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Abstract— This paper presents a new method for mod-
elling dynamical systems. The method uses historical data
of the outputs to predict the evolution of the system. The
proposed method is based on Direct Weight Optimization
and the Kriging method. These data-based methods pro-
vide predictions as linear combinations of past outputs af-
ter solving a quadratic optimization problem. We introduce
a novel methodology that we named state-space Kriging,
which models the time evolution of the weighting parame-
ters using a state-space formalism. In this way, the potential
of Kriging, along with classical estimation methods, as the
Kalman filter, can be leveraged to forecast the output of
a nonlinear dynamical system. The optimization problems
involved are easy to solve, and analytical solutions are
provided. Some numerical examples and comparisons are
provided to demonstrate the effectiveness of our proposal.

Index Terms— Machine Learning, Identification, Estima-
tion, Kalman filtering.

I. INTRODUCTION

The objective of system identification is to find a certain
mathematical model of a system that fits with some input-
output data measurements, obtained from the real system [1].
The most common way to define fitting would be to minimize
the forecasting error with respect to the available data. Letting
yi be the i-th real output and ỹi(θ) the i-th forecasting obtained
with the parameters θ, then the parameters θ of the model
could be chosen according to

θ∗ = argmin
θ

N∑
i=1

(yi − ỹi(θ))
T
(yi − ỹi(θ)) .

The well known Least-Squares Estimator is obtained if the
predictor is chosen as

ỹi(θ) = zTi θ
∗,

being zi ∈ Rny the time delay embedding of the sys-
tem, compounded by some past outputs, that is, zi =
[yi−1, yi−2, ..., yi−ny ]

T and θ ∈ Rny . This estimator is known
to provide good results in the linear case under simple identi-
fiability conditions. When the dimension of zi is much larger
than the number of samples, Dynamic Mode Decomposition
(DMD) techniques can be applied in order to tackle the
problems that arise from working with high dimensional data
[2].
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Universidad de Sevilla, Escuela Superior de Ingenieros, Camino
de los Descubrimientos s/n, 41020 Sevilla, Spain (e-mail:
{acarnerero,danirr,talamo}@us.es).

On the other hand, nonlinear system identification is a more
complicated task for several reasons, see, for example, [3]. It
is also a more interesting field because it allows us to model
more complex systems and thus reducing model mismatches.
The first challenging task would be to select a model archetype
for the system under consideration. As we briefly discuss
below, there are many possibilities in the nonlinear system
identification literature.

Typically, when no assumption is made on the structure
of the system, a universal approximator can be used. Neural
networks, and more recently deep neural networks [4], [5]
are a popular tool in system identification because they are
known for being able to reproduce any nonlinear function.
However, the choices on the type of network used, training
algorithm and structure are not easy, as a bad set of parameters
could lead to wrong results, cause overfitting, etc. [6]. As
an alternative, one could rely on Reservoir Computing [7] or
Echo State Networks [8] approaches which are easier to train.
Hinging hyperplanes are also capable of approximating any
function within a bounded error and have also been used in the
context of system identification and control applications [9].
Other black-box model approaches for system identification
that do not make significant assumptions on the non-linearity
of the systems include the NARMAX methods [10], Gaussian
Processes [11] and Lipschitz interpolation which has been
recently applied in the context of system identification and
control [12], [13].

An alternative approach is to assume that the system be-
haves as a time-varying linear (LTV) system [14], [15]. Related
to this would be to consider the system as an interpolation
between the different computed linear models, taking into
account some rules. This method leads to models based on
fuzzy logic [16]. However, these models do not fit correctly in
the regions where there is not enough data [17]. Another option
would be to rely on Hammerstein-Wiener [18] or Volterra [19]
models in order to represent the nonlinearities of the system.

Other techniques based on obtaining predictions as a linear
combination of past outputs can be used. This includes Direct
Weight Optimization (DWO) [20] and the Kriging method
[21], [22]. See also [23] for a similar technique in the context
of interval predictions. The objective of these techniques is,
given zk, to obtain a prediction ỹk as a combination of
past outputs by means of an optimization problem. For that
purpose, it is necessary to compute certain weights called λ.
These methods have been tested in some applications (i.e.
time-series forecasting) with good results [24] and have been
proven to be an extension of the least-squares problem [25].
In the field of dynamic systems, they have been used, for



example, to quantify the uncertainty of a surrogate model
[26]. Also, kriged models have been used in fault detection
applications [27], for noise cancellation [28] and also in the
spatial estimation of measurements in sensor networks using
kriged distributed Kalman filters [29]. In [30], Kriging models
obtained from the generalized least squares estimator and a
basis of precomputed regression functions are explored. In the
context of designing a NMPC controller, [31] uses a basic
kriged black box prediction model, whereas in [32] it is used
to learn the actual control law. However, usually the problem
is considered strictly static and thus vector λ is computed from
scratch at every time instant without taking into account the
past, which could be potentially beneficial.

In this paper, a new model for nonlinear system identifi-
cation and forecasting is proposed. The model is based on
a state-space representation of the weights that arise from
a modified Kriging method. The obtained model is an LTV
approximation of the original nonlinear system. To enhance
the approximation, local data is encouraged to be used in the
computation of the model at each time instant k. Moreover,
the proposed state-space representation allows us to enhance
the forecast by means of classic estimation approaches as the
Kalman filter [33].

The main contributions of this paper are: developing a new
scheme based on a state-space representation of λ that models
the evolution of the Kriging weights instead of a black box
model, the use of local data to improve the forecasting of
nonlinear systems, adding a regularization term to λ to make
the system less sensitive to uncertainty and, finally, proposing
a way to apply the Kalman filter to the developed strategy
in order to improve the predictions in presence of noisy data
and/or disturbances.

The paper is organized as follows. In Section II it is
shown how Kriging can be used to forecast the output of
a nonlinear dynamical system, whereas in Section III the
alternative to dynamic Kriging based on a different state-
space representation is introduced. Section IV shows how the
Kalman filter can be applied to the proposed Kriging state-
space formulation. In Section V, the proposed methodology is
applied to different numerical examples. The paper ends with
a section of conclusions.

II. DYNAMIC KRIGING

Consider an autonomous discrete nonlinear system

xk+1 = f(xk)

yk = h(xk), (1)

where k is the time instant, xk ∈ Rnx is the state of the
system, yk ∈ Rny is the output of the system, whereas f(·)
and h(·) are unknown nonlinear functions such that f(·) :
Rnx → Rnx and h(·) : Rnx → Rny .

The objective of this section is to describe how Kriging
can be used to obtain an LTV model of the outputs of
(1). We will assume that the only available data are the
measurable outputs. We define a time delay embedding vector
zk ∈ Rnz containing the np past outputs of the system1. That

1Also, nonlinear terms of the outputs could be included.

is, zk = [yTk−1, y
T
k−2, ..., y

T
k−np

]T ∈ Rnz , where nz = npny .
We also denote with z+k as the successor of zk, i.e. z+k =
[yTk , y

T
k−1, ..., y

T
k−np+1]

T ∈ Rnz .
From now on, assume that some historical data of the plant

is stored in a database in the form of matrices:

D =
[
z̄1 z̄2 . . . z̄N

]
,

D+ =
[
z̄+1 z̄+2 . . . z̄+N

]
,

where N > nz is the number of data points, z̄ refers to
a sample of z and D+ is the matrix successor of D. The
indexes of the columns of D and D+ do not refer to the
sample time, but to the position in the matrix. Therefore, z̄i+1

is not necessarily the successor sample of z̄i. At sample time
k, an estimation of the successor of zk, denoted as z̃k+1, can
be obtained by a linear combination of the columns of matrix
D+ using a vector of optimal weights λ∗

k ∈ RN

z̃k+1 = D+λ∗
k.

As in Kriging and DWO methods, this vector of weights is
obtained from the following optimization problem

λ∗
k = argmin

λk

λT
kH1λk

s.t.

[
D
1

]
λk =

[
zk
1

]
, (2)

where H1 ∈ RN×N is a positive definite weighting matrix
and 1 a row vector with all its components equal to 1. Forcing
the components of λk to sum one is equivalent to including
a bias term in the estimation process. The simplest choice is
making H1 equal to the identity matrix IN (other possibilities
are explored in the next section). The optimization problem
can be rewritten as

λ∗
k = argmin

λk

λT
kH1λk

s.t. Cλk = b . (3)

with

C =

[
D
1

]
, b =

[
zk
1

]
.

In order to guarantee that any point in Rnz+1 can be expressed
as a linear combination of the columns of C, we assume that
matrix C is full row rank. This equality constrained quadratic
problem has an analytic solution that can be obtained comput-
ing the Lagrangian and its derivative (see [34, §10.1.1]):

L(λk, ν) = λT
kH1λk + νT (Cλk − b)

d
dλ

L(λk, ν) = 2H1λk + CT ν ,

where ν is the dual variable associated with the equality
constraint. From the Karush-Kuhn-Tucker (KKT) conditions:

2H1λ
∗
k + CT ν∗ = 0 , (4)

which leads to

λ∗
k =

−H−1
1 CT ν∗

2
.



Pre-multiplying this equality by C, and taking into account
that Cλ∗

k = b, we have

ν∗ = −2
(
CH−1

1 CT
)−1

b,

which applied to equation (4) yields

λ∗
k = H−1

1 CT
(
CH−1

1 CT
)−1

[
zk
1

]
.

In order to predict zk+d, with d > 1, one could use this
approach in a recursive way. That is, the i-th ahead prediction
z̃k+i could be used to compute

λ∗
k+i = H−1

1 CT
(
CH−1

1 CT
)−1

[
z̃k+i

1

]
,

and thus obtaining z̃k+i+1 = D+λ∗
k+i. In the next section

we propose a modification of this naive recursive method.
The novel methodology relies on a time-varying state-space
modelling of the optimal weighting vector parameter λ∗

k.

III. STATE-SPACE KRIGING

Suppose that the prediction z̃k of zk is obtained from
z̃k = D+λ∗

k−1, where the sum of the components of λ∗
k−1

is assumed to be equal to one. In order to model how the
dynamics of the optimal vector of weights λ∗

k depends on
λ∗
k−1, we add a regularization term to optimization problem (2)

that penalizes the difference between λ∗
k and λ∗

k−1. In this way,
vector λ∗

k not only fulfills the required equality constraints, but
also does not depart excessively from λ∗

k−1. This will reduce
the sensitivity to noise of the identified dynamics. Thus, given
z̃k, λ∗

k is obtained from

λ∗
k = argmin

λk

(λk − λ∗
k−1)

TH2(λk − λ∗
k−1) + λT

kH1λk

s.t.

[
D
1

]
λk =

[
z̃k
1

]
,

where H2 ∈ RN×N is chosen as H2 = τIN being τ > 0
a tuning parameter of the proposed methodology that could
be selected by cross-validation [1, §16.5]. Because of the
assumptions on λ∗

k−1, the previous optimization problem can
be rewritten as

λ∗
k = argmin

λk

(λk − λ∗
k−1)

TH2(λk − λ∗
k−1) + λT

kH1λk

s.t.

[
D
1

]
λk =

[
D+

1

]
λ∗
k−1 .

Thus, we have

λ∗
k = argmin

λk

(λk − λ∗
k−1)

TH2(λk − λ∗
k−1) + λT

kH1λk

s.t. Cλk = C+λ∗
k−1, (5)

with
C =

[
D
1

]
, C+ =

[
D+

1

]
.

Note that λ∗
k is determined only by λ∗

k−1 and matrices C and
C+. Optimization problem (5) can be rewritten as

λ∗
k = argmin

λk

1

2
λT
kHλk + fTλk

s.t. Cλk = b , (6)

with H = 2(H1 + H2), f = −2H2λ
∗
k−1 and b = C+λ∗

k−1.
Also note that we get rid of the constant term λ∗T

k−1H2λ
∗
k−1

because it will not affect the solution λ∗
k. The Lagrangian of

this problem is given by

L(λk, ν) =
1

2
λT
kHλk + fTλk + νT (Cλk − b) .

Note that ν is the dual variable associated with the equality
constraint. The derivative of the Lagrangian is

d
dλk

L(λk, ν) = Hλk + f + CT ν .

In the optimum the derivative fulfills the KKT conditions [34,
§10.1.1]. That is,

Hλ∗
k + f + CT ν∗ = 0 ,

and thus
λ∗
k = −H−1f −H−1CT ν∗ . (7)

Pre-multiplying both sides of last equality by C yields

b = Cλ∗
k = −CH−1f − CH−1CT ν∗ ,

and thus ν∗ = (CH−1CT )−1(−CH−1f − b). Substituting
this into equation (7) we obtain

λ∗
k = H−1CT

(
CH−1CT

)−1 (
CH−1f + b

)
−H−1f.

Taking into account that f = −2H2λ
∗
k−1 and b = C+λ∗

k−1,
we have

λ∗
k = Aλ∗

k−1 , (8)

with

A = 2H−1H2 +H−1CT (CH−1CT )−1(C+ − 2CH−1H2).

Note that this means that λk follows linear dynamics. Thus,
we have obtained a new model for the outputs of system (1)
using historical data of these outputs. This new autonomous
system allows us to compute the next values of λ and z. With
an abuse of notation, we drop here the ∗ and ˜ to write the
alternative model of the outputs of (1) as

λk+1 =Aλk (9)
zk =Dλk .

Note that the previous model is linear and time-invariant
as the matrix A is constant. However, it is possible to weigh
the points in the data set with respect to zk, which would
encourage the use of local data and thus provide better results
when interpolating nonlinear systems. This can be done by
choosing H1 appropriately. For example, H1 ∈ RN×N could
be a diagonal matrix whose elements are computed with a
function g(z , D) : Rnz × Rnz×N → RN that measures the
dissimilarity (see [25] and chapter 2 of [35] ) of the current zk
to the points saved in the data set. In the numerical examples
of section V, the squared Euclidean distance is used. That is,
for a given z

g(z,D) =

 (z − z̄1)
T (z − z̄1)
...

(z − z̄N )T (z − z̄N )

 , (10)



and thus
H1 = diag(g(z,D)) .

where, given u ∈ RN , diag(u) denotes a diagonal matrix
RN × RN whose non-zero entries are the components of
u. Note that, unlike the previous case, the matrix A will be
calculated at each sample time k, leading to an LTV dynamics
for λ and z, that is,

λk+1 = Akλk (11)
zk = Dλk.

IV. KALMAN FILTER FOR STATE-SPACE KRIGING

Under the assumption that zk = D+λk−1 and 1λk−1 = 1,
the following nominal LTV state-space model was derived in
Section III:

λk+1 = Akλk

zk = Dλk.

In order to address the existence of noise (D and D+ con-
tain noisy data), disturbances and modelling mismatches (i.e.
D+λk−1 is just an estimation of zk), we modify this nominal
model and include disturbance and model errors (wk) and
measurement noise (vk). That is,

λk+1 = Akλk + wk

zk = Dλk + vk .

In order to enforce the equality 1λk = 1, we consider an
extended output defined as

z′k =

[
D
1

]
λk +

[
vk
0

]
. (12)

Defining C =

[
D
1

]
and v′k =

[
vk
0

]
we obtain the

extended system:

λk+1 = Akλk + wk

z′k = Cλk + v′k .

In order to improve the estimation of λk, correcting it with
each new measurement zk we propose to use the well known
Kalman filter [33]. Note that in our case, the state in the
Kalman filter is λk and the output is z′k. The notation will
be as follows: λ̃k refers to the predicted value of λk whereas
the corrected version of λ̃k will be denoted as λ̂k.

We assume that wk and vk are uncorrelated white noise
signals fulfilling

E(wkw
T
k ) ≤ Wk, E(vkvTk ) ≤ Vk,

that is, their covariance is bounded. From the bound on the
covariance of vk we obtain a bound on the covariance of v′k:

E(v′kv
′T
k ) = E

([
vkv

T
k 0

0 0

])
≤

[
Vk 0
0 0

]
= V ′

k .

We denote P̃k the bound on the covariance of the (non
corrected) estimation error λk − λ̃k:

E
(
(λk − λ̃k)(λk − λ̃k)

T
)
≤ P̃k.

We are now in a position to apply Kalman filter [33]. Given
an estimation λ̃k, we obtain a corrected version λ̂k from

λ̂k = λ̃k +Kk

(
z′k − Cλ̃k

)
,

where Kk is the optimal gain, which is calculated as

Kk = P̃kC
T
(
CP̃kC

T + V ′
k

)−1

.

We notice that the corrected vector λ̂k fulfills the equation
1 = 1λ̂k because the last component of the extended output
(1λk) is not affected by noise (see (12)). However, the equality
zk = Dλ̂k is not necessarily satisfied because of the noise
term vk. This term prevents the Kalman filter from departing
arbitrarily from the initial estimation λ̃k to satisfy zk = Dλ̂k.
The size of zk −Dλ̂k will be determined by the relative sizes
of the covariance bounds Vk and P̃k.

Following the formulation of the Kalman filter, the matrix
P̃k+1 is computed as

P̃k+1 = AkP̂kA
T
k +Wk ,

where P̂k = P̃k −KkCP̃k. Finally, λ̃k+1 is obtained from

λ̃k+1 = Akλ̂k

The covariance matrices describing disturbance, noise, and
initial uncertainty on λ0 could be set as the identity matrix
multiplied by scalars that are considered tuning parameters.

V. NUMERICAL EXAMPLES

In this section, two examples are provided to show the
effectiveness of the proposed strategy. In both examples, H1

has been obtained using the squared Euclidean distance, see
equation (10). Four baselines based on Gaussian Processes
(GPs), Nonlinear ARX models (NARX), Reservoir computing
(RC) and Dynamic Mode Decomposition (DMD) are provided
to compare the results obtained with our proposed approach
(SS-K).

A. Sunspot Number
Forecasting the sunspot number is considered quite difficult

as the time series is nonstationary and because the nature of its
dynamics is unknown. Monthly observations of the historical
evolution of the number of sunspots since 1749 will be used
in this example. We will use the first 2500 samples as matrices
D and D+ with a regressor zk = [yk−1, . . . , yk−40]. The next
150 samples will be used as a test set. The observations are
assumed to be noise-free and thus the approach of section III
is used. The prediction will be done from time instant k = 0
exclusively. That is, the prediction will be k-step ahead, with
k = 1, . . . , 150. Note that the forecasting horizon is quite long
(it comprises more than a solar cycle), making the forecasting
task even harder. Here, in the proposed approach, τ = 2500,
NARX and GPs are computed using Matlab functions (“nlarx”
and “fitrgp”) and the RC implementation considers a reservoir
size of 300, a leakage rate of 0.9 and a spectral radius of 0.4.

Figure 1 and table I show the forecasting results. Note that
only the proposed approach is shown in the figure for the sake
of clarity. It can be seen that the proposed approach works
better than the aforementioned baselines, obtaining smaller
errors and standard deviations in general.
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Fig. 1. Forecasting the Sunspot Number 150 steps ahead.

SS-K GP NARX DMD RC
MSE 608.26 999.77 991.11 5795.6 6048.1
Std 22.646 35.147 26.490 72.897 62.552

TABLE I
MSE FOR THE SUNSPOT NUMBER EXAMPLE.

B. Rössler Attractor

Consider now the system described by the following set of
differential equations

ȯ = −p− l

ṗ = o+ ap

l̇ = b+ l(o− c) ,

also known as the Rössler attractor. The set of parameters
considered in this example is a = 0.2, b = 0.2 and c = 5.7
which are known to correspond to a chaotic behaviour. In
order to obtain samples of the continuous system, we integrate
numerically the equations with a fixed sample time of 0.1
seconds a total simulation time of 20 seconds starting from
random initial points in the space, making a total of 1000
samples in the matrices D and D+ (comprising 5 trajectories
of 200 samples each one). The regressor considered here is
zk = [ok−1, pk−1, lk−1].

Our objective is to show the effectiveness of the proposed
strategy to model nonlinearity with measurement noise. For
that reason, we will consider that the measurements obtained
from the Rössler attractor are noisy. This noise will follow a
normal distribution with zero mean and unit variance N (0, 1)
and is completely uncorrelated (that is, the noise of each
state is also uncorrelated to that of the other states). Thus,
the scheme of section IV is used here. Also, note that here
the forecasting is done 1-step ahead instead of k-steps ahead
from the previous sample, in order to be able to apply the
methodology of the Kalman filter. That is, at each time instant
k the value of the output is sampled and the forecasting at
k − 1 is corrected with this new measurement. After that,
the prediction for k + 1 is done with all the information
available at k (which includes the corrected measurements).

100 trajectories of 15 seconds obtained from random initial
conditions are considered. Here, τ = 5, Wk = 1.65 · 10−5

and the variance of vk is assumed to be known. On the other
hand, GPs are computed using a radial basis kernel with a
regularization term equal to the true variance of the process.
The RC implementation considers a reservoir size of 50, a
leakage rate of 0.2 and a spectral radius of 0.3. Finally, we
added a Kalman filtering layer to the linear system obtained
with the DMD in this section (K-DMD), where the variance
of the noise is also assumed to be known.

The results are shown in figure 2, and table II. Figure 2
shows the real evolution of the state along with the noisy
measurement of the output and the prediction obtained with
the proposed approach for a representative trajectory. Table
II summarizes the numerical results of the experiment. It
can be seen that both the proposed strategy and the DMD
with a Kalman filter achieve the best results both in MSE
and standard deviation. Taking into account the ratio between
trajectories in the validation and training set, the results for
both strategies are quite remarkable. Note however, that the
proposed strategy achieves the best overall results in both
numerical examples, as the DMD open loop predictions in
the previous examples were clearly worse.

On the other hand, computational times of the different
baselines for the Rössler atractor are provided in table III.
Although the proposed approach seems to be most the costly
method, it remains in the order of 60 milliseconds, what can be
considered fast enough for time series/dynamic systems fore-
casting. Also, it should be noted that most of the computation
time is due to the Kalman filter step. The computation times
would drop to 12.477 milliseconds without the Kalman filter.
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Fig. 2. Forecasting the noisy Rössler attractor with Kalman filtering.

SS-K GP NARX K-DMD RC
MSE 0.275 0.638 0.635 0.276 0.334
Std 0.524 0.799 0.797 0.526 0.578

TABLE II
MSE FOR THE NOISY RÖSSLER ATTRACTOR.



SS-K GP NARX K-DMD RC
62.909 2.591 14.872 0.036 0.868

TABLE III
AVERAGE ONLINE COMPUTATIONAL TIME IN MILLISECONDS (RÖSSLER

ATTRACTOR).

VI. CONCLUSIONS

This work presents a new data-based methodology to ap-
proximate nonlinear systems with an LTV model. The ap-
proach is based on a modified Kriging problem in which
a regularization term is added. From the solution of the
Kriging problem, a state-space representation of the nonlinear
dynamics is obtained. In this new model, the Kriging weights
form the state and the output of the system is also obtained
from those weights. This structure allows for the application
of the Kalman filter to improve the forecasting in noisy
measurements. The results in the numerical examples show
that the proposed strategy can be compared favourably with
some baseline approaches. Future works will consider the
combination of the proposed strategy with NN and DMD
methods in order to enhance the predictions.
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