 rule q2 evolves_to [q3] in e ec -1 ** 30.
            ...
p1 rule q1 evolves_to [q2] in e ec 0 ** 33.

p1 rule q3 evolves_to [q4] in e ec 0 ** 34.

p1 rule q5 evolves_to [q6] in e ec 0 ** 35.

% Set (R6)
p1 rule q1 inside_of e ec -1 sends_out # of e ec 1 ** 36.

p1 rule q3 inside_of e ec -1 sends_out # of e ec 1 ** 37.

p1 rule q5 inside_of e ec -1 sends_out # of e ec 1 ** 38.

p1 rule q7 inside_of e ec -1 sends_out # of e ec 1 ** 39.

% Set (R7)
p1 rule q_ evolves_to [q_0] in e ec 1 ** 40.

p1 rule b0g evolves_to [b0] in e ec 1 ** 41.

p1 rule bg evolves_to [b] in e ec 1 ** 42.

p1 rule a evolves_to [] in e ec 1 ** 43.

% Set (R8)
p1 rule b0 inside_of e ec 1 sends_out # of e ec 0 ** 44.
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p1 rule b inside_of e ec 0 sends_out # of e ec 1 ** 45.

% Set (R9)
p1 rule q_0 evolves_to [q_1] in e ec 1 ** 46.

p1 rule q_2 evolves_to [q_3] in e ec 1 ** 47.

p1 rule q_4 evolves_to [q_5] in e ec 1 ** 48.

p1 rule q_6 evolves_to [q_7] in e ec 1 ** 49.

p1 rule q_8 evolves_to [q_9] in e ec 1 ** 50.

p1 rule q_1 evolves_to [q_2] in e ec 0 ** 51.

p1 rule q_3 evolves_to [q_4] in e ec 0 ** 52.

p1 rule q_5 evolves_to [q_6] in e ec 0 ** 53.

p1 rule q_7 evolves_to [q_8] in e ec 0 ** 54.

% Set (R10)
p1 rule q_9 inside_of e ec 1 sends_out yes of e ec 0 ** 55.

p1 rule q_9 inside_of e ec 0 sends_out yes of e ec 0 ** 56.

% Set (R11)
p1 rule z0 evolves_to [z1] in s ec 0 ** 57.

p1 rule z1 evolves_to [z2] in s ec 0 ** 58.
            ...
p1 rule z26 evolves_to [z27] in s ec 0 ** 83.

p1 rule z27 evolves_to [z28] in s ec 0 ** 84.

p1 rule z28 evolves_to [d1, d2] in s ec 0 ** 85.

% Set (R12)
p1 rule d1 inside_of s ec 0 sends_out d1 of s ec 1 ** 86.
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p1 rule d2 evolves_to [no] in s ec 1 ** 87.

p1 rule yes inside_of s ec 1 sends_out yes of s ec 0 ** 88.

p1 rule no inside_of s ec 1 sends_out no of s ec 0 ** 89.


