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Abstract

Machine learning-based algorithms have been widely applied recently in different

areas due to its ability to solve problems in all fields. In this research, machine learn-

ing techniques classifying the Bravais lattices from a conventional X-ray diffraction

diagram have been applied. Indexing algorithms are an essential tool of the prelimi-

nary protocol for the structural determination problem in crystallography. The task

of reverting the obtained information in reciprocal lattice to direct space is a com-

plex issue. As an alternative way to afford this problem, different machine learning

algorithms have been applied and a comparison between them has been conducted.

The obtained accuracy was 95.9% using 10-fold cross-validation (while the best

result obtained so far has been 84%). A model based on Bragg positions was our

unique predictor, allowing us to obtain the set of the interplanar lattice distances.

Our model was successfully checked with a complex example. In addition, our pro-

cedure incorporates the following advantages: robustness versus imprecision in

data acquisition and reduction of the amount of necessary input data. This is the

first time so far that such classification has been carried out in true ab initio

condition.
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1 | INTRODUCTION

Machine learning (ML) methods have achieved recently outstanding contributions in the materials research community as well as in other science

domains (Agatonovic-Kustrin & Beresford, 2000; Bhadeshia, 1999; Dai et al., 2020; Scott et al., 2007; Sha & Edwards, 2007; Shetty et al., 1999;

Woinaroschy et al., 2000; Zhang et al., 2008). ML developments include methods which simulate brain working, for instance, artificial neural net-

works (ANN), or simulate human experience and draw conclusions as expert systems. Somehow, we can state that we are facing the solution of

traditional complex problems with other different paradigm which offers greater speed and efficiency. The goal of our work is concerned to the

solution of an outstanding problem of crystallography: the assignation of the Bravais lattice in structural determination. We will approach that key

problem from conventional ML methods. Following, we address the task of laying out the fundamentals of such a problem.

Crystallography is the science that studies the atomic arrangements of crystalline solids. It is an axiomatic discipline that relies on two pos-

tulates: The postulates of Bravais and Schoenflies–Fedorov. First of them, known as micro-periodicity principle, states the foundation for

Received: 11 February 2022 Revised: 13 August 2022 Accepted: 25 September 2022

DOI: 10.1111/exsy.13160

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Expert Systems. 2023;40:e13160. wileyonlinelibrary.com/journal/exsy 1 of 17

https://doi.org/10.1111/exsy.13160

https://orcid.org/0000-0003-4666-0998
mailto:fcumbreras@us.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/exsy
https://doi.org/10.1111/exsy.13160
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexsy.13160&domain=pdf&date_stamp=2022-10-20


translational symmetry. All possible arrangement of congruent points in a crystalline solid (those which remain invariants under the operations

of an algebraic group of translations) are called Bravais lattices. Group theory states that they are only possible 14 Bravais lattices in 3-D space.

Figure 1 shows the 14 possible Bravais Lattices classified according to the seven crystal systems. Rows represent each one of the seven crystal

systems. The second column indicates the geometric cell parameters and successive columns a drawing of the unit cell according to the

criteria:

• Lattice points only at the vertices (primitive cells).

• Lattice points at the vertices and in the center of the cell (body-centered cells).

• Lattice points at the vertices and in the center of the basal faces (base-centered cells).

• Lattice points at the vertices and in the center of all faces (face-centered cells).

The first step in solving an unknown crystal is the determination of the unit cell (the repeating unit), as a precondition for the subsequent

determination of the relative positions of atoms within that cell. In fact, two separate kinds of information can be extracted from diffraction spec-

tra: the first one comes from the geometrical arrangement of the reflections, which gives us the information about the crystal lattice and the sym-

metry of the crystal. This kind of information source is obtained by means of the indexing algorithms (IA in this article). The second one comes

from the intensity of reflections and is concerned with the information about the cell content.

The so called indexing algorithms are an essential part of every data collection software package. The well-known underlying principle of

indexing methods is universal: they are based on matching experimental scattering vectors to some vectors of the reciprocal lattice (the algebraic

F IGURE 1 The 14 Bravais lattices in three dimensions. Source: D.V. Anghel, Bravais lattice table, 2003
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dual lattice in the wave vector space). The most extensively used are TREOR90 (Werner et al., 1985), DICVOL91 (Boultif & Louër, 2004) and

ITO15 (Visser, 1969), which work on very different approaches to solve the problem. Those current approaches fall into two main categories

(Habershon et al., 2004): exhaustive search or deductive recognition of relationship between subsets of data.

In practice, the measurement of the positions of the so called Bragg peaks is equivalent to the measurement of the modules of a subset of the

vectors of the reciprocal lattice, in fact the shorter ones, without any knowledge about orientation relations. The task of reverting that limited

information to direct space, in order to build the correct Bravais lattice, is a complex issue. Figure 2 shows a diffraction spectra of Boron Carbide

manufactured and obtained in our laboratory. Horizontal axis is the scattering angle (2θ) and vertical axis is the intensity in arbitrary units. The

Bragg peaks are superposed on an inelastic smooth background which lacks of crystallographic relevance.

By means of any peak-hunter algorithm we obtain the positions of the maxima which can be introduced in Bragg law:

λ¼2 �dhkl sinθ, ð1Þ

to obtain the interplanar lattice distances of the (hkl) family of planes.

Now, the equation to solve is

Qhkl ¼ 1

d2hkl
¼ f a, b, c, α, β, γ, h, k, lð Þ, ð2Þ

where a, b, c, α, β and γ are the linear and angular parameters of the unit cell and the hklð Þ Miller indices. Miller indices are unknown three integer

numbers that specify the orientation of plane lattice satisfying the Bragg law. All the parameters in f a, b, c, α, β, γ, h, k, lð Þ are unknown.

Further obstacles to the correct indexing are related to geometrical ambiguities because while a unit cell defines the lattice, a lattice can be

described in infinite different ways. Proof of lack of satisfaction are the new attempts published in bibliography. As a sign of that, Jacobson (1997)

proposed a cosine Fourier transform to obtain direct space cell vectors. Coelho (2017) proposed the same way a new indexing algorithm, indepen-

dent of peak positions, to overcome the issue of inaccuracy in the peaks measurement.

It is tempting to afford the indexing problem by means of ML methods, based on learning (training and validation) from a selected database.

Following, we will expose the previous attempts so far. Recently, Liang et al. (2020) made available to public the tool called Crystal Structure Pre-

diction Network (CRYSPNet) which is based on neural networks and can predict several features as Bravais lattice, lattice parameters of inorganic

materials based on its chemical composition. The code has been trained and validated over a large number of the Inorganic Crystal Structure Data-

base (ICSD) entries. Despite their results clearly improve other strategies, the higher accuracy reached is about 84% for the metal group set. The

limitations were justified on the basis of class imbalance, particularly for the low symmetry compounds. We agree with that observation but we

will suggest later that ANN models are by far less efficient than other ML techniques for this kind of classification problem. In any case its algo-

rithm is not universal as it is restricted to groups of inorganic compounds.

In the same direction of thought is the work of Ryan et al. (2018). His approach, based on ANN, demonstrates the ability of deep learning to

extract meaningful information from large repository data. Although the evaluation of crystalline structures falls within the scope of their work, it

was not contemplated the simple but crucial challenge of identifying the Bravais lattice from the only predictor of Bragg positions obtained from

the diffraction spectrum.

F IGURE 2 Diffraction spectra of boron carbide
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Another outstanding contribution includes the work of Lee et al. (2020), which reports a deep learning protocol for phase identification and

quantification in multiphase inorganic compounds in the quaternary Sr Li Al O. Finally, we refer to the relevant work of Wang et al. (2020) and

Oviedo et al. (2019). In both contributions, the authors, by starting from a large set of predictors, made crystallographic classification limited to

metal organic frameworks or seven space groups, respectively.

It is the first time a study related to all sort of materials has been conducted by using the interplanar lattice distances as only predictor. The

aim is a fast and reliable method of assignation of Bravais lattice avoiding the traditional indexing algorithms. None of the classic algorithms are

conclusive versus complex problems. In fact, practice suggest the combined use of the three algorithms to compare matches and differences.

Our work concerns to the bottleneck task in the preliminary treatment of X-ray data. We have focused our attention in that point (Bravais lat-

tice assignation), once this problem has been solved, the determination of lattice parameters becomes trivial. Then, our challenge is to address the

problem by using as only predictor the list of interplanar lattice spacing dhkl. In addition, we intend our method to be applicable to all sort of mate-

rials and not restricted to a particular subset as in previous attempts.

Then, the originality of this work lies in the fact that we afford a crucial problem in crystallography based on a single predictor, without the

support of large repository data and applicable to all kinds of materials. Previous attempts were restricted to particular subclasses as metals or

ceramics as in references: Lee et al. (2020); Liang et al. (2020), and others.

The article sequence is as follows. In Section 2, the applied methodology is described. The main results are presented in Sections 3 and 4. The

following section explores the reduction of the input data and the selection of the more significant attributes, Section 5. Section 6 addresses the

issue of robustness face to inaccuracies in data acquisition or face to the presence of intruders or missing data. In section 7, the models were

tested face to a very complex case. Finally, Section 8 deals with the most prominent conclusions.

2 | METHODOLOGY

In this Section the methodology followed in this work is described. We try to highlight the challenge that the study carried out in this research

represents.

The explicit mode of Equation (2) is shown in Equation (3) where the lattice spacings dhkl are related to the unit cell parameters trough the

complex relation

1

d2hkl
¼

h
a

h=a cosγ cosβ

k=b 1 cosα

l=c cosα 1
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þ
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, ð3Þ

and in turn these relate to the Bragg position by means of Bragg law, Equation (1). From this equation, we can infer the advantage of choosing lat-

tices spacing as descriptor instead of Bragg positions, since for the latter choice the dependence with lattice parameters is complicated by the

presence of an arcsin law.

Although in 3-D space there are 14 Bravais lattices, Figure 1, in practice hexagonal unit cell can be described as rhombohedral by means of:

ar ¼br ¼ cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ah
3
þc2h

9

s

αr ¼ βr ¼ γr ¼ cos�1 2c2h�3a2h
2 c2h�3a2h
� �

 ! , ð4Þ

where ar, br, cr αr , βr and γr are lattice parameters for rhombohedral unit cell while ah and ch are the lattice parameters for hexagonal unit cell.

In a similar way, rhombohedral lattices can be expressed as hexagonal ones. That is why we have reduced the number of classes to 13 by

grouping together the hexagonal and rhombohedral primitive lattices. As a matter of fact, we have established the following correspondence:
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Primitive cubic 1

Body centered cubic 2

Face centered cubic 3

Primitive tetragonal 4

Body centered tetragonal 5

Primitive orthorhombic 6

Body centered orthorhombic 7

Base centered orthorhombic 8

Face centered orthorhombic 9

Primitive monoclinic 10

Base centered monoclinic 11

Triclinic 12

Hexagonal and trigonal 13

Our starting set was made from 500 entries, 100 from the ICSD database (Bergerhoff et al., 1983) and the remaining from the crystal open

database (COD) data set (Vaitkus et al., 2021). The selection was random so as to avoid any bias, and the only restriction was having at least 3%

of each class. The histogram of the starting data set is shown in Figure 3. This graph represents how many instances are classified in each class.

For example, for class 1 there are 29 records, 32 instances are classified in class 2, and so on.

At this respect, the percentage of each Bravais lattice in the ICSD data set can be read in Liang et al. (2020).

Two facts are well known:

1. The suite of lattice distances is monotonously decreasing with the scattering angle.

2. Traditional methods need at least the first 20 reflections as input data, to avoid ambiguities.

With regard to both points, all lattice distances were divided by the largest one which is the first. This way we have a sequence of real num-

bers starting from 1 and monotonously decreasing afterwards. According to the usual methods, we have chosen the first 20 lattice distances,

although the normalization procedure reduces by one unit the number of significant input data. In this way, we have 20 relationships with

66 unknown: 6 defining the metric of the unit cell and 20 triples of integer numbers hklð Þ. Once we solved Equation (3), we obtained the unit cell

and the set of (hkl) integers which allow us to build the corrected Bravais lattice. In Table 1 an extract of data set is shown. The first 19 columns

represent the described attributes and the last column represents the target variable for the classification problem.

For the particular case of Bravais lattices of the cubic system, Equation (3) reduces to:

dhkl ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þk2þ l2

p : ð5Þ

For this particular case of cubic symmetry, the sequence of normalized data does not depend on lattice parameters, but only on the integer

Miller indexes. This leads to an easily identifiable pattern. For the rest of cases, Equation (3) shows the complexity of the problem and the inability

F IGURE 3 Classes distribution in the data set
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to obtain predictable patterns. Another additional consideration to take into account is that every Bravais lattice is associated with a subset of the

230 Space Groups of Schoenflies-Fedorov. For each group of symmetry certain operations leave a trace in the diffraction pattern systematically

cancelling certain intensities, following rules called systematic absences.

In Figure 4a and b, we show powder X-ray diffraction diagrams for compounds with two different space groups of the same Bravais lattice

(primitive orthorhombic). The first is a symmorphic group (P222) whereas the second is Pnma which show systematic absences due to screw axes

and glide planes (in fact Pnma is a supergroup of P212121). In both figures, horizontal axis is the scattering angle (2θ) and vertical axis is the inten-

sity in arbitrary units. The small markers at the bottom indicate the Bragg positions.

If we remark the Bragg peak positions, regardless its intensities, patterns are very different despite coming from the same Bravais lattice.

Therefore, we can state we are facing up a formidable challenge without the hope of any predictable pattern.

3 | COMPUTATIONAL TOOLS

With regard to ANN we have used the multiple back propagation (MBP) software developed by Lopes and Ribeiro (2010). This program incorpo-

rates an architecture multiple feed forward network which allows a partition in sub-spaces for the mapping function relating to inputs and outputs.

It also implements neurons with selective activation. Experimental results on benchmarks showed the superiority, in most cases, over classical

multilayer perceptron networks (Lopes & Ribeiro, 2011).

The other ML models were accessed through the graphical interface Weka (Frank et al., 2016). This software allows you to preprocess a big

set of data. It also applies different ML algorithms and compares various outputs. Weka was developed by the University of Waikato in

New Zealand, this term stands for Waikato Environment for Knowledge Analysis. The methods used in the experiments were:

Naïve Bayes A probabilistic classifier applying Bayes theorem.

k-NN A clustering supervised algorithm.

ChirpMethod based on Hypercube description regions (HDR).

Furia A fuzzy rule learner.

J48 A decision tree implementing the ID3 algorithm (iterative dichotomiser).

Meta-estimators random tree, random forest and extra tree.

4 | PRELIMINARY RESULTS

Two kind of experiments were done, using different methods for validation in order to measure the ability to predict new data avoiding selection

bias and overfitting:

• Train/test split: data are shuffled randomly and a split 2/3 is used for training and the other split 1/3 for testing the model.

• k-fold cross-validation (CV): the data are split into k folds, so the model is trained on k�1 folds and then it is tested on the other fold. The pro-

cess is repeated until each unique group has been used as the test set. Exhaustive performances were performed with a partition parameter

equal to 10.

F IGURE 4 Simulated X-ray diffraction pattern for two materials with the same Bravais lattice but different space group
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The results with the percentages of correctly classified records are shown in Table 2. The first column represents the applied model, the second the

percentage of correctly classified instances using the HoldOut validation method versus the 10-fold Cross-Validation technique in the last column.

We draw several conclusions:

• Superiority of meta-estimators against ANN model for these kinds of problems. From now on we will no longer consider ANN methods.

• While ML models are promising, however the test accuracy is not significant for both splitting and cross validation experiments.

All of above leads us to make the decision of pre-process the data to overcome the imbalance between classes or overfitting. With such a

goal in mind we have used two supervised filters already included in Weka: Smote and ClassBalancer. The first one is a synthetic minority

oversampling method. On the other hand, the second one reweights the instances so that each class has the same total weight.

After this we have applied again the ML models, the obtained results are described in Table 3, including the results of κ-statistic from 10-fold

CV experiments accounting for the possibility of agreement by chance (Smeeton, 1985).

In Figure 5 a sketch of these results is shown. The x-axis represents the different studied models and the y-axis represents the accuracy (%)

of the classification for both splitting and cross validation experiments. It is observed that most of the models present a higher accuracy when

working with the 10-fold CV validation method. Except for the Naïve Bayes model, all models present an accuracy greater than 75%, highlighting

the Random Tree model, which exceeds 95%.

5 | REDUCTION IN INPUT SPACE

The following Section explores the selection of the more significant attributes and the reduction of the input data. We intend to determine if

there is an improvement in the performance of the models when a reduction of the data set is carried out.

5.1 | Improvement by attribute selection

For the process of classification, we selected 20 attributes which were eventually reduced to 19 because of the normalization task. Afterwards,

we raised the question of its relevance since some of them might be irrelevant or superfluous. In fact, attribute selection is a mining data method

TABLE 2 Results from preliminary experiments

Models Train/test split 10-fold CV

MBP 37.0 22.0

Naïve Bayes 14.1 13.6

k-NN 27.1 32.4

J48 39.5 37.3

Chirp 31.5 29.8

Furia 41.7 29.9

Random Tree 50.2 59.6

Extra Tree 50.3 59.5

Random Forest 50.0 61.3

TABLE 3 Results from experiments with preprocessed data

Models Train/test split 10-fold CV k-statistic

Naïve Bayes 28.6 32.6 0.19

k-NN 82.4 89.6 0.89

J48 79.3 85.7 0.79

Chirp 76.5 75.2 0.81

Furia 71.8 81.0 0.76

Random Tree 92.5 95.5 0.93

Extra Tree 90.0 83.5 0.90

Random Forest 84.7 90.6 0.92
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to extract the ranking of attributes. The goal is not only to reduce the processing time, but also to improve the metrics of the classification algo-

rithms. The underlying philosophy is very well explained in the article of Gnanambal et al. (2018).

Attribute selection is a two-step process, the first one is a searching process and the following one deals with ranking. The PART algorithm

was first applied according the recommendations in Gnanambal et al. (2018). For the second step we applied the heuristic Greedy stepwise

method (Butterworth et al., 2004). The results are shown in Table 4. We have highlighted those attributes that exceed 55% significance which it

is clearly observed in Figure 6. The y-axis represents the percentage of significance, while the x-axis represents each of the attributes. The thresh-

old value has been marked with a horizontal line. All those attributes that exceeded this value were selected.

After this task we have repeated the classification based only on the highlighted attributes and the most successful algorithm (Random Tree).

Thus, we improved our results from 95.5 to 95.9 in 10-fold CV. While this improvement seems slight, we showed nonetheless effectiveness of

attribute selection.

TABLE 4 Selected attributes according to acceptance criteria

Attributes Significance (%) Acceptance

1 0

2 100 X

3 60 X

4 40

5 40

6 80 X

7 20

8 60 X

9 20

10 60 X

11 20

12 20

13 60 X

14 20

15 0

16 60 X

17 60 X

18 0

19 20

20 20

F IGURE 5 Graphic representation of performance from the experiments
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5.2 | Reduction of input data

Data acquisition for indexing purposes requires, at least, three times the number of parameters that fix the unit cell. If the symmetry is unknown,

we need six unit-cell parameters and consequently, most automatic indexing programs require a minimum of 20 reflections as input data. In a nat-

ural way our attributes are sorted in a descending order. After this, we raised the question that perhaps a lower number might be needed for ML

methods. This way, and starting from our whole set of 20 attributes we will sequentially remove attributes in an ascending order, that is, starting

from the smallest one.

The results are represented in Figure 7, in which the y-axis represents the percentage of accuracy achieved with the reduction of input data

and the x-axis represents the attributes. We can deduce that it can be maintained an accuracy over 90% with the first 10 terms only. For any fur-

ther reduction the decrease is very prominent, decaying quickly to a random probability of 100/13% (≈7:7%). In a previous subsection we already

put across that only eight attributes were really significant (at least for ML models). Thus, ML methods allow us to simplify the input data, versus

the strict demand of traditional approaches.

6 | ROBUSTNESS

This section addresses the issue of robustness face to inaccuracies in data acquisition or face to the presence of intruders or missing data.

F IGURE 6 Acceptance criteria to select attributes which exceed the threshold value

F IGURE 7 Accuracy with reduction of input data
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6.1 | Robustness versus imprecise data acquisition

It is a common fact that some diffraction diagrams contain heavily overlapped domains where it is very difficult to determine the Bragg peak posi-

tions accurately. The consequences of these inaccuracies may be critical, especially in the low angle domain (first attributes). In order to check the

robustness of the methodology we have modified randomly our attributes from the second onwards. To this end, we have generated 19 random

numbers in the interval (�1,1) that we have multiplied by a number ε which adopts successively the values (0.01, 0.02, 0.03 and so on). For a given

value of ε, the set of attributes, from the second onwards, are shifted multiplying its actual value by the factor (1þε). The coefficient ε represents

the percentage of inaccuracy measurement. In Figure 8 we show the worsening of accuracy relative to the random displacements. On the hori-

zontal axis we represent the inaccuracy (noise) in the data acquisition while the vertical axis shows the accuracy in the classification.

We can appreciate that the algorithm is robust, at least until a level of noise of ε¼8 8%ð Þ. A severe relative error for Bragg positions is about

1% and from the Bragg equation this is equivalent to an inaccuracy of 1% in lattice distances. Accordingly, we can confirm outright that our proce-

dure is robust face to noise in the peaks hunting data acquisition.

6.2 | Pitfalls in the low angle domain. Omitted or intrusive peaks

It is well known that photon counting statistics follows a Poisson noise distribution which degrades quality of spectra. The signal to noise ratio is

strongly dependent on the data acquisition time. We often meet difficult choices concerning the doubt of whether an observed peak corresponds

to a true Bragg reflection or to an impurity peak, a noise signal or a Kalfa2 shoulder (a superfluous right-sided companion due to characteristic X-

rays). Two possible wrong outcomes might happen: omission or intrusion. Besides, it is possible to ignore some faint reflections having intrinsically

low structure factor moduli.

Experience shows that consequences are less important in the high angle domain but are extremely critical in the low angle region (large

interplanar lattice distances). To check the consequences of each wrong choices, we have.

• omitted the second attribute.

• introduced an intruder value in that second position and so moving to one single place the others.

For the last case, the intrusive position was a random real number between one and the old second attribute value. In Table 5, we illustrate

the obtained results, the true positive ratio (TPR) is showed for each Bravais lattice omitting the second attribute as well as adding an intruder

value. This is, the correctly predicted positive values which means that the value actual class and the value of predicted class are the same. And

Table 6, the accuracy (%) of correctly classified observations and k-statistic are described in both cases, omitting the second attribute as well as

adding an intruder value.

The first obvious conclusion is that the method is not robust facing this situation, as in traditional methods. In any case we can say that false

inclusion gives rise to a more pronounced worsening of results. In fact, crystallographers know the rule: in doubt it is better to omit. The third

F IGURE 8 Accuracy with imprecise data
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class, corresponding to the resilient fcc lattice (face centered cubic), was highlighted in Table 5 because it stands out singularly from the rest of

Bravais lattices with regard to the TPR factor.

7 | RESULTS AND DISCUSSION

In this work, we approach the problem of the assignation of the Bravais lattice in structural determination applying ML methods. So, the different

ML-based algorithms were applied to the data set manufactured and obtained in our laboratory, whose extract was shown in Table 1. In the pre-

sent research, the accuracy was calculated, measuring the classification ability of the models. As mentioned above, Random Tree model offers the

best results, exceeding 95%, as observed in Figure 5. In general, all the models present an good behaviour with an accuracy greater than 75% with

the 10-fold CV validation method.

From the results, it is noticeable that the accuracy of the Random Tree is very high. Focusing on this classification model, the rules were

analysed, as well as the extensive tree obtained. A total of 482 classification rules were extracted from decision tree, so a part of the constructed

Random Tree in Weka is shown in Figure 9 and the corresponding rules generated for this tree branch are represented in appendix. The rules

serve as a condition that when it is satisfied, it returns an equivalent predicted classification.

In Random Tree, each node is split using the best among the subset of predicators chosen at that node, using the gain to split them. So, we

can observe that the first dichotomy (the greatest gain of information) refers to attribute 13. The following dichotomies concern the attributes

2 and 6. The alternative for the second attribute is critical ( < 0:69 or ≥0:69) and results in a branch to either the Bravais lattices with high symme-

try or the opposite, respectively.

After the creation of the tree, the training observations are grouped at the terminal nodes. To predict a new observation, the tree is traversed

based on the value of its predictors until one of the terminal nodes is reached. In the case of classification, the mode of the response variable is

used as the prediction value, that is, the most frequent class of the node. The leaf or terminal nodes are represented by rectangle and decision

nodes are represented by oval.

The tree obtained greatly facilitates the tasks of classifying the Bravais lattices from a conventional X-ray diffraction diagram. It is only neces-

sary to take the values of the attributes of the new instance to classify and traverse the tree to obtain a correct classification.

In addition, we have gone further in trying to test the model in extreme cases and observe its behaviour. In this way, a complex case was

tested which is described below.

TABLE 5 TPR for each Bravais lattice

Attributes Omission Intrusion

1 0.008 0.012

2 0.143 0.071

3 0.833 0.583

4 0.007 0.178

5 0.429 0.075

6 0.101 0.012

7 0.099 0.111

8 0.002 0.007

9 0.167 0.011

10 0.171 0.070

11 0.005 0.005

12 0.073 0.230

13 0.016 0.002

Note: Bold values represents the third class which stands out from the rest of Bravais lattices.

TABLE 6 Results according to omission or intrusion

Metric Omission Intrusion

Accuracy 16.700 9.400

k-statistic 0.089 0.012

12 of 17 SILVA-RAMÍREZ ET AL.
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In the Ta-doped zirconia system, Cumbrera et al. (2018) observed, for the first time, a new orthorhombic crystal structure coming from a

symmetry-breaking distortion of the tetragonal polymorph of zirconia. It is well-known that pure ZrO2 exists at ambient pressure in three poly-

morphic variants depending on the temperature:

1. Monoclinic ZrO2 (m-ZrO2; space group P21/c) from room temperature up to 1205�C.

2. Tetragonal ZrO2 (t-ZrO2; space group P42/nmc) in the range 1170–2370�C.

3. Cubic ZrO2 (c-ZrO2, space group Fm3m) from 2370�C up to the melting point at 2680�C.

In practice, all the variants may be stabilized at room temperature through alloying oxides (e.g., CaO, MgO, Y2O3, CeO2 and others). In our

work, by using Ta-doping, we obtained a new orthorhombic ceramic compound which seems to be immune to aging and shows an interesting fer-

roelectric behaviour.

Indexation of the X-ray diffraction pattern led to two possible alternative solutions. The first one is a centric crystal structure with a mono-

clinic cell and a space group C2=c, and the other is an acentric crystal structure with an orthorhombic cell and a space group Pca21 (which is a

maximal subgroup of the tetragonal P42/nmc space group). In this case, the ferroelectric behaviour of the material allowed to rule out the mono-

clinic base centered option because of its incompatibility with symmetry centers. Figure 10 shows the corresponding diffraction diagram. The x-

axis is the scattering angle 2θ (the double of the Bragg angle), while the y-axis is the diffracted intensity in arbitrary units.

Thus, we have tested our best trained model face to that crucial proof. After introducing in the testing set the experimental input attributes

regarding to Ta-doped zirconia, we also introduced as target the incorrect choice of monoclinic base centered lattice (class 11). The model was

able to detect and correct that wrong assignation, so the model repositioned the nominal output class as the correct primitive orthorhombic (class

F IGURE 9 Tree branches for random tree

F IGURE 10 X-ray pattern diffraction of Ta-doped zirconia

SILVA-RAMÍREZ ET AL. 13 of 17

 14680394, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13160 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [23/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6), as observed in confusion matrix supplied by Weka, shown in Figure 11. The incorrect class 11 was correctly classified as the correct one,

class 6.

8 | CONCLUSIONS

To the best of our knowledge this is the first ab initio successful attempt to classify Bravais lattices starting with interplanar lattice distances as

the only predictor. This new procedure for a quick assignment of the Bravais lattice is a very significant step forward for the crystallographer's

routine. The procedure reliability allows us to avoid the tedious time-consuming trials and errors associated to classical approaches when applied

to new unknown structures.

The methodology is not restricted to any kind of compounds neither any subset of space groups of symmetry. The algorithm random tree,

with the help of data preprocessing, yields a quick classification of Bravais lattice providing a low error margin, despite not having any a priori

knowledge (ab initio). The obtained accuracy was 95.5%. The performance of ANN results was found clearly inferior to other ML methods. In

addition, it was shown by means of data mining methods that the amount of input data may be reduced to eight attributes instead of the usual

20 attributes demanded by the classic software applications. With this reduced set as a start point, for which the least significant data were

suppressed, the obtained accuracy improves to 95.9%.

Moreover, it was proved that, with the present methodology, we can ignore the last 10 smallest interplanar lattice distances while maintaining

an accuracy over 90%. Likewise, the method was shown robust versus random noise in the dhkl set coming from errors in the Bragg peak hunting

procedure. In addition, not only the problem has been solved with ML-based methods with high accuracy, but by selecting the best model and

subjecting it to a complex and unknown case, Random Tree achieved notable success.

Finally, our trained model was able to overcome a severe test of Bravais lattice assignation in the domain of advanced ceramic materials. The

success in solving this difficult problem by means of ML methods will undoubtedly contribute to rise interest in the community of crystallogra-

phers. We are currently expanding our focus of attention to other complex crystallographic systems as defective spinels and non-stoichiometric

boron carbides.
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F IGURE 11 Confusion matrix in Weka for Ta-doped zirconia
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An extract of the rules set generated by Random Tree model is shown in this section:

campo 13 < 0.29

j campo 2 < 0.69

j j campo 6 < 0.28

j j j campo 6 < 0.18: 6 (2/0)

j j j campo 6 ≥ 0.18

j j j j campo 6 < 0.27: 5 (6/0)

j j j j campo 6 ≥ 0.27: 4 (2/0)

j j campo 6 ≥ 0.28

j j j campo 10 < 0.3

j j j j campo 6 < 0.34

j j j j j campo 2 < 0.52

j j j j j j campo 13 < 0.22

j j j j j j j campo 10 < 0.25: 13 (11/0)

j j j j j j j campo 10 ≥ 0.25

j j j j j j j j campo 6 < 0.31: 11 (1/0)

j j j j j j j j campo 6 ≥ 0.31: 12 (1/0)

j j j j j j campo 13 ≥ 0.22

j j j j j j j campo 2 < 0.5

j j j j j j j j campo 14 < 0.23: 4 (3/0)

j j j j j j j j campo 14 ≥ 0.23

j j j j j j j j j campo 8 < 0.31: 3 (3/0)

j j j j j j j j j campo 8 ≥ 0.31: 9 (2/0)

j j j j j j j campo 2 ≥ 0.5: 13 (6/0)

j j j j j campo 2 ≥ 0.52

j j j j j j campo 8 < 0.31: 3 (18/0)

j j j j j j campo 8 ≥ 0.31: 13 (2/0)

j j j j campo 6 ≥ 0.34

j j j j j campo 2 < 0.6

j j j j j j campo 10 < 0.29: 13 (22/0)

j j j j j j campo 10 ≥ 0.29: 11 (1/0)

j j j j j campo 2 ≥ 0.6

j j j j j j campo 3 < 0.51: 5 (3/0)

j j j j j j campo 3 ≥ 0.51: 3 (5/0)

j j j campo 10 ≥ 0.3

j j j j campo 17 < 0.25

j j j j j campo 3 < 0.57

j j j j j j campo 8 < 0.32: 13 (2/0)

j j j j j j campo 8 ≥ 0.32

j j j j j j j campo 2 < 0.65: 13 (1/0)

j j j j j j j campo 2 ≥ 0.65: 9 (4/0)

j j j j j campo 3 ≥ 0.57.

j j j j j j campo 10 < 0.31: 12 (4/0).

j j j j j j campo 10 ≥ 0.31: 4 (2/0).

j j j j campo 17 ≥ 0.25

j j j j j campo 3 < 0.55

j j j j j j campo 10 < 0.33: 7 (6/0)

j j j j j j campo 10 ≥ 0.33: 13 (3/0)

j j j j j campo 3 ≥ 0.55: 13 (7/0)
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