
 

 

                                              

 

Depósito de Investigación de la Universidad de Sevilla 

 

https://idus.us.es/ 

 

 

This is an Accepted Manuscript of an article published by Elsevier in 

Engineering Fracture Mechanics, Vol. 76, Issue 2, on January 2009, 

available at: https://doi.org/10.1016/j.engfracmech.2008.10.006 

Copyright 2008 Elsevier. En idUS Licencia Creative Commons CC BY-NC-ND 

https://idus.us.es/
https://www.sciencedirect.com/journal/engineering-fracture-mechanics
https://www.sciencedirect.com/journal/engineering-fracture-mechanics/vol/76/issue/2
https://doi.org/10.1016/j.engfracmech.2008.10.006


 

 1 

Computing stress singularities in transversely isotropic multimaterial corners by means of 
explicit expressions of the orthonormalized Stroh-eigenvectors. 

 
A. Barroso, V. Mantič and F. París 

Group of Elasticity and Strength of Materials, School of Engineering,  
University of Seville, Camino de los Descubrimientos s/n, Seville, E-41092, Spain 

abc@esi.us.es, mantic@esi.us.es, paris@esi.us.es 
 
Abstract: Composite materials reinforced by unidirectional long fibers behave 
macroscopically as homogeneous transversely isotropic linear elastic materials. A 
general, accurate and computationally efficient procedure for the evaluation of 
singularity exponents and singular functions characterizing singular stress fields in 
multimaterial corners involving this kind of material is presented in this paper. To take 
full advantage of the sextic Stroh formalism of anisotropic elasticity applied to this 
particular problem, the complete set of explicit expressions of the eigenvalues and 
eigenvectors of the real 66 fundamental elasticity matrix N has been deduced for all 
the non-degenerate and degenerate (repeated roots of the sextic Stroh equation) cases. 
These expressions will also facilitate further applications of the Stroh formalism to 
these materials. Several numerical examples of singularity analysis of multimaterial 
corners appearing in adhesively bonded joints and damaged cross-ply laminates of 
composite materials are presented. 
 
Key words: corner singularities, transversely isotropic materials, Stroh formalism, 
composites, adhesively bonded joints, delamination. 
 
 
1. Introduction. 
 
The Linear Theory of Elasticity predicts, in general, singular (unbounded) stresses at 
discontinuities in geometry, material properties and boundary conditions. 
Configurations where different materials converge at one point can be easily found, for 
instance, in composite structures, adhesively bonded joints and microelectronics. These 
configurations, called multimaterial corners or cross points, are potential places where 
failure can initiate due to these singular stress fields. 
 
In the present paper special interest is focused on piecewise homogeneous multimaterial 
corners involving transversely isotropic materials, representing composite laminas 
reinforced by unidirectional long fibers, and subjected to a generalized plane strain 
state. These laminas play an important role in composite applications due to their high 
specific stiffness and strength.  
 
According to a general mathematical formulation of a corner problem, which can be 
found in Kondratev [1], Costabel and Dauge [2] and Nicaise and Sändig [3], the 
displacement components ui (i=1,2,3) in the neighbourhood of the corner tip, where a 
polar coordinate systems (r,) is considered, can be written as a sum of terms, each one 
of them having the following form: 
 
 ,1,0),,,(log),(  ppgrrKru i

p
i    (1) 
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where (real or complex) numbers  are called singularity exponents and functions gi are 
called singular (or characteristic) functions. Both  and gi depend only on the local 
corner configuration (geometry, materials and boundary conditions at the corner tip) and 
are usually evaluated by means of a quadratic or a nonlinear eigenvalue problem, where 
 are given by eigenvalues and gi are obtained from the associate eigenvectors. The 
logarithmic terms are present in (1) if and only if the algebraic multiplicity of an 
eigenvalue is greater that its geometric multiplicity. This happens, for instance, in the 
transition from two real to two complex conjugates roots, a very particular case that is 
not considered in the present study, only non logarithmic singularities being considered 
in what follows. 
 
In the asymptotic series expansion of an elastic solution in the corner tip 
neighbourhood, the coefficients K of the terms in the form (1) for displacements, and of 
the corresponding terms for stresses, are called generalized stress intensity factors, 
which depend on the overall problem formulation (the global domain, materials and 
boundary conditions).  
 
A general, accurate and computationally efficient procedure for the evaluation of 
singularity exponents  and singular functions gi should: a) cover all kind of 
homogeneous transversely isotropic linearly elastic materials at any spatial orientation, 
b) consider any finite number of homogeneous wedges converging at the corner tip and 
perfectly bonded between them, c) consider all kind of standard homogeneous boundary 
conditions, and d) provide, in general, expressions as most analytic and compact as 
possible.  
 
Although in the past several general excellent procedures for singularity analysis of 
anisotropic linear elastic multimaterial corners have been developed, none of them 
combined all the above listed features. Let us mention, at least, a few outstanding 
computational procedures implemented: Leguillon and Sanchez-Palencia [4] 
constructed eigenvalue problems by a finite element discretization in the angular 
variable; Papadakis and Babuška [5] obtained eigenvalue problems by using a 
numerical solver for systems of ordinary differential equations and a shooting 
technique; Yosibash [6] applied finite element discretizations of a modified Steklov 
formulation in an angular sector of an annulus; Costabel et al. [7] particularized the 
general solution basis for the corresponding system of ordinary differential equations in 
the angular variable deduced in [2] to the elastic corner problem, and constructed the 
eigenvalue problems in an analytic way, with an exception of the computation of the 
roots of a characteristic equation for each homogeneous material included in the corner. 
While the former three procedures are numerically based, not working with a closed 
form expression of the eigenvalue problem, the later one is analytically based, starting 
from a closed form representation of the elastic solution at a corner and presenting a 
closed form expression of the eigenvalues problem. Any analytically based procedure 
for the corner singularity analysis is expected to be faster than numerically based ones 
and allowing also a more detailed analysis of the position and nature of singularity 
exponents (eigenvalues), in particular the relation of its algebraic and geometric 
multiplicities. A disadvantage of the procedure developed by Costabel et al. [7] is that it 
does not cover all kind of anisotropic materials (in particular not the degenerate ones) 
and that the size of the eigenvalue problem depends on the number of homogeneous 
wedges included in the corner. 
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The present paper is aimed to develop a general procedure which satisfies the above 
mentioned requirements for the evaluation of singularity exponents  and singular 
functions gi. 
 
It appears that the most suitable analytic approach to formulate the eigenvalue problem 
corresponding to a multimaterial corner in a compact form is based on the so-called 
Lekhnitskii-Eshelby-Stroh complex variable formalism of two dimensional anisotropic 
elasticity (see Lekhnitskii [8], Eshelby et al. [9], Stroh [10,11], (see Ting [12], for a 
comprehensive review), and in the following referred to as Stroh formalism. Ting [13], 
Wu [14], Barroso et al. [15], Yin [16] and Hwu et al. [17] showed that this formalism is 
a powerful analytical tool for the singularity analysis including anisotropic materials, 
and thus it also provides the theoretical basis for the present work. 
 
The elastic solution representation in the Stroh formalism is based on knowledge of the 
eigenvectors of the real 66 fundamental elasticity matrix N, which is associated with a 
specific orientation of the coordinate system with respect to the material. To take full 
advantage of the fundamental orthogonality and closure relations of the Stroh formalism 
the eigenvectors have to be properly orthogonalized and normalized.  
 
Several authors have studied the Stroh formalism applied to tranversely isotropic 
materials. Tanuma [18] obtained the surface impedance tensor (associated with the 
linear relationship between displacements and tractions given at a surface), and 
Nakamura and Tanuma [19] and Ting and Lee [20] introduced independently new 
explicit closed forms of the 3D fundamental solution; for further developments of this 
solution see Távara et al. [21]. The complete set of explicit expressions of the 
orthonormalized eigenvectors is, to the authors' knowledge, not available for these 
materials at present. This is perhaps because, although it is possible to deduce them in a 
relatively straightforward way, the deduction is somewhat tedious as requires lengthy 
algebraic calculations. Tanuma [18] obtained explicit expressions of some of the Stroh 
eigenvectors for transversely isotropic materials in the dual coordinate systems as 
intermediate results in his procedure for the evaluation of the surface impedance tensor. 
Nevertheless, not all of them (the eigenvectors) were obtained in Tanuma’s work (it was 
not necessary for the final result) and those obtained were neither normalized nor 
orthogonalized (again because it was not necessary for the final result). It is also 
important to mention that many applications do need the orthonormalized expressions 
of the Stroh eigenvectors in the coordinate system used in the present work and 
although the relationship between both coordinate systems is straightforward, lengthy 
and involved calculations are required for the final expressions to be explicitly obtained, 
as mentioned above. 
 
Tanuma [18] showed how the relative orientation of a transversely isotropic material 
can make the matrix N mathematically degenerate (some of the eigenvalues are equal 
and the associate eigenvectors linearly dependent), leading to numerical instabilities 
when a critical relative orientation is approached, due to the fact that the eigenvectors 
are not continuously defined in the transition from the non-degenerate to degenerate 
cases. The explicit expressions of the eigenvectors obtained in the present work include, 
in addition to the mathematically non-degenerate cases, all mathematically degenerate 
cases for these materials in the framework of the Stroh formalism, the 
orthonormalization procedure being more cumbersome in these cases than in the non-
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degenerate cases. Using the results presented, no limitations will appear in applying the 
Stroh formalism to both non-degenerate and degenerate transversely isotropic materials. 
 
A key aspect of this work is that it deals with the concept of degenerate materials in the 
framework of Stroh formalism, having repeated roots of the sextic Stroh equation with 
the algebraic multiplicity of the root (eigenvalue) greater that its geometric multiplicity. 
It has to be stressed that if the expressions for the degenerate materials are not available, 
only approximate results can be obtained. This problem has been typically overcome 
using slight perturbations of the values of the actual material constants (working in this 
way with a mathematically non-degenerate material). However, the accuracy of the 
results obtained by this procedure is not being known a priori. 
 
The structure of the present paper is as follows. A brief review of the general Stroh 
formalism is presented in Section 2. Some relevant relations of the Stroh formalism 
when applied to transversely isotropic materials are introduced in Section 3, the main 
objective being to clarify how the eigenvectors transform between several coordinate 
systems used in different approaches of this formalism, an aspect not sufficiently treated 
in the literature. The complete set of new explicit expressions of the orthonormalized 
eigenvectors (associated with one of these systems) of the Stroh formalism for these 
materials deduced in the present work is introduced in the Appendix, together with 
some observations concerning the procedures used in their deduction. Although this is 
one of the main results of the paper, it has been decided to include it in the Appendix for 
the sake of an easy readability of the paper, due to the purely algebraic character of the 
developments. In addition to this, the inclusion in an Appendix allows the content to 
have an independent structure (ideas, numbering of equations,...) which makes it easier 
to be used by other researchers working in the Stroh formalism with transversely 
isotropic materials. Finally, an analytically based approach to carry out singularity 
analysis of linear elastic multimaterial corners is presented in Section 4, where some 
numerical studies of real corner configurations in adhesively bonded joints between 
metals and composites and damaged cross-ply laminates are presented as well. 
 
2. The Stroh formalism 
 
In a fixed rectangular coordinate system ix  (i=1,2,3), the equilibrium equations for a 
homogeneous lineraly elastic anisotropic material, with elastic constants Cijkl, can be 
expressed in terms of the displacements iu  (i=1,2,3) as: 
 
 0, ljkijkluC , (2) 

 
where as usual the comma denotes differentiation and repeated indices denote 
summation. If displacements iu  only depend on the coordinates 1x  and 2x , a situation 
known as a generalized plane strain state, then (2) has a general solution expressed 
through an analytic function f of a complex variable z, which is a linear combination of 

1x  and 2x .  
 
 )(zfau ii  ,   21 pxxz  , (3) 
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where the complex vector ia  and the complex constant p are to be determined. The 
stresses can be obtained by means of the stress function vector, i  (i=1,2,3), which can 
be expressed as: 
 )(zfbii  , (4) 
 
with ib  being a complex vector, through the expressions: 2,1 ii   ,  1,2 ii   . Then, p 

and ai defined in (3) should satisfy the following eigenrelation and the corresponding 
characteristic equation: 
 

   0aTRRQ  2)( ppT     0)( 2  ppT TRRQ  (5) 

 
where Q, R and T are real 3×3 matrices given by the elastic stiffnesses of the material, 
Cijkl, as follows: 
 11kiik CQ  ,   21kiik CR    and  22kiik CT  . (6) 

 
The vector bi in (4) is related to ai by the relation 
 

 aRQaTRb )(
1

)( p
p

pT   (7) 

 
The above relations can be rewritten to a standard eigensystem, which defines the real 
(6×6) Fundamental Elasticity Matrix N in terms of the stiffness constants of the 
material: 
 
 ξNξ p . (8) 

 







 T

13

21

NN

NN
N , QRRTNTNRTN   TT 1

3
1

2
1

1 ,,  (9) 

 
Eigenequation (8) defines six eigenvalues p  and eigenvectors  TTT

 baξ ,  

)6,,1(  , providing the values of the constant p  and vectors a  and b  in (3) and 

(4). Note that the eigenvalues p  in (8) are also roots of the characteristic equation in 

(5). 
 
Due to the positive definite character of the strain energy, the eigenvalues of N are 
complex, and p  and p+3 (=1, 2, 3), can be considered as three pairs of complex 
conjugate numbers.  
 
The relation of the algebraic and geometric multiplicities of the eigenvalues of N 
defines the structure of the general solution for stresses and displacements. If the 
algebraic and geometric multiplicities of the eigenvalues p  are equal, and in particular 

if the eigenvalues p  are all distinct, the general solution for displacements, ui, and 

stress functions, i, is expressed through the superposition of the six solutions from (3) 
and (4) respectively, where the overbar denotes the complex conjugate. 

  



3

1
3 )()(


 zfzf aau , (10) 
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  



3

1
3 )()(


 zfzf bbφ . (11) 

 
We refer to this kind of material as a mathematically non-degenerate one. 
 
Although not being a requirement, in many theoretical developments, )(  zf  have the 

same functional form, namely  qzfzf )()(   (=1,2,3) and  qzfzf )()(3   

(=1,2,3), where q are arbitrary complex constants. 
 
If, however, some of the eigenvalues p  are repeated and there are not linearly 

independent associated eigenvectors ξ  (geometrical multiplicity is less than the 
algebraic one), the corresponding material is referred to as mathematically degenerate, 
and expressions in (10) and (11) are not valid. The structure of the formalism in the 
degenerate cases is much more cumbersome when compared to the non-degenerate 
case, see Ting & Hwu [22] and Wang & Ting [23], and also Ting [12]. Examples of 
applications of the Stroh formalism in problems with the simultaneous presence of non-
degenerate and degenerate materials of any kind were presented by Barroso et al. [15], 
see also Yin [16]. 
 
One of the facts that make the Stroh formalism elegant and powerful is the fulfilment of 
the orthogonality and closure relations, which connect a and b. This is why the 
eigenvectors will be properly orthogonalized and normalized in the present work. 
Defining the Stroh matrices  321 ,, aaaA   and  321 ,, bbbB  , orthogonality and 

closure relations take the following compact form:  
 
 IXXXX   11 , (12) 
with X and 1X  given as: 
 

  321 ,, ξξξ
BB

AA
X 








 ,  321

1 ,, ηηη
AΓBΓ

ΓAΓB
X 










TT

TT

, (13) 

 
where Γ  is a Boolean matrix, defined for the degeneracy cases of N following Ting 
[24] as: 

 


















100

010

001

Γ ,       


















010

100

001

Γ ,        


















001

010

100

Γ . (14) 

     non-degenerate     degenerate (p2=p3)    extraordinary degenerate 
 
It should be pointed out that , which is usually introduced for the degenerate case 
p1=p2 (see Ting [12]), is used here for the case p2=p3. 
 
3. Stroh formalism for transversely isotropic materials. 
 
As above, a reference coordinate system xi (i=1,2,3) will be associated with the 
directions which define the generalized plane strain state. Let Cijkl denote the tensor of 
elastic stiffnesses of a transversely isotropic material associated with this coordinate 
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system. The objective of this section is to obtain explicit analytic expressions of the 
Stroh eigenvalues and orthonormalized eigenvectors of this material which are 
associated with the coordinate system xi. 
 
A material with a transversely isotropic elastic behaviour has a plane in which all 
directions have the same elastic properties or, equivalently, has an axis perpendicular to 
this plane, with an elastic rotational symmetry. Let us define a rectangular coordinate 
system attached to the material ix̂  (i=1,2,3), with the 3x̂  axis coinciding with this 

rotational symmetry axis. In fibrous materials which behave as transversely isotropic 
materials, the axis 3x̂  coincides with the fiber direction. In contracted Voigt notation the 

fourth order tensor ijklC  (i,j,k,l=1,2,3) is represented by a symmetric matrix IJC  

(I,J=1,...,6). Then in the material coordinate system ix̂  we can write (following the 

nomenclature by Clements [25], and Tanuma, [18]): 
 

 































)(00000

00000

00000

000

000

000

ˆ

2
1 NA

L

L

CFF

FAN

FNA

CIJ . (15) 

 
The five elastic constants that define the elastic behaviour of the transversely isotropic 

material ( 111111
ˆˆ CCA  , 333333

ˆˆ CCC  , 112212
ˆˆ CCN  , 113313

ˆˆ CCF   and 

232313135544
ˆˆˆˆ CCCCL  ) must fulfil the following conditions, to ensure that the 

strain energy is positive (Tanuma, [18]): 
 
 0,0)(,0 2

1  NCANAL  and 22)( FCNA  . (16) 

 
For further considerations in the present work, the following coordinate systems are 
introduced: 
 

 The previously introduced coordinate system attached to the material, ix̂ , in 

which 3x̂  is the elastic rotational symmetry axis, see Figure 1.a). The direction 

of this axis is defined by the vector  T1,0,0ˆ f  and the elastic stiffness matrix is 

denoted by ijklĈ . For fibrous materials which behave as transversely isotropic 

materials, this axis, and subsequently the vector f̂ , coincides with the fiber 
direction, Figure 1 a). 

 A coordinate system, *
ix , which represents an intermediate coordinate system 

between that attached to the material and that associated with the directions 
which define the generalized plane strain state, Figure 1.b). The elastic stiffness 
matrix is denoted by *

ijklC  and rotation matrix )(2 Ω  and the rotated vector 

fΩf ˆ)(2
*    being: 
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













 







cos0sin

010

sin0cos

)(2Ω ,       























cos

0

sin
ˆ)(2

* fΩf  (17) 

 Finally, a coordinate system, ix , associated with the directions where the 

generalized plane strain state is defined, the elastic solution then being 
independent of 3x  ),( 21 xxuu ii  , see Figure 1.c). The elastic stiffness matrix is 

denoted by ijklC  and rotation matrix )(3 Ω  and the rotated vector *
3 )( fΩf    

(which coincides with the fibre direction in fibrous materials) being: 

 


















100

0cossin

0sincos

)(3 


Ω ,       























cos

sinsin

sincos

)( *
3 fΩf  (18) 

 
 
 

a) 

x1

x3

x2

^

^

x̂1x1

x3x3

x2x2

^

^

^

 
 

b) 

x2
*

x1
*

x3
*

=



x2
^x2

*

x1
*x1
*

x3
*x3
*

=



x2x2
^ x2

*

x1
*

x3
*

=



x2
^x2

*x2
*

x1
*x1
*

x3
*x3
*

=



x2x2
^

 
 

c) 

x2

x1

x3
*x3 =





x2

x1

x3
*x3
*x3 =





 x2

x1

x3
*x3 =








Final position of x3 with
respect to the coordinate
system xi associated to the
generalized plane strain
state.

^

x2

x1

x3
*x3
*x3 =








Final position of x3 with
respect to the coordinate
system xi associated to the
generalized plane strain
state.

^Final position of x3 with
respect to the coordinate
system xi associated to the
generalized plane strain
state.

^

 
 
Figure 1. a) Coordinate system ix̂  attached to the material, b) Coordinate system *

ix  

(rotation by  around *
22

ˆ xx  ), c) Coordinate system ix  (rotation by  around 3
*
3 xx  ). 
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The coordinate system *

ix  is rotated with respect to the system ix̂  by an angle  around 
the axis *

22
ˆ xx  , 2() being the rotation matrix that relates both systems. At the same 

time, the coordinate system ix  is rotated with respect to *
ix  by an angle  around 

3
*
3 xx  ,  3() being the rotation matrix which connects both systems. 

 
 
In order to apply the Stroh formalism in the coordinate system which defines the 

generalized plane strain state, ix , the elastic constant tensor, ijklĈ , has to be transformed 

to this coordinate system, which can be done using the rotation matrices 2() and 
3(). Note that a third rotation around 3x̂  is not necessary when considering 

transversely isotropic materials, due to the fact that 3x̂  coincides with the rotational 

symmetry axis. Then, the matrices Q, R and T in (6), which lead to the evaluation of 

p  using (5), are obtained from Cijkl, already expressed in the coordinate system ix . 

 
Matrices ),( AA   and ),( BB   and the eigenvalues ),( p  for a transversely 

isotropic material, with a generic orientation defined by  and  with respect to the 
coordinate system ix , see Figure 1c, can be obtained from the matrices )0,(A  and 

)0,(B  and the eigenvalues )0,(p  of the same material, with an orientation  and 

=0, see Figure 1b, due to the fact that A and B behave as tensors of order 1 when 
rotating around 3x  axis, Ting [26]. For the sake of brevity, we denote these matrices as 

A* and B* and their corresponding eigenvalues as p*. The corresponding relations are: 
 
 *

33 )()0,()(),( AΩAΩA   , (19) 

 *
33 )()0,()(),( BΩBΩB   , (20) 

 
 
 





 cossin)0,(

sincos)0,(
),(





p

p
p , *)0,(   pp  . (21) 

 
Thus, to obtain A, B and p, we need to express, in the *

ix  axes, the elastic constants 

tensor *
ijklC  of a transversely isotropic material with the rotational symmetry axis 

situated in the *
3

*
1 xx   plane, rotated an angle -with respect to *

3x  (Figure 1b). Then, 

it is necessary to evaluate A*, B* and *
p , and finally, to use equations (19-21) to obtain 

the general expressions of A, B and p. 
 

The first step of the above mentioned procedure simply represents a rotation of ijklĈ , or 

in contracted notation IJĈ , with respect to *
22

ˆ xx  , a rotation that can be written as: 

 

 pqrtltkrjqipijkl CC ˆ*  , (22) 

 
where  ijij )(2 Ω  is introduced in (17). Defining jj m1 , it is possible to write 
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  ikT
krtqpqrtipkiik mmCCQ )()(ˆ)()ˆ( 22

*
11

*  ΩQΩ , 

  ikT
krqpqripkiik mCCR )()(ˆ)()ˆ( 222

*
21

*  ΩRΩ , (23) 

  ikT
krrpipkiik CCT )()(ˆ)()ˆ( 2222

*
22

*  ΩTΩ . 

 

An application of matrices )(ˆ Q , )(ˆ R  and )(ˆ T defined in (23) will be discussed later 

on. Using an analogue of (5) with Q*, R* and T* the eigenvalues )0,(*  pp   are 

obtained. Then, the associated *a  and *b  can be evaluated by: 
 
   0aTRRQ  *2****** )(  ppT , (24) 

 ****
*

***** )(
1

)( 


 aRQaTRb p
p

pT  . (25) 

 
Thus, using (24-25) we evaluate )0,(* AA   and )0,(* BB  , and then, applying (19-
20), we finally get the desired expressions of ),( A  and ),( B . Note that 
expressions (24-25) are only suitable for materials with a non-degenerate matrix N; see 
(A18) and (A28) (or Ting, [12]) for the corresponding expressions for a degenerate 
matrix N. 
 
Tanuma [18], dealing with the evaluation of the surface impedance tensor, 1 BAM i , 
worked using dual coordinate systems where in the representation of an elastic solution 
the components of the displacement and stress function vectors refer to ix̂  coordinate 

system and the position vector refers to *
ix  coordinate system. He presented some non-

normalized explicit expressions of a and b, using these dual coordinate systems. 
Therefore, keeping in mind that the final expressions of the eigenvectors a and b in the 
present work must fulfil orthogonality relations, must be expressed in a coordinate 
system fixed to the axes which define the generalized plane strain state and must cover 
any generic orientation of the transversely isotropic material, it is possible, in cases 
where Tanuma's results for a and b are available, to proceed in an alternative way. First 
the expressions for a and b obtained by Tanuma in the dual coordinate systems are 
changed to the system *

ix , then the normalization procedure is applied (a procedure 

which is different for different degeneration cases) and finally the complete 3D space 
orientation of the rotational symmetry axis is covered through (19-20), equations that 
apply for rotations around 3

*
3 xx  . 

 
It is easy to obtain the relationship between the eigenvectors in both coordinate systems, 
the dual one used by Tanuma (denoted in (26-27) by a superindex D referring to 
“Dual”) and the system *

ix  denoted with a superscript *. Note that the vectors Da  and 
Db  are obtained by means of expressions analogous to (24-25) using )(ˆ Q , )(ˆ R  and 

)(ˆ T , instead of Q*, R* and T*, with the same eigenvalues *
p . Then, this relationship 

can be written as: 
 D

  aΩa )(2
*  , (26) 

 D
  bΩb )(2

*  , (27) 
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where )(2 Ω  is defined in Figure 1.b. Note that Da  and Db  depend on  through its 

associated )(ˆ Q , )(ˆ R  and )(ˆ T  given in (23).  
 
The complete set of new explicit expressions of the orthonormalized eigenvectors 

 *
3

*
2

*
1

* ,, aaaA  and  *
3

*
2

*
1

* ,, bbbB  is presented in Appendix. Although *A  and *B  

have been obtained in a relatively straightforward way by well-established procedures 
(Ting [12]), using, in the cases where it was suitable, the previous results by Tanuma 
[18], lengthy algebraic calculations have been required and an independent checking of 
the results obtained have been carried out to warranty their correctness. It is considered 
that the result is of relevant technical interest, as it may encourage further applications 
of the Stroh formalism to transversely isotropic materials. It is worth mentioning that all 
possible cases, including mathematically degenerate cases, have been analysed, now 
overcoming the numerical instabilities that typically appear in approximation of 
eigenvectors of the fundamental elasticity matrix N in these cases. 
 
Recall that it only remains to apply (19-20) to the final expressions of *A  and *B  
which are presented in Appendix in order to achieve the final expressions of ),( A  
and ),( B . 
 
 
 
4. Singularity analysis of multimaterial corners involving transversely isotropic 
materials 
 
As an application of the theoretical results presented in the previous section and 
Appendix, an analysis of singular stress fields appearing at the tip of a multimaterial 
anisotropic corner, which involves linear elastic transversely isotropic materials 
subjected to a generalized plane strain state, is briefly outlined. 
 
4.1. Characteristic equation of the multimaterial corner. 
 
Let a fixed polar coordinate system (r,) be defined at the corner tip. Consider a 
multimaterial corner formed by N>1 homogeneous elastic wedges, as shown in Figure 
2, given by polar sectors defined by angles (i-1,i), i=1,...,N, (i-1<i). Perfectly bonded 
interfaces, verifying equilibrium and compatibility conditions, are considered between 
adjacent wedges. 

1

i
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N

i

i-1

x1

x2

1

i

N

0

N

i

i-1

x1

x2

 
 

Figure 2. Multimaterial corner. 
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The procedure described below is based on a previous work of the present authors, 
Barroso et al [15], further developing an original idea by Ting [13]. As was mentioned 
in the Introduction, the following fields in displacement ( ),(),(  

ii grru  ) 

(i,j=1,2,3), and stresses ( ),(),( 1  
ijij frr  ) (i,j=1,2,3), are considered to appear in 

the neighbourhood of the corner (for  0r ). We refer to the value  as the order of 
stress singularity. 
 
The representation of the elastic solution associated with the singular exponent at the 
neighbourhood of the corner tip (for  0r ) can be expressed as: 
 

 tXZw ),(),(  rr  ,      where 









),(

),(
),(





r

r
r

φ

u
w  and 




q
q

t ~ , (28) 

 
),( ru  being the displacement vector and ),( rφ  the stress function vector, 

Tqqq ),,( 321q , Tqqq )~,~,~(~
321q , q  and q~  being arbitrary real or complex constants, 

X is defined in (13) and ),( Z  and its inverse   1),( Z  are known analytical 

functions of the singularity exponent  and the angle   associated with a material 
wedge, having been obtained in Ting [13] for anisotropic non-degenerate materials and 
in Barroso et al [15] for anisotropic degenerate and extraordinary-degenerate materials. 
The structure of ),( Z  is: 
 

 









),,(

),,(
),(

*

*





p

p

Ψ0

0Ψ
Z , (29) 

 
where for non-degenerate transversely isotropic materials ),,( * pΨ  takes the diagonal 
form: 
 

),,( * pΨ diag  )(),(),( 321     and  



  )sin(cos)( p , (30) 

 
whereas for degenerate transversely isotropic materials (taking p2=p3) it is a non-
symmetric matrix: 
 

 

















)(00

)(),,()(0

00)(

),,(

2

222

1

*













ppΨ , (31) 

 

where 
)(

sin
),,(

2
2 

  p  and   sincos)( p . 

 
Applying the continuity conditions introduced by the hypothesis of perfect interfaces 
(perfect bonding) between the adjacent wedges, ),(),( 1 iiii rr   ww  )1,...,1(  Ni , it 
is easy to obtain the following relationship: 
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 ),(),( 01  rr NNN wKw  . (32) 
 
where matrix NK  is defined as: 

 
 121 ··...·· EEEEK  NNN , (33) 

 
and iE  is the transfer matrix defined for the i-th material wedge as it relates the 

pertinent displacements and the stress function vectors, associated with a singularity 
exponent , between the external faces, 1i  and i , of the i-th material wedge. These 

transfer matrices iE  can be written as: 

 

   11
1 ),(),( 
 XZXZE  iii , (34) 

 
 
Thus, NK  in (32) represents in fact the transfer matrix, associated with a singularity 

exponent , for the whole multimaterial corner, as it relates the elastic variables between 
its external faces (defined by angles 0  and N ). 
 
Let us define 

 )()(ˆ
0 T

BCNNBCN DKDK  , (35) 
 
where )( NBC D  and )( 0BCD  represent homogeneous orthogonal boundary conditions 

along the external faces, at angles 0   and N   of the corner, see Mantič et al 

[27] and Barroso et al [15] for their definitions. )(BCD  is an orthogonal (66) matrix, 

thus T
BCBC DD 1 , and IDD T

BCBC , the structure of )(BCD  being: 

 

 









)()(

)()(
)(









u

u

BC DD

DD
D . (36) 

 
Some examples of )(uD  and )(D  follow: 0D )(u , ID )(  for a free 

boundary and ID )(u , 0D )(  for a fixed one. Expressions of )(uD  and )(D  

for other homogeneous boundary conditions can be found in Mantič et al. [27] and 
Barroso et al. [15].  
 
Using the boundary condition matrix )(BCD  introduced in (36), we get: 

 

 









),(

),(
),()(),(ˆ





r

r
rr

U

P
BC w

w
wDw , (37) 

 
where ),( rPw  and ),( rUw  respectively denote the vectors of prescribed and 

unknown components of ),( rw . 
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Applying the orthogonality property of )(BCD  and relations (35) and (37), we can 

finally write: 
 

 




























),(
),(

ˆˆ

ˆˆ

),(
),(

0

0
)4()3(

)2()1(







r
r

r
r

U

P

NN

NN

NU

NP

w
w

KK

KK
w
w  or in a compact form ),(ˆˆ),(ˆ 0 rr NN wKw  . (38) 

 
After applying the homogeneous boundary conditions in the linear system in (38) which 
can be written as: 0w ),( rP  for =0 and N, the following identity is obtained: 
 
   0wK ),(ˆ

0
)2(  rUN . (39) 

 
This homogeneous linear system has a non-trivial solution if and only if the 
characteristic equation, obtained from the following complex 3×3 determinant is 
fulfilled. 

 0K )(ˆ )2( N , (40) 

 
With the explicit expressions of A and B for any non-degenerate or degenerate case of 
transversely isotropic materials (see Appendix), the characteristic equation in (40) can 
be easily evaluated and, by finding its roots, the stress singularity orders -1 can be 
determined. 
 
Let us mention that from a physical point of view the transfer matrix iE  in (34) should 

be continuously dependent on the wedge material properties although the form of its 
representation using X and ),( Z  matrices changes between different classes of 

material degeneracy. An explicit proof of this continuous character of iE , and also the 

issue of the possibility of a continuous expression for iE , is still lacking to the best of 

the authors' knowledge. One implication of the continuous character of the transfer 
matrices iE  (i=1,...,N) is the continuity of the singularity order -1 with respect to a 

continuous variation of material properties of wedges in a multimaterial corner. 
 
4.2. Numerical examples. 
 
With the general approach presented in Section 4.1 and the explicit expressions for A 
and B obtained in this work for transversely isotropic materials (in Appendix), the 
analysis of multimaterial corners involving any kind of transversely isotropic materials 
(mathematically degenerate or not) can be performed in a straightforward way. Two 
applications will be presented, the first dealing with adhesively bonded joints between 
metallic and composite materials, while the second one deals with the analysis of cracks 
appearing in cross-ply laminates. 
 
All numerical evaluations in Sections 4.2.1 and 4.2.2 have been obtained using a 
program implemented in Mathematica (Wolfram [28]) by the present authors, which 
uses all the expressions introduced in the Appendix as well as the corresponding 
expressions for orthotropic and isotropic materials. Further details can be found in 
Barroso et al [15]. 
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4.2.1. Application to adhesively bonded joints. 
 
Let us consider the following configuration of an adhesively bonded joint between a 
composite laminate and a metal sheet. The laminate shown in Figure 3 is composed by 
three plies (0º/45º/90º) and is adhesively bonded to a metal sheet by means of an 
adhesive layer. In such a geometrical configuration, if the loads do not change in x3 
direction, a generalized plane strain state can be used to approximate the elastic state far 
from the free edges of the specimen, and the Stroh formalism is applicable.  
 
It should be mentioned that the angle of each ply defined in Figure 3 agrees with the 
angle  definition used in Figure 1 and in Appendix, but is different from that usually 
considered in composite applications, where the 0º lamina means that fibers are parallel 
to the load. 
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Figure 3. Metal to composite adhesively bonded joint. 

 
The multimaterial corners where singular stress fields may appear in the adhesively 
bonded joint analyzed here are marked with a circle in Figure 3. 
 
Unidirectional laminas, and laminates having the same direction in all laminas, are 
typically considered, and it will be done so in this paper, as transversally isotropic in an 
equivalent homogeneous representation. One person familiarized with the properties of 
unidirectional laminas of actual materials used in the aeronautical industry might argue 
that suppliers of these materials give properties that do not, strictly speaking, satisfy the 
former assumption. Thus, for instance, with reference to the material used in this paper, 
AS4/8552, a typical carbon-epoxy composite, the following properties are given by the 
supplier with the fiber direction coincident with x1: E11=141 GPa, E22=E33=9.58 GPa, 
G12=G13=5 GPa, G23=3.5 GPa, 12=13=0.3, 23=0.32. 
 
Although the structure of this set of properties coincides with that of a transversely 
isotropic material, the values of these properties do not satisfy strictly the relation of this 
structure. Thus, the value of G23 corresponding to the assumed isotropic plane ought to 
satisfy the relation of an isotropic material G=E/2(1+), where E22=E33=E and 
23=However, if the values of E and  are substituted in the former expression, it 
leads to G23=3.629 GPa, a value which is slightly different from that given by the 
supplier (3.5 GPa). 
 
This difference is due basically to the intrinsic heterogeneous character of the composite 
material which may originate that properties obtained directly from a test of the whole 
laminate do not strictly satisfy relations derived from the homogeneity assumptions and 
obtained from different tests. The difference, which affects only to G23 value, is in this 
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case of a 3.5% and will be omitted in the analysis, taking for G23 the value that satisfies 
transversally isotropic behaviour. 
 
In any case, it has been verified, using the theoretical results and the developed code 
presented in Barroso et al [15] and in the present work, that this small difference in the 
elastic values considering an orthotropic or a transversely isotropic behaviour leads to 
close results of a corner singularity analysis. Nonetheless, it is worth mentioning that 
there is a great difference in the mathematical treatment between both mechanical 
behaviours when using the Stroh formalism.  
 
For the case of transversely isotropic properties considered here for each single ply, the 
present work provides explicit expressions of eigenvalues and eigenvectors of the Stroh 
formalism for all cases, degenerate and non-degenerate. This leads, for instance, to the 
use of the expressions of Case 1.a (in Appendix), equations (A.13-A.14), for the corners 
involving the degenerate transversely isotropic layer oriented in 3x  direction ( º0 ), 

and Cases 2.2 and 3.2 (in Appendix) for corners involving non-degenerate materials, see 
(A.47) and (A.49-A.50). These expressions are normalized, the evaluation of 1X  by 
(13) then being direct and easy. 
 
Finally, with reference to the other properties of the materials involved in the joint, the 
following properties have been taken for the aluminium as metal adherent: E=68.6 GPa 
and =0.3, while an epoxy-based adhesive has been taken with isotropic elastic 
properties: E=3 GPa and =0.3. 
 
In Figure 4 a detail of the end of the overlap of a real adhesive joint between a carbon-
epoxy composite [90º,0º,90º] and aluminum is shown. 
 

          Aluminium

Resin

0º

90º

90º

 
Figure 4. Details of a lap joint between a composite panel and a metal sheet. 

 
Figure 5 shows the order of stress singularities (Re and Im denoting the real and 
imaginary parts of 1- respectively) for a typical closed three-material corner which 
appears in the scheme of Figure 3 and the photograph in Figure 4. In this example, 
transversely isotropic elastic properties given above have been assumed for the plies. 
One of the plies of the laminate has a fixed angle of º0 , which makes the material 
mathematically degenerate, while the orientation of the other ply varies from 0º to 90º. 
The half space on the left hand side is occupied by the adhesive.  
 
Thus, in this particular example, the adhesive which behaves as an isotropic material 
corresponds to Case 1.b.2) (see Appendix), the bottom lamina with a fixed º0  
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orientation corresponds to Case 1.a), and the top lamina with an arbitrary orientation 
º0  corresponds to Case 3. 
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Figure 5. Order of stress singularities in a three-material corner involving a 

mathematically degenerate transversely isotropic material. 
 
It can be appreciated in Figure 5 that, for º0 , no corner configuration appears, no 
singular mode then being obtained. Two real orders of stress singularities exist until 
=5.5º is reached, turning then into two complex conjugates until =40.5º, after which 
two real values are again obtained except in the cross-ply 0º-90º configuration where 
there is only one singularity mode. 
 
The asymptotic stress and displacement fields can also be computed easily using (28) 
and (39), see Barroso et al. [15] for details.  
 
Let us consider another example with a similar corner configuration to that shown in 
Fig. 5 but with a 45º lamina fixed. In this case none of the materials is mathematically 
degenerate (except for values of =0º and 180º) because of their spatial orientation. 
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Figure 6. Orders of stress singularities in a three-material corner. 

 



 

 18 

It can be appreciated in Figure 6 that when a 45º angle is reached, the corner 
configuration disappears, together with the singular character of the asymptotic stress 
field. For the particular case of a 90º angle in the upper lamina (see Figure 7 and also 
Figure 3) two order of stress singularities, both of them real, appear (Figure 6), namely: 
1-=0.074347 and 0.063487. 
 

45º

90º
ad

he
si

ve

Adh
es

ive 90o

45oAdh
es

ive 90o90o

45o45o

 
Figure 7. A three-material isotropic-transversely isotropic corner. 

 
For the first singular mode (1-=0.074347) the asymptotic stress and displacement 
fields, shown in Figure 8, have been obtained using equation (28), with r=1.  
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Figure 8. Displacements (left) and stresses (right) in a three-material corner. 

 
Both displacements and stresses (in Figure 8) have been standardized according to 
Pageau et al. [29] in such a way that |=0=1/(2)1-. It can be observed that rr stress 
component and the slope of some displacements and stress components, as functions of 
 are not continuous at the interfaces between materials (=0º, 90º and 270º). The 
elastic fields, associated with a singular stress state at a corner, obtained using the 
present approach will help to study failure mechanisms that typically appear in 
composite material structures, such as delamination. 
 
4.2.2. Application to cracks appearing in cross-ply laminates. 
 
Figure 9 shows schematically a [0/90]s damaged laminate under tension. The first 
damage is expected to be the nucleation and growth of a crack in the 90º ply transverse 
to the load. When this transverse crack reaches the 0º ply and before continuing through 
the interface, the multimaterial corner shown schematically in Figure 9b is obtained. 
The stress analysis and failure progression is extensively studied in Blázquez et al. [30]. 
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Figure 9. Cross ply laminate with failure progression (a) and configuration when the 
crack reaches the 0º ply (b). 

 
The values of elastic constants of the unidirectional glass fiber material, considering a 
transversely isotropic constitutive law (the axis 1 defining the fiber direction and plane 
2-3 being the isotropy plane perpendicular to the fiber direction), are: E22=E33=E=16.2 
GPa and =0.4 for the in-plane constants, and E11=45.6 GPa, ==0.278 and 
G12=G13=5.83 GPa for the out-of-plane constants. 
 
For this three-material corner configuration (Figure 9b), the 90º ply has =0º (according 
to Figure 1) in both material wedges (from 90º to 180º, and from 180º to 270º), 
therefore being mathematically degenerate. Using the expressions of the Appendix 
(Case 1.a for the 90º ply material wedges, and Case 3.2 for the 0º ply material wedge) 
and the Mathematica code developed in Barroso et al. [15], the following three 
numerical solutions are obtained: 
 
 root 1=1=1-1=0.500606791803375 (antiplane mode) 
 root 2=2=1-2=0.499748666269924 (in-plane antisymmetric mode) (41) 
 root 3=3=1-3=0.435787998869871 (in-plane symmetric mode) 
 
The numerical solution obtained for the antiplane mode in (41) has a 15 digit precision, 
which is unrealistic from an engineering point of view but it can be useful for 
researchers as an accurate solution of a benchmark problem. This solution was 
succesfully compared with the analytical solution by Mantič et al. [31]. Thus, the values 
obtained for the two in-plane modes will be also considered as the reference values in 
what follows. 
 
If the explicit expressions of the A and B Stroh matrices obtained in this paper for the 
degenerate cases, see Appendix, were not available, only a numerical approximation 
could be obtained by using the non-degenerate expressions, for the 90º plies, 
considering a value of  close to 0º. Figure 10 shows the numerical solution using this 
alternative, the dashed lines representing the reference values for the =0º orientation 
(computed by means of the expressions of the Appendix for the degenerate cases) and 
the horizontal axis representing the fiber orientation. When =0º is approached, the 
numerical solution becomes unstable (using Mathematica with its standard precision). 
The solution corresponding to root 2 is detailed with a zoom in the vertical axis. Both 
axes in Figure 10 have the same meaning but different scales, arrows on the curves 
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indicating which axis is to be used. In particular, roots 1 and 2 use the right vertical 
scale and root 3 the left vertical scale. 
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Figure 10. Evolution of the order of stress singularities as =0º is approached. 

 
The relative errors (in %) with respect to the reference values (obtained by using the 
explicit expressions for the degenerate cases) are depicted in Figure 11. It can be 
observed how the value of the numerical solutions for the in-plane roots tends to the 
value for the =0º configuration, as 0º up to a certain value of  where the solution 
shows numerical instabilities when the degenerate situation is approached. The 
antiplane solution, which is that showing a greater interval of  corresponding to a 
stable behaviour, shows the last stable value for =0.01º, the result being strongly 
unstable for =0.009º and giving very large errors (out of the scale used in Figure 11). 
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Figure 11. Relative errors of the order of stress singularities with respect to the =0º 

reference solution. 
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It can be seen in Figure 11 how large errors can be obtained if the angle defining the 
non-degenerate approximate solution is too close to or too far from =0º defining the 
degenerate case. The value for the angle giving the minimum error is a priori unknown 
if the solution for =0º is not available. The relative errors in the stress singularity order 
[ exactexactnum  /||  ] (num and exact, respectively, being the numerical approximation 

and the exact value of the stress singularity order) are amplified when computing the 

relative error in stresses close to the corner tip ( exactexactnum rrr    /|| , ≈r-, with 

=1-), this error depending on the relative error of the stress singularity order itself and 
the distance r to the corner tip. It can be easily verified that, for roots in (41), relative 
errors in stresses are larger than the relative errors in the stress singularity order for 
r<0.1. 
 
If values of stresses very close to the corner tip have to be used, as in many standard 
Fracture Mechanics analyses, significant errors could then appear. The usefulness of the 
obtained explicit expressions, covering all possible material and geometrical 
configurations, is then fully confirmed. 

 
 
5. Conclusions 
 
The complex variable Stroh formalism of anisotropic elasticity has been applied to 
develop a general, accurate and computationally efficient procedure for the analysis of 
elastic singularities at the multimaterial corners involving transversely isotropic 
materials, subjected to generalized plane strain states. This procedure: a) covers all kind 
of homogeneous transversely isotropic linearly elastic materials at any spatial 
orientation, b) considers any finite number of homogeneous wedges converging at the 
corner tip and perfectly bonded between them, c) considers all kind of standard 
homogeneous boundary conditions, and d) provides expressions as most analytic and 
compact as possible. Applications to adhesive bonded joints between composite 
laminates and metals, and damaged cross-ply laminates, have been presented, involving 
non-degenerate and degenerate transversely isotropic materials. 
 
The procedure presented requires a knowledge of the eigenvalues p  and eigenvectors 

 TTT
 baξ ,  (=1,…,6) of the fundamental elasticity matrix N in the Stroh formalism 

for transversely isotropic materials in an explicit form. In order to obtain a general 
procedure for corner singularity analysis, all mathematically degenerate cases of N have 
been taken into account in the analysis presented, so there is no limitation either in the 
orientation of the material or in the particular values of the elastic constants. 
 
The final expressions of the eigenvalues and eigenvectors are expressed in terms of the 
stiffness constants of the material and the angles defining the spatial orientation of the 
material. In all the cases studied, matrices  321 ,, aaaA   and  321 ,, bbbB   have 

been properly orthogonalized and normalized in order to fulfil the important 
orthogonality and closure relations of the Stroh formalism. The explicit expressions of 
A and B have been presented in the Appendix as they can be useful for other 
applications of Stroh formalism with transversely isotropic materials. 
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The new explicit expressions of matrices A  and B  deduced are directly applicable in 
those representations of elastic variables in the Stroh formalism which are associated 
with the coordinate system defined by the generalized plane strain state (see Ting [12]), 
an approach typically followed in engineering applications. Thus, it is expected that 
these expressions will contribute to further developments in the Stroh formalism applied 
to stress analysis of composite materials modelled like transversely isotropic materials, 
because of the fact that exact expressions for degenerate cases can now be used. The 
numerical uncertainties and instabilities which usually appear when trying to model 
degenerate cases as limit cases of non-degenerate materials can then from now on be 
overcome. 
 
It has been shown that large errors in the order of stress singularities can appear when 
using the expressions for non-degenerate cases together with a perturbation of the real 
material configuration (e.g. by modifying the fiber orientation) instead of the pertinent 
expressions for the actual degenerate configuration. Moreover, these errors, and also an 
adequate perturbation of the real configuration giving minimum errors, are a priori 
unknown, which confirms the usefulness of the expressions deduced in the present work 
for engineering applications. Results with high accuracy have been reported and can be 
used as benchmarks by other researchers. 
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APPENDIX: Orthonormalized expressions of a and b  
 
As mentioned in the main text, once the eigenvalues and eigenvectors of a transversely 
isotropic material with an orientation defined by 0  and a generic angle   around 
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2x  in the 31 xx   plane are known, it is easy, by means of (19-21), to obtain the 

respective values of a generally oriented transversely isotropic material. Thus, we will 

focus our attention on materials with 0 . Transforming ijksĈ  in (15) considering a 

rotation around 2x̂  by an angle , using (23) and writing the characteristic equation (5) 

for Q*, R* and T* defined in (23), we arrive at an analogoue of (5) in terms of )(ˆ Q , 

)(ˆ R  and )(ˆ T , defined also in (23), finally obtaining the three eigenvalues of the 

material in terms of  and the elastic constants of the material: 
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Following the classification of N in Ting [24], and depending on the particular values of 
 and A, N, C, F and L, the following cases appear, Tanuma [18]. 
 
1. *N  is non-semisimple if and only if 
 
 1.a) =0 or =π, or (A.4) 
 

 1.b) 02  LFAC , with two different subcases: (A.5) 

 1.b.1) 
A

C

NA

L



2

, or (A.6) 
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2. With ≠0, π and 02  LFAC , *N  is semisimple if and only if 
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3. In any other case, *N  is simple. 
 
 
With the expressions in (A.1-A.3), it is not possible to find an extraordinary degenerate 
matrix *N  (three equal eigenvalues and only one linearly independent eigenvector) for 
transversely isotropic materials. Thus, the following two non-semisimple (or 
degenerate) cases can be considered for transversely isotropic materials: 
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 D1 case, with two identical eigenvalues (   32 pp ) and two linearly independent 

eigenvectors. The two linearly independent eigenvectors are *
1ξ  and *

2ξ , while 

the generalized eigenvector is *
3ξ , then 
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 D2 case, with three identical eigenvalues ( pppp  *

3
*
2

*
1 ) and two linearly 

independent eigenvectors. The two linearly independent eigenvectors are *
1ξ  and 

*
2ξ , while the generalized eigenvector is *

3ξ , then 
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Recall that a* and b* define the components of A*=A(,0) and B*=B(,0).  
 
For the sake of simplicity, in the following expressions in this Appendix the superscript 
(*) in the roots 

p  will be omitted. 

 
 
Case 1.a.: =0 or =. 
 
In this case we have a triple eigenvalue ipppp  321  and two linearly 

independent eigenvectors, and thus it is a D2 case, see (A.10). Particularly in this case, 
expressions of a* and b* are identical to Da  and Db  according to (26-27), as IΩ )(2  , 
see (17). The corresponding expressions of a* and b* can be directly obtained using the 
results by Tanuma [18]. The normalization procedure is defined by the following 
expressions (Ting [12], Chapter 5): 
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where 0*

ξ  are the unnormalized eigenvectors obtained by (26-27) from those presented 

by Tanuma [18], *
ξ  the normalized ones and 



 0
0ˆ
I

II  with I being the identity matrix 

(33). The normalized eigenvectors are given by: 
 

 





















iL2

1
0

0
*
1a ,  


















0

1
*
2 ika ,  





























0

1
)(2

3*
3

i

NA

NA
k



a , (A.13) 



 

 26 

 





















iL

iL

2

0

0
*
1b ,  




















0

1)(*
2

i

NAkb ,  

























 


0

1

2
*
3 i

NA
kb , (A.14) 

 0
)(4

2
1














NAA

NA
k . (A.15) 

 
The sign  depends on the value of the cos=1. In this case, the elastic rotational 
symmetry axis coincides with 3x , so )(3 Ω  in (19-20) has no effect, and thus a*=a and 

b*=b. 
 

Case 1.b.1: 02  LFAC  and 
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2

. 

The eigenvalues (A.1-A.3) are: 
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There exists only one linearly independent eigenvector associated with 32 pp  , and 

thus it is a D1 case, see (A.9). The eigenvectors can be obtained using (26-27) and the 
results by Tanuma [18]. The vector *

3b  is obtained through the relationship between the 

generalized eigenvector *
3ξ  and the eigenvector *

2ξ , for the degenerate case D1, which 

takes the form, see Ting [12]: 
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Following the normalization procedure applied as in the previous case using (A.11-
A.12), we obtain: 
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It is still necessary to apply (19-20) to the obtained expressions of *A and *B  to take 
into account a rotation by   around 3x . 
 

Case 1.b.2: 02  LFAC  and 
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NA
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. 

Under these conditions, 1p  equals 32 pp  , see (A.16-A.17), so a triple eigenvalue 
appears with two linearly independent associated eigenvectors. Thus, this is a D2 case, 
as was obtained in Case 1.a, but with the difference that in this case the eigenvalues are 
not necessarily the imaginary unit i. Notice that isotropic materials are covered by the 
present case with ipppp  321 . 

 
The normalization procedure of this case demands more attention, as will be seen 
below. Although the eigenvectors associated with 1p  and 2p  are the same as those 
obtained in the previous case 1.b.1, we will obtain them by the general procedure 
outlined in Section 3, and not using results by Tanuma [18], together with equations 
(26-27). The comparison of this case (1.b.2) and the previous one (1.b.1) will help 
toward a better understanding of both approaches. 
 
Matrices Q*, R* and T* (17) for this particular case are defined as: 
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The eigenrelation to obtain *a  (24) with the above Q*, R* and T* can be written, after 

appropriate simplifications, as: 
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Solving (A.26), we obtain: 
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while for *

3a  we apply, Ting [12], the equation, 
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obtaining: 
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In (A.27) and (A.29) the "0" in the superscript denotes that no normalization has been 
applied for the moment. It can be observed that 0*

1a  and 0*
2a  (A.27) are equal to *

1a  

(A.19)1 and *
2a  (A.20)1 respectively, except for the normalization factor. The expression 

of *
3a  changes from the previous case, as does the normalization procedure. 

 
Using (25) and (A.18) we obtain ( 0*

2
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1 ,bb ) and ( 0*
3b ) respectively, 
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It can be observed that 0*

1ξ  and 0*
2η  ( ),( 332

TTT abη   for this D2 case) are not orthogonal 

to each other. Through a linear combination it is possible to make an orthogonal base 
(the "" in the superscript denotes an orthogonalized vector), 
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In order to continue to satisfy relations (25) and (A.18) between the new 0*

3a , 0*
3b  and 

0*
2a , 0*

2b , it follows that: 
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With 0*

1ξ , 0*
2ξ  and 0*

3ξ  all orthogonal, we perform the normalization procedure in a 

similar way to Case 1.a (A.11-A.12), as we only have one generalized eigenvector. 
 
The final expressions of the components of A* and B*, already normalized, are defined 
by: 
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When comparing with the previous case, we can see how *
1a  and *

1b  are identical, see 

(A.19) and (A.35), and how *
2a  and *

2b  are also equal except for the normalization 

factor k, see (A.20) and (A.36). The generalized eigenvectors *
3ξ  are different in both 

cases. 
 
The semisimple and simple cases will be analyzed together, and following Tanuma [18] 
this analysis will be performed separately for vanishing and non-vanishing value of 
F+L. 
 
Cases 2.1 and 3.1: Semisimple and simple cases with 0 LF . 
 
For anisotropic materials having a fundamental elasticity matrix *N  with three linearly 
independent eigenvectors, *N  being simple when ( 1321 pppp  ) and semisimple 

when ( 321 ppp  ), the structure of matrices *A and *B is well known, see Ting [12], 
Chapter 6. For the particular case of simple and semisimple cases of transversely 
isotropic materials, with 0 LF , we have the following normalization factors: 
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For the semisimple case (Case 2), (A.8) holds and: 
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For the simple case (Case 3): 
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For both cases (simple and semisimple) together with (A.41-A.42), we have: 
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Cases 2.2 and 3.2: Semisimple and simple cases with 0 LF . 
 
The eigenvalues are those in (A.1-A.3), with 21 pp   for the semisimple case. The 

vectors *
a  and *

b  can be taken from Ting [12], chapter 6, or Tanuma [18] together 

with (26-27), and with the normalization factors defined in (A.40), we finally obtain: 
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and for 3,2i , we have: 
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Once A* and B* have been evaluated for all the possible cases for a transversely 
isotropic material, it only remains to apply the transformation law of a and b for a 
rotation around *

3x  axis, see (19-20), to have the final expressions of A=A(,) and 

B=B(,) in any generic orientation of the material with respect to the generalized plane 
strain configuration. 
 


