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Abstract. In the present work the influence at micromechanical scale of thermal residual stresses, 

originated in the cooling down associated to the curing process of fibrous composites, on inter-

fibre failure under transverse tension is studied. In particular, the effect of the presence of thermal 

residual stresses on the appearance of the first debonds is discussed analytically, whereas later 

steps of the mechanism of damage, i.e. the growth of interface cracks and their kinking towards 

the matrix, are analysed by means of a single fibre model and making use of the Boundary Ele-

ment Method. The results are evaluated applying Interfacial Fracture Mechanics concepts. The 

conclusions obtained predict, at least in the case of dilute fibre packing, a protective effect of 

thermal residual stresses against failure initiation, the morphology of the damage not being sig-

nificantly affected in comparison with the case in which these stresses are not considered. Ex-

perimental tests are carried out, the results agreeing with the conclusions of the numerical 

analysis. 

Keywords: B. Curing; B. Debonding; C. Modelling; C. Transverse cracking; Micromechanics.  

 

1. INTRODUCTION 

The final stage of the manufacturing process of fibrous composites materials is the curing of the 

material. The differences in free contraction between the fibres and the matrix cause, during this 

stage of the process, the appearance of thermal residual stresses. These residual stresses are 

generated at micromechanical level for unidirectional and multidirectional laminates, and also at 

macro/meso-mechanical level for multidirectional laminates. Additionally, extra residual stresses 

may arise in thermosetting matrix composites from chemical shrinkage of the matrix as it cures. 

The presence of these stresses may affect the strength of the laminate and also have influence 

on the development of failure mechanisms in the material. 

mailto:correa@esi.us.es
mailto:mantic@esi.us.es
http://ees.elsevier.com/cste/viewRCResults.aspx?pdf=1&docID=9052&rev=1&fileID=234034&msid={9771AF63-7D41-4F00-A459-35D4F248D430}


  

The study of residual stresses at macro- and meso-mechanical level is widely developed, there 

being several methods able to quantify them, Andersson et al. [1]. By contrast, at micromechani-

cal level, the measurement and prediction of residual stresses presents more difficulties, due to 

the high complexity of the material at this scale. If knowledge of the mechanisms of failure at mi-

cromechanical level is considered to be fundamental for the development of failure criteria able to 

perform a more complete diagnosis of the appearance of these mechanisms, París [2], the analy-

sis of the influence of curing stresses at this scale then becomes highly relevant.  

Many authors have tried to quantify the effect of residual curing stresses of fibre reinforced 

composites leading to relevant conclusions. Particularly, Crasto and Kim [3] measured the differ-

ences in free expansion of 0º/90º laminates cured at different temperatures, and later in [4] ana-

lysed, for the case of unidirectional laminates, the influence of curing time on the generation of 

residual stresses. Huang and Young [5] carried out several fragmentation tests comparing inter-

facial shear strength between materials cured at 80ºC and at room temperature, finding higher 

values of interfacial shear strength for the material cured at 80ºC. De Kok and Meijer [6] per-

formed transverse loading tests at temperature different from the room one, showing that residual 

stresses have a protective effect against failure, this effect  increasing with fibre content (accord-

ing to [7] these results were already presented by De Kok in his doctoral dissertation in 1995) .  

The particular case of inter-fibre failure (also known as matrix failure) under transverse tension 

has already been the object of several micromechanical studies by the authors, París et al. [8, 9], 

for single fibre case or dilute packing. These studies have made it possible to understand the ini-

tiation of failure at the micromechanical scale as well as its later progress, which leads to the 

macro-failure of the material, without considering the presence of residual curing stresses. The 

results obtained assumed that crack nucleation is controlled by the radial stress generated be-

tween fibre and matrix and showed that the maximum values are placed, in the single fibre case 

(or dilute packing), at the angles 0º and 180º with respect to the tension applied, Fig. 1a. Once a 

small debonding crack is supposed to appear (in particular, one of 10º length centred at 0º was 

assumed, which later proved to be in accordance with the range predicted by Mantič [10]), single-

fibre BEM models, similar to that shown in Fig. 2a, were employed for the characterisation of 

crack growth. The results produced by the BEM model, analysed following the energetic ap-

proach of Interfacial Fracture Mechanics, predicted an unstable growth of the interface crack up 

to a position characterized by debonding angle º70º60 d , Fig. 1b. The study also showed that 

the end of unstable growth coincides with the development of a physically relevant contact zone 
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at the crack tip. The third step of the analysis, Fig. 1c, ascertained the condition under which the 

interface crack would find it easier to kink into the matrix than to continue growing along the inter-

face, a problem studied with the BEM model showed in Fig. 2b. The coalescence of these kinked 

cracks caused the appearance of a macromechanical failure which, as expected and confirmed 

from the experiments [9], was oriented perpendicularly to the external load. 

Some authors have employed FEM models to numerically analyse the role of residual stresses 

in transverse failure. In this sense, Asp et al. [7] performed FEM analyses to study the transverse 

failure, finding that the presence of residual stresses delays the initiation of failure in composites 

with a high fibre content. Fiedler et al. [11] concluded that thermal residual stresses lead to an 

increase in transverse strength with the local fibre-volume fraction. Zhao et al. [12] claimed that 

for tension dominated transverse loading, residual stress could be detrimental or beneficial de-

pending on the material strength. Specifically, residual stresses seem to be detrimental for rela-

tively low resin strength and beneficial for relatively high resin strength. Hojo et al. [13] performed 

FEM analyses for two dimensional image-based models, concluding that microscopic thermal 

residual stresses contribute greatly to the increase in transverse strength. Maligno et al. [14] stud-

ied the effect of residual stresses on uniaxial transverse failure using a non-uniform cell model, 

finding that they provide a general beneficial effect. 

The present work is a continuation of the previous studies of the authors related to inter-fibre 

failure under transverse tension [8, 9]. The objective now is to analyse the influence of thermal 

residual stresses originated by the cooling down associated to the curing process on the conclu-

sions obtained so far about the different micromechanical phases of mechanism of damage. The 

numerical predictions derived from Boundary Element analyses are validated with macrome-

chanical experimental tests.  

Particularly, in Section 2 the main features of the BEM model employed as well as the materi-

als properties are presented. Sections 3, 4 and 5 are referred to the study of the initiation and 

growth of a crack at the interface between a fibre and the matrix surrounding it, subjected to the 

combined action of an external traction and the thermal decrease associated to the cooling down 

of a curing process. Section 6 includes the results associated to the experimental tests carried 

out on specimens subjected to different curing cycles. Finally, in Section 7, a discussion on the 

connection between numerical and experimental results is presented. 

 

 



  

2. SINGLE FIBRE MODEL 

The numerical study has been carried out using a tool based on BEM, París and Cañas [15], 

that makes it possible to perform the numerical analysis of plane elastic problems considering 

contact and interface cracks, in a similar way to that described in Blázquez et al. [16] for planar 

problems and Graciani et al. [17] for axisymmetric problems. Two BEM models are used in this 

analysis. The basic model employed is shown in Fig. 2a and represents the case of a crack which, 

under the plain strain hypothesis, grows along the interface symmetrically to axis 2 (Section 4). 

Due to this symmetry it is only necessary to study one half of the problem. As an indication, the 

number of boundary elements modelling the fibre is 83 and that corresponding to the matrix is 

115. A strongly refined BEM mesh toward the crack tip is applied. The size of the smallest ele-

ment located at the crack tip is a7107  , a  being the fibre radius, in order to achieve very high 

accuracy in the numerical results obtained.  This small size of the elements, far away from the 

zone where a continuum theory can be applied, is used to guarantee accurate results at dis-

tances where continuum theory is applicable. 

To characterize the problem from the Fracture Mechanics point of view the energy release rate, 

G , will be used. The expression employed, based on the VCCT, Irwin [18], for a circular crack 

that propagates from a certain debonding angle, d , Fig. 2a, to dd    ( dd   ), is: 
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where   is the circumferential coordinate with reference to axis 2, Fig. 2a. rr  and  r  represent, 

respectively, radial and shear stresses along the interface, and ru  and u  represent the rela-

tive displacements of the crack faces. Both modes of fracture, I (associated to rr ) and II, (asso-

ciated to  r ), are obviously considered in Eq. (1). For this study the value of d  employed has 

been 0.5º. 

When the presence of an incipient crack in the matrix is considered, Section 5, the previous 

model is altered to represent the case of a crack that has first grown along the interface and, 

once kinked into the matrix, is progressing through it, Fig. 2b. The materials chosen for the analy-

sis included in Sections 3, 4 and 5 correspond to a typical configuration among fibre reinforced 

materials: a glass fibre-epoxy matrix system, with additional calculations for a graphite-epoxy sys-

tem being necessary for the discussion in Section 7; properties of the three materials used are 

included in Table 1. The fibre radius considered has been ma 6105.7  . 
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Dimensionless results for G will be presented, being then no significant the fact that the fibre 

radius consider is, strictly speaking, only adequate for glass fibre. These values are obtained, 

following Toya [19] and Murakami [20], by dividing the values of G  by    aG mm 2

00 81 , 

where mm  43  , m  is the shear modulus of the matrix and 
0  denotes the value of the ap-

plied tension. 

Finally, the curing process used for the matrix considered in this work (epoxy resin) commonly 

consists of a first stage at room temperature followed by one or more stages at higher tempera-

ture. Independently of the temperature at which the curing process takes place, the contraction of 

the matrix (always higher than that of the fibre) dominates the generation of thermal residual 

stresses. This fact allows the inclusion of thermal residual stresses in the analysis to be modelled 

by means of an adequate temperature decrease that captures the real curing contraction of the 

material. In the present work a longitudinal transverse contraction of 0.4% has been considered, 

corresponding to an 80ºC decrease. 

3. ORIGIN OF THE DAMAGE 

The beginning of the inter-fibre failure under transverse tension is considered to be controlled 

by the radial stress that acts at the fibre-matrix interface, under the hypothesis (not always corre-

sponding exactly to reality) of an initially undamaged material. If the external tension is the only 

load considered, it can be verified [9] that the zones of maximum radial stress, and therefore sus-

ceptible of housing the first debonds, are located at º180,º0 . Thus, the analysis of the effect 

of thermal residual stresses on the initiation of failure must be carried out under the same prem-

ise, studying the distribution of stresses around the interface when the fibre-matrix system suffers 

a thermal decrease corresponding to the curing contraction of the matrix. The consideration of 

real curing parameters, as detailed in Section 2, unavoidably leads to the choice of 0  corre-

sponding to failure values. In particular, based on Soden et al. [21], the transverse tensile 

strength of the unidirectional laminate chosen for the bimaterial system considered has been 

Pa35MYT  . 

In this situation, an analysis of the stress state in a single fibre-configuration, assuming the in-

terface to be initially in perfect condition and considering a temperature decrease of 80 ºC as a 

single solicitation, would allow the order of the thermal residual stresses to be estimated and their 

effect on the initiation of damage predicted. 

The problem presented in these terms can be solved analytically (plane problem of a fibre em-

bedded in an infinite matrix) and the solution obtained, Annex A, shows that residual stresses are 



  

only produced in the radial direction, 
rrσ , and angular direction, σ . These stresses are propor-

tional to the thermal decrease and only depend on the radial coordinate. Besides, 
rrσ  presents a 

compressive character and maintain a constant value for the whole interface, this value being 

determined by the following equation: 
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

2121
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For the bi-material system under consideration the value obtained is Pa10Mσ rr  . 

The thermal residual compressive radial stresses detected at the interface would inhibit the ap-

pearance of the inter-fibre failure, since they involve an apparent additional strength having to be 

surmounted by the stress state to produce the first debonds, though their location would not be 

altered. In any case, comparing the residual stress level (-10 MPa) with the transverse tensile 

strength (35 MPa) it can be deduced that, though of the same order, the stress due to the external 

load is dominant. 

 

4. THE INTERFACE CRACK 

The presence of compressive thermal residual stresses provides the interface with additional 

protection against the initiation of damage, as has been explained in the previous section. In any 

case, once the failure is initiated it is also necessary to analyse the influence of thermal residual 

stresses over the growth of the first debonds. To this end the model appearing in Fig. 2a is used 

in this section to carry out, by means of the BEM, an analysis of the interface crack growth under 

the combined action of an external tensile load ( TYσ 0 ) and a thermal decrease of 80 ºC.  

The results obtained, in terms of G  versus the debonding angle d , are presented in Fig. 3 for 

the case under study (named as C-T º80Δ   in the Figure), which considers both thermal resid-

ual stresses and those derived from the load 0σ , and for the case of single action of 0σ  

( CT º0Δ   in the Figure), used as a reference in this analysis and a basis for the conclusions 

presented in [9].  

The evolutions observed for both cases are similar, not only for the global value G  but also for 

the modes distribution, though lower values in all evolutions are obtained for the C-T º80Δ   

case. This result makes it possible to also predict a protective effect of the thermal residual 

stresses on the interface against the evolution of the interface crack, coinciding with the defensive 

action against the initiation of failure already deduced in the previous section.  
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In spite of the apparent similarity of the evolutions associated to CT º0Δ   and C-T º80Δ  , 

the more relevant presence of Mode II for º60dθ  stands out for the C-T º80Δ   case in com-

parison with the CT º0Δ   case, which evidences an earlier development of the finite contact 

zone at the interface crack, as observed in Fig. 4 where the evolution of the contact zone versus 

dθ  for both cases is represented. In this sense, the appearance of the contact zone for the 

C-T º80Δ   case specifically takes place for º50dθ , a lower value in comparison with the 

CT º0Δ   case ( º60dθ ). Coherently, the length of the contact zone is larger in the C-T º80Δ   

case than in the CT º0Δ   case, for all 
dθ  considered. This fact was already detected in [22]. 

In order to perform predictions about the interface crack growth it is necessary [23] to have an 

estimation of the critical value of G , cG , which depends on the evolution of the fracture mode 

mixity, defined by the local phase angle, 
K , and therefore a function of 

d . The law considered 

in this work for cG  is based on the simplified empirical proposal by Hutchinson and Suo [24]: 

    
KcKc GG   1tan1 2

1 ,                                                (2) 

where cG1  is the critical value of cG  for Mode I and   is the fracture mode sensitivity parameter. 

K  has been calculated following Mantič and París [25]: 
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where      42
3 21

2
  OF  ,   being the oscillatory index which, for the bi-material sys-

tem employed, takes the value 0740. . 

This approach was already employed in [9] to be able to predict the growth of the interface 

crack for the CT º0Δ   case, making use of three different values of   (within the range of typi-

cal values): 3.0,25.0,2.0 . In that case, due to the absence of direct experimental data, the 

value of cG1  chosen for each   was forced to fulfil the expression )( KcGG   for º5d (where 

 º5
d

G   has been obtained by interpolation). The results provided by the comparison between 

the values of G  and cG  calculated in this way predicted an unstable growth of the interface crack 

up to d  in the range 60º-70º. 

The same process has been implemented in the present work for the case including the pres-

ence of the thermal residual stresses, C-T º80Δ  . First of all, the evolution of  GK , calculated 

from Eq. (3), is presented in Fig. 5. The earlier development of a finite contact zone at the crack 

tip for the C-T º80Δ   case versus the CT º0Δ   case, already shown in Fig. 4, is also detected 



  

in Fig. 5 from the slightly higher values of  GK  provided by the C-T º80Δ   case and therefore 

also from the earlier reach of the 90º value, associated to pure Mode II.  

The results obtained for the comparison between G  and 
cG  are shown in Fig. 6 (

cG1  being 

chosen following the same criterion previously employed for the CT º0Δ   case). The results 

shown in Fig. 6 predict an unstable growth of the interface crack up to d in the range 50º-70º, a 

similar conclusion to that already deduced for the CT º0Δ   case, though this range is wider at 

its lower bound. Thus, this range of termination of the unstable growth and of change in the 

propagation mode seems to be a favourable place for the development of a new stage of the 

mechanism of damage, i.e. the kinking of the interface crack towards the matrix and its propaga-

tion through it. 

5. INTERFACE CRACK KINKING 

The prediction of the interface crack kinking towards the matrix, once the period of unstable 

growth at the interface has finished, consists of two steps: the search for the preferential direction 

of the incipient crack in the matrix and the evaluation of the possibility of this change in the 

propagation of the crack. 

Referring to the first aspect, the application of a kinking criterion, for instance MCS criterion 

(Erdogan and Sih [26]): 

   
kinkkink

rr  


 ,max,          (4) 

in the neighbourhood of the interface crack tip within the d  range of termination of unstable 

growth, allows the most favourable direction of the incipient crack in the matrix to be predicted [9] . 

The application of this criterion for the CT º0Δ   case concluded that if kinking took place it 

would occur for º70º60 d  in a direction approximately normal to 0  [9,23]. 

The same analysis is presented here for the C-T º80Δ   case, studying the circumferential 

stress state in the neighbourhood of the interface crack tip at the positions º60dθ  and º70dθ  

and for points located on two circumferences (radii ar 001.0  and ar 01.0 ) centred at the tip. 

The numerical results are shown in Fig. 7, proving that, in accordance with the reference of the 

angle θ  considered in the Figure, the maximum circumferential stress is produced approximately 

in the same direction as in the CT º0Δ   case. 

With reference to the possibility of kinking taking place for the C-T º80Δ   case, the energy re-

lease rate of the incipient crack in the matrix, mG , has been calculated using the model presented 

in Fig. 2b and assuming the direction of the incipient crack to be perpendicular to the external 
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load 0 , in a similar way to the study previously performed in [9] for the CT º0Δ   case. This 

study has been carried out for different positions of the interface crack. The length of the crack in 

the matrix considered has been 0.013a (the minimum value permitted by the discretization em-

ployed). 

The results corresponding to the C-T º80Δ   case are presented in Fig. 8 jointly with the evolu-

tion of G  for the interface crack (named as intG  in the graph), the higher level reached by mG  in 

comparison with intG  standing out here. It is also necessary to point out that the obtained mG  

values correspond to Mode I, see Fig. 9, whereas intG is due to Mode II, Fig. 3 . The relative posi-

tion of both distributions (  
d

mG   and  
dG int ) and the fact that in the range of termination of un-

stable growth of the interface crack the character of intG  turns into Mode II, whereas that 

associated to mG  corresponds to Mode I and shows unstable behaviour, see Fig, 9, favours, from 

an energetic point of view and in comparative terms, the possibility of crack kinking towards the 

matrix. Finally, taking into account that m
IcG  and int

IIcG  in the references consulted, Correa et al. [27], 

provide a range of m

IcG  values similar, in the zone of recommended values, to those measured for 

int

I IcG , the possibility of kinking towards the matrix is found to be the most plausible option. This 

conclusion agrees with that previously obtained in [9] for the CT º0Δ   case. 

 

6. EXPERIMENTAL RESULTS 

Tension tests were planned on 90º unidirectional specimens in order to check the conclusions 

derived from the numerical study presented in the previous Sections. To fulfil this objective it was 

necessary to cure the same material at different temperatures (thus promoting a different number 

of thermal residual stresses) and check whether the strength of the material was affected.  

The choice of a curing cycle different from that recommended by the manufacturer, but leading 

to a similar degree of curing, is not an easy task. Besides, not much work on this topic seems to 

be included in the literature. In any case, after careful and intense testing, two different curing 

cycles, based on [3], were selected for the manufacturing of twelve-ply unidirectional graphite-

epoxy laminates: 

A) Cycle 1: Heat to 121ºC in 30’, hold at 121ºC for 1h, heat to 177ºC in 30’, hold at 177ºC for 3h 

and cool to room temperature. 

B) Cycle 2. Heat to 121ºC in 30’, hold at 121ºC for 48h and cool to room temperature. 



  

DMA (Dynamic mechanical analyser) is currently used to measure glass transition temperature 

of a laminate for the determining of its curing level. For the cases under consideration glass tran-

sition temperatures were 149 ºC for the laminate cured at 121ºC and 156 ºC for the laminate 

cured at 177ºC, indicating a similar curing level in both cases. This fact was confirmed by the 

agreement found in the Elasticity modulus of the specimens measured during the tension tests: 

mean values of 8507 MPa (standard deviation of 913 MPa) and 8210 MPa (standard deviation of 

828 MPa), respectively, were determined for the laminates cured at 121ºC and 177ºC. 

With reference to the strength results found in the tension tests a mean value of 38.4 MPa was 

obtained for the 121ºC curing specimens (standard deviation of 4.9 MPa) whereas 48.6 MPa was 

the mean strength for the 177ºC ones (standard deviation of 5 MPa). Thus, a 27% increase in 

strength is found for the 177ºC curing specimens with reference to the 121ºC ones. This result 

leads to the conclusion that the presence of higher residual curing stresses has a protective effect 

in transverse tension tests for unidirectional laminates, which is in agreement with the conclu-

sions previously obtained from the numerical analysis. 

 

7. DISCUSSION  

As has been stated in the previous section, the conclusions derived from the experimental re-

sults obtained at macromechanical level agree with those obtained from the numerical studies 

performed at micromechanical level. This agreement is already a very remarkable result as, in 

spite of the different approaches employed in both cases (numerical and experimental), it reveals 

the connection existing between the micro and the macro scale. 

In this section an attempt to go into this relationship in depth, trying to find quantitative connec-

tions between the micro and the macro level, is presented in the form of discussion aimed at set-

tling the basis for the future work to be developed.  

As has been explained in the introduction, the development of inter-fibre failure at microme-

chanical level consists of 4 different phases: nucleation of damage, interface crack growth, kink-

ing and crack growth along the matrix. In Sections 3, 4 and 5 it has been demonstrated that the 

presence of curing stresses affects only the first two phases. Note that, for simplicity of the analy-

sis, it has been tacitly assumed that the strength and fracture properties of the interface and ma-

trix are not significantly altered by the consideration of a different curing cycle. 

Consideration of the aforementioned fact led the authors to try to establish the relationship, if 

existent, between the experimentally measured  mean strength of both groups of tested speci-
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mens (associated to cycles 1 and 2 respectively) and the main parameter that has been used in 

this paper to evaluate the interface crack growth at micromechanical level, i.e. the energy release 

rate, G . Specifically, the value of G  associated to the original debonding, i.e. º10d , has been 

chosen as the representative parameter of the mechanism of damage at micromechanical level. 

Assuming that G  depends quadratically on the load, considering superposition of mechanical and 

thermal load and also weak dependence of E  and  on temperature, it can be demonstrated that  

G  as calculated from the results of the BEM code employed for a specific 
d  adjusts to the fol-

lowing equation: 

  TGTGGTG
TTd

   0,

222

00
,,,                        (5) 

where 0 is the external applied load, T  is the thermal increase considered and  , based on  

[29], is the mean value of the thermal expansion coefficient for the thermal range 01 TTT   

considered and is calculated from: 

      dTTT
T

TT
T

T

fm

 



1

0

1
,

10
          (6) 

Additionally, G  coefficient is the energy release rate associated to the particular debonding sub-

jected only to unitary load, TG  coefficient is the energy release rate associated to the particular 

debonding subjected only to CT º1  and TG ,  coefficient is the energy release rate associated 

to a particular debonding subjected to both effects, load and temperature, and is calculated from 

Eq. (5) once G  and TG  have previously been calculated using the BEM model. 

Thus, in this case, evaluating coefficients G , TG  and TG ,  for a graphite-epoxy system whose 

elastic properties are included in Table 1 and º10d , choosing as the ranges T  correspond-

ing to the maximum thermal decreases of the curing cycles considered in the previous section: 

Cycle 1) CT º155  (cooling from CT º1771  to room temperature, CT º220  ) and Cycle 2) 

CT º99  (cooling from CT º1211  to room temperature,  CT º220  ), and using the mean val-

ues of    associated to both thermal decreases 01 TTT  , one 0G evolution can be com-

puted for each curing cycle considered, as shown in Fig. 10.  

From the comparison of both curves represented in Fig. 10 it can first be observed that 

 CTG º155  reaches lower values than  CTG º99  for the whole range of 0 consid-

ered. The consequence of this fact is clear: for the same load level the interface crack associated 

to the curing cycle with greater thermal decrease releases less energy than that associated to the 



  

curing cycle with lower temperature, and thus it is farther from the failure. In particular and in or-

der to illustrate this reasoning, if the experimentally measured value of the strength associated to 

cycle 2 is used,   MPaT 4.38º990  , and G  is evaluated for that particular value of 0 but 

for T  associated to cycles 1 and 2, the results obtained 

are:   mMPaCTMPaG .934.0º155,4.38   (point A in Fig. 10) and 

  mMPaCTMPaG .272.1º99,4.38   (point B in Fig. 10). These results imply that G  is 27% 

greater in the case of lower temperature than in the higher temperature case, and thus the close-

ness of failure or proximity to 
cG  value (assuming 

cG approximately equal in both cases) would 

be 27% greater in the case of the cycle with lower temperature.  

Focusing attention now on point C of Fig. 10 (which represents the failure situation for cycle 1, 

as it has been calculated considering the thermal features of this cycle and MPa6.480  , the 

experimentally measured strength for this cycle) and assuming again cG as a constant, it is found 

that the rupture value associated to cycle 2 that can be predicted using this cG  (point D in the 

Figure) is MPa8.430  . Although this result reflects the previously detected qualitative experi-

mental tendency, it does not satisfactorily approach the experimentally measured mean strength, 

38.4 MPa. In the authors' view there are several causes that could be behind this difference be-

tween the experimental value and the numerical prediction. 

First, the scatter detected in the experimental results. Two thick lines in grey are included in Fig. 

10 parallel to the 
0

  axis, representing the range of experimental results for each group of tested 

specimens. It can be checked that the amplitude of these ranges is of the same order as the dif-

ference between the experimental values and the numerical predictions. 

Second, the limitations of the model employed. It is possible that the single fibre model, though 

shown to be able to produce the most valuable information at qualitative level, proved insufficient 

to quantitatively connect micromechanical and macromechanical parameters. In this case multifi-

bre models would be necessary to complete the information already obtained. 

And third, it is also possible that viscoelastic effects, not considered in the model, also altered 

the relative position of  G  curves presented in Fig. 10. 

Finally, another possibility to consider is that the assumed hypothesis about cG  independence 

of the curing cycle (i.e. independence from T ), and thus the assumption of equal values of this 

parameter for the two cases considered, did not accurately reflect the reality. In this sense, con-

sidering the Hutchinson and Suo approach (Eq. (2)) cG would depend on cG1 ,   and K . With 
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respect to 
cG1  and  , these parameters could depend on T only if the material formed after 

curing were not the same in the cases considered. Referring to K , its dependence on T  is 

negligible for º10d , as was shown in Fig. 5 for the glass-epoxy system. Thus, the only possi-

bility would be that the size of the original debonding considered in the analysis ( º10d , i.e. 20º 

total length in this case) depended on the temperature of the curing cycle. The size of the debond 

at the onset under transverse load could not be studied only using the tools provided by the clas-

sical Fracture Mechanics, and an appropriate new approach of Fracture Mechanics, e.g. Finite 

Fracture Mechanics [10 ], would be necessary. In any case, it can be reasoned that a smaller size 

of the initial debonding for cycle 1 would possibly lead to a greater separation of G  evolutions 

presented in Fig. 10 and thus to a better agreement with the experimental results at macroscale. 

 

8. CONCLUSIONS 

The numerical results obtained from single fibre models clarify, at least for the case of dilute fi-

bre packing, the effect of residual curing stresses in the development of the inter-fibre failure un-

der tension at micromechanical level, concluding that they have a protective effect against inter-

fibre failure generation, though the phases of the mechanism of damage seem not to be signifi-

cantly influenced by their presence. 

The experimental results obtained from transverse tension tests, carried out on unidirectional 

laminates, are in agreement with the numerical results, a clear connection between microme-

chanical level and macromechanical level being found. 
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Annex A  

Consider the plain strain problem of a single fibre embedded in an infinite matrix as shown in 

Figure A.1. The fibre is perfectly bonded along the interface. The whole configuration is subjected 

to a thermal decrease T . The axial symmetry of the problem implies that  ruu rr  , 0u , 

 rrrrr   ,  r   , 0 r . Equilibrium in polar coordinates for a plane elastic problem 

takes the following form, in view of axial symmetry and zero body forces: 

  0



rdr

d rrrr 
                      (A.1). 

Expressing the components of the strain tensor rr  and   as functions of ru : 
r

u r

rr



  and 

r

u r , and substituting in the constitutive law 
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leads to the following expressions for  rrr  and  r : 
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Introducing Eqs. (A.3) in Eq. (A.1), the following Euler’s differential equation is found: 

0
1

22

2


r

u

dr

du

rdr

ud rrr              (A.4) 

The solution of this equation is: 
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,              (A.5) 

where A and B are constants. Substituting expression (A.5) into (A.3) the stress solution of the 

problem raised is obtained: 
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The former stress solution may be particularized for both the fibre and the matrix by simply add-

ing the superscripts F and M, respectively, obtaining: 

Stress state for the fibre: 
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Stress state for the matrix: 
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It is necessary to determine the four constants involved in the former solutions: FA , FB , MA  

and MB . To this end the boundary conditions associated to the problem are imposed: 

- For r=0 the stress solution of the fibre in (A.7) leads to a singularity that can only be avoided if: 

0FB                               (A.9). 

- For r=RF the existent adhesion at the interface between the fibre and the matrix leads to the fol-

lowing conditions:  
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Then, substituting expressions (A.5), (A.7) and (A.8) in (A.10) yields: 
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- The outer boundary of the matrix is free, and thus for r->∞ the condition to be imposed is 

  0rM

rr . Using (A.8), the next expression is obtained: 
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                    (A.13) 

Solving the system formed by Eqs. I.11, I.13, I.14 and I.15, FA , FB , MA  and MB  are calculated 

as a function of the properties of the bimaterial system: 
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Finally, the stress state at the interface (r=RF) is represented by: 
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Fig. 1. Micromechanical phases of inter-fibre failure under unidirectional tension 
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Fig. 2. Single fibre modes: a) with interface crack only, and b) with interface kinked crack 
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Fig. 3. G  evolution versus d  ( CT º0Δ   and CT º80Δ   cases).Glass fibre system. 
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Fig. 4. Contact zone evolution ( CT º0Δ   and CT º80Δ   cases). Glass fibre system. 
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Fig. 5.  GK  evolution ( CT º80Δ   and CT º0Δ   cases). Glass fibre system. 
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Fig. 6. G  and cG  for the interface crack ( CT º80Δ  ).Glass fibre system. 

 



  

 

Fig. 7.   distribution around interface crack tip ( CT º80Δ   case). Glass fibre system. 
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Fig. 8. Comparison between mG  and intG  ( CT º80Δ   case). Glass fibre system. 
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Fig. 9. Energy release rate for the crack in the matrix ( º70d  ).Glass fibre system. 

 

Fig.10. 0G  evolutions associated to º10d  for CT º155 (curing cycle 1) and 

CT º99 (curing cycle 2). 
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Fig. A.1. Single fibre embedded in an infinite matrix. 

 

 

 

Material Poisson coefficient Young modulus Coefficient of thermal expansion 

Matrix (epoxy) 33.0m  MPa1079.2 3mE  16 º1052  Cm  

Fibre (glass) 22.0f  MPa1008.7 4fE  16 º107  Cf  

Fibre (graphite) 20.0f  MPa1030.1 4fE  15 º10  Cf  

Table 1: Thermoelastic properties of the materials.  

 

 



  

Fig. 1. Micromechanical phases of inter-fibre failure under unidirectional tension. 
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