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Abstract—In this paper, we extend the State-Space Kriging
(SSK) modeling technique presented in a previous work by
the authors in order to consider non-autonomous systems. SSK
is a data-driven method that computes predictions as linear
combinations of past outputs. To model the nonlinear dynamics
of the system, we propose the Kernel-based State-Space Kriging
(K-SSK), a new version of the SSK where kernel functions are
used instead of resorting to considerations about the locality
of the data. Also, a Kalman filter can be used to improve the
predictions at each time step in the case of noisy measurements.
A constrained tracking Nonlinear Model Predictive Control
(NMPC) scheme using the black-box input-output model obtained
by means of the K-SSK prediction method is proposed. Finally, a
simulation example and a real experiment are provided in order
to assess the performance of the proposed controller.

I. INTRODUCTION

THE problem of obtaining a process model from ex-
perimental data is very relevant and has implications

for many control applications. Many techniques have been
proposed for this task. Classic identification methods like
least squares identification or the subspace method have been
used since the 80s [1]. Recently, machine learning modeling
techniques such as Deep Neural Networks (DNN) [2], [3],
Gaussian Processes (GP) [4] or Dynamic Mode Decomposi-
tion (DMD) [5] have gained attention thanks to their ability
to model the nonlinearities of a dynamic system. Other data-
based techniques like Direct Weight Optimization (DWO) [6],
[7] or Hölder Inference (HI) [8] have been successfully applied
to modeling in control problems.

Here, we consider the State-Space Kriging (SSK) method
[9]. In SSK, a model of the system is built using the vector of
optimal weights obtained from a convex optimization problem
as the process state. The optimization problem is closely re-
lated to that of kriging interpolation [10]. The kriging method
can be used to compute predictions of a dynamic system as a
linear combination of past outputs [11]. However, the problem
is usually considered static and thus the past vector of weights,
which might provide useful information, is not taken into
account. In contrast to this, in the SSK method, dynamics are
taken into account and thus a model of the system is obtained
instead of a simple predictor. A limitation of the SSK method
is that, in [9], the model obtained is linear, and although it can
be turned into Linear-Time-Varying (LTV) considering local
data, it may not be the best choice to model nonlinear systems.
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Model Predictive Control (MPC) [12] is a control scheme
where a mathematical model of the system is used to compute
an optimal sequence of control actions to steer the state to
the desired reference. Also, it is one of the few control tech-
niques that allows non-real-valued inputs [13] and handling
constraints [14]. However, the main drawback is the necessity
to obtain a good model of the process. First-principles models
can be used only in very limited situations when the dynamics
of the process are previously known, which can be considered
as a strong assumption. For this reason, black-box or grey-box
models are used more frequently [1]. In recent times, data-
driven approaches to predictive control are being researched
as well [15]. Also, thanks to the massive spread of Artificial
Intelligence (AI) approaches, more data-driven and learning-
based approaches are being considered in many different
control problems [16], [17].

One of the problems in standard constrained MPC formula-
tions is that recursive feasibility can be lost when the reference
changes if the controller is not well designed. In order to solve
this problem, a Tracking MPC formulation was proposed in
[18], [19]. This approach preserves stability and guarantees
that the system can be steered to any admissible equilibrium
point, no matter what the initial equilibrium point is, without
losing recursive feasibility. This strategy also provides a larger
domain of attraction for a given prediction horizon Np and,
in the case of unreachable references, asymptotic convergence
to the closest reachable reference is proven as well.

In this paper, we extend the results of [9] so that non-
autonomous systems can be considered. Moreover, in order to
improve modeling capabilities, we consider kernel functions.
Kernel methods [20], [21] have become a popular technique
to deal with nonlinearities because of their capability to map
nonlinearly separable data into linearly separable data in a
Hilbert feature space by means of the so-called kernel trick. In
this work, the use of kernel functions yields a truly nonlinear
SSK model, improving the Linear Time Variant (LTV) model
presented in [9]. When only noisy measurements are available,
a Kalman filter can be used to improve the quality of the
predictions of the SSK system, as shown in the paper. The
modeling strategy proposed in this paper is then used in a con-
strained predictive control strategy in which only the measured
outputs are available. Finally, the proposed controller is tested
using a numerical example and a multivariable temperature
control laboratory process.

In summary, the contributions of this paper are the follow-
ing:

1) We propose a version of the SSK technique that allows
us to model non-autonomous systems. As the original
version only considered autonomous systems, it was
suitable for time-series forecasting but not in a control
context. As shown in the paper, the proposed technique



can be used in control applications, obtaining good
results when used within a model predictive control
strategy.

2) Also, the nonlinearities of the system are modeled by
means of kernel functions, unlike the previous SSK,
which relied on local data akin to an online linearization.
One of the advantages of the proposed kernel formula-
tion to model nonlinear systems in comparison to the
local-data approach presented in [9] is the improvement
related to the computational burden and the prediction
errors.

3) Unlike most of the NMPC approaches, the resulting opti-
mization problem of the NMPC controller is a quadratic
programming problem that can be easily solved even
in platforms with less computing capabilities. Thus, the
computational complexity of the NMPC controller is in
the same class as that of a standard linear MPC. This
improvement is a direct consequence of the proposed
kernel formulation.

The paper is organized as follows: in section II, the
methodology to obtain the system model based on SSK is
presented. Section III shows how to introduce kernels to model
nonlinearities, whereas section IV shows the application of
the Kalman filter to the obtained system in order to tackle
noisy data. Section V presents a forecasting example to show
the advantages of the proposed formulation with respect to
the scheme presented in [9]. In section VI, the tracking MPC
formulation is introduced. Finally, application examples are
shown in section VII in order to prove the effectiveness of the
proposed approach.

II. STATE-SPACE KRIGING FOR NON-AUTONOMOUS
SYSTEMS

This section presents the SSK approach for non-autonomous
systems. The idea behind the SSK is to obtain an equivalent
model of the process in which the state vector is composed
by the weights obtained from a kriging-like interpolation.
Consider a non-autonomous discrete time nonlinear system

xk+1 = f(xk, uk) (1a)
yk = g(xk), (1b)

where k is the time instant, xk ∈ Rnx is the state of the
system, uk ∈ Rnu is the input of the system, yk ∈ Rny is the
output of the system, f(·) and g(·) are unknown nonlinear
functions such that f(·) : Rnx×nu → Rnx and g(·) :
Rnx → Rny . We will assume that the only available data
are the measurable inputs and outputs. We define a time delay
embedding vector zk ∈ Rnz containing the np past outputs
of the system. That is, zk = [y⊤k , y

⊤
k−1, ..., y

⊤
k−np+1]

⊤ ∈ Rnz ,
where nz = npny . We also denote z+k as the successor of
zk, i.e. z+k = [y⊤k+1, y

⊤
k , ..., y

⊤
k−np+2]

⊤ ∈ Rnz . From now on,
assume that some historical data of the plant is stored in a
database in the form of matrices:

D =
[
z̄1 z̄2 . . . z̄N

]
,

D+ =
[
z̄+1 z̄+2 . . . z̄+N

]
,

U =
[
ū1 ū2 . . . ūN

]
,

where N is the number of data points, U ∈ Rnu×N is
the data base of control actions, D ∈ Rnz×N contains past
samples of the time-delay embedding and D+ ∈ Rnz×N is
the matrix successor of D. Note that z̄i refers to a past time
delay embedding and ūi refers to the past input of the system
associated to z̄i, which resulted in the successor z̄+i . Note,
however, that the indexes of the columns of D, D+ and U do
not refer to the sample time, but to the position in the matrix.
Therefore, z̄i+1 is not necessarily the successor sample of z̄i.

At sample time k and using the previously defined matrices,
it is possible to compute a prediction of the successor of zk,
denoted as z̃k+1. We could compute such prediction using a
linear combination of the columns of matrix D+ weighted by a
vector of optimal weights µ∗

k ∈ RN , i.e. z̃k+1 = D+µ∗
k. This

vector of weights would be computed by solving the following
optimization problem, closely related to those in kriging [22],
DWO [7] and other similar methods [23]:

µ∗
k = argmin

µk

µ⊤
k H1µk (2a)

s.t.

 D
1
U

µk =

 zk
1
uk

 , (2b)

where H1 ∈ RN×N is a positive definite weighting matrix
and 1 a row vector whose elements are equal to 1. Thanks to
the constraints in the optimization problem (2), the decision
variable µk serves to parameterize an affine hull that contains
the current zk and uk. The matrix of parameters H1 is
usually chosen as the identity matrix of order N denoted as
IN although other possibilities exist, like weighting the data
according to the distance to the current regressor [9].

Note that we are not interested in computing predictions
directly, but in obtaining a model of the system parameterized
in the weights µk. Thus we will introduce some changes in the
aforementioned prediction scheme. These changes are related
to the computation of the new optimal weights denoted as λ∗k
in such a way that they can be used as the state vector of the
proposed model. This implies the need of a state equation in
which the successor of λ∗k, i.e. λ∗k+1, is computed from λ∗k
and uk. That is, we strive to obtain a state equation of the
form λ∗k+1 = Aλ∗k+Buk. Thus, λ∗k+1 will be computed from
an optimization problem similar to (2), but ensuring that its
solution can be written as the state equation of the model. In
order to do so, we first assume that the weights satisfy

zk = D+λ∗k, (3a)
1 = 1λ∗k. (3b)

Furthermore, we impose that λ∗k+1 must be able to compute
zk and uk as an affine combination of D and U . Thus, it must
satisfy the constraint D

1
U

λ∗k+1 =

 zk
1
uk

 .
which is similar to that of problem (2) but aimed to obtain
the successor of λ∗k+1, as a function of λ∗k and uk. We also
add a regularization term penalizing the difference between
λ∗k+1 and λ∗k while considering the previous constraint. This



regularization term serves to reduce the sensitivity to noise of
the obtained model. Thus, the proposed optimization problem
that will lead to the state equation is

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)
⊤H2(λk+1 − λ∗k)

+ λ⊤k+1H1λk+1

s.t.

 D
1
U

λk+1 =

 zk
1
uk

 .
Note that λ∗k is assumed to be known from the previous
sampling time. Taking into account (3), it is possible to pose
the optimization problem as

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)
⊤H2(λk+1 − λ∗k) (4a)

+ λ⊤k+1H1λk+1

s.t. Cλk+1 = C+λ∗k +

 0
0
Inu

uk, (4b)

with

C =

 D
1
U

 , C+ =

 D+

1
0

 , H1 = τ1IN , H2 = τ2IN ,

where τ1 > 0 and τ2 > 0 are adjustable parameters. Notice
that uk is the current value of the system input, not to be
confused with ūi, ∀i = 1, . . . , N which are past values of
uk stored in the data base. This problem can be written in
canonical form as

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1 (5a)

s.t. Cλk+1 = b , (5b)

with H = 2(H1 + H2), f = −2H2λ
∗
k and b = C+λ∗k +[

0 0 Inu

]⊤
uk. Note that we discard the constant term

λ∗k
⊤H2λ

∗
k because we are only interested in the values of

λ∗k+1. By means of the Karush-Kuhn-Tucker (KKT) conditions
[24, §10.1.1], this problem has the following solution

λ∗k+1 = Aλ∗k +Buk,

with

A = 2H−1H2 +H−1C⊤(CH−1C⊤)−1 (C+ − 2CH−1H2

)
,

B = H−1C⊤(CH−1C⊤)−1 [ 0 0 Inu

]⊤
.

Then, the state equation of the model is obtained. This would
be completed with the output equation of the model which
comes from (3). Note that, as we only need the first term of
zk (i.e. the term corresponding to yk), then we can pose the
model as

λ∗k+1 = Aλ∗k +Buk, (6a)
yk = Y λ∗k , (6b)

where Y denotes a matrix compounded of only the first ny
rows of D+, that is, Y is a matrix containing the samples ȳ+i .
Thus, we have obtained a model for system (1) in which the
state is comprised of the optimal weights λ∗k.

Remark 1: In order to obtain the initial value λ∗0, we
consider the following ad-hoc optimization problem

λ∗0 = argmin
λ0

λ⊤0 H1λ0 (7a)

s.t.
[
D+

1

]
λ0 =

[
z0
1

]
, (7b)

where z0 is the initial value of the time delay embedding. This
way of computing the initial weights makes sure that equation
(3) is fulfilled for every k ≥ 0. Again, by means of the KKT
conditions, the solution of the previous optimization problem
is

λ∗0 = H−1
1

[
D+

1

]⊤([
D+

1

]
H−1

1

[
D+

1

]⊤)−1[
z0
1

]
.

III. KERNEL-BASED STATE-SPACE KRIGING (K-SSK)

Model (6) is linear on the weights λ∗k. In order to describe
nonlinear behaviors, one could resort to the local data approach
of [9]. This approach results in practice on a time-varying
linearization of the nonlinear modes of the system (1). Here,
we consider the use of kernels to truly model the nonlinear
dynamics of the system. In addition to providing a true
nonlinear model, the use of kernels will allow us to compute
the matrices of the system only once (unlike in [9] where
the matrices needed to be recomputed at each sample time).
This is very important when the model is to be used in MPC
applications, where a recomputation of the system matrices for
every candidate solution in the optimization problem would
be prohibitive in terms of computational cost. Furthermore,
the proposed strategy will allow the formulation of the MPC
optimization problem as a quadratic programming problem.

In order to include the kernels, we modify the previous
problem to

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)
⊤H2(λk+1 − λ∗k)

+ λ⊤k+1H1λk+1

+

∥∥∥∥∥
N∑
i=1

φziλk+1,i −
N∑
i=1

φz+
i
λ∗k,i

∥∥∥∥∥
2

Σ−1
φ

s.t.
[
U
1

]
λk+1 =

[
uk
1

]
,

where λk+1,i and λ∗k,i correspond to the i−th element of
vector λk+1 and λ∗k respectively, φ : Rnz → H refers to
a nonlinear operator that maps Rnz into a probably high
dimensional space H, φzi and φz+

i
denote φ(zi) and φ(z+i )

respectively and Σφ is a positive definite matrix of appropriate
dimensions. In this case, we only need to know the kernel
function in order to solve the aforementioned optimization
problem [20]. For a given pair a ∈ Rnz and b ∈ Rnz , we
denote ⟨φa, φb⟩ as

⟨φa, φb⟩ = φaΣ
−1
φ φb .

Note that the previous linear hard constraint on zk (see
equation (4b)) has been changed to a penalty term on a high
dimensional space by means of the kernel trick as it is no
longer a linear constraint. Assuming that we have data sets



of the evaluation of φ over the time delay embeddings of D
and D+ (which due to the kernel trick [21] are not really
necessary), we could denote them as

φz̄ =
[
φz̄1 φz̄2 . . . φz̄N

]
,

φz̄+ =
[
φz̄+

1
φz̄+

2
. . . φz̄+

N

]
.

Thus, the previous problem can be written in matrix form as

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)
⊤H2(λk+1 − λ∗k)

+ λ⊤k+1H1λk+1

+ ∥φz̄λk+1 − φz̄+λ∗k∥2Σ−1
φ

s.t.
[
U
1

]
λk+1 =

[
uk
1

]
.

Now, we operate with the term ∥φz̄λk+1 − φz̄+λ∗k∥2Σ−1
φ

,
obtaining

∥φz̄λk+1 − φz̄+λ∗k∥2Σ−1
φ

= λ⊤k+1

(
φ⊤
z̄ Σ

−1
φ φz̄

)
λk+1

−2λ⊤k+1

(
φ⊤
z̄ Σ

−1
φ φz̄+

)
λ∗k

+λ∗
⊤

k

(
φ⊤
z̄+Σ−1

φ φz̄+

)
λ∗k .

Again, we can discard the constant term because it does
not affect the values of λ∗k+1, which leads to the following
optimization problem

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1 (8a)

s.t. Tλk+1 =

[
0
1

]
+

[
Inu

0

]
uk . (8b)

with H = 2(H1 + H2) + 2φ⊤
z̄ Σ

−1
φ φz̄, f = −2(H2 +

φ⊤
z̄ Σ

−1
φ φz̄+)λ∗k , T =

[
U
1

]
.

Note that the kernel-related terms can be computed because
only cross-products appear in the aforementioned equations.
These terms would be computed as

φ⊤
z̄ Σ−1

φ φz̄ =


⟨φz̄1 , φz̄1 ⟩ ⟨φz̄1 , φz̄2 ⟩ . . . ⟨φz̄1 , φz̄N ⟩
⟨φz̄2 , φz̄1 ⟩ ⟨φz̄2 , φz̄2 ⟩ . . . ⟨φz̄2 , φz̄N ⟩

...
...

...
⟨φz̄N , φz̄1 ⟩ ⟨φz̄N , φz̄2 ⟩ . . . ⟨φz̄N , φz̄N ⟩

 ,

φ⊤
z̄ Σ−1

φ φz̄+ =


⟨φz̄1 , φz̄+1

⟩ ⟨φz̄1 , φz̄+2
⟩ . . . ⟨φz̄1 , φz̄+

N
⟩

⟨φz̄2 , φz̄+1
⟩ ⟨φz̄2 , φz̄+2

⟩ . . . ⟨φz̄2 , φz̄+
N
⟩

...
...

...
⟨φz̄N , φ

z̄+1
⟩ ⟨φz̄N , φ

z̄+2
⟩ . . . ⟨φz̄N , φ

z̄+
N
⟩

 ,

where ⟨φz̄i , φz̄j ⟩ is the result of applying a certain kernel
function with samples z̄i and z̄j as inputs. Applying the KKT
conditions, the solution of the optimization problem (8) is
obtained as

λ∗k+1 = Aλ∗k +Buk + c,

with

A = 2H−1(IN − T⊤(TH−1T⊤)−1TH−1)(H2 + φ⊤
z̄ Σ

−1
φ φz̄+),

B = H−1T⊤(TH−1T⊤)−1

[
Inu

0

]
,

c = H−1T⊤(TH−1T⊤)−1

[
0
1

]
.

This equation along with the output equation (6b) provides
the new model of the system, i.e.

λ∗k+1 = Aλ∗k +Buk + c (9a)
yk = Y λ∗k . (9b)

Remark 2: Note that this model is affine in the feature space.
Assuming that the kernel functions are not linear, the model is
nonlinear in the data space. Actually, the model is not strictly
linear in the feature space because of the bias term c.

A. Initial condition

As in section II, we need an initial value λ∗0 which can be
obtained from

λ∗0 = argmin
λ0

λ⊤0 H1λ0 + ∥φz0 − φz̄+λ0∥2Σ−1
φ

s.t. 1λ0 = 1 .

Operating with ∥φz0 − φz̄+λ0∥2Σ−1
φ

, we obtain

λ∗0 = argmin
λ0

1

2
λ⊤0 Hλ0 + f⊤λ0 (10a)

s.t. 1λ0 = 1 , (10b)

where

H = 2H1 + 2φ⊤
z̄+Σ−1

φ φz̄+ , f = −2φ⊤
z̄+Σ−1

φ φz0 ,

φ⊤
z̄+

Σ−1
φ φz̄+ =


⟨φ

z̄+1
, φ

z̄+1
⟩ ⟨φ

z̄+1
, φ

z̄+2
⟩ . . . ⟨φ

z̄+1
, φ

z̄+
N
⟩

⟨φ
z̄+2

, φ
z̄+1

⟩ ⟨φ
z̄+2

, φ
z̄+2

⟩ . . . ⟨φ
z̄+2

, φ
z̄+
N
⟩

...
...

...
⟨φ

z̄+
N
, φ

z̄+1
⟩ ⟨φ

z̄+
N
, φ

z̄+2
⟩ . . . ⟨φ

z̄+
N
, φ

z̄+
N
⟩

 ,

φ⊤
z̄+

Σ−1
φ φz0 =


⟨φ

z̄+1
, φz0 ⟩

⟨φ
z̄+2

, φz0 ⟩
...

⟨φ
z̄+
N
, φz0 ⟩

 .

IV. KALMAN FILTER

Assuming that the obtained model is perfect and there is no
noise or disturbances, it holds that

ỹk+1 = Y (Aλ∗k +Buk + c) = yk+1,

where ỹk+1 is the prediction of yk+1. On the other hand, in
the presence of noise, this does not hold (i.e. ỹk+1 ̸= yk+1)
although the dynamics of λ∗k would be correct. For the case
where we consider disturbances in the dynamics of λ∗k (which
might represent, for example, model mismatches) it is clear
that we cannot compute the true value of λ∗k. Instead, we can
compute a prediction denoted as λ̃∗k. Computing this prediction
just by using the proposed update rule corresponds to a form
of open-loop prediction because we are not introducing any
new information into the analysis. Thus, we consider using
the measured outputs to improve the quality of our predicted
λ̃∗k, obtaining a corrected version, denoted as λ̂∗k. This works
as a form of feedback in the computation of the dynamics of
the state. In order to implement this strategy, we resort to a
Kalman filter as discussed in the following.



For this purpose, we modify the previously obtained nomi-
nal model, including disturbances and noisy terms

λ∗k+1 =Aλ∗k +Buk + c+ wk

yk =Y λ∗k + vk .

As it is necessary to enforce the equality constraint 1λ∗k = 1,
the output vector is extended as

y′k =

[
Y
1

]
λ∗k +

[
vk
0

]
. (11)

Defining G =

[
Y
1

]
and v′k =

[
vk
0

]
, the following

extended system is obtained

λ∗k+1 = Aλ∗k +Buk + c+ wk

y′k = Gλ∗k + v′k .

Due to noise, λ∗k is also noisy and, thus, it would be helpful
to use the optimal prediction of its value obtained by means
of a Kalman filter. The prediction of λ∗k will be denoted as λ̃∗k
whereas the corrected prediction will be denoted as λ̂∗k. We
assume that wk and vk are uncorrelated white noise signals
with bounded covariance matrices ςw and ςv so that

E(wkw
⊤
k ) ≤ ςw, E(vkv⊤k ) ≤ ςv,

where E(·) denotes the mathematical expectation. From the
bound on the covariance of vk, it is easy to obtain a bound of
v′k:

E(v′kv
′
k
⊤
) ≤ E

([
vkv

⊤
k 0

0 0

])
=

[
ςv 0
0 0

]
= ς ′v .

The bound of the covariance of the estimation error λ∗k − λ̃∗k
is denoted as σ̃k:

E
(
(λ∗k − λ̃∗k)(λ

∗
k − λ̃∗k)

⊤
)
≤ σ̃k.

Then, given an estimation λ̃∗k, a corrected version λ̂∗k is
obtained from

λ̂∗k = λ̃∗k + Sk

([
yk
1

]
−Gλ̃∗k

)
,

where Sk is the optimal gain, calculated as

Sk = σ̃kG
⊤ (Gσ̃kG⊤ + ς ′v

)−1
.

Note that the corrected vector λ̂∗k fulfills the constraint 1 =
1λ̂∗k because the last component of the extended output is taken
equal to one.

Applying the equations of the Kalman filter, the matrix σ̃k+1

is computed as

σ̃k+1 = A (σ̃k − SkGσ̃k)A
⊤ + ςw .

Finally, λ̃∗k+1 is computed as

λ̃∗k+1 = Aλ̂∗k +Buk + c .

The matrices σ̃0, ςw, ςv are set as the identity matrix multiplied
by some scalars that are considered tuning parameters.

V. ILLUSTRATIVE EXAMPLE

Once the K-SSK has been presented, we would like to
showcase the advantages of the proposed approach with re-
spect to the Local-Data State-Space Kriging from [9] (LD-
SSK). For this purpose, a 1-step ahead forecasting example
of the Rössler attractor is presented. Note that we choose an
autonomous system so that we can compare with the approach
presented in [9]. This system is described by the following set
of differential equations

ȯ = −p− l

ṗ = o+ ap

l̇ = b+ l(o− c) ,

In this example, we consider the set of parameters a = 0.2,
b = 0.2 and c = 5.7 which corresponds to chaotic behaviour.
Also, it will be considered that the measurements are noisy.
This noise follows a uncorrelated normal distribution with zero
mean and unit variance N ∼ (0, 1) (that is, the covariance
matrix is diagonal).

The sample time of the system is chosen as 0.1 seconds and
the data set is compounded of a total of 1000 samples. The
regressor considered here is zk = [ok, pk, lk]

⊤.
The LD-SSK scheme which incorporates the Kalman filter

is used here with parameters H2 = 9.79 IN , ςw = 1.01 ·
10−5 IN and σ̃0 = 6.51 · 10−6 IN . Also, the variance of vk is
assumed to be known.

On the other hand, K-SSK uses a kernel such that

⟨φz̄i , φz̄j ⟩ =

 e
−||z̄i−z̄j ||

2σ2 + E(v2k) if i = j ,

e
−||z̄i−z̄j ||

2σ2 else,

where σ = 0.119. The value of the matrices H1 and H2 are
H1 = 1.25 · 10−5 IN , H2 = 2.24 · 10−5 IN whereas the
parameters of the Kalman filter are ςw = 1.23 · 10−7 IN and
σ̃0 = 4.09 · 10−6 IN

The results are shown in figure 1 and table I. In figure 1, the
real evolution of the state alongside the noisy measurements
and the prediction obtained with the K-SSK approach for a
representative trajectory is shown. Table I summarizes the
numerical results of the experiment. It can be seen that the
K-SSK strategy achieves the best results with regard to MSE,
standard deviations and computational times.

LD-SSK K-SSK
Mean Squared Error 0.2504 0.2138
Standard deviation 0.5002 0.4622

Computational time (ms) 62.909 37.5912

TABLE I
NUMERICAL RESULTS OF THE FORECASTING EXAMPLE.

VI. TRACKING MODEL PREDICTIVE CONTROL

A tracking MPC controller [18], [19] that uses the kernel-
based SSK model is presented in this section. The main differ-
ence of the tracking formulation with respect to the traditional
MPC is that the reference to be tracked is considered as an
additional decision variable in the optimization problem, that
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Fig. 1. Forecasting the noisy Rössler attractor with K-SSK.

is, the so-called artificial reference. In order to enforce that
the artificial reference converges to the target reference, an
additional cost is added to the MPC cost function penalizing
the deviation between them. Among the many advantages of
this formulation, the fact that recursive feasibility is guaranteed
for any change of the desired reference and a significantly
larger domain of attraction for short prediction horizons are
probably the most important.

The cost function in the proposed controller is comprised
of three components:

• A stage cost function ls(·, ·) to penalize tracking error.
Tracking error with respect to a certain reference is
tackled employing a change of variables y̆ = ỹ − ys,
ŭ = u − us where ỹ is a prediction of y, ys is the
artificial output reference and us is the artificial input
reference. Here, we consider a quadratic cost penalizing
the distance to the artificial input and output reference
weighted by matrices of appropriate dimensions Q and
R (i.e. Q ∈ Rny×ny and R ∈ Rnu×nu ), i.e.

ls(y̆, ŭ) = y̆⊤Qy̆ + ŭ⊤Rŭ.

• An offset function penalizing the difference between the
artificial output ys and the target desired reference,

lo(ys − r) = (ys − r)
⊤
O (ys − r) .

Under some mild conditions [18], [19], it is proven that
the artificial reference converges to the true reference as
the time goes by.

• A weighted terminal cost function. This function mea-
sures the closeness of the terminal state λ∗Np

to the
artificial steady state λ∗s . Appropriately weighting the
terminal cost allows us to omit the terminal equality
constraint [19], simplifying the design of the controller.

lt(λ
∗
Np

− λ∗s) = γ
(
λ∗Np

− λ∗s

)⊤
P
(
λ∗Np

− λ∗s

)
,

where γ ≥ 1.
Denoting y ∈ RnyNp and u ∈ Rnu(Np+1) as
[ỹ⊤0 , . . . , ỹ

⊤
Np−1]

⊤ and [u⊤0 , . . . , u
⊤
Np−1, u

⊤
s ]

⊤ respectively, it
is possible to define a total cost function VNp

(y,u, r, λ∗0) as

the sum of the aforementioned three functions for a finite
prediction horizon Np

VNp(y,u, r, λ
∗
0) =

Np−1∑
i=0

ls(y̆i, ŭi) + lo(ys(us)− r)

+ lt(λ
∗
Np

(λ∗0,u)− λs(us)).

Thus, we define an MPC control problem with inequality
constraints in the outputs and box constraints in the input,
that is

min
y,u,λ∗

Np

VNp
(y,u, r, λ∗0) (12a)

s.t. λ∗i+1 = Aλ∗i +Bui + c ∀i = 0, . . . , Np − 1 (12b)
yi = Y λ∗i ∀i = 0, . . . , Np (12c)
λ∗s = Aλ∗s +Bus + c (12d)
ψyi ≤ θ ∀i = 1, . . . , Np − 1 (12e)
umin ≤ ui ≤ umax, ∀i = 0, . . . , Np − 1, (12f)

which is a parametric quadratic optimization problem whose
parameters are r and λ∗0. Appendix A shows how to pose this
problem in canonical form.

From this optimization problem, a sequence of optimal
control actions u is obtained. However, due to the receding
horizon scheme characteristic of any MPC controller, only the
first component is applied to the system, computing a whole
new sequence at the next time instant.

In order to apply the proposed MPC controller, first, we
need to compute the system matrices that model the dynamics
of the system and obtain the initial value of the vector of
weights. This is shown in algorithm 1. Note that algorithm 1
is only executed once. Once this has been done, the detailed
steps to compute the MPC controller by using the Kalman
filter layer are detailed in algorithm 2. Unlike algorithm 1,
algorithm 2 is executed at each time instant k.

A. Nominal stability analysis

For the nominal stability analysis, it is assumed that there
are no mismatches between the dynamics of the real system
and the obtained prediction model and that there is no noise in
the measurements. Therefore, the state vector λ∗k is assumed to
be perfectly estimated by the Kalman Filter. Now, we present
the assumptions appearing in [19] to guarantee the nominal
stability of the controller for completeness:

Assumption 6.1: The output of the system ys univocally
defines the equilibrium point (λ∗s, us). Also, it is assumed
that λ∗s and us can be obtained by means of locally Lipschitz
continuous functions gλ : Rny → RN and gu : Rny → Rnu

so that
λ∗s = gλ(ys), us = gu(ys).

The stage cost function, the offset cost function and the set of
feasible points need to satisfy the following assumptions:

Assumption 6.2:
1) There exists a K∞ function αl such that ls(y, u) ≥

αl(|y|) for every pair (y, u) ∈ Rny+nu .



Algorithm 1 Computation of the system matrices and initial
conditions.
Require: Matrices H1, H2 and T , kernel function.
Ensure: System matrices A, B and c, initial weights λ∗0.

1: Compute the kernel matrices:

φ
⊤
z̄ Σ

−1
φ φz̄ =


⟨φz̄1

, φz̄1
⟩ ⟨φz̄1

, φz̄2
⟩ . . . ⟨φz̄1

, φz̄N
⟩

⟨φz̄2
, φz̄1

⟩ ⟨φz̄2
, φz̄2

⟩ . . . ⟨φz̄2
, φz̄N

⟩
...

...
...

⟨φz̄N
, φz̄1

⟩ ⟨φz̄N
, φz̄2

⟩ . . . ⟨φz̄N
, φz̄N

⟩

 ,

φ
⊤
z̄ Σ

−1
φ φz̄+ =



⟨φz̄1
, φ

z̄
+
1
⟩ ⟨φz̄1

, φ
z̄
+
2
⟩ . . . ⟨φz̄1

, φ
z̄
+
N
⟩

⟨φz̄2 , φz̄
+
1
⟩ ⟨φz̄2 , φz̄

+
2
⟩ . . . ⟨φz̄2 , φz̄

+
N
⟩

...
...

...
⟨φz̄N

, φ
z̄
+
1
⟩ ⟨φz̄N

, φ
z̄
+
2
⟩ . . . ⟨φz̄N

, φ
z̄
+
N
⟩

 ,

φ
⊤
z̄+

Σ
−1
φ φz̄+ =



⟨φ
z̄
+
1
, φ

z̄
+
1
⟩ ⟨φ

z̄
+
1
, φ

z̄
+
2
⟩ . . . ⟨φ

z̄
+
1
, φ

z̄
+
N
⟩

⟨φ
z̄
+
2
, φ

z̄
+
1
⟩ ⟨φ

z̄
+
2
, φ

z̄
+
2
⟩ . . . ⟨φ

z̄
+
2
, φ

z̄
+
N
⟩

...
...

...
⟨φ

z̄
+
N
, φ

z̄
+
1
⟩ ⟨φ

z̄
+
N
, φ

z̄
+
2
⟩ . . . ⟨φ

z̄
+
N
, φ

z̄
+
N
⟩

 ,

φ
⊤
z̄+

Σ
−1
φ φz0

=



⟨φ
z̄
+
1
, φz0 ⟩

⟨φ
z̄
+
2
, φz0 ⟩

...
⟨φ

z̄
+
N
, φz0

⟩

 .

2: Let H = 2(H1 +H2) + 2φ⊤
z̄ Σ

−1
φ φz̄ .

3: Compute the system matrices A, B and c:

A = 2H−1(IN − T⊤(TH−1T⊤)−1TH−1)(H2 + φ⊤
z̄ Σ−1

φ φz̄+ ),

B = H−1T⊤(TH−1T⊤)−1

[
Inu

0

]
,

c = H−1T⊤(TH−1T⊤)−1

[
0
1

]
.

4: Obtain λ∗0 by solving the following optimization problem:

λ∗
0 = argmin

λ0

1

2
λ⊤
0 Hλ0 + f⊤λ0

s.t. 1λ0 = 1 ,

where

H = 2H1 + 2φ⊤
z̄+Σ−1

φ φz̄+ , f = −2φ⊤
z̄+Σ−1

φ φz0 .

2) Denote Yt and Ys as the set of feasible points and the
set of admissible points of the output. Then, Yt must be
a convex subset of Ys.

3) The offset cost function lo : Rny → R is a subdifferen-
tiable convex positive definite function such that

y∗s = arg min
ys∈Yt

lo(ys − r),

is unique. Also, there exists a K∞ function αo such that

lo(ys − r)− lo(y
∗
s − r) ≥ αo(|ys − y∗s |).

Finally, the terminal ingredients must fulfill the next assump-
tions:

Assumption 6.3:
1) Let κ(λ∗, ys) be a continuous control policy in (λ∗s, ys)

and Γ be an associated invariant set for tracking such
that for any pair (λ∗(0), ys) ∈ Γ the closed-loop system

Algorithm 2 SSK-MPC for tracking controller with Kalman
filtering.
Require: System matrices A, B and c, data set Y , desired

reference r, weighting matrices Q, R, O and P , prediction
horizon Np, corrected state λ̂k−1, covariance matrix σ̃k−1,
covariance matrices ςw and ς ′v .

Ensure: Optimal input u∗k, covariance matrix σ̃k and cor-
rected state λ̂k.

1: Compute the prediction of λk:

λ̃∗k = Aλ̂∗k−1 +Buk−1 + c .

2: Compute the matrix σ̃k as:

σ̃k = A (σ̃k−1 − Sk−1Gσ̃k−1)A
T + ςw .

3: Computation of the optimal gain:

Sk = σ̃kG
T
(
Gσ̃kG

T + ς ′v
)−1

.

4: Obtain the corrected version of λ̃k:

λ̂∗k = λ̃∗k + Sk

([
yk
1

]
−Gλ̃∗k

)
.

5: Solve the quadratic optimization problem:

min
y,u,λ∗

Np

VNp
(y,u, r, λ̂∗k)

s.t. λ∗i+1 = Aλ∗i +Bui + c ∀i = 0, . . . , Np − 1

yi = Y λ∗i ∀i = 0, . . . , Np

λ∗s = Aλ∗s +Bus + c

ψyi ≤ δ ∀i = 1, . . . , Np − 1

umin ≤ ui ≤ umax, ∀i = 0, . . . , Np − 1.

6: Choose u∗k as the first term in the optimal sequence u∗.

λ∗k+1 = Aλk + Bκ(λ∗k, ys) + c is asymptotically stable
and converges to the equilibrium point (λ∗s, ys) in such
a way that (λ∗k, ys) ∈ Γ and the constraints are satisfied
for all k ≥ 0.

2) lt is a Lyapunov function for the system λ∗k+1 = Aλ∗k+
Bκ(λ∗k, ys) + c such that for every pair (λ∗, ys) ∈ Γ,
there exist constants b > 0 and σ > 1 verifying

lt(λ
∗ − λ∗s) ≤ b|λ∗ − λ∗s|σ,

and

lt(Aλ
∗ +Bκ(λ∗, ys) + c− λ∗s)− lt(λ

∗ − λ∗s) ≤
ls(y − ys, κ(λ

∗, ys)− us). (13)

By using the previous assumptions, the proof of stability for
the closed-loop system is a direct application of theorem
3 from [19]. Thus, it is only needed to ensure that the
aforementioned assumptions hold.

1) Assumption 6.1 can be easily fulfilled by using remark
1 in [19]. Here, it suffices that matrix[

A− IN B
Y 0

]
,



is nonsingular, which holds true if the number of outputs
is equal to the number of inputs.

2) For assumption 6.2, since we have chosen a quadratic
stage cost function and the system is linear, we can
easily find a K∞ function that works as a lower bound.
Also, as the offset cost function is convex and quadratic,
we have that y∗s is unique and the value of this cost
function can be lower bounded with any arbitrarily small
quadratic function as well. Finally, as we are considering
an affine system with convex constraints, Yt can be
chosen as Ys because Ys is already a convex set.

3) Regarding assumption 6.3, taking into account the fact
that the terminal cost function is quadratic, it can be
easily upper bounded by using b > 0 and σ ≥ 2. On
the other hand, we choose the matrix P by solving the
Lyapunov equation

(A+BK)⊤P (A+BK)− P = −(Q+K⊤RK),

where K corresponds to the gain of a linear control law
such that

κ(λ∗, ys) = K(λ∗ − gλ(ys)) + gu(ys).

Then, equation (13) is fulfilled and the system converges
to the pair (gλ(ys), gu(ys)).

B. Robust stability analysis

In this section, we tackle the case where modeling errors
may appear due to the fact that the model of the system is
not perfect. Here, we focus on the Robustly Asymptotically
Stability (RAS) notion showcased in [25]. Denote ek as
measurement errors (i.e. ek = λ̃∗k − λ∗k) and wk as additive
disturbances. Also, denote e and w as sequences of Np

elements of ek and wk. Then, the definition of RAS is the
following.

Definition 6.1: The system λ∗k+1 = Aλ∗k+Bκ(λ
∗
k+ek, ys)+

c+wk is considered to be RAS in the interior of a set F with
respect to both measurement errors and additive disturbances
if it is possible to find a KL function β [26] satisfying that,
for each ϵ > 0 and compact set C ⊂ F , there exists δ > 0
such that, for every pair (w, e), the following is fulfilled:

1) max(w) ≤ δ, max(e) ≤ δ and,
2) the closed loop trajectory under such (w, e) belongs to

C.

Then, we have that the closed loop trajectory is bounded by
β(|x|, k) + ϵ.

In light of proposition 8 from [25], we have that if the
nominal system is asymptotically stable with an associated
continuous Lyapunov function, then the system is RAS. Since
nominal stability of the proposed controller has been previ-
ously shown, then we only need to prove that the optimal cost
function that serves as the Lyapunov function is continuous.
This property holds thanks to the fact that the resulting
optimization control problem is a multi-parametric QP in
(λ, ys); then its optimal cost is a continuous function of the
parameters.

VII. NUMERICAL EXAMPLES

This section presents two application examples of the pro-
posed controller. First, the application to a simulated single-
input single-output system, a continuously stirred tank reactor,
is presented, followed by the application to a temperature
control equipment.

A. Simulation case study: Continuously-Stirred Tank Reactor

First, we design an MPC controller for a Continuously-
Stirred Tank Reactor (CSTR) [27]. The dynamics of the system
are given by the following set of differential equations

dCA(t)

dt
=
q0
V
(CAf − CA(t))− k0e

−E
RT (t)CA(t),

dT (t)

dt
=
q0
V
(Tf − T (t)) +

(−∆Hr)k0
ρCp

e
−E

RT (t)CA(t)

+
UA

V ρCp
(Tc(t)− T (t)),

whose parameters are shown in table II. The system has a
unique input Tc (temperature of the cooling jacket) whereas
the output is CA, the concentration of the reactant. The
regressor is compounded of the last two values of the output
zk = [yk, yk−1]

⊤. The sampling time is ts = 0.5 min.
The data sets D, D+ and U are obtained from a simulation
experiment where random amplitude step input signals are
applied to the system. A total of N = 250 samples are
considered. Also, it is assumed that the measurements are
noisy, having an additive gaussian noise vk whose variance
is 2.5 · 10−5. The controller considers input constraints as

umin ≤ uk ≤ umax, ∀k = 1, ..., Np

where umin = 341.5K, umax = 365.5K and Np = 10. The
weighting parameters Q, R, O, H1, H2 and γ are

Q = 500, R = 0.02, O = 5000

H1 = 0.002IN , H2 = 0.007IN , γ = 10.

On the other hand, the chosen radial basis kernel is

⟨φz̄i , φz̄j ⟩ = e
−||z̄i−z̄j ||

2σ2

with σ = 7.6741. Note that the parameters of the SSK
approach (i.e. np and the parameters of the kernel function)
are chosen so that the mean-squared error (MSE) of some
open-loop predictions in a validation set compounded of 1750
samples is minimized. The output and input data are scaled as

y =
CA − Cmin

A

Cmax
A − Cmin

A

, u = Tc − 353.5K .

For the Kalman filter, the following parameters are considered

ςw = 5× 10−6IN , ςv = 2.5 · 10−5, σ0 = 0.1IN .

The results are shown in figure 2. The blue line corresponds
to the reference both in the input and the output whereas
the red line corresponds to the real output and the inputs
applied to the system. It is clear that the controller steers the
system to the desired references. However, due to the noisy
measurements and the discrepancies of the model with respect
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Fig. 2. Top figure: output of the system. Bottom figure: input applied to the
system.

to the real system, it is possible to see some offset. This is
something to be expected and several strategies could be used
to solve this, e.g. using an appropriate disturbance model [28]
or augmenting the state [29] (see [30] for a tutorial on the
subject).

Parameter Meaning Value Units
q0 Input flow of the reactive 10 l min−1

V Liquid volume in the tank 150 l
k0 Frecuency constant 6× 1010 min−1

E/R Arrhenius constant 9750 K
−∆Hr Enthalpy of the reaction 10000 J mol−1

UA Heat transfer coefficient 70000 J min−1K−1

ρ Density 1100 g l−1

Cp Specific heat 0.3 J g−1K−1

CAf CA in the input flow 1 mol l−1

Tf Temperature (input flow) 370 K

TABLE II
PARAMETERS OF THE CSTR MODEL

1) Comparison with an ideal NMPC controller: We con-
sider an ideal MPC controller for comparison purposes. This
means that the model of the system is completely known for
this benchmark controller. Also, this controller can measure
the whole state vector and thus the variables used to compute
the control actions are noiseless. On the other hand, the
proposed approach can only obtain noisy measurements of
the output of the system and it does not have any previous
knowledge about the process dynamics.

The results are shown in figure 3. Again, the red line
corresponds to the proposed controller, the blue line cor-
responds to the desired reference and, now, the green line
corresponds to the perfect MPC controller. It is clear that the
obtained trajectory is very similar with respect to the perfect
trajectory. The closed-loop cost for our proposed controller
is only 1.0337% larger, which is quite reasonable taking into
account that the ideal controller cannot be implemented in
practice and the proposed controller has no model to start
with. Also, the time needed to solve the optimization problem
of the proposed approach was 3.9440 ms on average whereas
the ideal controller takes an average time of 10.214 ms.
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Fig. 3. Top figure: output of the system. Bottom figure: input applied to the
system.

B. Experimental case study: Temperature Control Lab

The temperature control lab is an application of feedback
control made up of an Arduino and a shield with two heaters
and two temperature sensors (see figure 4). The heaters corre-
spond to the inputs whereas the temperatures are the outputs of
the system. The heater power output can be adjusted so that a
certain temperature reference is attained. The thermal energy
within the system is transferred by conduction, convection,
and radiation. Also, heat is transferred away from the device
to the surroundings [31].

The dynamics of the system can be modeled by means of
the following two energy balance equations

mcp
dT1
dt

= U A (T∞ − T1) + ϵ σ A (T 4
∞ − T 4

1 )

+QC12 +QR12 + α1u1,

m cp
dT2
dt

= U A (T∞ − T2) + ϵ σ A (T 4
∞ − T 4

2 )

−QC12 −QR12 + α2u2,

where T1 and T2 are the temperatures of the sensors, T∞ is
the ambient temperature, u1 and u2 are the inputs, which are
given in a ratio manner (i.e. ui = 0 means that no power is
being injected into the system and ui = 1 that the input is
upper saturated, injecting all its possible power), m, cp, U , A,
ϵ, σ, α1, α2 are constants whose approximate values can be
found in table III, QC12 corresponds to the convective heat
transfer and QR12 is the radiation heat transfer. These heat
flows are given by

QC12 = U As (T2 − T1),

QR12 = ϵ σ A (T 4
2 − T 4

1 ).

The data sets D, D+ and U are comprised of past trajecto-
ries of the real system. These are obtained from an experiment
where random step signals are applied to the system as can
be seen in figure 5. There are a total of N = 476 data
points. The regressor is compounded of the last values of the
output zk = [T1,k, T2,k]

⊤ where T1 and T2 correspond to
the aforementioned output temperatures. The sampling time



Parameter Meaning Value Units
α1 Heater factor 0.01 W/(%)
α2 Heater factor 0.0075 W/(%)
m Mass 0.004 kg
cp Heat capacity 500 J kg−1K−1

A Area Not Between Heaters 1× 10−3 m2

As Area Between Heaters 2× 10−4 m2

U Heat Transfer Coefficient 10 W m−2K−1

ϵ Emissivity 0.9 None
σ Stefan-Boltzmann Constant 5.67× 10−8 W m−2K−4

TABLE III
PARAMETERS OF THE MODEL FOR THE TEMPERATURE CONTROL LAB.

Fig. 4. Temperature Control Lab.

is set to ts = 0.5 min. Same as before, input constraints are
considered as

umin ≤ uk ≤ umax, ∀k = 1, ..., Np

where umin = 0, umax = 100 and Np = 10. The weighting
parameters Q, R, O, H1, H2 and γ are

Q = 10Iny
, R = 1Inu

, O = 1000Iny

H1 = 0.005IN , H2 = 0.008IN , γ = 1.

As in the previous example, a radial basis kernel is used with
σ = 0.413 and the output and input data is scaled, making
the data range from 0 to 1. The parameters of the proposed
approach are obtained by minimizing the MSE of the open-
loop predictions. Due to the fact that there is a scarce number
of samples, the training set is used as a validation set as well.
On the other hand, the parameters of the Kalman Filter are
the following

ςw = 10−6IN , ςv = Iny
, σ0 = 0.05IN .

The results are shown in figure 6. The red line corresponds
to the temperature of the first heater T1 and the value of the
first input u1, the blue line corresponds to the temperature
of the second heater T2 and the second input u2 whereas
the black-dashed line is the reference for T1 and u1 and the
green-dashed line is the reference for T2 and u2. The MPC
controller activates at t = 5min. As in the previous example,
the controller is able to steer the outputs of the system to the
desired references. Also, there is some minor offset, which is
more evident in the control actions plots, where it is evident
that their values at equilibrium (ys, us) do not match with
those expected from the data set (dotted plot). This is due to
the unknown ambient temperature that may vary considerably
from one day to another or even within the same day. The
experiment of figure 6 and the data set were obtained on
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Fig. 5. Experimental data obtained: Top figure: output of the system. Bottom
figure: input applied to the system.

different days, thus, the equilibrium points are not exactly
congruent.
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Fig. 6. Top figure: outputs of the system. Bottom figure: inputs applied to
the system.

VIII. CONCLUSIONS

A tracking MPC controller using an SSK prediction scheme
has been presented in this paper. To be useful for this
application, the SSK method has been extended to consider
non-autonomous systems. Furthermore, kernel functions are
proposed to deal with system nonlinearities. The controller
considers hard constraints on the inputs and outputs. The
controller has been tested in two different application exam-
ples. The first one is a univariate simulated process, a CSTR.
On the other hand, the second example shows experimental
results with a laboratory temperature control process with
two inputs and two outputs. Both examples yielded good
results, thus validating the proposed controller and prediction
scheme. Future works include both the integration of a real-
time optimizer and the consideration of economic objectives
in the controller.



APPENDIX A
As shown in the following, problem (12) can be posed as a

canonical quadratic programming problem. For that purpose,
using the previous definition of the system shown in (9), it is
clear that, given a certain λ∗0, λ∗k can be obtained by iterating
λ∗0 repeatedly forward

λ∗k = Akλ∗0 +

k−1∑
i=0

Ak−1−i(Bui + c) .

As yk = Y λ∗k, then

ỹk = Y Akλ∗0 +

k−1∑
i=0

Y Ak−1−i(Bui + c) . (14)

Equation (14) can be written in matrix form as

y = n + Mu , (15)

where

n =


Y λ∗0

Y Aλ∗0 + c
...

Y ANp−1λ∗0 +
∑Np−2

i=0 Y ANp−2−ic

 ,

M =



0 0 0 · · · 0 0
Y B 0 0 · · · 0 0
Y AB Y B 0 · · · 0 0
Y A2B Y AB 0 · · · 0 0

...
...

. . .
...

...
Y ANp−2B Y ANp−3B · · · Y B 0 0


.

Then, the constraints (12e) and (12f) can be posed as

ΨMu ≤ Θ−Ψn

where

Ψ =

 ψ 0 0

0
. . . 0

0 0 ψ

 , Θ =

 θ
...
θ

 ,
and

u ≤ u ≤ u

where

u =

 umin
...

umin

 , u =

 umax
...

umax

 .
On the other hand, as it was previously stated, (λ∗s, us) are an
equilibrium pair, thus they satisfy

λ∗s = Aλ∗s +Bus + c,

then, they can be obtained as

λ∗s = (IN −A)
−1

(Bus + c) ,

ys = Y (IN −A)
−1

(Bus + c) ,

which can be written as

λ∗s =Wu + v,

ys = YWu + Y v,

where

W =
[
0 0 . . . 0 (I −A)

−1
B
]
,

v = (I −A)
−1
c.

Also, it is convenient to define

ys =

 ys
...
ys

 = WY u + vY ,

where

WY =

 YW
...

YW

 , vY =

 Y v
...
Y v

 .
Once reached this point, it is possible to write the output
tracking error term in matrix form. Now, making

L =

 Inu
0 0 −Inu

...
. . .

...
...

0 0 Inu
−Inu

 ,

Q =

 Q 0 0

0
. . . 0

0 0 Q

 , R =

 R 0 0

0
. . . 0

0 0 R

 ,
we obtain

Np−1∑
i=0

ls(y̆i, ŭi) = (y − ys)
⊤ Q (y − ys) + u⊤L⊤RLu

= (Mu + n − WY u + vY )
⊤ Q (Mu + n − WY u + vY )

+ u⊤L⊤RLu.

Also, lo(ys − r) can be written as

lo(ys − r) = (YWu + Y v − r)
⊤
O (YWu + Y v − r) .

It only remains to obtain a matrix expression for lt(λ∗Np
, λ∗s).

As it was already shown how to obtain λ∗s , it is only needed
to show how to obtain λ∗Np

. Using equation (14), we obtain

λ∗Np
= Tu + h,

where

T =
[
ANp−1B ANp−2B · · · B 0

]
,

h = ANp−1λ∗0 +

Np−1∑
i=0

ANp−1−ic,

and thus

lt(λ
∗
Np

− λ∗
s) = γ (Tu + h−Wu − v)⊤ P (Tu + h−Wu − v) .

It is easy to see that the optimization problem in (12) becomes

min
u

1

2
u⊤Hu + f⊤u + f0 (16a)

s.t. ΨMu ≤ Θ−Ψn (16b)
u ≤ u ≤ u. (16c)



where

H = 2((M − WY )
⊤Q(M − WY ) + L⊤RL

+W⊤Y ⊤OYW + γ((T −W )⊤P (T −W ))),

f⊤ = 2(n − vY )
⊤Q(M − WY ) + 2(Y v − r)⊤OYW

+ 2γ(h− v)⊤P (T −W ),

f0 = (n − vY )⊤Q(n − vY ) + (Y v − r)⊤O(Y v − r)

+ γ(h− v)⊤P (h− v).

Thus, the control action is computed as

u∗ = argmin
u

1

2
u⊤Hu + f⊤u (17a)

s.t. ΨMu ≤ Θ−Ψn (17b)
u ≤ u ≤ u, (17c)

where only the first component of the minimizer sequence u∗

is applied following a receding horizon scheme as usual in
any predictive controller.
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