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We show that some sets of quantum observables are unique up to an isometry and have a contex-
tuality witness that attains the same value for any initial state. We prove that these two properties
make it possible to certify any of these sets by looking at the statistics of experiments with sequen-
tial measurements and using any initial state of full rank, including thermal and maximally mixed
states. We prove that this “certification with any full-rank state” (CFR) is possible for any quantum
system of finite dimension d ≥ 3 and is robust and experimentally useful in dimensions 3 and 4.
In addition, we prove that complete Kochen-Specker sets can be Bell self-tested if and only if they
enable CFR. This establishes a fundamental connection between these two methods of certification,
shows that both methods can be combined in the same experiment, and opens new possibilities for
certifying quantum devices.

Introduction.—Nonlocality [1] and contextuality [2] are
two fundamental predictions of quantum theory. Quan-
tum theory also predicts that, in certain cases, there is
an essentially unique way to achieve some specific non-
local [3–5] or contextual [6–8] correlation. Consequently,
the observation of this specific correlation allows us to
infer which quantum state has been prepared and which
quantum observables have been measured, without mak-
ing assumptions about the functioning of the devices used
in the experiment [3–8].

However, none of the existing “device-independent”
(DI) certification methods work if the fidelity of the pre-
pared state with respect to a specific pure state is below a
certain threshold. It is this specific pure state that guar-
antees the uniqueness of the quantum realization in the
noiseless (ideal) case. In particular, none of the methods
works if the prepared state is maximally mixed. This
leads to the question of whether it would be possible to
certify quantum observables using correlations produced
by measurements on unspecified mixed states, including
the maximally mixed state.

That, in quantum theory, this question may have an
affirmative answer is suggested by the observation that,
for any quantum system of finite dimension d ≥ 3, there
exist finite sets of observables that produce contextual
correlations for any quantum state [9–12]. These sets
of observables are called state-independent contextuality
(SI-C) sets [2, 13, 14]. SI-C sets have fundamental ap-
plications in quantum information [15–28] and have been
experimentally tested [29–34].
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But the existence of SI-C sets itself leads to another
question: are there SI-C sets that are unique up to
an isometry? This question is particularly relevant for
understanding the mathematical structure of the set of
quantum observables. Interestingly, if the answer to this
question is positive, then there may be a connection to
the question of whether there are quantum observables
that can be certified with arbitrary mixed states.

In this Letter, we first show that there are SI-C sets
that (i) are unique up to an isometry, and (ii) have a SI-C
witness W that achieves the same value for every initial
quantum state. These SI-C sets have therefore a char-
acteristic signature that can be experimentally tested:
the relations of compatibility between the observables
(which are encoded in the expression ofW) and the state-
independent value of W.

Next, we will show that SI-C sets with properties (i)
and (ii) can be certified from the correlations of ex-
periments with sequential measurements performed on
any full-rank mixed state, including thermal and max-
imally mixed states. As soon as a mixed state of full
rank gives the characteristic value for W, any other
state will do so. This leads to a method for certifying
quantum observables from correlations that is fundamen-
tally different than self-testing based on Bell inequalities
[3–5], state-dependent contextuality [6–8], prepare-and-
measure [35, 36], and steering [37–39]. There are two
fundamental differences: (a) The initial state required for
the certification is not determined by the set of observ-
ables to be certified; any state of full rank can be used.
(b) The certification guarantees the state-independent
uniqueness (up to an isometry) of the set of observables.

In addition, we show that this new method, named
“certification with any full-rank state” (CFR), is possible
in every finite dimension d ≥ 3, and provide a way to
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

vi1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
vi2 1 1 1 0 0 0 1̄ q̄ ḡ 0 1 0 1 q g 1 q g 1 q g
vi3 1̄ q̄ ḡ 1̄ q̄ ḡ 0 0 0 0 0 1 1 g q q 1 g g q 1
wi 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7

TABLE I. BBC-21. Each column vi corresponds to one observable represented by the projector |vi⟩⟨vi|. The column vij gives

the components of |vi⟩ (unnormalized). x̄ = −x, q = e2πi/3, and g = q2. Compatible observables correspond to orthogonal
vectors. The last row contains optimal weights wi for a SI-C witness W of the form (1). The weights wij in (1) can be chosen
in any way that satisfies wij ≥ max{wi, wj}.

obtain sets of observables that enable CFR in any d ≥ 3.
We also prove that CFR is robust against experimental
imperfections using examples in d = 3 and 4, and show
how to test the robustness in any other case.

Finally, we show that, for a fundamental class of SI-C
sets, CFR is a necessary condition for Bell self-testing.
This points out a connection between two different forms
of certification and shows that these two forms can be ap-
plied simultaneously in Bell experiments with sequential
measurements. This opens up some interesting possibil-
ities which are discussed.

Certification with any full-rank state.—Unless other-
wise indicated, hereafter we will focus on SI-C sets of pro-
jectors (rather than general self-adjoint operators) and
on a special type of contextuality witness that can be
defined from them using the following result, which is a
generalization of a result in [40], whose proof is in [13].

Lemma 1.—Given a finite set of observables {Πi}, with
possible results 0 or 1, and graph of compatibility G (in
which each Πi is represented by a vertex i ∈ V and there
is an edge (i, j) ∈ E if Πi and Πj are compatible), the
following inequality holds for any noncontextual hidden-
variable (NCHV) theory:

W :=
∑
i∈V

wi Pi −
∑

(i,j)∈E

wijPij

NCHV
≤ α(G, w⃗), (1)

where w⃗ = {wi}i∈V is a set of positive weights for the
vertices of G, wij ≥ max (wi, wj), Pi = P (Πi = 1) is
the probability of obtaining outcome 1 when measuring
observable Πi, Pij = P (Πi = 1,Πj = 1) is the probability
of obtaining outcomes 1 and 1 when measuring Πi and

Πj , and α(G, w⃗) is the weighted independence number of
G with vertex weight vector w⃗ (see [13] for the definition).
Our first result is the following.
Result 1.—For any quantum system of any finite di-

mension d ≥ 3, there is a finite set of observables
S = {Πi}ni=1 and a functional W such that, for any quan-
tum state ρ, W(S, ρ) = Q, and, if W(S′, ρ′) = Q for a set
of observables S′ = {Π′

i}ni=1 and a state ρ′ of full rank in
dimension D, then S′ and S are equivalent in the sense
that there is a unitary transformation U that, for all i,

Πi ⊗ 1d1 ⊕Π∗
i ⊗ 1d2 = UΠ′

iU
†, (2)

where 1d1 is the identity in dimension d1, with d1+d2 =
D/d, Π∗

i is the conjugate of Πi, ⊗ denotes tensor product,
⊕ denotes direct sum, and U† is the conjugate transpose
of U . Moreover, W is a SI-C witness since Q > C and

W ≤ C (3)

is a state-independent noncontextuality inequality.
For the witnesses W of the form (1), C = α(G, w⃗). If

those d-dimensional Πi are real (rather than complex),
then Eq. (2) becomes

Πi ⊗ 1(D/d) = UΠ′
iU

†. (4)
The practical consequence of Result 1 is that if, in an

ideal experiment with sequential measurements, a set of n
measurement devices (one for each observable), combined
in sequences as dictated by the form of W, yields W = Q
for a state of full rank, then we can be sure that these
devices implement S [or an equivalent set in the sense of
Eqs. (2) or (4)]. Then, we will say that S enables CFR.
The case of nonideal experiments will be discussed later.

Proof.—The proof is based on identifying sets enabling
CFR in any dimension d ≥ 3. We will name the SI-C
sets using the initials of the authors and the number of
projectors in the set. For example, BBC-21 [41], CEG-
18 [42], and YO-13 [11]. In other cases, we use the full
name rather than the initial, as in Peres-24 [43]. In other
cases, we use the standard name, as in the Peres-Mermin
square [44, 45]. While the details of the proof are specific
for each SI-C set, a common step in all proofs is showing

that the violation of a full-rank state ρ′ implies the same
violation for any state.

The proof starts by showing that, in d = 3, the set
of 21 rank-one projectors in Table I enables CFR. This
set, hereafter called BBC-21, was introduced in [41] and
is the smallest SI-C set of rank-one projectors requir-
ing complex numbers known. The proof that BBC-21
is unique up to unitary transformations, which guaran-
tees that condition (i) for CFR holds, is in [13]. Us-
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ing the weights in the last row of Table I, the noncon-
textual bound of the witness W defined in Eq. (1) is
α(G, w⃗) = 36, while, for any initial quantum state, the
value of W is ϑ(G, w⃗) = 40. This proves that BBC-21
also satisfies condition (ii) for CFR.

In d = 4, we show that three related fundamental SI-C
sets enable CFR: (I) CEG-18 [42], which is the smallest
KS set [13] of rank-one projectors in any dimension (as
proven in [46]), (II) Peres-24 [43], which is the smallest
complete KS set (see Definition 4) of rank-one projec-
tors known, and (III) the Peres-Mermin square [44, 45],
which is the smallest SI-C set of arbitrary self-adjoint op-
erators (rather than projectors) known. The proofs that
these sets are unique up to unitary transformations and
the corresponding optimal state-independent contextual-
ity witnesses yielding the same value for any state are in
[13].

Finally, for any finite dimension d ≥ 5, we prove (see
[13]) that each of the members of a family of SI-C sets
of rank-one projectors generated from Peres-24 using a
method introduced in [47] is unique up to unitary trans-
formations and has a SI-C witness producing the same
value for any initial state.

While existing correlation-based certification methods
require preparing a state with a high overlap with a target
pure state, the SI-C sets that enable CFR can be certified
using any unspecified full-rank state, something that is
easier to prepare. A simple strategy is to let an arbitrary
state go through randomly chosen measurements [34], re-
sulting in a maximally mixed state. Another strategy is
to let the system interact with the environment, resulting
in a thermal state. Both types of states are of full rank.

Not all SI-C sets enable CFR. For example, Peres-33
[43], which is the KS set of rank-one projectors in d = 3
with the smallest number of bases known, is not unique
up to unitary transformations. Interestingly, YO-13 [11],
which is the SI-C set with smallest number of rank-one
projectors in any dimension (as proven in [48]) and is a
subset of Peres-33, enables CFR if two additional con-
ditions are satisfied: (I’) The relations of orthogonality
between the elements S′ are the same as the relations of
orthogonality between the elements S, and (II’) for ρ′,
the probabilities are normalized for every set of mutually
orthogonal projectors summing up to the identity. This
is shown in [13]. Both (I’) and (II’) can be experimentally
tested (as in [34]).

Robustness.—The possibility of CFR of SI-C sets is
a prediction of quantum theory. Now the question is
whether this prediction can be tested in actual experi-
ments or it requires idealizations that cannot be achieved
in realistic experiments such as the requirement of per-
fectly sharp and compatible measurements for all pairs of
compatible observables in the SI-C set. In other words,
the question is whether CFR is robust against experi-
mental imperfections.

Answering this question requires an additional analysis
based on semidefinite programming whose size is related
to the size of the SI-C sets. Here, we have performed

this analysis for three of the SI-C sets, in dimensions
3 and 4, that we have proven that enable CFR. In all
cases, the analysis was performed on a laptop computer
and the computational execution time was less than 1 h.
The analysis of the robustness of the CFR of the other
SI-C sets can be carried out using higher computational
power.
Our result here is that the CFRs based on BBC-21,

CEG-18, and Peres-24 are robust. We will also show that
the CFR of YO-13 is robust under an extra assumption.
Our result requires introducing some definitions.
Definition 1.— A set of projectors {Πi} is said to be a

(θ, ϵ) realization of a SI-C set with respect to a contex-
tuality witness W of type (1) if, for all states |ψ⟩,

n∑
i=1

wi ⟨ψ|Πi|ψ⟩ ⩾ θ > α(G,w), (5a)

⟨ψ|ΠiΠjΠi|ψ⟩ ⩽ ϵ, (5b)

whenever i and j are adjacent in G (i.e., whenever the
corresponding projectors are orthogonal).
The conditions in Eqs. (5a) and (5b) are related to the

sum of probabilities
∑

i wiPi and joint probability Pij in
Eq. (1). In the ideal case, θ = Q (defined in Result 1),
and ϵ = 0, which implies that the quantum value of W
is Q. As θ is close enough to Q and ϵ is close enough to
0, the projectors {Πi} have the same rank. See [13] for
details.
Definition 2.—A noncontextuality inequality of the

form (1) provides an (ϵ, r)-robust CFR of a (Q, 0) real-
ization {Πi} of a SI-C set, if, for any (Q−ϵ, ϵ) realization
{Π′

i} of the SI-C set, there is an isometry Φ such that

|Φ(Πi)−Π′
i| ≤ O(ϵr). (6)

Result 2.—The contextuality witnesses W of the
form (1) for BBC-21, CEG-18, Peres-24, and YO-13 used
in Result 1 provide (ϵ, 1/2) robustness when ϵ is smaller
than 0.132, 0.134, 0.177, and 0.208, respectively. For
YO-13, the proof requires the extra assumption that the
probabilities of every three mutually orthogonal projec-
tors sum 1.
For more details on the proof, see [13].
Any witness W of the form (1) can be expressed with

the joint probabilities of the outcomes of two sequential
measurements from {Aj}. From the observed values sat-
isfying conditions related to the ideality and the orthog-
onality relations of the projectors, one can certify the
projectors and the measurements Ai. Moreover, when
the experimental value of W is close enough to the quan-
tum value, the robustness of the CFR is also ensured.
See [13] for more details.
Bell self-testing and CFR.—Bell self-testing [3] is the

task of certifying quantum states and measurements us-
ing only the statistics of Bell experiments. One advan-
tage of Bell self-testing with respect to CFR is that the
former does not require projective measurements. One
disadvantage, however, is that Bell self-testing requires
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spacelike separation between the tests. Therefore, an
interesting question is whether SI-C sets that allow for
CFR can be Bell self-tested and, if so, what is the rela-
tion between Bell self-testing and CFR. To address these
questions, the following definitions will be useful.

Definition 3.—(Generalized KS set) A generalized
Kochen-Specker (KS) set is a set of projectors of arbi-
trary rank (not necessarily of rank-one as it is the case
in a KS set [49]) which does not admit an assignment
of 0 or 1 satisfying that: (I) two orthogonal projectors
cannot both be assigned 1, (II) for every set of mutually
orthogonal projectors summing up to the identity, one
and only one of them must be assigned 1.

Definition 4.—(Complete KS set) The complete KS set
associated to a generalized KS set S is the set obtained
by adding to S the projectors 1−Πi−Πj for every pair of
orthogonal projectors (Πi,Πj) in S that does not belong
to a complete basis.

For example, Peres-24 is a complete KS set, but CEG-
18 and Peres-33 are not (BBC-21 and YO-13 are not
KS sets). A complete KS set enables CFR if it satisfies
properties (i) and (ii).

Now we need a way to produce Bell nonlocality us-
ing a complete KS set. For that aim, we will define the
following nonlocal game.

Definition 5.—(Context-projector KS game [16, 17,
21]) In each round of the game, a referee gives to one of
the players, Alice, one of the contexts (i.e., a set of com-
muting projectors summing up the identity) of a com-
plete KS set S and asks her to output one of the pro-
jectors of this context. In the same round, the referee
gives to one spatially separated player, Bob, one of the
projectors of the same context and asks him to output 1
or 0. Alice and Bob win the round either if Alice outputs
the projector given to Bob and Bob outputs 1, or if Alice
outputs a projector different than the one given to Bob
and Bob outputs 0.

This is a game that cannot be won with probability 1
with classical resources and no communication, but that
can be won with probability 1 if the parties share copies
of a qudit-qudit maximally entangled state with d ≥ 3
and measure a complete KS set in dimension d.

Now, we can address the question of whether the SI-C
sets that allow for CFR can be Bell self-tested.

Result 3.—The projectors of a complete KS set can be
Bell self-tested if and only if the KS set enables CFR.

The proof is in [13]. Here, we will focus on some im-
plications of this result. One is that Bell self-testing
and CFR can be accomplished simultaneously in an ex-
periment that combines Bell and sequential tests [50–
52]. Consider two spatially separated parties, Alice and
Bob 1, sharing copies of a qudit-qudit maximally entan-
gled state and performing local measurements of the pro-
jectors of a complete KS set S. In addition, consider a
third party, Bob 2, that receives the system that Bob 1
has measured (we assume that Bob 1’s measurements
are nondemolition measurements [34, 53]). Suppose that
Bob 2 measures elements of S on this system. Then:

(a) The Alice-Bob 1 statistics can Bell self-test S in Al-
ice’s and Bob 1’s sides. (b) The Bob 1-Bob 2 statistics
enable CFR of S in Bob 1’s and Bob 2’s sides (and the
Alice-Bob 1 Bell self-test can guarantee that Bob 1’s in-
put state is of full rank). (c) The Alice-Bob 2 statistics
conditioned to that Bob 2’s measurement is compatible
to Bob 1’s can Bell self-test S in Alice’s and Bob 2’s sides.
This allows for the simultaneous certification of Bob 1’s
S by two different methods and opens new possibilities.

Conclusions and future directions.—In this Letter, we
have presented three results that push the field of certi-
fication of quantum processes based only on correlations
beyond its established limits. Results 1 and 2 allow us
to circumvent a conceptual limitation of existing meth-
ods, namely, the need of targeting specific pure states.
We have proven that this is not necessary: for any quan-
tum system of any finite dimension d ≥ 3, there are sets
of quantum observables that can be certified using any
full-rank quantum state. This “certification with any full
rank state” offers interesting possibilities. For example,
suppose that the same preparation is used to certify via
CFR two sets of observables: one of them in dimension d1
and the other in dimension d2. This automatically cer-
tifies via CFR that the dimension of the system is lower
bounded by the lowest common denominator of d1 and
d2. This provides a method to certify quantum systems
of high dimensions, something that is difficult in a DI
way [54, 55]. Moreover, in principle, CFR becomes more
useful as the dimension grows, since preparing a full-rank
mixed state is easier than preparing a state with a high
overlap with a pure target state.

Result 3 pushes the field in a different sense. It shows
that, for a general class of sets of observables, CFR is
possible if and only if Bell self-testing is possible. This
indicates that there may be a general unified framework
for certification based solely on correlations, so that all
existing methods can be viewed as particular cases. The
precise characterization of this framework constitutes an
interesting challenge. On the other hand, Result 3 shows
that there are sets of observables that can be simulta-
neously Bell self tested (using Alice-Bob 1 correlations)
and certified via CFR (using Bob 1-Bob 2 correlations).
This is interesting as it may lead to a robust method for
self-testing Lüders processes [56, 57] in any finite dimen-
sion d ≥ 3 (which is where observables represented by
rank-one projectors have one outcome whose quantum
post-measurement state depends on the input state). In
the framework of general probabilistic theories, Lüders
processes correspond to “ideal (or sharp) measurements”
[58]: processes that yield the same outcome when
repeated and are minimally disturbing (only disturb
incompatible observables). The existence of ideal
measurements is “one of the fundamental predictions of
quantum mechanics” [57]. The DI certification of ideal
measurements in arbitrary (finite) dimension would re-
quire the DI certification of the corresponding quantum
instruments (which capture both the classical outputs
and the corresponding quantum post-measurement
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states [59–61]). Previous works have explored the
DI [62] and semi-DI [63] certification of instruments
corresponding to nonideal qubit measurements. The DI
certification of ideal measurements would operationally
“bridge the gap between general probabilistic theories
and the DI framework” [64], blurring the boundaries
between three different approaches for understanding
quantum theory: DI, general probabilistic theories, and
general Bayesian theories [65], where ideal measurements
are central. Future research should go in these directions.

This work was supported by the EU-funded project
FoQaCiA and the MCINN/AEI (Project No. PID2020-
113738GB-I00). Z.-P. X. acknowledges support from the
National Natural Science Foundation of China (Grant
No. 12305007), Anhui Provincial Natural Science Foun-
dation (Grant No. 2308085QA29), and the Alexander von
Humboldt Foundation.

SUPPLEMENTAL MATERIAL

Appendix A: Concepts

Definition 1 (Ideal measurement [64]). An ideal mea-
surement of an observable A is a measurement of A that
yields the same outcome when it is repeated on the same
system and does not disturb any observable compatible
with A.

Definition 2 (Compatible observables). Two observ-
ables A and B are compatible or jointly measurable if
there exists an observable C such that, for every initial
state, for every outcome a of A, the probability of obtain-
ing outcome a for A is

P (A = a) =
∑
o∈ca

P (C = o) (A1)

and, for every outcome b of B,

P (B = b) =
∑
o∈cb

P (C = o), (A2)

where the disjoint union of {ca}a and the disjoint union
of {cb}b are both equal to the complete set of outcomes
of C. C is called a refinement of A (and B). A (and B) is
called a coarse-graining of C. Therefore, two observables
are compatible when they have a common refinement or
are both coarse-grains of the same observable.

Definition 3 (Ideal observable). An ideal or sharp ob-
servable is one that can be measured with ideal measure-
ments, and that all its possible coarse-grained versions
can also be measured with ideal measurements.

In quantum theory, ideal observables are represented
by self-adjoint operators.

Definition 4 (SI-C set). A state-independent contextu-
ality (SI-C) set in dimension d is a set of ideal observ-
ables that produces contextuality for any initial state in
dimension d.

In particular, a set of n ideal observables represented
in quantum theory by n projectors {Πi}ni=1 is a SI-C set
if there is a set of weights w⃗ = {wi}ni=1 for the vertices
of the graph G of compatibility of {Πi}ni=1 (in which ver-
tices represent observables and edges connect pairwise
compatible observables) such that a noncontextuality in-
equality of the form (1) is violated by any quantum state
in dimension d.

Definition 5 (KS set). A Kochen-Specker (KS) set is a
SI-C set of rank-one projectors which does not admit an
assignment of 0 or 1 satisfying that: (I) two orthogonal
projectors cannot both be assigned 1, (II) for every set
of mutually orthogonal projectors summing the identity,
one of them must be assigned 1.

There are SI-C sets of rank-one projectors that are not
KS sets. Examples are YO-13 [11] and BBC-21 [41].

Definition 6 (Egalitarian SI-C set). A SI-C set is egal-
itarian if it produces, for any state, the same violation of
a given noncontextuality inequality.

In particular, a SI-C set {Πi} is egalitarian if there is
a set of weights w⃗ = {wi} for the vertices of the graph
G of compatibility of {Πi} such that, for any quantum
state, the left-hand side of (1) yields Q > α(G, w⃗).

Definition 7 (Independence number). The indepen-
dence number α(G, w⃗) of a vertex-weighted graph (G, w⃗)
is the maximum w(S) =

∑
v∈S w(v) taken over all inde-

pendent sets S of G. A set of vertices of G is independent
if all the vertices in it are pairwise nonadjacent.

Definition 8 (Lovász number). The Lovász number
ϑ(G, w⃗) of a vertex-weighted graph (G, w⃗) is the maxi-
mum of

∑
i wi|⟨vi|ψ⟩|2 over all unit vectors |ψ⟩ and |vi⟩

such that ⟨vj |vi⟩ = 0 whenever i and j are adjacent ver-
tices of G.

Definition 9 (Egalitarian Lovász-optimum SI-C set).
An egalitarian SI-C set {Πi} is Lovász-optimum if, for
any quantum state, the left-hand side of (1) equals the
Lovász number of the weighted graph (G, w⃗), denoted
ϑ(G, w⃗), where w⃗ is a set of weights for which the SI-
C set is egalitarian.

Appendix B: Tools used in the proof of Result 1

1. Proof of Lemma 1

Let us denote by a the maximum of the left-hand
side of (1) that is achievable by a noncontextual hidden-
variable (NCHV) theory. Since set of correlations for
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NCHV theories forms a convex polytope, a can be ob-
tained with a deterministic assignment of outcomes to
the observables. For a given deterministic assignment
achieving a, if Πi = 1 and Πj = 1 for one (i, j) ∈ E, then
let us consider the part in Eq. (1) which contains Πj = 1,

wjP (Πj = 1)−
∑

k:(k,j)∈E

wkjP (Πk = 1,Πj = 1)

≤wjP (Πj = 1)− wijP (Πi = 1,Πj = 1)

=wj − wij ≤ 0. (B1)

This implies that, by setting Πj = 1 to be 0 in the de-
terministic probability assignment, the value does not
decrease. Hence, the maximal value a can always be
achieved by one deterministic probability assignment
where Πi and Πj are not both assigned 1 if (i, j) ∈ E.
Therefore, a can only be α(G,w).
In the case that wij > max{wi, wj}, by setting Πj = 1

to be 0 in the deterministic probability assignment, the
value increases. Hence, the maximal value a can never be
achieved by the deterministic assignment where Πi = 1
and Πj = 1 for one (i, j) ∈ E.

2. Common procedure in all the proofs of
uniqueness up to unitary transformations

Let us first consider the case in which the graph of
compatibility G is equal to the graph of orthogonality of
the observables/projectors {Πi}ni=1. That this is the case,
can be experimentally tested as described in Lemma 2
in the main text. In some special cases, this can even
be tested using the maximal quantum violation of the
witness W of the form (1).

Theorem 1. For any noncontextuality inequality of the
form (1), if there exists a set of observables {Πi} such
that, for any quantum state, the left-hand side of (1)
equals the maximum value attainable in quantum theory,
denoted by Q, then

Q = ϑ(G, w⃗), (B2)

where ϑ(G, w⃗) is the Lovász number of the graph G with
weights w⃗, and the observables {Πi} must be of the type
represented by projectors {Πi} (here, we use the same
symbol for the observable and the projector that repre-
sents it). Moreover, if wij > max{wi, wj}, then, for any
(i, j) ∈ E,

ΠiΠj = 0. (B3)

Proof. Let us first consider the case in which wij >
max{wi, wj}. Consider the state ρi = Πi/tr(Πi) asso-
ciated to Πi, with i ∈ V . For this state,

Pρi(Πi = 1) = 1, (B4)

and, for any j such that (i, j) ∈ E,

Pρi
(Πi = 1,Πj = 1) = Pρi

(Πj = 1). (B5)

If there is Πj such that (i, j) ∈ E and ΠiΠj ̸= 0, then the
terms in the left-hand side of (1) that contain Πj satisfy

wjPρi
(Πj = 1)−

∑
k:(k,j)∈E

wkjPρi
(Πk = 1,Πj = 1)

≤wjPρi
(Πj = 1)− wijPρi

(Πi = 1,Πj = 1)

=(wj − wij)Pρi
(Πj = 1) < 0. (B6)

Hence, by setting Πj = 0, the quantum value of the left-
hand side of (1) for state ρi increases, which contradicts
the assumption that Q is the maximum quantum value.
Therefore, we can conclude that, for all (i, j) ∈ E,

ΠiΠj = 0. (B7)

Under this condition, for a given state ρ, the left-hand
side of (1) equals to

∑
i wip(Πi = 1)ρ, which is up-

per bounded by ϑ(G, w⃗). Therefore, q ≤ ϑ(G, w⃗) (see
Sec. A). On the other hand, by the definition of ϑ(G, w⃗),
there is always {Πi}i∈V such that the quantum value is
ϑ(G, w⃗), which implies q ≥ ϑ(G, w⃗). Therefore, we can
conclude that q = ϑ(G, w⃗).
Similarly, Q = ϑ(G, w⃗) also holds in the case that

wij = max{wi, wj}. However, in this case, ΠiΠj = 0
does not need to hold.

The requirement of a full-rank state in our main re-
sult’s proof stems from the fact that if a full-rank state
attains the maximal value Q, then any state achieves Q.
Consequently, as per the above theorem, the projectors
will satisfy the orthogonality relation according to G. To
be precise, Eq. (B7) implies that the compatibility graph
G represents also the orthogonality relations between the
observables {Πi}. This step is crucial in the proof of Re-
sult 1.
In general, Q may be difficult to determine. Then, one

cannot decide whether or not Q is achievable for all the
states. However [66], for wij > max{wi, wj},

Q ≤ ϑ(G′, w⃗′)−
∑

(i,j)∈E

wij , (B8)

where (G′, w⃗′) is the (weighted) graph of exclusivity of
the weighted events {wi(Πi = 1)}i∈V and {wij(Πi =
0,Πj = 0), wij(Πi = 0,Πj = 1), wij(Πi = 1,Πj =
0)}(i,j)∈E . Therefore, if for any quantum state, the left-
hand side of (1) equals the right-hand side of (B8), we
can conclude that Q = ϑ(G, w⃗) and that ΠiΠj = 0 for
any (i, j) ∈ E. In fact, this is the case for the opti-
mal vertex-weighted graphs of compatibility of BBC-21,
CEG-18, and Peres-24. For the one of YO-13, we need
wij ≥ 2max{wi, wj} in the form (1) and the extra nor-
malization conditions in Eq. (B106a). The computations
needed for checking Peres-39 and beyond it cannot be
carried out with a laptop computer.
The proof of uniqueness up to unitary transformations

of a given SI-C set {Πi}ni=1 is then based on two facts:

1. All the projectors in {Πi} have the same rank, that
we call κ.
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2. If (i, j) ̸∈ E in the graph of orthogonality G, then
rank(ΠjΠiΠj) = rank(Πi) = rank(Πj).

The first fact is ensured by the second one if the comple-
ment graph of G is connected, which is indeed true for
all the cases considered here. The second fact holds also
for all the cases considered here. This can be verified by
semi-definite programming (SDP).

To be more explicit, if there is i and j such that (i, j) ̸∈
E and rank(ΠjΠiΠj) < rank(Πj), then there should ex-
ist a state |s⟩ such that ⟨s|Πj |s⟩ = 1 and ⟨s|Πi|s⟩ = 0.
Notice that, {Πi} is a SI-C set with some weights w
and quantum violation Q. Denote Tij = ⟨s|Πi−1Πj−1|s⟩,
where Π0 = 1. Then, the matrix T satisfies the following
conditions:

T ⪰ 0,

T11 = 1, T1k = Tkk,∀k,
Tkl = 0, if (k, l) ∈ E,

T1j = 1, T1i = 0,
∑
k≥2

wk−1T1k = Q. (B9)

For YO-13, we have to add some extra linear conditions
[see Eq. (B106a)]. To check whether or not condition 2
holds, we can check whether or not the SDP in Eq. (B9) is
feasible, which is a relaxation of the original problem. In
all the cases considered here, the relaxation in Eq. (B9) is
not feasible. This implies that rank(ΠjΠiΠj) < rank(Πj)
cannot be true for (i, j) ̸∈ E. Therefore, the second fact
is also ensured.

Then, we can choose a complete basis as the compu-
tational basis such that {Πi}ci=1 are the projectors into
the subspace occupying dimensions from (c− 1)κ+ 1 to
cκ. Notice that it is always possible to choose a complete
basis for the SI-C sets considered here. For any other
projector Πi, we have

Πi = L′†
iL

′
i, L

′
i = [B1i, B2i, . . . , Bci]. (B10)

The reason is as follows. Since Πi is a projector of
rank κ, it can be written as Πi =

∑κ
t=1 |vi⟩⟨vi|, where

the |vi⟩’s are orthogonal normalized vectors. Denote

L′
i = [|v1⟩, . . . , |vκ⟩]†, we have Πi = L′†

iL
′
i. Here,

the dimension of L′
i is κ × d, where d is the dimen-

sion and d = cκ. Hence, we can always write L′
i as

[B1i, B2i, . . . , Bci], where Bti is a κ × κ matrix for any

t. Then, for t = 1, . . . , c, we have ΠtΠiΠt = B†
tiBti.

Since ΠtΠiΠt is of rank κ when (t, i) ̸∈ E, we have Bti to
be invertible in this case. In the case that (t, i) ∈ E, we
have ΠtΠiΠt = 0. Consequently, in this case, Bti = 0.

By definition of L′
i, L′

iL
′†
i = 1κ. If B1i is

invertible, then we introduce Li := B−1
1i L

′
i =

[1, B−1
1i B2i, . . . , B

−1
1i Bci]. Further, we can verify that

L†
i (LiL

†
i )

−1Li = L′†
i (L

′
iL

′†
i )

−1L′
i = Πi. (B11)

In addition,

LiL
†
j = 0 ⇔ L′

iL
′
j
† = 0 ⇔ ΠiΠj = 0. (B12)

Hence, in the proofs of uniqueness, we will adopt {Li}
for convenience. From the uniqueness of {Li}, we can re-
cover the uniqueness of {Πi}. For completeness, a similar
result is proven when point (III) of Lemma 1 is proven.

3. Proof that BBC-21 is unique up to unitary
transformations

The uncharacterized projectors in this case are {Πi}
that are defined by the {Li} operators in Eq. (B11). For
convenience, we relabel {Li} by following the same order
of the vectors {vi}21i=1 in Table I as follows:

y01 , y
1
1 , y

2
1 , y

0
2 , y

1
2 , y

2
2 , y

0
3 , y

1
3 , y

2
3 , z1, z2, z3,

h01, h
1
1, h

2
1, h

0
2, h

1
2, h

2
2, h

0
3, h

1
3, h

2
3.

(B13)

For example, Π10 = z†1(z1z
†
1)

−1z1, where z1 = L10. These
operators satisfy the additional conditions in Eq. (B12)
due to the orthogonality relations of the projectors {Πi}.
Without loss of generality, we assume that {z1, z2, z3}

forms a complete basis. Moreover, the fact that z1 ⊥ y01 ,
z2 ⊥ y02 , z1 ⊥ y11 , we can take

z1 = [1, 0, 0], z2 = [0,1, 0], z3 = [0, 0,1],

y01 = [0,1, A], y02 = [1, 0, B], y11 = [0,1, C],
(B14)

where A, B, and C are matrix variables to be deter-
mined. The reason is the following. The vertices related
to z1, z2, z3 form a clique of size 3, and the correspond-
ing three projectors sum up to identity. Hence, as ar-
gued around Eq. (B10), we could have the first line of
Eq. (B14). As argued around Eq. (B11) and Eq. (B12),
we could have the second line of Eq. (B14). Notice that
the zero matrix in y01 follows from the fact that the pro-
jector related to y01 is orthogonal to the one related to z1.
Similarly for the others. The same reasoning is used in
the proofs for the other SI-C sets.
Since h01 ⊥ y01 and h01 ⊥ y02 ,

h01 = [−B†,−A†,1]. (B15)

The reason is the following. Denote h01 = [M1,M2,M3],
where Mi’s are invertible since the corresponding pro-
jector is not orthogonal to any projectors corresponding
to the zi’s. From the discussion around Eqs. (B11) and
(B12), we can set M3 = 1. From the orthogonality re-
lation between projectors, we know that h01 ⊥ y01 . Thus,

0 = h01y
0
1
†
= M2 + A†, which implies that M2 = −A†.

Similarly, the orthogonality relation h01 ⊥ y02 leads to
M1 = −B†.
Similarly, y03 ⊥ z3 and y03 ⊥ h01 implies

y03 = [−AB−1,1, 0], (B16)

h23 ⊥ y11 and h23 ⊥ y02 implies

h23 = [−B†,−C†,1], (B17)
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y23 ⊥ h23 and y23 ⊥ z3 implies

y23 = [−CB−1,1, 0], (B18)

h02 ⊥ y11 and h02 ⊥ y03 implies

h02 = [(BA−1)†,1,−(C−1)†], (B19)

y12 ⊥ h02 and y12 ⊥ z2 implies

y12 = [AB−1, 0, C], (B20)

h13 ⊥ y01 and h13 ⊥ y12 implies

h13 = [−(BA−1C)†,−A†,1], (B21)

y13 ⊥ h13 and y13 ⊥ y12 implies

y13 = [−C−1AB−1, A−1,1], (B22)

h11 ⊥ y11 and h11 ⊥ y13 implies

h11 = [(BA−1CA−1)†,1,−(C−1)†], (B23)

y22 ⊥ h11 and y22 ⊥ z2 implies

y22 = [C−1AC−1AB−1, 0,1], (B24)

h12 ⊥ y02 and h12 ⊥ y13 implies

h12 = [1, (AC−1AB−1)†,−(B−1)†], (B25)

y21 ⊥ h12 and y21 ⊥ z1 implies

y21 = [0,1, AC−1A], (B26)

h03 ⊥ y03 and h03 ⊥ y22 implies

h03 = [1, (AB−1)†,−(C−1AC−1AB−1)†], (B27)

h21 ⊥ y12 and h21 ⊥ y21 implies

h21 = [−(BA−1C)†,−(AC−1A)†,1], (B28)

h22 ⊥ y01 and h22 ⊥ y23 implies

h22 = [(BC−1)†,1,−(A−1)†]. (B29)

Then, h21 ⊥ y23 implies that

(AC−1)3 = 1. (B30)

In addition, h01 ⊥ h11 implies

B†BA−1CA−1 +A† + C−1 = 0, (B31)

h01 ⊥ h21 implies

B†BA−1C +A†AC−1A+ 1 = 0, (B32)

h11 ⊥ h21 implies

(BA−1CA−1)†(BA−1C)+AC−1A+(C−1)† = 0. (B33)

By making use (AC−1)3 = 1, we obtain

B†B +A†C + C−1A = 0 (B34)

B†B +A†AC−1A+A−1C = 0, (B35)

C† +A−1 = C†CA−1 + C−1. (B36)

Similarly, h02 ⊥ h12 implies

B†B +A†AC−1A+ (C−1A)† = 0, (B37)

h12 ⊥ h22 implies

B†B + (C†AC−1A)† +A−1C = 0. (B38)

Hence, we have

A†A = C†C,AA† = CC†,

C† +A−1 = A† + C−1. (B39)

Since we still have the freedom to choose the basis for
the subspaces related to z2 and z3, we can assume that
A is diagonal and non-negative. Since A is invertible, all
the diagonal items are positive. We claim that A = 1,
otherwise, without loss of generality, denote

A =

[
X 0
0 1

]
, (B40)

where X is a diagonal matrix whose diagonal terms are
positive and different than 1.

By solving Eq. (B39), we obtain that

C =

[
X 0
0 C22

]
, (B41)

where C22 is invertible. Hence, there is a state |s⟩ in the
subspace corresponding to the block X such that

A |s⟩ = C |s⟩ = C† |s⟩ = x |s⟩ , (B42)

where x > 0. Therefore,

⟨s| (B†B+A†C+C−1A) |s⟩ = ⟨s|B†B |s⟩+(x2+1) > 0,
(B43)

which contradicts Eq. (B34). Hence,

A = 1, CC† = 1, C3 = 1,

B†B + C + C−1 = 0. (B44)

Note that, if we rotate the basis of the subspaces span
by z2 and z3 with the same unitary U , this does not
affect A = 1 and C is changed to UCU†. By choosing
a suitable U , UCU† is a diagonal matrix according to
the spectral theorem of norm matrix. Therefore, we can
assume that C is diagonal. Notice that 1 − C3 = (1 −
C)(1 + C + C2) = 0, then we have 1 + C + C2 = 0,
otherwise 1 = C, which leads to the contradiction that
BB† = −21. Consequently, all the diagonal terms in C
are e±2πi/3 and B†B = 1. That is, B is unitary. Since we
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v1 v2 v3 v4 v5 v6 v7 v8 v9 vA vB vC vD vE vF vG vH vI

vi1 1 0 0 0 1 1 1̄ 1 t 0 t 1̄ 1 1 t 0 0 0
vi2 0 1 0 0 1 1̄ 1 1 0 t 0 1 1 1̄ 0 t t 0
vi3 0 0 1 0 0 t t 0 1 1̄ 1̄ 0 t 0 1̄ 1̄ 1 1
vi4 0 0 0 1 0 0 0 t 1̄ 1̄ 1 t 0 t 1̄ 1 1̄ 1
wi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE II. CEG-18. Each column vi corresponds to one observable represented by the projector |vi⟩⟨vi|. The labels correspond
to those in with Fig. 1. The rows vij give the components of |vi⟩ (unnormalized). 1̄ = −1 and t =

√
2. The last row contains

the weights of the optimal SI-C witness of the form (1). The weights wij in (1) can be chosen in any way that satisfies
wij ≥ max{wi, wj}. With these weights, α(G, w⃗) = 4 and Q(G, w⃗) = ϑ(G, w⃗) = 9

2
.

still have the freedom to choose the basis of the subspace
spanned by z1, we can assume that B = 1.

Although we cannot change all the diagonal terms
e±2πi/3 in C to be e2πi/3 with unitary, it can be done
with the time-reversal operator in some dimensions which
changes i into −i. The time-reversal operator is also iso-
metric. Therefore, up to isometry, Πi = |vi⟩ ⟨vi| ⊗ 1,
where |vi⟩ is the normalized vector of the i-th column,
x̄ = −x, q = e2πi/3, and g = q2.

4. CEG-18 and its SI-C witness

CEG-18 is the set of 18 rank-one projectors in d = 4
shown in Table II. Its graph of compatibility of CEG-18
is depicted in Fig. 1. CEG-18 was introduced in [42] and
is an egalitarian Lovász-optimum SI-C set and a critical
KS set. It can be proven that CEG-18 is the KS set of
rank-one projectors with the smallest possible cardinality
(in any dimension!) [46].

1

4

7

A

D

G2

3

5

6

8

9
B

C

E

F

H

I

FIG. 1. Graph of compatibility of CEG-18. Nodes represent
observables and edges connect compatible observables. The
labels refer to the observables in Table II.

The last row of Table II provides the weights corre-
sponding to the optimal SI-C witness of the form (1).

5. Proof that CEG-18 is unique up to unitary
transformations

Suppose that you have the L1, . . . , L18 with
the same relations of orthogonality as the vectors
v1, . . . , v9, vA, . . . , vI in Table II and Fig. 1. Without

loss of generality, we can assume that

L1 = [1, 0, 0, 0], L2 = [0,1, 0, 0],

L3 = [0, 0,1, 0], L4 = [0, 0, 0,1].
(B45)

Without loss of generality, we can assume that

L5 = [1, A, 0, 0]. (B46)

Then, L6 ⊥ L4 and L6 ⊥ L5 imply

L6 = [1,−(A−1)†, B, 0]. (B47)

Similarly, L7 ⊥ L4 and L7 ⊥ L5 imply

L7 = [1,−(A−1)†, C, 0]. (B48)

Since L7 ⊥ L6,

C = −[1+ (AA†)−1](B−1)†. (B49)

From L18 ⊥ L1 and L18 ⊥ L2, we can assume

L18 = [0, 0,1, D]. (B50)

Since L17 ⊥ L1 and L17 ⊥ L18,

L17 = [0, E,1,−(D−1)†]. (B51)

In addition, L16 ⊥ L1 and L16 ⊥ L18 imply

L16 = [0, F,1,−(D−1)†]. (B52)

Since L17 ⊥ L16 and L16 ⊥ L7,

F = [1+(DD†)−1](E−1)† = −B−1(A+(A−1)†). (B53)
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24

vi1 1 0 0 0 1 1 1 1 1 1 1 1̄ 1 1 0 0 1 1 0 0 1 1 0 0
vi2 0 1 0 0 1 1 1̄ 1̄ 1 1 1̄ 1 1 1̄ 0 0 0 0 1 1 0 0 1 1
vi3 0 0 1 0 1 1̄ 1 1̄ 1 1̄ 1 1 0 0 1 1 1 1̄ 0 0 0 0 1 1̄
vi4 0 0 0 1 1 1̄ 1̄ 1 1̄ 1 1 1 0 0 1 1̄ 0 0 1 1̄ 1 1̄ 0 0
wi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE III. Peres-24. Each column vi corresponds to one observable represented by the projector |vi⟩⟨vi|. The rows vij
give the components of |vi⟩ (unnormalized). 1̄ = −1. The last row contains the weights wi of the optimal SI-C witness of the
form (1). The weights wij in (1) can be chosen in any way that satisfies wij ≥ max{wi, wj}. With these weights, α(G, w⃗) = 5
and Q(G, w⃗) = ϑ(G, w⃗) = 6.

Hence

DD† = (B−1AA†B)−1. (B54)

The relation L17 ⊥ L6 implies

E = B†A. (B55)

In addition, L15 ⊥ L2, L15 ⊥ L16, and L15 ⊥ L17 imply

L15 = [1, 0,−(B−1)†,−(B−1)†D], (B56)

L8 ⊥ L3, L8 ⊥ L6, and L8 ⊥ L15 imply

L8 = [1, A, 0, B(D−1)†], (B57)

L14 ⊥ L3, L14 ⊥ L5, and L14 ⊥ L16 imply

L14 = [1,−(A−1)†, 0,−(A−1)†F †D), (B58)

L13 ⊥ L4, L13 ⊥ L14, and L13 ⊥ L15 imply

L13 = [1, A,B, 0], (B59)

L9 ⊥ L2, L9 ⊥ L7, and L9 ⊥ L18 imply

L9 = [1, 0,−(C−1)†, (D−1C−1)†], (B60)

L10 ⊥ L1, L10 ⊥ L7, and L10 ⊥ L8 imply

L10 = [0,1, (C†A)−1,−A(B†)−1D]. (B61)

Since L9 ⊥ L8, we have

C = −B(DD†)−1 = −AA†B. (B62)

From L10 ⊥ L9 and L10 ⊥ L13,

C = −(A†)−2B, A = A†. (B63)

Therefore, we obtain that A is hermitian and A4 = 1.
Hence, the eigenvalues of A can only be ±1 and A is
automatically unitary. We still have some freedom to
choose different A, B, and D by applying a global uni-
tary. We can choose A = 1. Eq. (B54) implies that D is
also unitary, we can also choose it to be 1.
Then, by L16 ⊥ L13, we obtain that BB† = 21. Hence,

we can similarly set B =
√
21. Consequently,

C = −
√
21, E =

√
21, F = −

√
21. (B64)

L12 ⊥ L3, L12 ⊥ L5, and L12 ⊥ L14 imply

L12 = [1,−1, 0,−
√
21]. (B65)

L11 ⊥ L10, L11 ⊥ L12, and L11 ⊥ L13 imply

L11 = [
√
21, 0,−1,1]. (B66)

Therefore, up to a global unitary,

Πi = |vi⟩ ⟨vi| ⊗ 1,∀i = 1, . . . , 18, (B67)

where |vi⟩’s are the normalized columns in Table II.

6. Peres-24 and its SI-C witness

Peres-24 is the set of 24 rank-one projectors in d = 4
shown in Table III. It was introduced in [43]. Unlike
BBC-21 and CEG-18, Peres-24 is not critical (in the sense
of Zimba and Penrose [67]): some observables can be
removed while still having a SI-C set. In turn, Peres-24
is a complete SI-C set.

The last row of Table III provides the weights corre-
sponding to the optimal SI-C witness of the form (1).
As shown in Table III, Peres-24 is an egalitarian Lovász-

optimum SI-C set.

7. Proof that Peres-24 is unique up to unitary
transformations

Suppose that you have the projectors Π1, . . . ,Π24,
and, correspondingly, L1, . . . , L24 with the same relations
of orthogonality as the vectors v1, . . . , v24 in Table III.
Without loss of generality, we can take L1 = [1d, 0, 0, 0],
L2 = [0,1d, 0, 0], L3 = [0, 0,1d, 0], and L4 = [0, 0, 0,1d],
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where 1d is the identity operator in the Hilbert space of
dimension d. Hereafter, for simplicity, we will omit the
subindex d, and simply write 1.
Let us now consider the projectors L13, L14, L15, and

L16. Since L13 ⊥ L3, L13 ⊥ L4, L15 ⊥ L1, and L15 ⊥ L2,
by using Eq. (B11), we can assume that

L13 = [1, D, 0, 0], L15 = [0, 0,1, E], (B68)

where D and E are invertible matrices. Then, due to
Eq. (B12), L14 ⊥ L3, L14 ⊥ L4, and L14 ⊥ L13 imply

L14 = [1,−(D−1)†, 0, 0]. (B69)

Similarly, L16 ⊥ L1, L16 ⊥ L2, and L16 ⊥ L15 imply

L16 = [0, 0,1,−(E−1)†]. (B70)

Let us now consider the projectors L17, L18, L19, and
L20. Since L17 ⊥ L2, L17 ⊥ L4, L19 ⊥ L1, and L19 ⊥ L3,
by applying Eq. (B11), we can take

L17 = [1, 0, F, 0], L19 = [0,1, 0, G], (B71)

where F and G are invertible matrices. Then, L18 ⊥ L2,
L18 ⊥ L4, and L18 ⊥ L17 imply

L18 = [1, 0,−(F−1)†, 0]. (B72)

Similarly, L20 ⊥ L1, L20 ⊥ L3, and L20 ⊥ L19 imply

L20 = [0,1, 0,−(G−1)†]. (B73)

Let us now consider the projectors L5, L6, L7, and L8.
Then, L5 ⊥ L14, L5 ⊥ L16, and L5 ⊥ L18 imply

L5 = [1, D, F, FE]. (B74)

Similarly, L6 ⊥ L14, L6 ⊥ L16, and L6 ⊥ L17 imply

L6 = [1, D,−(F−1)†,−(F−1)†E]. (B75)

Also, L7 ⊥ L13, L7 ⊥ L15, and L7 ⊥ L18 imply

L7 = [1,−(D−1)†, F,−F (E−1)†]. (B76)

Finally, L8 ⊥ L13, L8 ⊥ L15, and L8 ⊥ L17 imply

L8 = [1,−(D−1)†,−(F−1)†, (F−1)†(E−1)†]. (B77)

From L5 ⊥ L20 and L6 ⊥ L19,

DG = FE, F †D = EG†. (B78)

Let us now consider the projectors L9, L10, L11, and
L12. Then, L9 ⊥ L14, L9 ⊥ L15, and L9 ⊥ L18 imply

L9 = [1, D, F,−F (E−1)†]. (B79)

Also, L10 ⊥ L14, L10 ⊥ L15, and L10 ⊥ L17 imply

L10 = [1, D,−(F−1)†, (F−1)†(E−1)†]. (B80)

Similarly, L11 ⊥ L13, L11 ⊥ L16, and L11 ⊥ L18 imply

L11 = [1,−(D−1)†, F, FE]. (B81)

Finally, L12 ⊥ L13, L12 ⊥ L16, and L12 ⊥ L18 imply

L12 = [1,−(D−1)†,−(F−1)†,−(F−1)†E]. (B82)

From L9 ⊥ L19 and L10 ⊥ L20,

D = F (E−1)†G†, D = (F−1)†EG−1. (B83)

From Eqs. (B78) and (B83),

DD† = EE† = FF † = GG† = 1. (B84)

We still have the freedom to apply a unitary on subspaces
related to L1, L2, L3, and L4. Hence, we can set D =
E = F = 1. Then, we have also G = 1 because of
Eq. (B78).
Finally, let us consider the projectors L21, L22, L23,

and L24. Then, L21 ⊥ L2, L21 ⊥ L3, and L21 ⊥ L6

imply

L21 = [1, 0, 0,1]. (B85)

Also L22 ⊥ L2, L22 ⊥ L3, and L22 ⊥ L5 imply

L22 = [1, 0, 0,−1]. (B86)

Similarly, L23 ⊥ L1, L23 ⊥ L4, and L23 ⊥ L6 imply

L23 = [0,1,1, 0]. (B87)

Finally, L24 ⊥ L1, L24 ⊥ L4, and L24 ⊥ L5 imply

L24 = [0,1,−1, 0]. (B88)

Then, it easy to check that all the remaining orthogonal-
ity relations in Table III are satisfied.

Using that for i ∈ V and (j, t) ∈ {1, . . . , c} such that
(i, j) /∈ E and (i, t) ∈ E, each rank-κ projector Πi that
acts on Cd can be decomposed as

Πi = L†
i (LiL

†
i )

−1Li, Li = [B1i, B2i, . . . , Bci], (B89)

where d = 4κ, it is easy to see that Peres-24 can be
written in the form Πi = |vi⟩⟨vi|⊗1, where the |vi⟩’s are
the normalized columns in Table III.

8. The Peres-Mermin square and its SI-C witness

Given 9 observables, A, B, C, a, b, c, α, β, and γ,
with possible outcomes −1 or 1, the following inequality
[9] holds for any NCHV theory:

⟨ABC⟩+ ⟨abc⟩+ ⟨αβγ⟩+ ⟨Aaα⟩+ ⟨Bbβ⟩−⟨Ccγ⟩
NCHV
⩽ 4.
(B90)
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However, if we consider the following two-qubit observ-
ables:A B C

a b c
α β γ

 =

 σz ⊗ 1 1⊗ σz σz ⊗ σz
1⊗ σx σx ⊗ 1 σx ⊗ σx
σz ⊗ σx σx ⊗ σz σy ⊗ σy

 , (B91)

then the left-hand side of (B90) is 6, since, for any two-
qubit state,

⟨ABC⟩ = ⟨abc⟩ = ⟨Aaα⟩ = ⟨Bbβ⟩ = −⟨Ccγ⟩ = 1.
(B92)

The observables in (B91) were introduced by Peres and
Mermin [44, 45]. The right-hand side of (B91) is usually
referred to as the Peres-Mermin square or magic square.

The Peres-Mermin square is a SI-C set (although not
of rank-one projectors) and inequality (B90) is equally
violated by any quantum state in d = 4 [although it is
not of the form (1)].

9. The relation between the Peres-Mermin square
and Peres-24

The Peres-Mermin square is related to Peres-24 [43].
Each row or column in (B91) contains compatible ob-
servables represented by operators whose product is 1,
except for the last column, which is −1. This implies
that, according to quantum theory, only four events can
happen for every set of three compatible observables. If,
e.g., [− + −|ABC] denotes the event: the results −1,
1, and −1 are obtained when A, B, and C are mea-
sured, respectively, then only the following 24 events can
happen: [+ + +|ABC], [+ − −|ABC], [− + −|ABC],
[− − +|ABC], [+ + +|abc], [+ − −|abc], [− + −|abc],
[− − +|abc], [+ + +|αβγ], [+ − −|αβγ], [− + −|αβγ],
[− − +|αβγ], [+ + +|Aaα], [+ − −|Aaα], [− + −|Aaα],
[− − +|Aaα], [+ + +|Bbβ], [+ − −|Bbβ], [− + −|Bbβ],
[−−+|Bbβ], [++−|Ccγ], [+−+|Ccγ], [−++|Ccγ], and
[−−−|Ccγ]. Each of these events is represented by a pro-
jector, which is the eigenprojector of the corresponding
Hermitian operators with the corresponding eigenvalues.
The 24 projectors thus defined have the same orthogonal-
ity relations as the 24 projectors of Peres-24. The relation
between the Peres-Mermin square and Peres-24 allows us
to prove that the Peres-Mermin square is unique up to
unitary transformations.

For any set {A,B,C, a, b, c, α, β, γ} with the same rela-
tions of joint measurability given in Eq. (B91) and whose
products fulfil the same relationships as those fulfilled by
the observables in Eq. (B91), we can obtain 24 vectors
with the same relations of orthogonality as those of Peres-
24. Let us call {Πi}24i=1 this set of rank-one projectors.
As seen before, there is a unitary transformation U such
that U(Πi)U

† = |vi⟩⟨vi| ⊗ 1 := Π̃i, where |vi⟩ are the
columns in Table III.

10. Proof that the Peres-Mermin square is unique
up to unitary transformations

Since A, B, and C are compatible, then

A+B+ ⪰ A+B+C+, (B93a)

A+B− ⪰ A+B−C−, (B93b)

A−B+ ⪰ A−B+C−, (B93c)

A−B− ⪰ A−B−C+, (B93d)

where A+ and A− denote the projectors for the positive
and negative eigenspaces of A, respectively. That is, A =
A+ −A−. Hence,

U(A+)U† = U(A+B+ +A+B−)U†

⪰ U(A+B+C+)U† + U(A+B−C−)U†

= U(Π1)U
† + U(Π2)U

†

= Π̃1 + Π̃2, (B94)

U(A−)U† = U(A−B+ +A−B−)U†

⪰ U(A−B+C−)U† + U(A−B−C+)U†

= U(Π3)U
† + U(Π4)U

†

= Π̃3 + Π̃4. (B95)

In addition,

A+ +A− = 1 (B96)

and

Π̃1 + Π̃2 + Π̃3 + Π̃4 = 1, (B97)

which implies

U(A+)U† = Π̃1 + Π̃2, U(A−)U† = Π̃3 + Π̃4. (B98)

Consequently,

U(A) = U(A+)U† − U(A−)U† =

1 1
1̄

1̄

⊗ 1κ,

(B99)
where κ = D/4. Similarly, other observables in the real-
ization can be mapped with the same unitary U into the
ones in Eq. (B91).

11. Peres-39 and its witness

One can obtain a KS set in d = 5 by taking the 4-
dimensional vectors of Peres-24 and either appending or
prepending 0 to them [47]. That is, if we call {|ui⟩}24i=1

the set of vectors in Peres-24, then

V = {|µi⟩}24i=1 ∪ {|νi⟩}24i=1, (B100)
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39

vi1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vi2 0 1 0 0 1 1 1̄ 1̄ 1 1 1̄ 1̄ 1 1̄ 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1
vi3 0 0 1 0 1 1̄ 1 1̄ 1 1̄ 1 1̄ 0 0 1 1 1 1̄ 0 0 0 0 1 1̄ 0 1 1 1̄ 1̄ 1 1 1̄ 1̄ 0 0 1 1 0 0
vi4 0 0 0 1 1 1̄ 1̄ 1 1̄ 1 1 1̄ 0 0 1 1̄ 0 0 1 1̄ 1 1̄ 0 0 0 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1 0 0 0 0
vi5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1̄ 1̄ 1 1̄ 1 1 1̄ 1 1̄ 1 1̄ 1 1̄
wi 24 8 8 8 4 4 4 4 4 4 4 4 6 6 7 7 6 6 7 7 6 6 7 7 24 4 4 4 4 4 4 4 4 6 6 6 6 6 6

TABLE IV. Peres-39. Each column vi corresponds to one observable represented by the projector |vi⟩⟨vi|. The rows vij give
the components of |vi⟩ (unnormalized). 1̄ = −1. The last row contains the weights wi of the optimal SI-C witness of the
form (B103). With these weights, α(G, w⃗) = 46 and ϑ(G, w⃗) = 50.

where

⟨µi| = (⟨ui| , 0), ⟨νi| = (0, ⟨ui|). (B101)

is a KS set in d = 5. V only contains 39 vectors, since

|µ2⟩ = |ν1⟩ , |µ3⟩ = |ν2⟩ , |µ4⟩ = |ν3⟩ ,
|µ15⟩ = |ν23⟩ , |µ16⟩ = |ν24⟩ , |µ19⟩ = |ν17⟩ ,
|µ20⟩ = |ν18⟩ , |µ23⟩ = |ν13⟩ , |µ24⟩ = |ν14⟩ .

(B102)

The resulting set is shown in Table IV. Hereafter, we
will call it Peres-39.

Let us consider the following witness:

W ′ :=
∑
C∈C5

∑
i∈C

P (Πi = 1) =

39∑
i=1

wiP (Πi = 1) ≤ α(G39, w),

(B103)
where G39 is the graph of compatibility of Peres-39, C5
is the set of cliques of size 5 in G39, and wi is the fre-
quency of i in C, which is shown in Table IV. Strictly
speaking, W ′ is not a SI-C witness like those in Eq. (1)
in which every Πi is in several contexts. Probably, there
is a proper SI-C witness of the form (1) for Peres-39, but
we have not computational power to obtain it. Instead,
we will assume that the projectors {Πi} in (B103) pro-
vides a quantum realization of the graph of orthogonality
corresponding to G39. Under this assumption, inequality
(B103) holds.

For any state of d = 5, Q(G39, w) = ϑ(G39, w) = |C|,
which is the number of elements in C and therefore is also
the algebraic maximum of W ′. This shows that Peres-39
is an egalitarian Lovász-optimum SI-C set.

12. Proof that Peres-39 is unique up to unitary
transformations

By construction, in Peres-39, {|µ⟩i}24i=1 contains only
vectors orthogonal to (0, 0, 0, 0, 1). Hence, all the basis
of size 5 which contains (0, 0, 0, 0, 1) are just all the basis
of size 4 which are all orthogonal to (0, 0, 0, 0, 1), i.e., all
the complete basis in the subspace spanned by {|µ⟩i}24i=1.
Let us write Peres-39 as {Pi}24i=1 ∪ {Qi}24i=1, where

Pi = Qj if |µi⟩ = |νj⟩. Then, {Pi}24i=1 is a realiza-
tion of Peres-24 in the 4-dimensional subspace spanned

by {Pi}24i=1. Similarly, {Qi}24i=1 is a realization of Peres-
24 in the subspace spanned by {Qi}24i=1. Then, we can
apply that Peres-24 allows for CFR to each of them in
their corresponding subspaces. Since the intersection of
{Pi}24i=1, {Qi}24i=1 is not empty, all the projectors in the
realization of Peres-39 have the same rank.
Without loss of generality, we can assume that

Pi = |µi⟩⟨µi| ⊗ 1d/5, ∀i = 1, . . . , 24. (B104)

In addition, Q4 = |ν4⟩⟨ν4| ⊗1d/5. Then, we can copy for

{Qi}24i=1 the proof we used for Peres-24. Since Qi is fixed
already for i = 1, 2, 3, 13, 14, 17, 18, 23, 24, we know that
D = F = 1 as in Eqs. (B68) and (B71) and, consequently,
that

E = G, EG† = 1. (B105)

Note that we still have the freedom to apply a local uni-
tary to the subspace represented by Q4. This implies
that we can set E = G = 1, which fix the whole realiza-
tion up to unitary transformations. Direct computation
shows {Pi}24i=1∪{Qi}24i=1 realizes all the orthogonality re-
lations in G39.

13. Proof that, for any d ≥ 6, there are KS sets
unique up to unitary transformations

For any dimension d ⩾ 4, by patching d − 3 copies of
Peres-24 together (as we did in the construction leading
to Peres-39), we can obtain a SI-C set in dimension d,
which allows for CFR with respect to the witness (B103)
and the orthogonality relations encoded in this set.
We can prove this recursively. Let us assume that we

can prove it for the d-dimensional case. In the (d + 1)-
dimensional SI-C set, all the vectors whose last element is
0 constitute, by construction, a d-dimensional SI-C set.
We denote it as P. In addition, we denote Q the last
added Peres-24 SI-C set. Hence, all the maximal cliques
of size d+ 1 which contain (0, . . . , 0, 1) correspond to all
the maximal cliques of size d for the d-dimensional SI-C
set P. As we discussed in the CFR of Peres-39, the fact
that all the maximal cliques of size d + 1 are complete
bases leads to the fact that all the maximal cliques of size
d in P are complete bases for the subspace spanned by
P. Consequently, P allows for CFR.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 vA vB vC vD

vi1 1 0 0 0 0 1 1 1 1 1 1 1̄ 1
vi2 0 1 0 1 1 0 0 1 1̄ 1 1 1 1̄
vi3 0 0 1 1 1̄ 1 1̄ 0 0 1 1̄ 1 1
wi 3 3 3 3 3 3 3 3 3 2 2 2 2

TABLE V. YO-13. Each column vi corresponds to one ob-
servable represented by the projector |vi⟩⟨vi|. The rows vij
give the components of |vi⟩ (unnormalized). 1̄ = −1. The
last row contains the weights wi of the optimal SI-C witness
of the form (1). The weights wij in (1) can be chosen in any
way that satisfies wij ≥ max{wi, wj}. With these weights,
α(G, w⃗) = 11 and, for any qutrit state, Q(G, w⃗) = 35

3
≈ 11.67.

However, ϑ(G, w⃗) ≈ 11.977641.
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FIG. 2. Graph of compatibility of YO-13. Nodes represent
observables and edges connect compatible observables. The
nodes are labeled as the subindexes in Table V.

By construction, the set of the vectors living in the
last 5 dimensions is a Peres-39, whose intersection with
P is a Peres-24 P ′. After the CFR of P, the Peres-24
P ′ is fixed. Same as in the CFR of Peres-39, this fixes
the last added Peres-24 Q up to unitary transformations.
Summing up, we have shown that the (d+1)-dimensional
SI-C set allows for CFR.

14. YO-13

YO-13 is the set of 13 rank-one projectors in d = 3
shown in Table V and whose graph of compatibility is
shown in Fig. 2. YO-13 was introduced in [11]. As shown
in Table V, YO-13 is an egalitarian SI-C set with respect
to a contextuality witness of the form (1) and YO-13 is
not Lovász-optimum. As proven in [48], YO-13 is the
smallest SI-C set of rank-one projectors in quantum the-
ory (in any dimension). As it can be easily checked, YO-
13 is not a KS set.

15. Proof that YO-13, with normalization
constraints, is unique up to unitary transformations

YO-13 is unique up to unitary transformations if we
assume the following normalization constraints:

p1 + p2 + p3 = 1, (B106a)

p1 + p4 + p5 = 1, (B106b)

p2 + p6 + p7 = 1, (B106c)

p3 + p8 + p9 = 1, (B106d)

where pi is the probability of obtaining the outcome 1
when the projector |vi⟩⟨vi| is measured, with vi defined
in Table. V.
Following the same notation as before, without loss of

generality, we can assume that

L1 = [1κ, 0, 0], L2 = [0,1κ, 0], L3 = [0, 0,1κ].
(B107)

Hereafter, for simplicity, we will omit the subindex κ.
Since L1 ⊥ L4 and L1 ⊥ L5, we can assume that

L4 = [0,1, A], L5 = [0,1, A′]. (B108)

Then, since L4 ⊥ L5,

A′ = −(A−1)†. (B109)

Similarly,

L6 = [1, 0, B], L7 = [1, 0,−(B−1)†], (B110)

L8 = [1, C, 0], L9 = [1,−(C−1)†, 0]. (B111)

Let us assume that

LA = [1, D,E], LB = [1, F,G], (B112)

LC = [1, H, I], LD = [1, J,K]. (B113)

Then, LA ⊥ L7 and LA ⊥ L9 imply

D = C, E = B, (B114)

LB ⊥ L6 and LB ⊥ L9 imply

F = C, G = −(B−1)†, (B115)

LC ⊥ L6 and LC ⊥ L8 imply

H = −(C−1)†, I = −(B−1)†, (B116)

LD ⊥ L7 and LD ⊥ L8 imply

J = −(C−1)†, K = B. (B117)

In addition, L5 ⊥ LA and L5 ⊥ LC imply

D = −E(A′)†, H = −I(A′)†. (B118)

This implies that,

B = CA, C = BA†. (B119)
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Then, L4 ⊥ LB and L4 ⊥ LD imply

F = −GA†, J = −KA†. (B120)

This implies that,

C−1 = AB†, C† = AB−1. (B121)

Hence,

AA† = BB† = 1. (B122)

Since we still have the freedom to rotate the subspaces
corresponding to L2 and L3, we can set A = B = 1.
Therefore,

C = D = E = F = K = 1, G = H = I = J = −1.
(B123)

This implies that there is an isometry between {Πi}i and
{2 |vi⟩ ⟨vi|−13}i, where |vi⟩ is the normalized i-th column
in Table. V.

16. Peres-33 and its optimum contextuality witness

Peres-33 is the KS set of rank-one projectors in d = 3
shown in Table VI. It was introduced in [43]. It is the
KS set in d = 3 with the smallest number of bases known
(16).

17. Proof that Peres-33 is not unique up to unitary
transformations

The existence of unitarily inequivalent orthogonality
representations of the orthogonality graph of Peres-33
has already been proven in Refs. [68, 69]. For complete-
ness, we provide another proof here.

As shown below, Peres-33 contains, induced, three
copies of YO-13. Specifically, using the notation of Ta-
ble VI, the three copies are

S1 = {v1, v4, v5, v2, v3, v30, v33, v31, v32, v14, v13, v15, v12},
(B124a)

S2 = {v2, v8, v9, v1, v3, v26, v29, v27, v28, v20, v11, v21, v10},
(B124b)

S3 = {v3, v6, v7, v1, v2, v22, v25, v23, v24, v18, v17, v19, v16}.
(B124c)

The graph of compatibility of each copy Sk corresponds
to the graph in Fig. 2, assuming that the ordering of the
vectors in Eqs. (B124) is the same used in Table V. Notice
that Si∩Sj = (1, 2, 3) := S0 for i ̸= j, but otherwise, the
three sets are not tightly connected to each other.

A direct calculation shows that there is another real-
ization of the graph of compatibility of Peres-33, where

⟨ui| =


(vi1, vi2, vi3), i ∈ S1

(vi1, vi2, ivi3), i ∈ S′
2

(vi1,−ivi2, vi3), i ∈ S′
3,

(B125)

where vij are the ones in Table VI and S′
2 = S2 \ S0,

S′
3 = S3 \ S0. However, {|vi⟩}33i=1 and {|ui⟩}33i=1 cannot

be transformed to each other by either a unitary or an
antiunitary transformation, since the set {|⟨ui|uj⟩|} is
different from {|⟨vi|vj⟩|}.

Appendix C: Tools used in the proof of Result 2

Consider the situation in which we are given a set of
black boxes, each of them supposedly implementing an
ideal measurement of one of the elements of a SI-C set
{Πi} with graph of compatibility G (with vertex set V
and edge set E) and whose optimal noncontextuality in-
equality of the form (1) has weights {wi} given in the
proof of Result 1.

Firstly, we consider the case with perfect orthogonality
relations and the imperfectness is only in the violation.

Lemma 1. If, for any quantum state,

P (Πi = Πj = 1) = 0 (C1)

for any (i, j) ∈ E and∑
i∈V

wiP (Πi = 1) > Q− ϵ, (C2)

where Q is 35
3 , 9

2 , 6, and 10, and ϵ is 0.13159, 0.13397,
0.17712, and 0.20808 for, respectively, BBC-21, CEG-18,
Peres-24, and YO-13, and, only in the case of YO-13, for
any quantum state satisfying

P (Π1 = 1) + P (Π2 = 1) + P (Π3 = 1) = 1, (C3a)

P (Π1 = 1) + P (Π4 = 1) + P (Π5 = 1) = 1, (C3b)

P (Π2 = 1) + P (Π6 = 1) + P (Π7 = 1) = 1, (C3c)

P (Π3 = 1) + P (Π8 = 1) + P (Π9 = 1) = 1, (C3d)

then,

(I) ∀(i, j) /∈ E, rank(ΠjΠiΠj) = rank(Πj).

(II) ∀i ∈ V , rank of Πi is the same, say, rank(Πi) = κ.

(III) For i ∈ V and (j, t) ∈ {1, . . . , c} such that (i, j) /∈ E
and (i, t) ∈ E, each rank-κ projector Πi that acts
on Cd can be decomposed as

Πi = L†
i (LiL

†
i )

−1Li, Li = [B1i, B2i, . . . , Bci], (C4)

where Li are d×κ matrices, Bji are κ×κ invertible
matrices, Bti = 0 and we can take Bji = 1 for
any j. Moreover,

ΠiΠt = 0 =⇒ Li(Lt)
† = 0. (C5)

Proof. The proof of (I) follows from SDP. Notice that
ΠjΠiΠj ⪯ Πj . If there is a pair (i, j) ̸∈ E such that
rank(ΠjΠiΠj) < rank(Πj), then there is a unit vector
|v⟩ in the subspace represented by Πj that is orthogonal
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33

vi1 1 0 0 0 0 1 1 1 1 0 0 1̄ 1 1̄ 1 0 0 t t t t 1̄ 1̄ 1 1 1̄ 1̄ 1 1 t t t t
vi2 0 1 0 1 1 1̄ 1 0 0 1̄ 1 0 0 t t t t 0 0 1̄ 1 1̄ 1 1̄ 1 t t t t 1̄ 1̄ 1 1
vi3 0 0 1 1̄ 1 0 0 1̄ 1 t t t t 0 0 1̄ 1 1̄ 1 0 0 t t t t 1̄ 1 1̄ 1 1̄ 1 1̄ 1
wi 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE VI. Peres-33. Each column vi corresponds to one observable represented by the projector |vi⟩⟨vi|. The rows vij give
the components of |vi⟩ (unnormalized). 1̄ = −1 and t =

√
2. The last row contains the weights wi of the optimal SI-C witness

of the form (1), where the weights wij in (1) can be chosen in any way that satisfies wij ≥ max{wi, wj}. With these weights,
α(G, w⃗) = 12 and Q(G, w⃗) = ϑ(G, w⃗) = 13 for all qutrit states.

to the subspace spanned by the image of ΠjΠiΠj . This
leads to the linear conditions

⟨v|Πj |v⟩ = 1, ⟨v|ΠjΠiΠj |v⟩ = ⟨v|Πi |v⟩ = 0. (C6)

That is,

Tjj = 1, Tii = 0, (C7)

where Tlk = ⟨v|ΠlΠk |v⟩. By definition, Tlk is positive
semidefinite. In addition, the orthogonal relations imply
that

Tkl = 0, ∀(k, l) ∈ E. (C8)

The quantum violation of state |v⟩ is a linear function of
Tkk whose upper bound can be calculated through the
SDP under the conditions ΠiΠj = 0 for any (i, j) ∈ E
and (C6). It cannot always be smaller than Q− ϵ for all
(i, j) ̸∈ E. Hence, if, for any quantum state, the violation
is not smaller than Q−ϵ, then rank(ΠjΠiΠj) = rank(Πj)
for any (i, j) ̸∈ E.

Proof of (II). From (I), ∀(i, j) ̸∈ E,

rank(Πi) ≥ rank(ΠjΠiΠj) = rank(Πj), (C9)

which implies that rank(Πi) = rank(Πj) for any
(i, j) ̸∈ E. Since the complement of G is connected, we
conclude that the rank of all the projectors are same.

Proof of (III). Due to (I) and the existence of complete
basis with c projectors, we have the relation d = cκ.
Then, each rank-κ projector Πi can be decomposed as

Πi = (L′
i)

†L′
i, L′

i = [B1i, B2i, . . . , Bci], (C10)

where L′
i are some d×κ matrices and Bji’s are some κ×κ

matrices. In the scenarios we considered, we can always
choose {Πj}cj=1 to be the complete basis and take it to
be the standard basis, that is,

L′
1 = [1κ, 0, . . . , 0], (C11a)

L′
2 = [0,1κ, . . . , 0], (C11b)

...

L′
c = [0, 0, . . . ,1κ]. (C11c)

Using the above decomposition, we have

ΠjΠiΠj = B†
jiBji. (C12)

Due to (I) and Eq. (C12), for (i, j) ̸∈ E, j ∈ {1, . . . , c},
the rank of Bji should be κ and hence, this matrix Bji

is invertible. While for (i, t) ∈ E and t ∈ {1, . . . , c} the
left-hand-side of Eq. (C12) is zero and therefore Bti = 0.
Using that Bji’s are either invertible or zero-matrices, a
straight-forward calculation shows that

∀i, Π2
i = Πi =⇒ L′

i(L
′
i)

† = 1κ (C13)

and

ΠiΠt = 0 =⇒ L′
i(L

′
t)

† = 0. (C14)

By taking Li = B−1
ji L

′
i for some invertible Bji and by

using Eq. (C13), we can express Πi as

Πi = (L′
i)

†(L′
i(L

′
i)

†)−1L′
i

= L†
i (LiL

†
i )

−1Li. (C15)

Finally, notice that Eq. (C14) implies LiL
†
t = 0.

1. Robustness with imperfect orthogonality
relations

To analyze the robustness when the orthogonality re-
lations have not been exactly ensured, we introduce the
following lemmas and one assumption.

Lemma 2. For a given matrix T ⪯ λ11 in H, if
⟨s|T |s⟩ = λ1, ∀ |s⟩ ∈ S, where S is a linear basis of
H, we have T = λ11 in H.

Proof. Obviously, λ1 should be the maximal eigenvalue
of T . Consequently, ⟨s|T |s⟩ = λ1 implies that |s⟩ ∈ Eλ1

,
where Eλ1

is the eigenspace of T for the eigenvalue λ1.
Hence, by assumption, S ⊆ Eλ1 . By definition, H =
span(S), which implies

H ⊆ Eλ1
. (C16)

Thus, Eλ1
= H. Equivalently, T = λ11.

Lemma 3. For any two projectors Π1,Π2 from a given
setting, if rank(Π1) > rank(Π2), then ∃ |s⟩ ∈ S s.t.

⟨s|Π1|s⟩ = 1, ⟨s|Π2|s⟩ = 0. (C17)
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Proof. The condition rank(Π1) > rank(Π2) implies that
the intersection S0 of the subspace s represented by Π1

and 1 − Π2 is not empty, denote Π0 the projector onto
subspace S0. Von Neumann has proven that [70]

Π0 = lim
n→∞

[Π1(1−Π2)]
n, (C18)

where Πi, i = 0, 1, 2 represent the actions of projection
instead of matrices.

By definition, there should be at least one state |s0⟩ ∈
S such that Π0 |s0⟩ ≠ 0, since Π0 ̸= 0. Thus, by repeating
the projection Π1,Π2 with the initial state |s0⟩, we can
finally obtain a state |s⟩ such that ⟨s|Π0|s⟩ = 1. By
definition of Π0, we know that Π1 ⪰ Π0,Π2 ⪰ Π0. Hence,
we have

⟨s|Π1|s⟩ = ⟨s|1−Π2|s⟩ = 1. (C19)

Lemma 4. For any two projectors Π1 and Π2 from a
given setting, ∀ϵ > 0, ∃ |s⟩ ∈ S such that

⟨s|Π1Π2Π1|s⟩ ≥ λ1(Π1Π2Π1)− ϵ, (C20)

where λ1(·) is the maximal eigenvalue.

Proof. If Π1 ⊥ Π2, any choice of |s⟩ gives the conclu-
sion. Otherwise, λ1(Π1Π2Π1) > 0. In addition, there is
a state |s⟩ such that Π1Π2Π1 |s⟩ ≠ 0. Denote by |sn⟩ the
post-measurement state after the repetition, ntimes, of
measurements Π2 and Π1, that is,

|sn⟩ ∝ (Π1Π2Π1)
n |s⟩ . (C21)

Since limn→∞(λ/λ1)
n = 0, for any eigenvalue λ of

Π1Π2Π1 which is less than λ1, we that[
Π1Π2Π1

λ1(Π1Π2Π1)

]n
→ Π0, n→ ∞, (C22)

where Π0 is the projector of the eigenspace of Π1Π2Π1

with the maximal eigenvalue λ1. Therefore,

⟨sn|Π1Π2Π1|sn⟩ → λ1(Π1Π2Π1), n→ ∞. (C23)

For a given c-dimensional SI-C set which is considered
here, and another realization of its orthogonality rela-
tions and quantum violation of a given witness with er-
rors in experiment, we make the assumption of complete
context for this realization.

Assumption 1 (Complete context). There is a complete
context, i.e., a context with c projectors, in which the
relations of mutual exclusivity are perfect.

This can be guaranteed if we have a device whose dif-
ferent outcomes correspond to different projectors in this
complete context. With out loss of generality, we label
this complete context with {1, 2, . . . , c}.
As we can see, the proof of self-test only relies on two

conditions:

1. The relations of exclusivity hold, i.e., ΠiΠj = 0,
∀(i, j) ∈ E.

2. Each projector Πi can be decomposed into block
form on a complete basis (a complete context in
the scenario). That is,

Πi = L†
iLi, Li = [B1i, B2i, . . . , Bci], (C24)

where Bti is square invertible if (i, t) ̸∈ E, other-
wise, Bti = 0.

In actual experiments, the first condition may not
strictly hold due, i.e., to noise, so two mutually exclu-
sive events of the ideal scenario may no be mutually ex-
clusive. Furthermore, the second condition is linked to
the first and to the violation of the SI-C inequality. If
the first condition is valid, and the violation of the SI-C
inequality is not too far from the violation in an ideal
experiment, then the second condition is likewise true.
As a result, we have CFR as we have shown before.
For a given (Q − ϵ, ϵ)-SI-C realization, the relation of

exclusivity ΠiΠj = 0 is (ϵ, 1/2)-robust ∀(i, j) ∈ E. Since
ΠiΠjΠi = (ΠjΠi)

†(ΠjΠi), the maximal singular value of
ΠjΠi is upper bounded by

√
ϵ. That is, the first condition

holds up to O(
√
ϵ).

Now we show that in a (Q − ϵ, ϵ)-realization, the sec-
ond condition holds if ϵ < min{ϵτ , ϵν}, where ϵτ and
ϵν indicate the invertibility of the blocks Bki in the de-
composition and the completeness of the basis for the
decomposition.

Definition 10. For a given graph G and a set of weights
{wi}, the tolerance function τij(θ, ϵ) is defined as follows:

τij(θ, ϵ) :=minXij

subject to
∑n

k=1
wkXkk = θ,

Xkk = X0k, 1 ≤ k ≤ n,

Xij ≥ 0, X00 = X0i = 1,

|Xkt| ≤ ϵ, (k, t) ∈ E,

X ∈ S1+n
+ . (C25)

For CEG-18 and Peres-24, τij(Q, 0) is a strictly pos-
itive constant ∀(i, j) ̸∈ E in both cases. For YO-13,
we reach the same conclusion with the extra assump-
tion in Eq. (C3). When ϵ is not so large in comparison
with τij(Q, 0), then the critical values of ϵτ such that
min(i,j)̸∈E τij(Q− ϵ, ϵ) > 0 are given in Table VII.
For a given (Q − ϵ, ϵ)-realization, τij(Q − ϵ, ϵ) > 0

implies that, for any state |s⟩ such that ⟨s|Πi|s⟩ =
1, we have ⟨s|ΠiΠjΠi|s⟩ > 0. Therefore, ΠiΠjΠi is
positive definite in the subspace corresponding to Πi.
Hence, rank(ΠiΠjΠi) is no less than the dimension of
this subspace, which is rank(Πi). On the other hand,
rank(ΠiΠjΠi) ≤ rank(Πi). Therefore,

rank(ΠiΠjΠi) = rank(Πi). (C26)
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Hence, rank(Πj) ≥ rank(Πi). If τji(Q − ϵ, ϵ) > 0 is
also true, then we have rank(Πj) = rank(Πi). If the
complement graph of the exclusivity G is connected and
τij(Q − ϵ, ϵ) > 0, ∀(i, j) ̸∈ E, we know that all the pro-
jectors should be of the same rank. If ϵ < ϵτ/2, there
is τ0 > 0 such that τij(Q − ϵ, ϵ) > τ0. This implies
that the projection of Πj into the subspace spanned by
Πi should be invertible and the inverse is bounded by
1/τ0. In the case that i = 1, . . . , c, min τij(Q − ϵ, ϵ) =

minλmin(B
†
tiBti). Hence, λmin(B

†
tiBti) > τ0 implies that

λmax[(B
−1
ti )†B−1

ti ] ≤ 1/τ0. Therefore, the maximal sin-

gular value σmax(B
−1
ti ) ≤ 1/

√
τ0.

Definition 11. For a given graph G and set of weights
{wi}, the completeness function ν(θ, ϵ) is defined as fol-
lows:

ν(θ, ϵ) :=min

c∑
k=1

X0k

subject to
∑n

k=1
wkXkk = θ,

Xkk = X0k, 1 ≤ k ≤ n,

Xij ≥ 0, X00 = 1,

|Xkt| ≤ ϵ, (k, t) ∈ E,

X ∈ S1+n
+ . (C27)

For a (Q − ϵ, ϵ)-realization, ν > 0 for any small
enough ϵ. This means that any state is not orthogonal
to all the projectors in the context {1, 2, . . . , c}. Under
the complete context assumption that all the projectors
in this context are orthogonal to each other, we have,∑c

i=1 Πi = 1. Consequentially, we have the block decom-
position on this complete basis {Π1,Π2, . . . ,Πc}. Since

B†
tiBti is the non-trivial part of ΠtΠiΠt whose maximal

(diagonal) element is upper bounded by ϵ, |Bti|max ≤√
|B†

tiBti|max ≤
√
ϵ if (i, t) ∈ E. Here |M |max is the max

norm of the matrix M .
In fact, rows of Li are a orthonormal basis of the sub-

space represented by Πi. Then ΠiΠjΠi ≤ ϵ1 implies

LiΠjL
†
i ≤ ϵ1, which leads to

σmax(LiL
†
j) ≤

√
ϵ, (i, j) ∈ E, (C28)

Here we introduce the main idea of robustness analysis.
As an example, we give the detailed analysis for YO-13
in the next section. The proof of self-testing in the ideal
case implies that, the solution of Eq. (C28) is unique if
ϵ = 0. Since each Bti in Li there is invertible and the
inverse is bounded, those facts lead to equations similar
as in Eq. (B84) but with error O(

√
ϵ). Consequently, this

results in the conclusion that all Πi is close to the ideal
one up to O(

√
ϵ). Note that, since a lot of substitution

has been done in the proof of the self-testing in the ideal
case, the constant in O(

√
ϵ) depends on the number of

equation in the proof of self-testing, i.e., the number of
edges in the corresponding exclusivity graph. Apart from
that, it depends on the upper bound of the inverse of Bti

SI-C set BBC-21 CEG-18 Peres-24 YO-13
ϵτ 0.00359 0.00557 0.00562 0.00296
ϵν 0.00832 0.01527 0.01954 0.02325

TABLE VII. Critical values of ϵτ and ϵν such that min τij(Q−
ϵτ , ϵτ ) > 0 and ν(Q− ϵν , ϵν) > 0.

also for (i, t) ̸∈ E, which in turn depends on the error ϵ as
we discussed before. All in all, our conclusion is that the
self-testing is

√
ϵ-robust when the error ϵ is small enough

as suggested in Table VII.

2. Robustness analysis for YO-13

As we discussed before, when the error ϵ ≤ ϵτ/2 as
shown in Table VII, we can still have the decomposition

Πi = LiL
†
i , Li = [B1i, B2i, B3i], (C29)

where σmax(Bti) ≤
√
ϵ if (t, i) ∈ E, otherwise Bti is in-

vertible and the inverse is bounded, i.e., σmax(B
−1
ti ) ≤

1/
√
τ0. Therefore, we can still, for example, change Li

to B−1
ki Li, where (k, i) ̸∈ E, to simplify the the procedure

of proof. Consequently,

σmax(Bti) ≤
√
ϵ/τ0 if (t, i) ∈ E. (C30)

Without loss of generality, we assume that

L1 = [1d, 0, 0], L2 = [0,1d, 0], L3 = [0, 0,1d]. (C31)

For simplicity, in the following derivation, we will omit
the subindex d.
Since L1 ⊥ L4 and L1 ⊥ L5 up to some error (for

simplicity, hereafter we will omit ‘up to some error’),

L4 = [O(
√
ϵ),1, A], L5 = [O(

√
ϵ),1, A′], (C32)

where O(
√
ϵ) represents either a number or a matrix

whose maximal singular value is not larger than O(
√
ϵ).

For brevity, hereafter we will denote o = O(
√
ϵ). L4 ⊥ L5

implies

σmax(AA
′ + 1+ o) = o. (C33)

Therefore,

σmax(A
′ +A−1) ≤ O(

√
ϵ/τ0) = o. (C34)

In this sense, we denote A′ = −A−1 + o.
Similarly,

L6 = [1, o, B], L7 = [1, o,−(B−1)† + o],

L8 = [1, C, o], L9 = [1,−(C−1)† + o, o]. (C35)

Let us assume that

L10 = [1, D,E], L11 = [1, F,G],

L12 = [1, H, I], L13 = [1, J,K]. (C36)
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Then, L10 ⊥ L6 and L10 ⊥ L8 imply

D = −(C−1)† + o, E = −(B−1)† + o, (C37)

L11 ⊥ L7 and L11 ⊥ L9 imply

F = C + o, G = B + o, (C38)

L12 ⊥ L6 and L12 ⊥ L9 imply

H = C + o, I = −(B−1)† + o, (C39)

L13 ⊥ L7 and L13 ⊥ L8 imply

J = −(C−1)† + o, K = B + o. (C40)

In addition, L4 ⊥ L10 and L4 ⊥ L11 imply

D = −EA† + o, F = −GA† + o. (C41)

Therefore,

(C−1)† = −(B−1)†A† + o, C = −BA† + o, (C42)

which implies

C = −BA−1 + o = −BA† + o. (C43)

Then, L4 ⊥ L12 and L5 ⊥ L13 imply

H = IA−1 + o, J = KA−1 + o. (C44)

This implies

C = −(B−1)†A−1 + o, −(C−1)† = BA−1 + o, (C45)

which implies

C = −(B−1)†A−1 + o = −(B−1)†A† + o. (C46)

Hence,

AA† = 1+ o, BB† = 1+ o. (C47)

Since we still have the freedom to rotate the subspaces
corresponding to L2 and L3, we can set A and B to be
Hermitian. Therefore, the square of any eigenvalue of A
and B is 1+ o, which means that the eigenvalues of A,B
are either 1 + o or −1 + o. Without loss of generality,
we assume they are all −1 + o. Hence, A = −1 + o and
B = −1+ o. Consequently,

C,F,G,H,K = −1+ o, D,E, I, J = 1+ o. (C48)

Then, by definition of Li, we know that its difference

between the ideal one is also o, i.e., O(
√
ϵ). So do LiL

†
i

and its inverse since each element in Li is bounded.
The fact that

Πi = L†
i (LiL

†
i )

−1Li (C49)

implies that Πi is also O(
√
ϵ) close to the ideal one in the

sense of maximal singular value.

Appendix D: Tools used in the proof of Result 3

Initially, it is important to note that a witness can
be naturally constructed for any given complete KS set.
Furthermore, the maximal violation of this witness is at-
tained by any set of projectors in an arbitrary dimension
that satisfies the orthogonality and completeness rela-
tions according to the orthogonality graph G associated
with the given KS set. In Result 3, we specifically re-
fer to the CFR of a complete KS set with respect to the
following particular witness.
Given a complete KS set, consider an SI-C witness of

the form

WKS =
∑
i

wi P (Πi = 1) ⩽ α(G, w⃗), (D1)

where wi is the number of bases in which projector Πi

appears, and α(G, w⃗) is the independence number of the
orthogonality graph G of the projectors {Πi}. Let us
denote the maximal cliques, each of which corresponds
to a complete basis, by the subsets of the set of vertices
Tx ⊂ V , wherein x = 1, . . . ,m, and there are m number
of complete bases. Now the quantity

∑
i

wi Πi =
∑
x

(∑
i∈Tx

Πi

)
= m1, (D2)

where we have used the fact that the sum of projectors
in each of these maximal cliques is the identity. Hence,
the quantum value of the witness (D1) is m for any state.
Note that m is strictly greater than α(G, w⃗), which fol-
lows from the definition of the KS set. Furthermore, since
the maximal value of

∑
i∈Tx

P (Πi = 1) cannot be more
than 1, m serves as the quantum upper bound. On the
reverse direction, the witness (D1) is maximally violated
by a set of projectors {Πi} only when∑

i∈Tx

Πi = 1, ∀x. (D3)

Additionally, these projectors adhere to the orthogonal-
ity graph. Thus, any set of projectors providing the max-
imum violation of witness (D1) must be a KS set accord-
ing to the orthogonality graph G.

1. Concepts and previous results

Definition 12 (Bipartite game). A bipartite game G =
(X×Y,A×B,W ) is a game involving two players, Alice
and Bob. In each round of the game, Alice receives an
input x ∈ X and provides an output a ∈ A, and Bob
receives an input y ∈ Y and provides an output b ∈ B.
Alice and Bob win the round if the inputs and outputs
satisfy a winning condition W ⊆ (X × Y )× (A×B).

Definition 13 (Wining strategy). A winning strategy
for a bipartite game G = (X ×Y,A×B,W ) is a strategy
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according to which for every (x, y) ∈ X × Y , Alice and
Bob output a and b, respectively, such that (x, y, a, b) ∈
W .

It is known (see, e.g., [21]) that, for any KS set, there
exists a context-projector KS game with a quantum win-
ning strategy and no classical winning strategy. Consider
the graph of orthogonality G of a complete KS set of n
projectors {Πi}ni=1 in Cd. Each projector is represented
by a vertex in the graph, and orthogonal projectors are
represented by adjacent vertices. A clique in G repre-
sents a set of mutually orthogonal projectors. A maxi-
mal clique of G is a clique that cannot be extended by
including one more adjacent vertex. Let Tx denote max-
imal cliques of G, having |Tx| distinct elements. The ele-
ments of Tx are {Tx,a}, where x is the label of the clique
and a = 1, . . . , |Tx| indicates the elements in that clique.
In other words, Tx := {Tx,1, . . . , Tx,|Tx|}. Suppose there
are m different maximal cliques, i.e., x = 1, . . . ,m. Ac-
cording to the graph G, Alice is given a maximal clique
from the set of maximal cliques and has to output one of
the vertices from that clique, while Bob receives a ver-
tex from that clique and outputs either 0 or 1. They
win the game if Alice outputs the vertex that is given to
Bob and Bob outputs 1, or if Alice outputs a vertex that
is not given to Bob and Bob outputs 0. Using the for-
mal notation, Alice receives x ∈ {1, . . . ,m} and outputs
a ∈ {1, . . . , |Tx|}, while Bob receives y ∈ {1, . . . , n} and
outputs b ∈ {0, 1}. The payoff function that they aim to
maximize is given by

B =
∑

a,b,x,y

ca,b,x,y p(a, b|x, y) (D4)

where

ca,b,x,y =


1, if y ∈ Tx, y ̸= Tx,a and b = 0,

1, if y ∈ Tx, y = Tx,a and b = 1,

0, otherwise.

(D5)

The following quantum strategy achieves perfect win-
ning. Alice and Bob share the maximally entangled state

|ϕ+d ⟩ =
1√
d

d−1∑
i=0

|ii⟩. (D6)

Alice measures the following observable Ax for input x
that corresponds to the basis Tx,

Ax = {Π∗
Tx,1

, . . . ,Π∗
Tx,|Tx|

}. (D7)

And Bob measures

By = {1−Πy,Πy} (D8)

for input y. Using the fact that (A ⊗ B)|ϕ+⟩ = (1 ⊗
BAT )|ϕ+⟩ for any operators A,B, we obtain the winning
conditions for every pair of inputs.

To show that no winning classical strategy (without
communication) exists, note that the best classical (local)

strategy can be assumed to be deterministic, in which
Bob assigns 0 or 1 values to the n vertices. To win every
round of the game, no two orthogonal projectors can be
assigned both 1, since every pair of projectors belongs
to at least one basis in a complete KS set. Moreover,
only one projector is assigned 1 in every context. Such
an assignment is impossible for a generalized KS set.

2. Proof of Result 3

The implication — if a complete KS set cannot be cer-
tified with CFR then the corresponding context-projector
KS game does not admit Bell self-testing — is straight-
forward. The uncharacterized KS set acting on CD is
denoted by {Πi}, and the reference KS set acting on Cd

is denoted by {Πi}. Let us assume that these two KS
sets are not connected by unitary transformations, that
is,

∄ U, UΠiU
† = Πi ⊗ 1⊕Π

∗
i ⊗ 1, ∀i. (D9)

Now, consider the following two realizations of a context-
projector KS game where the local observables are con-

structed from {Πi} and {Πi ⊕ Π
∗
i } according to (D7)-

(D8), and the shared states are |ϕ+D⟩ and (1/2) |ϕ+d ⟩ ⊕
|ϕ+d ⟩, respectively. Due to (D9), there is no local unitary
transformation on each side that can map the local mea-
surements in one quantum strategy to the other. There-
fore, the context-projector KS game does not admit Bell
self-testing.
To show the reverse implication, it suffices to estab-

lish that in any quantum winning strategy, Bob’s mea-
surements (D8) {1 − By, By} and Alice’s measurements
{Aa

x} should be projective and constitute a KS set. Con-
sequently, it follows that if there is no unitary transfor-
mation between two quantum strategies, then the KS set
does not satisfy CFR.
Let ρ be the shared state in the quantum strategy,

and dA and dB be the local dimension of the reduced
states. Without loss of generality, we can assume that
the POVMs of Alice and Bob are in their respective dA-
dimensional and dB-dimensional Hilbert spaces. If not,
we can consider the projection of these POVMs into the
corresponding subspaces.
Bob’s measurements. Let us denote ρax = trA(ρA

a
x),

the unnormalized reduced state on Bob’s side when out-
come a is observed for the measurement setting x. The
fact that

∑
aA

a
x = 1 implies

∑
a

trB(ρ
a
x) = trB

(∑
a

ρax

)
= tr

(
ρ
∑
a

Aa
x

)
= 1.

(D10)
From the winning conditions of the context-projector
game, we know that

p(ā, 1|x, y) +
∑
a̸=ā

p(a, 0|x, y) = 1, (D11)
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where y = Tx,ā, which translates to

tr(ρāxBy) +
∑
a ̸=ā

tr (ρax(1−By)) = 1. (D12)

We represent Sx,a as the subspace spanned by ρax, where
1x,a stands for the identity operator in Sx,a. Addition-
ally, B|S denotes the restriction of the operator B to the
subspace S. By combining Eqs. (D10) and (D12), we
obtain

tr(ρāxBy) = tr(ρāx) + tr

∑
a̸=ā

ρaxBy

 . (D13)

Since By ⪯ 1, it follows from Eq. (D13) that

By|Sx,ā
= 1x,ā, By|S̃x,ā

= 0, (D14)

where

S̃x,ā = ⊕a ̸=āSx,a. (D15)

Therefore, Sx,a ⊥ Sx,ā if a ̸= ā. Moreover, since S̃x,ā ⊕
Sx,ā is the full space of Bob’s local system,

By = 1x,ā. (D16)

This leads to the orthogonality conditions, ByBy′ = 0
whenever y ̸= y′ and y, y′ ∈ Tx. In addition, due to
the fact that

∑
a ρ

a
x is of full rank, the normalization

condition also holds. That is,∑
y∈Tx

By =
∑
a

1x,a = 1. (D17)

Alice’s measurements. Similarly, let us denote the re-
duced states on Alice’s side by σy = trB(ρBy), σ̄y =
trB(ρ(1−By)), for the measurement setting y, such that

tr(σy) + tr(σ̄y) = 1. (D18)

The winning condition Eq. (D12) implies

tr(σyA
ā
x) +

∑
a ̸=ā

tr(σ̄yA
a
x) = 1, (D19)

which leads to

tr(σyA
ā
x) = tr(σy), tr(σ̄yA

ā
x) = 0. (D20)

Hence,

Aā
x|Sy = 1y, Aā

x|S̃y
= 0, (D21)

where Sy, S̃y are the space spanned by σy, σ̄y, respec-
tively. Moreover, we can infer that Sy ⊥ Sy′ ∀y, y′ ∈
Tx, y ̸= y′. Since σy + σ̄y = trB(ρ) is of full rank, we
know that

Aā
x = 1y. (D22)

Subsequently, we have the orthogonality condition
1y1

1y2
= 0 whenever y1 = Tx,a1

, y2 = Tx,a2
and a1 ̸= a2,

and the normalization condition∑
a

Aa
x =

∑
y∈Tx

1y = 1. (D23)

In total, Eqs. (D16), (D17), (D22), and (D23) imply that
{By} and {Aā

x} are two realizations of the KS set, and
thus, if the local measurements in a quantum winning
strategy cannot be Bell self-tested, then there exist in-
equivalent realizations of the KS set.

3. Bell self-testing of the maximally entangled state

If specific conditions are met by the complete KS set,
it becomes possible to self-test the maximally entangled
state. To simplify matters, here, we will not delve into
the necessary and sufficient conditions. Instead, we will
demonstrate that the maximally entangled state can be
reliably self-tested if a complete KS set admits CFR and
satisfies the following criteria: In one realization of the
KS set, there exist two bases made of rank-one real pro-
jectors, {|i⟩⟨i|}di=1 and {|vi⟩⟨vi|}di=1, such that ⟨i|vj⟩ ̸= 0
for all i, j. Note that, without loss of generality, we can
consider one basis to be the computational basis.
To prove it, we suppose that the uncharacterized pro-

jectors {Aā
x} and {By} act on CdA and CdB , respectively,

and the unknown shared state is ρ. Since the set of pro-
jectors admits Bell self-testing, there exist local unitaries
UA and UB such that

UA(A
ā
x)U

†
A = Πy⊗1 dA

d

, UB(By)U
†
B = Πy⊗1 dB

d

, (D24)

wherein {Πy} are the projectors in those two bases in
the reference d-dimensional KS set. Let us denote the
reduced state of (UA ⊗ UB)(ρ)(UA ⊗ UB)

† onto the sub-
space Cd ⊗Cd by ρAB .
The winning conditions given by Eq. (D11) implies

p(a, 1|x, y) = 0, if y ̸= Tx,a. (D25)

The relation must hold for any state |ϕ⟩ that belongs to
the support of ρAB , that is,

∀(y, y′) ∈ E, (Πy ⊗Πy′)|ϕ⟩ = 0. (D26)

After substituting |ϕ⟩ =
∑

i,j cij |ij⟩ and the computa-

tional basis {|i⟩⟨i|} in Eq. (D26), we obtain that

cij = 0, for i ̸= j. (D27)

Therefore, we can express |ϕ⟩ as

|ϕ⟩ = (1⊗ S)|ϕ+d ⟩, (D28)

where S is a diagonal matrix whose elements can be taken
to be positive by exploiting the freedom of local unitary.
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Taking y and y′ from the other basis {|vi⟩⟨vi|}di=1, it fol-
lows from (D25) that

(|vi⟩⟨vi| ⊗ |vj⟩⟨vj |)(1⊗ S)|ϕ+d ⟩ = 0. (D29)

Using the fact that (A ⊗ B)|ϕ+⟩ = (1 ⊗ BAT )|ϕ+⟩, we
obtain

(1⊗ |vj⟩⟨vj |S|vi⟩⟨vi|)|ϕ+d ⟩ = 0, (D30)

which implies

⟨vj |S|vi⟩ = 0,∀i ̸= j. (D31)

This relation can be rephrased as

⟨j|U†SU |i⟩ = 0,∀i ̸= j, (D32)

where U is the unitary such that |vi⟩ = U |i⟩. Therefore,
U†SU is also diagonal. Furthermore, since unitary does
not change the eigenvalues, there exists a permutation
matrix T such that V = UT and

V †SV = S ⇔ [S, V ] = 0. (D33)

Finally, due to the fact that ⟨i|vj⟩ ≠ 0 for all i, j, all the
elements in U are non-zero, and thus, all the elements
in V are also non-zero. Consequently, the commutation
relation [S, V ] = 0 holds only if all the eigenvalues of S
should be the same, i.e., S = 1. This means that |ϕ⟩must
be |ϕ+d ⟩. This analysis holds for any state |ϕ⟩ that belongs
to the support of ρAB . As a result, ρAB = |ϕ+d ⟩⟨ϕ

+
d |,

which implies

(UA ⊗ UB)(ρ)(UA ⊗ UB)
† = (|ϕ+d ⟩⟨ϕ

+
d |)⊗ ρaux, (D34)

for some junk state ρaux.
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Phys. Lett. A 212, 183 (1996).
[43] A. Peres, J. Phys. A 24, L175 (1991).
[44] A. Peres, Phys. Lett. A 151, 107 (1990).
[45] N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).
[46] Z.-P. Xu, J.-L. Chen, and O. Gühne, Phys. Rev. Lett.

124, 230401 (2020).
[47] A. Cabello, J. M. Estebaranz, and G. Garćıa-Alcaine,
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