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Abstract 
 
Singular stress states induced at the tip of linear elastic multimaterial corners are characterized in 
terms of the order of stress singularities and angular variation of stresses and displacements. Linear 
elastic materials of an arbitrary nature are considered, namely anisotropic, orthotropic, transversely 
isotropic, isotropic, etc. Thus, in terms of Stroh formalism of anisotropic elasticity, the scope of the 
present work includes mathematically non-degenerate and degenerate materials. Multimaterial 
corners composed of materials of different nature are typically present at any metal-composite, or 
composite-composite adhesive joint. Several works are available in the literature dealing with a 
singularity analysis of multimaterial corners but involving (in the vast majority) only materials of 
the same nature (e.g. either isotropic or orthotropic). Although many different corner configurations 
have been studied in literature, with almost any kind of boundary conditions, there is an obvious 
lack of a general procedure for the singularity characterization of multimaterial corners without any 
limitation in the nature of the materials. With the procedure developed here, and implemented in a 
computer code, multimaterial corners, with no limitation in the nature of the materials and any 
homogeneous orthogonal boundary conditions, could be analyzed. As a particular case, stress 
singularity orders in corners involving extraordinary degenerate materials are, to the authors' 
knowledge, presented for the first time. The present work is based on an original idea by Ting 
(1997) in which an efficient procedure for a singularity analysis of anisotropic non-degenerate 
multimaterial corners is introduced by means of the use of a transfer matrix. 
 
 
1. Introduction 
 
A great deal of research has been carried out in the last few decades regarding the singularity 
analysis of linear elastic multimaterial corners, producing many useful results available in the 
literature at present. Nevertheless, the possibility of including any kind of materials in the corner 
configuration has been to some extent restricted in these works. 
 
Thus, on one hand, multimaterial corners composed exclusively of isotropic materials with almost 
any kind of boundary conditions were analyzed in a general way by Dempsey & Sinclair (1979, 
1981), see also Bogy (1971), Bogy & Wang (1971), Hein & Erdogan (1971). 
 
On the other hand, singularity analysis of multimaterial corners composed exclusively of real 
anisotropic, but not isotropic, materials was performed, e.g., by Delale (1984), Pageu et al. (1995a, 
1996), Ting (1997), Chen (1998). The vast majority of these works, assuming generalized plane 
strain state or plain stress states, make use of the powerful Lekhnitskii-Eshelby-Stroh complex 
variable formalism of Anisotropic Elasticity: Lekhnitskii (1938), Eshelby et al. (1953), Stroh (1958, 
1962) (in the following referred to as Stroh formalism). Note that in this formalism, isotropic 
materials are considered as mathematically degenerate materials (Ting, 1996b). This concept refers 
to repeated complex roots of the characteristic equation with an associated number of linearly 
independent eigenvectors of the fundamental elasticity matrix N smaller than the multiplicity of the 
repeated complex roots. The structure of the complex variable representations of elastic solutions is 
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different and very cumbersome for mathematically degenerate materials when compared to non-
degenerate materials (Ting & Hwu, 1988 and Wang & Ting, 1997). This is the reason why almost 
all works which apply analytic representations of elastic solutions to perform singularity analysis of 
anisotropic multimaterial corners include only real anisotropic, monoclinic or orthotropic 
mathematically non-degenerate materials. 
 
The studies by other authors referenced above are very useful in composite design applications, but 
of limited application if no isotropic material is allowed to be included together with real 
anisotropic materials. Very few works, all recent (e.g., Lin and Sung, 1998, Poonsawat et al., 1998, 
2001) consider particular cases of bimaterial corners involving degenerate (usually isotropic) as 
well as non-degenerate (usually orthotropic) materials. Lin and Sung consider degenerate materials 
(isotropic) by taking the limiting process with the use of L'Hospital rule. Poonsawat et al. present 
some bimaterial cases with isotropic and orthotropic materials including friction at the interface. 
Nevertheless, a general procedure for an N-material corner and any material nature, including 
extraordinary-degenerate materials, is still lacking. 
 
Using a procedure of anisotropic elasticity for non-degenerate materials, it might be possible to 
overcome the above explained restrictions and to obtain approximate results, if quasi-isotropic 
materials are applied as described in what follows. Replacing the isotropic material, in the 
multimaterial corner studied, by an anisotropic material with elastic constants very similar but not 
exactly equal to those of the isotropic material, the theoretical basis of the procedure (analytical 
representation of elastic solution) can be used. Thus the results will be as approximate to the exact 
ones as the values of the anisotropic elastic constants used are close to the real isotropic ones. 
Nevertheless, numerical problems related to the possible ill-conditioning of the expressions used in 
this case can be expected to appear. It is important to notice that the mathematical transition from 
non-degenerate materials (quasi-isotropic) to degenerate ones (isotropic), leads to a non-continuous 
definition of the matrices of normalized eigenvectors of N involved in Stroh formalism. Thus, it is 
possible to expect lesser accuracy when reaching certain limits in the previously outlined procedure. 
This kind of procedure can be used if no high accuracy is required. It has to be pointed out that the 
dependence of the error in the results obtained in this way with respect to the difference of the value 
of the elastic constants is not easy to estimate. 
 
Numerical tools like the finite element method can also overcome the above difficulties present in 
the analytical methods, but usually at the expense of a higher computational effort or lesser 
accuracy if coarse discretizations are used. 
 
The objective of this work is to present and implement in a computer code a general and 
analytically based procedure to characterize the singular stress field that appears at the tip of an 
anisotropic linear elastic multimaterial corner, with no limitations on the nature of the material, 
considering perfect bonding between the materials, and any combination of homogeneous boundary 
conditions except unilateral friction contact. The Stroh formalism for the degenerate (Ting & Hwu, 
1988) cases and extraordinary degenerate (Wang & Ting, 1997) cases of anisotropic materials will 
be used to this end. 
 
The use of the concept of a transfer matrix in the analysis of multimaterial corners with perfect 
adhesion between the material wedges (similar to that used in an analysis of a multimaterial infinite 
strip, see Buffler, 1971) greatly simplifies the procedure, reducing the size of the system considered, 
see Defourny (1988) in isotropic potential problems, Ting (1997) in anisotropic elasticity and 
Mantič et al. (2002) in anisotropic potential problems. To take advantage of the concept of the 
transfer matrix, in the sense of the above mentioned works, the transfer matrix for degenerate 
materials has been obtained in the present work. 
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It has to be mentioned that Desmorat (1996) presented another approach for reducing the size of the 
linear system considered in the case of bimaterial anisotropic elastic corners, based on a suitable 
pre-elimination of some variables involved. The results of Desmorat's (1996) and Ting's (1997) 
work can be considered equivalent when free-free bimaterial corners are studied. However, due to 
the general scope of Ting's (1997) elegant method, based on the transfer matrix concept, this will be 
the method developed in the present work to analyze anisotropic multimaterial corners involving 
any kind of linear elastic material, non-degenerate or degenerate. 
 
Following the approach introduced by Mantič et al. (1997), the boundary conditions analyzed in 
Ting's work (1997), namely free, fixed, and all materials bonded, have been completed by six 
additional homogeneous boundary conditions in the present work. 
 
It has to be stressed that the theoretical results and the computer code developed in the present work 
will allow an accurate singularity analysis of metal to composite joints, modelled like multi-material 
corners with the simultaneous presence of orthotropic (or transversely isotropic) and isotropic 
materials in the same corner, to be performed. This kind of joint is widely used for example in the 
aerospace industry. 
 
2. Stroh formalism of anisotropic elasticity 
 
The Stroh formalism (Ting, 1996a) is a powerful approach for solving anisotropic elasticity 
problems in which a generalized plane strain state: ui=ui(x1,x2) (i=1,2,3), can be assumed. The Stroh 
formalism is based on the following eigensystem: 
 

)6,...,1(   ξNξ p , (1) 
 
where p  and ξ  are respectively the eigenvalues and eigenvectors of the real fundamental 
elasticity matrix N (6×6) defined as follows: 
 









 T

13

21

NN

NN
N , QRRTNTNRTN   TT 1

3
1

2
1

1 ,, , (2) 

 
Q, R and T only depend on the elastic constants of the material ijksC  ( ksijksij C   ), 

 

11kiik CQ  ,   21kiik CR    and  22kiik CT  , (3) 

 
and the superscript T denotes the transpose. 
 
The eigenvalues p  are complex if the strain energy is positive definite, and the eigenvectors 

 TTT
 baξ ,  have an important physical meaning, with a  being proportional to the displacement 

vector and b  being proportional to the traction vector. If p  and ξ  satisfy (1), p  and ξ  are 

also a solution, where the overbar denotes the complex conjugate. Thus, it is habitual to write: 
 

)3,2,1(,,0Im 33    ξξppp , (4) 

 
with Im standing for the imaginary part. 
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Equation (1) is only valid when there are three linearly independent eigenvectors ξ  (=1,2,3). If 

the tensor of elastic constants ijksC  of a particular material gives rise to an eigensystem with less 

than three linearly independent eigenvectors ξ , the formalism has to be modified (Ting & Hwu, 
1988; Wang & Ting, 1997), equations (1) being transformed in the case of two linearly independent 
eigenvectors to: 
 

111 ξNξ p ,  1212 ξξNξ  p ,  333 ξNξ p ,    ( 21 pp  ), (5) 

 
and in the case of only one linearly independent eigenvector to: 
 

11 ξNξ p ,  122 ξξNξ  p ,  233 ξξNξ  p ,   ( pppp  321 ). (6) 

 
In this sense, all linear elastic materials can be classified in relation with the character of the 
eigensystem of N, as shown in Table 1 (Ting, 1996b, 1999): 
 

 p1 p2 p3 p1 p1=p2 p3 p1=p2=p3 
3 Linearly 

Independent 
Eigenvectors 

 

Simple (SP) Semisimple (SS) 
Extraordinary 

semisimple (ES) 
Does not exist 

2 Linearly 
Independent 
Eigenvectors 

 

 
Degenerate or 

non-semisimple 
(D1) 

Degenerate or 
non-semisimple 

(D2) 

1 Linearly 
Independent 
Eigenvectors 

 

  

Extraordinary 
degenerate or 
Extraordinary 

non-semisimple (ED) 

Table 1. Classification of the fundamental elasticity matrix N. 
 
Ting (1996b) proved the existence of materials with an ED matrix N, as well as the impossibility of 
finding any material with an ES matrix N, unless the strain energy is allowed to be positive 
semidefinite. 
 
In the following sections, the particular relations satisfied by the eigenvalues p  and the associate 

eigenvectors  TTT
 baξ ,  will be used for the three eigensystems (1), (5) and (6). Depending on 

the number of linearly independent eigenvectors, the following relations apply: 
 
 
Three linearly independent eigenvectors (N is SP or SS). 
For (  ξ,p ) with =1,2,3: 

  0)( 2   aTRRQ ppT , (7) 




 aRQaTRb )(
1

)( p
p

pT  . 
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Two linearly independent eigenvectors (N is D1 or D2): 
For ( 11 ,ξp ) and ( 33 ,ξp ) equations (7) hold for =1,3. 

For ppp  12  and the generalized eigenvector  TTT
222 ,baξ  : 

    12
2 2)( aRRTaTRRQ TT ppp  , (8) 

  212 aTRTab pT  . 
 
One linearly independent eigenvector (N is ED) with pppp  321 : 

For ( 11 ,ξp ) equations (7) hold with =1. 

For ( 22 ,ξp ) equations (8). 

For 3p  and the generalized eigenvector  TTT
333 ,baξ  : 

    123
2 2)( TaaRRTaTRRQ  TT ppp , (9) 

  323 aTRTab pT  . 

 
The solution in terms of displacements, u , and the stress function vector, φ , can be expressed by 

means of complex (3×3) matrices  321 ,, aaaA   and  321 ,, bbbB   in the following way: 

 

GAAGu
~

 , (10) 

GBBGφ
~

 , (11) 
 
where G can be written in terms of arbitrary functions )(  zf  (=1,2,3) of complex arguments 

21 xpxz   , and G
~

 in terms of )(3  zf   (=1,2,3). 

 
For the analysis of stress singularities it is sufficient to take the same function for =1,2,3, i.e. 

 qzfzf )()(   and  qzfzf ~)()(3  , where q  and q~  are arbitrary real or complex 

constants. Thus, it is possible to write qFG ·  and qFG ~·
~~

  with Tqqq ),,( 321q  and 
Tqqq )~,~,~(~

321q . The structure of F (and F
~

) depends on the number of linearly independent 
eigenvectors, as shown below, where the prime denotes differentiation with respect to the complex 
variable z. 
 
SP and SS cases (non-degenerate cases): 
 


















)(00

0)(0

00)(

3

2

1

zf

zf

zf

F ,   















)(00
0)(0
00)(~

3

2

1

zf
zf

zf
F . (12) 

 
D1 and D2 cases (degenerate cases): 
 















 


)(00

0)(0

0)()(

3

1

121

zf

zf

zfxzf

F ,   












 


)(00
0)(0
0)()(~

3

1

121

zf
zf

zfxzf
F , ( 21 zz  ). (13) 
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ED case (extraordinary degenerate case): 
 





















)(00

)()(0

)()()(

2

2
22

1
2

zf

zfxzf

zfxzfxzf

F ,  




















)(00

)()(0
)()()(

~
2

2
22

1
2

zf
zfxzf
zfxzfxzf

F , ( zzzz  321 ). (14) 

 

In the analysis of singular stress states presented in this work, the function 
 zzf )(  will be 

considered, and therefore 
 






 qzzfqzzf ~)(,)( 3   , (15) 

 
where   is the characteristic exponent and, as will be seen, -1 defines the order of stress 

singularity for 10   . If   is a real number, then FF 
~

 and qq ~ . 
 
The orthogonality and closure relations of the Stroh formalism, which also depend on the number of 
linearly independent eigenvectors, can be written in the following general form: 
 

IXXXX   11 ,  with: 





BB
AAX  and 










TT

TT

AΓBΓ

ΓAΓB
X 1 , (16) 

 
where I is the identity matrix (6×6), and for the different cases: non-degenerate (SP and SS), 
degenerate (D1 and D2) and extraordinary degenerate (ED), Γ  is expressed as: 
 
          SP-SS                   D1-D2                     ED 


















100

010

001

Γ ,   


















100

001

010

Γ ,   


















001

010

100

Γ  (17) 

 
All linear elastic materials fall inside one of the above mentioned groups (Table 1). Thus, all 
materials can be studied following the approach of Stroh formalism. Isotropic materials, for 

example, belong to group D2, with a triple eigenvalue 1 ip  and two linearly independent 
eigenvectors. 
 
Following Tanuma (1996), transversely isotropic materials can belong to every group in Table 1, 
except ED. Transversely isotropic materials can be non-semisimple (D1 or D2), irrespective of the 
value of their elastic constants in the material coordinate system, with the x3 axis being 
perpendicular to the x1-x2 tranversely isotropic plane of the material. Simply through the relative 
position of the material with respect to the coordinate system which defines the generalized plain 
strain state, the material can be non-degenerate or degenerate, Tanuma (1996). 
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3. Singularity analysis of anisotropic multimaterial corners including non-degenerate 
materials 
 
3.1. Summary of Ting's procedure. 
 
The procedure originally developed by Ting (1997) is an efficient tool for the singular 
characterization of non-degenerate anisotropic multimaterial corners. An N-material corner, with N 
homogeneous wedges, is represented in Figure 1. The i-th material wedge occupies the polar sector 

ii  1 , i=1,...,N. 
 

1

i

N

0

N

i

i-1

x1

x2

1

i

N

0

N

i

i-1

x1

x2

 
Figure 1. Multimaterial corner. 

 
Perfect bonding is considered between material wedges. Fixed or free boundary conditions are 
considered at the external faces. The possibility without external faces, all materials being bonded, 
is also considered and is referred to in this work as a closed corner, as opposed to open corner with 
external faces. 
 
Consider a polar coordinate system with the origin at the tip of the corner (Figure 1). Then, 
equations (10) and (11), together with (15), considered for an homogeneous wedge, can be written 
in the following condensed form, defining the complex variable: 

)()sin(cos21   rprxpxz  : 
 

tXZw )(),(  rr  , (18) 
 
where X is defined in (16) and ),( rw  is 
 







),(
),(

),( 


r
r

r
φ
u

w , 




q
q

t ~ , 













)(0

0)(
)(

*

*




 


Z . (19) 

 

The diagonal matrix  )(),(),()( 321*   diag  in (19)3 is associated to matrix F in 

(12)1 through the following relation: 
 

qF )(*  r , (20) 
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while  )(),(),()( 321*   diag  with 



  )sin(cos)( p , is related to F

~
 in 

(12)2 through qF ~)(
~

*  r . 

 
Ting's procedure makes use of a transfer matrix, a matrix which transfers the displacements and 
stress function vector components from one edge of the material wedge to the other. If equation 
(18) is evaluated for the i-th wedge at 1 i  and i  , and t is eliminated, we obtain: 
 

tXZw )(),( 11   ii rr   , 

tXZw )(),( ii rr   , 
  ),(),( 1 iii rr  wEw , (21) 

 
where, in view of (16), 
 

  11

1)()( 
 XZXZE iii   . (22) 

 

iE , called the transfer matrix for the i-th wedge, depends on the material properties, on the angles 

( 1i  and i ) defining the wedge and on the characteristic exponent . 
 
Using the continuity conditions introduced by the hypothesis of perfect bonding between the 
wedges, ),(),( 1 iiii rr   ww  )1,...,1(  Ni , and the transfer matrix for each wedge, it is easy to 
arrive at the following expression, which is in fact the expression of the transfer matrix for the 
whole multimaterial corner, as it relates the variables between its external faces ( 0  and N ): 
 



























),(

),(

),(

),(

01

01
)4()3(

)2()1(







r

r

r

r

NN

NN

NN

NN

φ

u

KK

KK

φ

u
,  or  ),(),( 01  rr NNN wKw  , (23) 

 
where NK  is obtained by the product of the sequence of the successive transfer matrices iE  of all 

the wedges in the corner: 
 

121 ··...·· EEEEK  NNN . (24) 
 
In Ting's work, fixed and free boundary conditions can be prescribed at the external faces of the 
corner, and the case of all materials being bonded is also considered. The following characteristic 
equations are obtained from (23) for the different combinations of boundary conditions: 
 

Free-fixed: 0φu  )()( 01  NN ,  0K )1(
N . (25) 

Fixed - fixed: 0uu  )()( 01  NN ,  0K )2(
N . (26) 

Free-free: 0φφ  )()( 01  NN ,  0K )3(
N . (27) 

Fixed -free: 0uφ  )()( 01  NN ,  0K )4(
N . (28) 

 

All bonded: )()(and)()( 0101  uuφφ  NNNN ,    0IK N . (29) 
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For open corners the characteristic equations, whose roots  define the characteristic exponent of 
the corner problem, are defined as (33) determinants (25-28), while in closed corners they are 
defined as a (66) determinant (29). Note that the size of these determinants is independent of the 
number of materials involved in the corner. The dependence on the wedge materials and wedge 
geometries is introduced through the evaluation of matrix NK  in (24). 
 
Two main aspects are worthy of note in Ting's procedure: 
 
- The structure of the procedure allows an implementation in a computer code to be performed in 

an easy and straightforward way. In the present work it has been carried out using the computer 
algebra system Mathematica (Wolfram, 1991).  

- Traditional analytical procedures, without taking advantage of the transfer matrix concept, yield 
a linear system whose size depends on the number of materials. There are (N-1)6 equations of 
continuity at the N-1 interfaces (e.g. at i  : ),(),( 1 iiii rr   ww ), and 6 equations at the 

external faces (e.g. fixed-free: 0u )( 0  and 0φ )( N ), making a final linear system of 

(6N6N). Ting's procedure directly yields to a linear system whose size is 33 or 66, see (25-
29), irrespective of the number of materials. 

 
In summary, in Ting's procedure, the matrix NK  (24) is computed by means of the transfer 

matrices iE  (22) of each material. For the evaluation of iE  (22), the matrix X  (16) (and its inverse 
1X ) are completely defined through A and B, from Lekhnitskii-Stroh expressions, and the explicit 

expression of   1

1 )()(


ii   ZZ  is obtained from Hwu & Ting (1989), see also Ting (1997). 
 

 





















),(

),(
),()()(

1*

1*
1

1

1
ii

ii
iiii 


 




0

0
ZZZ , (30) 

 

)},(),,(),,({),( 1312111*   iiiiiiii diag   , (31) 

 

)(sin)()(cos
)(

)(
),( 111

1
1 


  iiiii

i

i
ii p 




 



 , (32) 

 

)(cos)(sin

)(sin)(cos
)(

11

11
1




 




ii

ii
i p

p
p








 . (33) 

 
 
3.2 Boundary conditions 
 
The set of boundary conditions in (25-29) can be easily completed to consider any homogeneous 
orthogonal boundary condition following a procedure introduced by Mantič et al. (1997). Defining 

e
a  for 1,0a  as 00  e  and N

e  1 , the unit outward normal and unit tangential vectors 

( 3,, ssn r , see Figure 2) at 0  and N  can be written as: 
 

 0,cos,sin)1()( e
a

e
a

ae
a  n ,   0,sin,cos)1()( e

a
e
a

ae
ar  s ,   1,0,0)(3 e

as . (34) 
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x2

x1

0

NN

1

n(N)

n(0)

sr(0)

sr(N)

s3(N)

s3(0)

x3

x2

x1

0

NN

1

n(N)

n(0)

sr(0)

sr(N)

s3(N)

s3(0)

x3

 
Figure 2. Definition of unit vectors at external faces. 

 
With the above definitions, the usual homogeneous boundary conditions can be expressed through 
the following compact form (Mantič et al., 1997) for 1,0a : 
 

0φDuD  ),()(),()( e
a

e
a

e
a

e
au rr   , (35) 

 

where )( e
au D  and )( e

aD  are real matrices (3×3) which fulfil the following orthogonality 

conditions: 
 

0DDDD  )()()()( e
a

T
u

e
a

e
a

Te
au   . (36) 

 
Thus, these boundary conditions, in which the traction vector and the displacement vector are 
orthogonal to each other, are referred to as orthogonal boundary conditions. Definitions of the 
above matrices for different boundary conditions are given in Table 2, where I and 0 are 
respectively the unit and zero 3×3 matrices. 
 

Boundary Condition 
Matrix Definition 

)( e
au D  )( e

aD  

Free 0  I  

Fixed I  0  

Symmetry (only u restricted)  Te
a 00n ,),(    Te

a
e
ar )(),(, 3  ss0  

Antisymmetry(only u allowed)   Te
a

e
ar 0ss ),(),( 3    Te

a )(,, n00  

Only ur restricted   Te
ar 00s ,),(   Te

a
e
a )(),(, 3  sn0  

Only ur allowed   Te
a

e
a 0sn ),(),( 3    Te

ar )(,, s00  

Only u3 restricted  Te
a 00s ,),(3     Te

a
e
ar )(),(,  ns0  

Only u3 allowed   Te
a

e
ar 0ns ),(),(    Te

a )(,, 3 s00  

Table 2. Boundary condition matrices )( e
au D  and )( e

aD . 
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Considering the structure of )( e
au D  and )( e

aD  defined in Table 2, the following relation can be 

verified: 
 

IDDDD  )()()()( e
a

Te
a

e
a

T
u

e
au   . (37) 

 
Using (36) and (37), it can be shown that the following matrix: 
 














)()(

)()(
)( e

au
e
a

e
a

e
aue

aBC 







DD

DD
D , (38) 

 

is an orthogonal (66) matrix. Thus T
BCBC DD 1 , and 

 

IDD T
BCBC . (39) 

 

The subscript BC of matrix )( e
aBC D  is replaced with the identification of the boundary condition 

(e.g., symD  for symmetry or freeD  for a free edge). 

 
The boundary conditions have been directly evaluated in terms of the stress function vector, φ , 

considering the fact that the traction vector t is given by the tangential derivative of φ , according to 

the orientation of the tangent vector )( e
ar s , as shown in Figure 2. Thus, 

ds

d
t i

i


 . A prescribed 

zero value of it  at an edge leads, in view of the fact that the tangential direction coincides at the 

edge with the radial direction, to: 0
dr

d i . 

 

Considering the structure of the function φ , see (18-19), which is proportional to r , it is clear that 

for a particular  , and excluding the exceptional case 0 , the condition 0
dr

d i  is equivalent to 

0i . 
 
It is easy to show that if the vector ),( rw  is multiplied by the matrix BCD  from the left, the 

prescribed and the unknown components of ),( rw  appear grouped in two separate blocks. Let us 

define ),(ˆ rw  as: 
 











),(
),(

),()(),(ˆ
e
aU

e
aPe

a
e
aBC

e
a r

r
rr




w
w

wDw , (40) 

 

where ),( e
aP r w  and ),( e

aU r w  respectively denote vectors of prescribed and unknown 

components of ),( e
ar w . 
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It can be observed that using the definition of )( e
aBC D  in (38) the prescribed values for e

a   are 
those obtained by the expression on the left-hand side in (35). Thus, homogeneous boundary 

conditions at both e
a  can be written as: 

 

0),( e
aP r w . (41) 

 
With all the above definitions, equation (23) can be rewritten as: 
 






























),(
),(

ˆˆ

ˆˆ

),(
),(

0

0
)4()3(

)2()1(







r
r

r
r

U

P

NN

NN

NU

NP

w
w

KK

KK
w
w

,  or  ),(ˆˆ),(ˆ
0 rr NN wKw  , (42) 

 
where 
 

)()(ˆ
0 T

BCNNBCN DKDK  . (43) 
 

After applying the homogeneous boundary conditions at e
a   ( 1,0a ) in the linear system in 

(42), the following identity is obtained: 
 

0wK ),(ˆ
0

)2( rUN . (44) 
 
This linear system has a non-trivial solution if and only if the following characteristic equation for   
is fulfilled: 
 

0K )(ˆ )2( N , (45) 

 
where 
 

)()()()()()()()(ˆ
0

)4(
0

)3(
0

)2(
0

)1()2(  
T
uNN

T
NN

T
uNNu

T
NNuN DKDDKDDKDDKDK  .

 (46) 
 
Note that the roots,  of the compact expression of the general characteristic equation given by (45) 
define characteristic exponents for any open multimaterial corner composed of non-degenerate 
materials with any combination of homogeneous boundary conditions given in Table 2 at both 
external faces 0  and N . 
 

It is easy to verify, using (46) and considering expressions of )( e
au D  and )( e

aD  given in Table 

2, that (45) reduces to particular characteristic equations given in (25-28) for the boundary 
conditions considered there. 
 
 
4. Transfer matrix for anisotropic degenerate materials (D1 and D2) 
 
In order to take advantage of Ting's approach for singularity analysis of degenerate materials, D1 
and D2, see Table 1, it is necessary to deduce the transfer matrix for these materials, analogous to 
(22). Thus, the modified eigensystem of Stroh formalism (5) has to be used instead of (1). 
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The generalized eigenvector ),( 222
TTT baξ   is obtained through (8) instead of (7). The structure of 

matrix F in (13), is not diagonal, and the orthogonality relations change, as shown in (16) and (17)2. 
 
Equation (18) takes the following form now: 
 

tZXw ),(),(  rr  , (47) 
 
where X is defined in (16), 
 











),,(

),,(
),(

*

*





p

p

Ψ0

0Ψ
Z , (48) 

 

and t is defined as in (19). In comparison with (18), the diagonal matrix )(*    associated to 

matrix F in (12)1, is replaced by ),,( * pΨ  which is associated to matrix F in (13)1 by the 
following relation: 
 

qΨF ),,( *  pr . (49) 
 
Thus, in view of (13) and (49), ),,( * pΨ  can be written as: 
 















 


)(00
0)(0
0)(),,()(

),,(

3

1

111

*











 p
pΨ , (50) 

 

where: 
)(

sin
),,(

1
1 


  p ,  and    sincos)( p . (51) 

 
Evaluating (47) in 1 i  and i  , and eliminating vector t , in the same way as shown in 
Section 3.1, see (21), an expression of the transfer matrix for degenerate materials (D1 and D2) is 
obtained: 
 

  11
1 ),(),( 
 XZXZE  iii . (52) 

 

The explicit expression of   1
1 ),(),( 
  ii ZZ  is: 

 

  












 ),,,(

),,,(
),(),(
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1*1
1 




ii

ii
ii p

p

Ψ0

0Ψ
ZZ , (53) 

 
with 
 

),,(),,(),,,( 1*
1

*1*  


  iiii ppp ΨΨΨ , (54) 
 
and 
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pΨ . (55) 

 
Finally, with all the above considerations, the expression of ),,,( 1*  iip Ψ  is obtained: 
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11111
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ii

ii

iiii

ii

K
p












Ψ , (56) 

 

where ),( 1ii    is defined in (32), and 
 

)()(

)sin(

111

1
1






ii

iiK



. (57) 

 
With the above expressions (53-57), the transfer matrix iE  (52) is now completely defined. 
 
 
4.1. The particular case of isotropic materials 
 

Isotropic materials belong to group D2 with a triple eigenvalue 1 ip  and two linearly 
independent eigenvectors. For these materials all the above expressions simplify, due to the fact that 

  sincos)( i , which leads to: 1)(    and     )(arg . Thus, ),( 1ii    and K1 

(57) can be written as: 
 

)(
1

1),( 
  iii

ii e 
  , and 

)(
1

1
1

)sin(





iii
ii

e
K 


. (58) 

 
The expressions of A and B for isotropic materials are (Ting 1996a): 
 






















)1(2)1(00

0)43(

0)43(1

)1(8 2
1
2
1






i

i

i

A , 



















)1(2)1(00

02

012

)1(8




i

i

i

B ,

 (59) 
 
where   and   are respectively the shear modulus and Poisson's ratio. Substituting (58) in Ψ  
(56), together with A and B in (59), completes the transfer matrix Ei in (52) for isotropic materials. 
 
 
5. Transfer matrix for extraordinary degenerate materials (ED) 
 
Using an analogous procedure to that followed in Section 4, the transfer matrix for extraordinary 
degenerate materials will be deduced in this section. 
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The eigensystem to be solved in this case is shown in (6). The two generalized eigenvectors 

),( 222
TTT baξ   and ),( 333

TTT baξ   must satisfy (8) and (9) respectively, while the first eigenvector 

),( 111
TTT baξ   must still satisfy equations (7). The structure of matrix F is shown in (14) and the 

orthogonality relations are modified following (16) and (17)3. 
 
Equation (18) for extraordinary degenerate materials, with pppp  321 , can be written as: 
 

tXZw ),(),(  rr  . (60) 
 
Let us define ),( Z  as in (48): 
 











),,(

),,(
),(





p

p

Ψ0

0Ψ
Z . (61) 

 

In comparison with (18), matrix )(*    associated to matrix F in (12) is replaced by ),,( pΨ , 

which is associated to matrix F in (14) by the following relation: 
 

qΨF ),,(  pr . (62) 
 
Following the same procedure as that presented in Section 4, we can use (14), (62) and the 
definition of ),,( 1 p  in (51), to finally write ),,( pΨ  as: 
 























100
),,(10

),,()1(),,(1
)(),,(

21
2
1




  p
pp

pΨ , (63) 

 
where: 
 

)(

sin
),,(




  p ,  and   sincos)( p  (64) 

 
The transfer matrix for extraordinary degenerate materials takes the following form: 
 

  11
1 ),(),( 
 XZXZE  iii , (65) 

 
where: 
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  iiii ppp ΨΨΨ , (67) 
 
with: 
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),,,( 1  iipΨ  can be written as: 

 
















 

100
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1

),(),,,( 11 K

ZKK

p iiii   , (69) 

 
where ),( 1ii   is defined as in (32) and K is defined in the same way as in (57): 
 

)()(

)sin(

1

1

ii

iiK






 , (70) 

 
and Z is defined as: 
 














 )(

sin

)(

sin

2

1
),,,(

1

1
1

i

i

i

i
ii KpZ







 . (71) 

 
With ),,,( 1  iipΨ  given by (69), the transfer matrix iE  (65) can then be computed. 
 
 
6. Singularity analysis of multimaterial corners including any anisotropic material 
 
With the previous results, the transfer matrix can be computed for any wedge material, irrespective 
of its nature (SP, SS, D1, D2 and ED). A single and robust approach is presented in this section for 
the singular characterization of any multimaterial corner with perfect adhesion between material 
wedges and any orthogonal boundary condition or all materials being bonded. 
 

x2

1 - orthotropic
(non-degenerate)
SP or SS material

2 - isotropic
D2 material

3 - ED material

Free edge

Fixed edge

 
 

Figure 3. Corner with non-degenerate, degenerate and extraordinary degenerate materials. 
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Consider, as an example, the three-material corner represented in Figure 3, involving one non-
degenerate orthotropic material (SP or SS material), one isotropic material (degenerate material D2) 
and one extraordinary degenerate material (ED), with free-fixed boundary conditions at the external 
faces. The singularity analysis of this corner can be performed following steps 1 to 5 described 
below. 
 
1) Evaluation of the transfer matrix for each material ( iE ), using (22) for 1E , (52) for 2E  and (65) 

for 3E . 

2) Evaluation of the corner transfer matrix 3K  (N=3), by the expression in (24), using the matrices 

iE  previously obtained in step 1. 

3) Application of boundary conditions, using )( 0freeD  and )( Nfixed D  (Table 2) to finally obtain 

the modified corner transfer matrix 3K̂  (43). 

4) Evaluation of the determinant of the submatrix )2(
3K̂  of 3K̂ , which is explicitly presented in 

(46). In the case of an open corner, in fact only )2(
3K̂  has to be evaluated, while in the case of closed 

corners the whole matrix 3K̂  has to be evaluated. 

(5) Calculation of roots  of the characteristic equation (45) (or (29) in the case of closed corners), 
which represent the characteristic exponents. Roots  with 1)Re(0    define stress singularity 

exponents -1. 
 
 
The characteristic equations can be solved using (for example) Muller's (1956) method, when 
characteristic exponents can be complex. Once the particular value of the characteristic exponent is 
obtained, the corresponding angular behaviour of displacements and stresses near the tip of the 
corner can also be computed. The procedure starts with solution of (44) for the  obtained, then 
using (40) we obtain ),( 0rw . With the transfer matrix of the first material, ),( 1rw  can be 

computed, and in the same way, with each particular transfer matrix, all ),( irw   i=0,..., N. Once 

),( irw   i=0,..., N are known, the behaviour of stresses and displacements inside each wedge is easy 

to obtain, using the concept of the transfer matrix between ),( irw   and ),(  rw , with 

1 ii  . Stresses are computed by means of: 2,1 ii    and 1,2 ii   . 

 

For closed corners, the linear system to solve is:   0wIK  ),()( 0 rN ,  being obtained by means 

of characteristic equation in (29). Then, using the transfer matrices for each wedge, in just the same 
way as outlined previously for open corners, displacements and stresses are directly obtained. 
 
 
7. Numerical examples 
 
7.1. Comparison with previous results obtained by other authors 
 
Several results of singularity analysis of different corner configurations, available in the literature, 
have been used to study first of all the performance of the computational procedure developed in the 
present work. Some of them are summarized below. 
 
7.1.1. Isotropic materials (D2 degenerate materials): 
 



 18

Single isotropic wedge: A comparison of the results obtained for a solid sector of an isotropic 
material of interior angle º28001  , with free-free external faces, versus the results of 
Seweryn (1994) and Vasilopoulos (1988), is shown in Table 3. The antiplane order of stress 
singularity is also presented (-1=-0.357143). An excellent agreement is achieved in all digits. 
 
 

Vasilopoulos Seweryn Present work 
-0.469604280870 

 
-0.156560431071 

-0.469604 
-0.357143 
-0.156560 

-0.469604 
-0.357143 
-0.156560 

Table 3. Results (-1) for a single free-free isotropic corner. 
 

Bimaterial isotropic corners: Classical results from Dempsey and Sinclair (1979, 1981) were used. 
The results obtained for free-free corners (Table 4), and for corners with all materials bonded (Table 
5), are all excellent. The mechanical properties of both materials are: E1=30 GPa, 1=0.25, E2=120 
GPa, 2=0.31, for results in Table 4 and: E1=30 GPa, 1=0.2, E2=120 GPa, 2=0.3, for results in 
Table 5. Additional antiplane order of stress singularities are presented in both cases. 
 
 


1=120º


2=135º


1=120º


2=135º

 

Dempsey & Sinclair Present work 
-0.390748 -0.390748 

-0.269076 

Table 4. Results (-1) for a bimaterial free-free isotropic corner. 
 
 

1=80º

2=(2-80)º

1=80º

2=(2-80)º
 

Dempsey & Sinclair Present work 
-0.229549 

 
-0.0742109 

-0.2295490 
-0.1916800 
-0.0742109 

 
 

Table 5. Results (-1) for a closed bimaterial isotropic corner. 
 
 

Three-material isotropic corners: Results from Hein & Erdogan (1971) and Pageau et al. (1994) are 
compared with those obtained in the present work in Tables 6 and 7. The agreement is excellent, 
including the second case (Table 7), with complex valued order of stress singularities. Additional 
antiplane order of stress singularities are presented (-1=-0.00580724 in Table 6 and -1=-0.460283 
in Table 7). Mechanical properties for the configuration shown in Table 6 are: E1=20 GPa, 1=0.2, 
E2=10 GPa, 2=0.2, E3=0.01 GPa, =0.2, while in Table 7 E1=10 GPa, 1=0.2, E2=0.01 GPa, 
2=0.2, E3=100 GPa, =0.2. 
 
 

1=90º2=90º 1=90º2=90º Hein & Erdogan Pageau et al. Present work 
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-0.0226 -0.0226 
 

-0.0003 

-0.02263280 
-0.00580724 
-0.00028330 

Table 6. Results (-1) for a closed three-material isotropic corner with º180,º90 321   . 
 
 

3=180º

1=179º
2=1º

3=180º

1=179º
2=1º

 

Hein & Erdogan Pageau et al.: Present work: 

-0.49750.1014 i -0.44760.0887 i -0.4476240.088750 i 
-0.460273 

Table 7. Results (-1) for a closed three-material isotropic corner, º180,º1,º179 321   . 
 
It has been verified that the singular exponents associated to the antiplane mode in the previous 
examples agree with those obtained by Mantič et al. (2002) procedure up to six digits or more. 
 
7.1.2. Non-degenerate anisotropic materials: 
 
Bimaterial orthotropic free-free corner: Results from Delale (1984) and Chen (1998) were used in 
this case. An excellent agreement was found with present results, shown in Table 8. Both materials 
represent the same orthotropic material equivalent to a fiber reinforced plastic with different 
orientation of fibers. The fibers are placed in the x2-x3 plane, with angles with respect to x2 
axis:1=60º and 2=30º, and the following mechanical properties: E11=163.4 GPa, E22=E33=11.9 
GPa, G12=G13=6.5 GPa, G23=3.5 GPa, 12=13=0.3, 23=0.5. 
 

2=180º

1=90º

x1

x2

2=180º

1=90º

x1

x2

 

Delale Chen Present work 
-0.4229 

 
-0.422886 
-0.380828 
-0.047337 

-0.422886 
-0.380828 
-0.047337 

Table 8. Results (-1) for a free-free bimaterial orthotropic corner. 
 
 
Interface crack in an orthotropic bimaterial configuration: Results from Wang (1984) and Chen & 
Huang (1997) were available for this case, in which the agreement with the results obtained by the 
procedure developed in the present work is also very good. The mechanical properties of the 
materials are those of a typical graphite-epoxy composite, taking the following values when 
expressed in orthotropic axes: E11=138 GPa, E22=E33=14.5 GPa, G12=G13=G23=5.9 GPa, 
12=13=23=0.21. The angle , see Table 9, is the angle the fiber forms with respect to x3 axis in the 
x1-x3 plane. 
 
 

x2  Wang Chen & Huang Present work 
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=45º 
-0.5 

-0.50.03434 i
-0.5 

-0.50.0343365146 i
-0.5 

-0.50.0343398 i

=60º 
-0.5 

-0.50.02942 i
-0.5 

-0.50.0294152218 i
-0.5 

-0.50.0294132 i

Table 9. Results (-1) for an interface crack between two orthotropic materials. 
 
 
Three-material orthotropic corners have also been analyzed, a very good agreement being obtained 
with available results by Chen (1998) and Pageau et al. (1996). 
 
In view of the excellent agreement obtained between the results of the procedure developed in this 
work and results of other authors in all studies presented and also others not presented here, for the 
sake of brevity, the computer code developed here can be considered successfully verified. 
 
 
7.2. Isotropic-orthotropic bimaterial corner 
 
In every metal to composite or composite to composite adhesive joint, an example of an isotropic-
orthotropic bimaterial corner, with the simultaneous presence of non-degenerate and degenerate 
materials, can be found. 
 
Paying attention to the corner depicted in Figure 4, the procedure presented in this work can be used 
without any of the limitations that usually appear in traditional approaches which make use of Stroh 
formalism. In the vast majority of cases, these limitations are due to the fact that isotropic materials 
as well as any other anisotropic material wich is mathematically degenerate, cannot be included in 
the analysis.  
 

x2

x1Orthotropic SP material

Isotropic
D2 material



x2

x1Orthotropic SP material

Isotropic
D2 material



 
 

Figure 4. Bimaterial corner with SP and D2 materials. 
 
 

The materials in the corner (Figure 4), have the following properties: 
 
Composite material (orthotropic non-degenerate, SP material): 
E11=141.3 GPa E22=9.58 GPa, E33=9.58 GPa 
G12=5.0 GPa, G13=5.0 GPa, G23=3.5 GPa 
=0.3, =0.3, =0.32 
 
Epoxy adhesive (isotropic, D2 material): 
E=3 GPa, =0.3 
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In Figure 5, the adhesive angle () varies from 0º to 180º and the fiber reinforced plastic has the 
fiber oriented in x1 direction. Two order of stress singularities are obtained until an angle of 
approximately =85º is reached. Starting from this angle, three real order of stress singularities are 
obtained. 
 
Before the adhesive angle reaches 160º, two real roots convert into two complex conjugate roots. 
Similar results are obtained for two isotropic and two orthotropic free-free corners. Finally, for the 
interface crack (=180º), a real root of 0.5 and two complex conjugate roots with real part equal to 
0.5 are obtained. 
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Figure 5. Order of stress singularities (-1) for a bi-material SP-D2 corner. 

 
 
The angular behaviour of displacements ru , u  and the stress components rr ,  r ,  , 

calculated using ),( rw  and 2,1 ii   , 1,2 ii   , are presented in Figure 6, for =70º for one of 

the singularity modes with -1=-0.266941. 
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Figure 6. Angular behaviour of displacements and stresses for =70º and -1=-0.266941. 
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It can be observed that the stress components  r  and   fulfil the boundary conditions at the 

external faces (free-free), and that rr  is not continuous at the interface between both materials. 
Displacements are continuous at the interface but not their slope.  
 
 
7.3. Corners involving extraordinary degenerate (ED) materials 
 
To the authors' knowledge, no results are available for corners involving extraordinary degenerate 
materials. In fact, these materials have been proved to exist only in recent years (Ting, 1996b). 
 
From Ting (1996b), it is known that a particular group of ED materials can be described with the 
following reduced elastic compliance matrix: 
 





















 

)3(000
1000

000
0000
0001

' 1
11









ss , (72) 

 

where    2
1

))1(( 31 , and the following has to be fulfilled: 011 s , 01  , 21    

and 2)3(   . For the numerical example presented in this work, the following values have 

been taken: 111 s , 2
1 , 1  and the positive sign in  , resulting in: 

 


























4
5

2
1

2
1

2
1

000
1000

00201
0000
00101

's . (73) 

 
In Figure 7, the order of stress singularities for a single free-free wedge of the above ED material, 
from =180º to the crack configuration, =360º, is presented. 
 
Two real order of stress singularities are obtained until =260º, where a third real singularity 
solution appears. For the crack configuration (=360º) three real order of stress singularities, with 
value -0.5, are obtained. The numerical results obtained are presented in Table 10 for some 
particular values of . 
 
In Figure 8, a free-free three-material corner involving a 90º wedge of as SP (orthotropic non-
degenerate material), a 90º of a D2 (isotropic material) and a 90º of a ED material is presented. The 
mechanical properties of the orthotropic and isotropic material are the same as used in Section 7.2, 
while the ED material has the properties given above, in (73). 
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Figure 7. Order of stress singularities (-1) for a single free-free ED wedge. 
 
 

=200º -0.15672 -0.128226  
=240º -0.374451 -0.269291  
=280º -0.472353 -0.351773 -0.161211 
=320º -0.497632 -0.422641 -0.378599 
=355º -0.499996 -0.490131 -0.488593 

Table 10. Numerical results for some particular cases of Figure 7. 
 
 

1 - orthotropic
(non-degenerate)
SP or SS material

2 - isotropic
D2 material

3 - ED materia l
Free edge

Free edge

90º90º

90º

x2

x1

1 - orthotropic
(non-degenerate)
SP or SS material

2 - isotropic
D2 material

3 - ED materia l
Free edge

Free edge

90º90º

90º

x2

x1

 
 

 
Figure 8. Free-free three-material corner with 90º wedges of SP, D2 and ED materials. 

 
 
For this particular configuration, a real (-1=-0.323997) and two complex conjugate (-1=-
0.354922±0.152318 i) orders of stress singularity were found. 
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8. Conclusions 
 
In the present work, a powerful procedure for the singularity analysis of anisotropic multimaterial 
corners allowing any kind of linear elastic anisotropic material to be considered has been completed 
and implemented in a computer code. 
 
The transfer matrix for mathematically degenerate materials has been obtained in the framework of 
Stroh formalism, and explicit expressions have been presented. This allows the original procedure 
developed by Ting (1997) for the singular characterization of multimaterial anisotropic corners to 
be completed with the possibility of including degenerate materials in the analysis. As isotropic 
materials can be considered degenerate materials in Stroh formalism of anisotropic elasticity, the 
singular analysis is now open to materials of this kind, as well as any other degenerate and 
extraordinary degenerate material. 
 
A Mathematica (Wolfram, 1991) code has been implemented for the calculation of the order of 
stress singularities, as well as the graphical representation of displacements and stresses. This 
practical computational tool has shown excellent agreement when comparing with previous results 
available in the literature, from the single isotropic wedge to the orthotropic three-material corner. 
 
The implemented code has been used to analyze a corner with simultaneous presence of both 
degenerate (isotropic) and non-degenerate (orthotropic) materials, and also corners involving 
extraordinary degenerate materials which, to the authors' knowledge, are studied for the first time. 
 
With the computational tool developed, any bidimensional corner configuration can be 
characterized, considering perfect bonding at interfaces, and any homogeneous orthogonal 
boundary condition at outer interfaces of the corner (also all bonded). Note that only power type 
singularities have been considered in this work. The presence of logarithmic singularities can be 
analyzed using the well-known approach developed by Dempsey and Sinclair (1979), Dempsey 
(1995), Ting (1996a), Sinclair (1999) and others. The study carried out is a previous step to 
calculating stress intensity factors (by means, for instance, of the finite element or boundary 
element methods). The possibility of studying proposals of failure criteria for adhesively bonded 
joints, based on fracture mechanics, will then be opened up. 
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