
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 1

Probabilistically Certified Management of Data
Centers Using Predictive Control

A. Daniel Carnerero, Daniel R. Ramirez, Teodoro Alamo and Daniel Limon

Abstract—Data centers are facilities with large number of
servers providing cloud services. The increasing number of data
centers in use along the last years has generated environmental
concern due to the immense amounts of energy consumed by
them. This also includes some auxiliary services such as the
cooling equipment which is known to be very costly. For that
reason, efficient data center strategies are needed in order to
provide an acceptable Quality of Service (QoS) and suitable
temperature for every server while using the least amount of
resources possible. This paper presents some strategies to deal
with the unified workload and temperature problem that appears
in the data center. As the system is modeled as a queue and
the control variables have an hybrid nature, some highly par-
allelizable particle based optimization algorithms are proposed
to solve the optimization problem. Numerical simulations are
provided in order to illustrate the effectiveness of the strategy.
These simulations also show the improvements obtained from
the GPU computing. Finally, a probabilistic evaluation approach
is developed in order to provide certificates on the probability
of constraint satisfaction without increasing the computational
burden of the online problem.

Note to Practitioners—This paper addresses the problem of
deciding in real-time the number of active servers in a data
center that is required to meet the Quality of Service (QoS)
demands while keeping energy consumption at a minimum.
The temperature set point of the cooling equipment must be
also taken into account, as it is advisable to use the minimum
cooling that keeps the servers running in safe conditions. The
management strategy proposed is based on Predictive Control.
In this way, the number of active servers and temperature set
point will be chosen so that the future energy consumption is
minimized while guaranteeing that QoS and safety demands are
met under different possible operating conditions. Furthermore,
the proposed management strategy can be tuned depending on
the QoS that it is desirable to provide. The proposed strategy
will lead to energy-consumption improvements while having
guarantees on the data center performance.

Index Terms—Model Predictive Control, Constrained Opti-
mization, Data Center, Energy Efficiency, Particle based Algo-
rithms, Probabilistic Evaluation.

I. INTRODUCTION

Data centers are facilities composed by a large amount of
servers and the associated support infrastructure. The variety
of tasks that can be carried out by these infrastructures, such
as batch and interactive computation, web portals, etc [1] have
led to a sustained growing of the number of active data centers
in the last decades [2]. Some studies predict that data centers
within the U.S. will consume around 3000 TWh electricity by
2030 [3]. In addition to the economic burden derived from
the electricity prices, this extremely high power consumption

Dep. de Ingenierı́a de Sistemas y Automática, Escuela Técnica Superior de
Ingenierı́a,Universidad de Sevilla, Camino de los Descubrimientos s/n, 41020
Sevilla, Spain (e-mail: acarnerero,danirr,dlm,talamo@us.es).

also leads to serious concerns due to environmental issues [4].
Thus, improvements in the energy efficiency of data center
management are critical for a sustainable society.

The energy consumption of a data center can be broadly
associated to Information Technology (IT) equipment (i.e.
servers, storage) and infrastructure facilities, mainly the cool-
ing equipment [5], [6]. The total amount of energy consumed
will depend on both the design and the efficiency of the poli-
cies used to manage these facilities. An integrated data center
management must consider not only the thermal constraints
of the IoT equipments and the total energy consumption but
also keep the performance near the required levels at all times.
Thus, the way in which both the IT and cooling equipments
are used to operate the data center will have a great impact
on the overall energy consumption.

Many works in the literature are focused on developing
cooling policies to minimize the energy consumption within
data centers using only linear thermal models [7]–[9]. In
spite of being simple first order linear models, interesting
improvements were reported. However, better solutions could
be attained with a unified data center management. In this field,
works are rather scarce. For example, the paper [1] proposes a
control architecture where both thermal and tasks management
are taken into account. The data center is posed as a linear
first-order continuous system in its thermal component and
in the computational part. Task arrival rates are considered
deterministic, thus tasks arrive at fixed intervals. A QoS con-
straint is used to establish stability limits to the system. On the
other hand, in [10], several control policies assuming that the
maximum temperature of the servers are soft constraints are
proposed. Other techniques available are based on workload
distribution with some thermal aware criteria [11], [12]. Also,
a solution to the problem under the assumption that the re-
circulation of hot air is at constant temperature can be found
in [13].

Model Predictive Control [14] has also been applied to
this problem. In [15], a scheduling methodology based on
MPC and electricity prices is proposed in order to reduce
the economic impact. On the other hand, [16] unifies the
management with the cooling scheme, assuming implicitly
that servers have no limits to be overclocked, which is rather
unrealistic. Due to the complexity of the problem, in [17] it
is provided an approximation algorithm focused on providing
fast evaluations of the complex constraints that have to be
taken into account. However, the models appearing in the lit-
erature, under different assumptions, usually evade the fact that
the system is actually a queue model, simplifying drastically
the problem at the expense of a less realistic modeling.

In addition, due to the stochastic nature of the data center,

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 2

some considerations should be done. In the case considered in
this paper, the uncertainty comes from the random nature of
the task arrival times and their workload. Since it is difficult to
obtain guaranteed bounds for these uncertainties, robust MPC
based on deterministic settings [18], [19] are hardly applicable
or lead to very conservative results. Thus, strategies based on
randomized settings [20] like chance constrained MPC [21]
and the scenario approach [22], [23] are more suitable. The
main limitation of these approaches is that the number of
scenarios to be generated increases with the dimension of
the problem, becoming an intractable problem in many cases.
A possible solution to this problem is to consider a limited
number of scenarios in the control law computation, resulting
in a tractable online computational burden. Then, an offline
probabilistic validation could be carried out. This would certify
that the controller fulfills the state and control constraints with
a specified probability and confidence [24]–[26]. However, this
method only provides a “yes” or “no” answer if a specific
controller fulfills these probabilistic guarantees, being hard to
compare among all of them. Also, this could lead to non feasi-
ble solutions if none of the controllers satisfies the probabilistic
constraint. For that reason, a probabilistic evaluation approach
is proposed here. This allows us to compute the safety level
of each one of the proposed controllers to study the trade-off
between constraint satisfaction level and overall costs within
the data center. Note that these controllers can be completely
different between them or be the same controller with different
tuning hyper-parameters (back-offs, number of scenarios, etc).
That is, there is no restriction to the nature of the controllers to
be considered. This probabilistic evaluation is carried out by
means of closed loop simulations and does not depend on the
dimension of the problem, making the problem itself tractable.

This paper proposes an MPC framework for the optimiza-
tion of cold aisle data centers. The optimization objective
is to guarantee a certain QoS to the users and keep a suit-
able temperature of the servers while consuming the least
amount of energy possible. The data center is modelled as
a queue system where the arriving tasks can be computed
by multiple servers at the same time. Although it moves
away from the usual M/M/c queue and makes the treatment
more complicated, it allows more generality within the model,
where we can take into account some specific kind of data
centers like render farms [27]. Unlike other works available
in the literature, the full queue model is used to predict the
evolution of the system through the horizon, thus achieving a
more realistic modeling than that obtained from linear models.
Random arrival rates and workloads will be managed through
scenarios, adding more complexity to the model and thus
better reflecting the working conditions of a real data center.
The QoS is managed by imposing a hard constraint on the
number of powered servers in the optimization problem, thus
guaranteeing that tasks are executed within the pre-specified
time limits. Although there exist very optimized mixed-integer
solvers nowadays such as Gurobi [28], they are not suitable
for the related optimization problem. For that reason, particle
algorithms were chosen to deal with the optimization problem
[29]. These algorithms are highly parallelizable and can obtain
important speed ups with a GPU implementation [30]. This

allows us to solve the optimization problem within the sam-
pling time. An offline probabilistic evaluation scheme based on
closed-loop simulations is developed and it is used to provide
robustness to the proposed controllers.

The paper is organized as follows. In Section II, the model
of the data center is presented. Section III shows the proposed
controllers together with the particle based optimization al-
gorithms. In Section IV, the probabilistic evaluation scheme
is presented. Section V shows the simulation results of the
proposed strategies. Finally, in Section VI, conclusions and
some future works are presented.

II. DATA CENTER MODEL DESCRIPTION

Data centers are composed of thermally-isolated units in
which server racks are allocated typically following a Cold
Aisle (CA) structure as shown in figure 1. An important feature
of this arrangement is that air flow is separated into two
different flows, being the first a cold one which reaches every
server as it is blown from below the floor by means of suitable
built-in fans. This cold flow is provided by a Computer Room
Air Conditioning (CRAC) unit. The cold air travels through
the servers and gets heated. This hot air returns to the CRAC
unit through the ceiling. It should be noted that servers are
isolated from the hot air to avoid further heating.
C
R
A
C

C
R
A
C

Ceiling

R
A
C
K

R
A
C
K

R
A
C
K

CA
Unit R

A
C
K

R
A
C
K

R
A
C
K

Floor

Hot air

Cold air

Fig. 1. Scheme of a cold aisle data center structure.

The CRAC unit is necessary to keep the server temperatures
below certain security levels in order to ensure the servers
reliability. As almost all power consumed by servers is dis-
sipated as heat, CRAC operation is essential, but also very
costly because of the high number of servers involved in a
typical data center operation [5]. Thus any measure aimed
to achieve a more efficient thermal management of the data
center will have a great impact not only in operating costs
and environmental impact, but also in the QoS provided. In
the following, a discretized model of the data center dynamics
with an integration time step of ts is presented. The discrete
time unit will be denoted as k.

A. Tasks Model

In this section, a description of a data center operation based
on a queue model [10] is presented. The data center has M

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 3

available servers, although m, the number of booted servers,
can be lower. In this way, the number of servers working in a
specific moment can be manipulated according to the needs of
the users (workload) and under efficiency and QoS constraints.

For the whole data center, there exists a unique queue where
the task requests wait for their turn until they can be processed.
As it is accepted in the literature [10], [16], the time between
arrivals is assumed to follow an exponential distribution whose
mean is ka and probability density function

f(k) =
1

ka
e−

k
ka . (1)

Also, let L(k) be the request rate at instant k. That is, the
number of tasks that arrive to the data center at instant k.
Due to the exponential nature of the time between arrivals,
this can be modeled as a random variable following a Poisson
distribution with mean 1

ka
and probability mass function

g(n) =
1

n!

(
1

ka

)n
e−

1
ka . (2)

For an interval of length ku > 0 , ku ∈ Z, the number of
task arriving between [k k− ku], is denoted Lku(k) and the
probability mass function is

gku(n) =
1

n!

(
ku
ka

)n
e−

ku
ka , (3)

with mean ku
ka

.
It is also considered, as it holds in practice, that every

task has a workload potentially different from another. Then,
for a certain task y, the computational time Wy required to
accomplish it in a single server, is assumed to follow an
exponential distribution like (1) with mean 1

µ . In this way, the
workload W (k) will be defined as the average workload of the
L(k) tasks that arrived at instant k. Similarly, Wku(k) is the
average workload of the Lku(k) tasks that arrived between k
and k−ku. The parameters ka and µ also define the minimum
number of servers needed in the data center in order to prevent
that the queue does not grow infinitely. Then, M must satisfy
the following condition

M ≥ 1

kaµ
. (4)

B. Server Model

The variables needed to characterise the state xi(k) of a
certain server i at instant k are the number of tasks currently
running in the data center (α), the number of tasks in the queue
(β), the temperature of the cold air (Tc), the temperature of
the server (Ti) and the time instant in which the server i is
turned on (ki).

In order to determine the state of the whole data center,
it suffices to include the remaining Ti and ki. Therefore, the
complete situation x will be

xT (k) =
[
α(k), β(k), Tc(k), T1(k) . . . TM (k), k1 . . . kM

]
(5)

Servers will switch between four possible working condi-
tions:

• Off. The server does not draw any power.

• Booting. It is a transition from off to working or idle. It
takes a fixed amount of time kon as a pure delay. While
in this transition time, the server draws power at the same
rate as the idle condition.

• Working. The server is “on” and processing a certain task.
For simplicity, power is assumed to be drawn at a constant
rate. In practice this is equivalent to assume that no CPU
frequency scaling is used.

• Idle. The server is “on” but it is not processing any tasks.
It draws less power than in the previous condition. How-
ever, the server is consuming energy for doing nothing.

As usual in the literature and also for simplicity reasons,
the time needed to transition from “on” to “off” is assumed
to be negligible.

The transition from working to idle and vice-versa is as-
sumed to be instantaneous. Note that because of the transition
time kon and the power drawn in the booting process, it could
be advantageous to keep a server in idle state if it is expected
to be needed in a near future. Furthermore, the transition from
“off” to “on” is always immediately available (although it
takes a kon time to be completed), but the reverse, that is,
from “on” to “off”, is done in a deferred way, because the
server must be “on” until the current job is finished.

Taken into account the previous working conditions, denote
by ui if the server i is switched on (ui = 1) or off (ui = 0).
Then, the power consumption of a server i will be defined by
the following

pi(k, xi, ui) =

0 if off (ui = 0)

a2 if booting
(ui = 1, α ≥ 0, k − ki < kon)

a2 if idle
(ui = 1, α = 0, k − ki ≥ kon)

a1 + a2 if working
(ui = 1, α > 0, k − ki ≥ kon)

where a1 is the marginal consumption and a2 the minimum
consumption.

The management approach researched in this paper does
not deal with the task scheduling of the data center [31]. We
assume that the distribution of the tasks among the servers
follows a certain known policy. It is assumed that a task can
be split among multiple servers (up to M). However, a single
server can only work for the completion of a single task.
These assumptions complicate the mathematical modelling of
the data center as it will not work as a M/M/c queue in which
each task is scheduled to be executed in a single server, but it
will result in a more general data center model. On the other
hand, no server will be idle if there is at least one running
task. This also implies that every idle server starts to work at
the moment a task request arrives.

These server assignment policies imply, from an implemen-
tation point of view, the existence of a pool of running tasks
no larger than the number of servers in “on” condition (i.e.,
“working” or “idle”). Once a task is ready to be processed (i.e.,
is at the front of the queue and the pool has one or more empty
slots), it is assigned to at least one server and never leaves the

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 4

pool until it is finished. That is, the remaining workload of
each task is strictly decreasing.

Let m(k) be the number of servers turned on at instant k
(i.e. working or idle). Then, the processing of a task is done
in the following way. Assume that only a certain task y with
workload Wy is within a pool of m(k) servers (α(k) = 1). The
workload of the task Wy is the number of “work packages”
that have to be processed in order to complete the task. At
instant k, m(k) servers are assigned to this task (due to being
the only task in the pool). Thus, every server will compute a
“work package” resulting in m(k) “work packages” executed.
If there are no “work packages” left for the instant k+ 1, the
task is completed and dropped from the pool. If the pool is
full at a certain instant k (i.e. α(k) = m(k)), the assignation is
trivial, that is, every task will be assigned a unique server. For
the case where 1 < α(k) < m(k), the tasks will be assigned
to one server and the task with largest remaining time will be
assigned to m(k) − α(k) servers. This makes sense because
it will achieve better QoS.

C. Thermal Model

The thermal model of each server is derived from the
following thermal balance equation

Kt
dTi(t)

dt
= cp qa(t)(Tc(t)− Ti(t)) + pi(t) , (6)

where Tc and qa are the temperature and flow of the cold air
provided by the CRAC unit, Ti and pi are the temperature
and power consumption of server i respectively, Kt the server
thermal capacity and cp the air heat capacity. In a discrete
setting with an integration step ts, equation (6) turns into

Ti(k+1) = Ti(k)+
ts
Kt

(cp qa(k) (Tc(k)− Ti(k)) + pi(k)) .

(7)
In order to guarantee server reliability, it is necessary to keep
the servers temperature under certain safety levels as stated by
the following hard constraints

Ti ≤ 80◦C ∀i ∈M . (8)

From the variables that affect Ti in (7), in this paper it will
be considered controllable pi (through the state of the server)
and Tc which is assumed to be regulated by the set point Tr,
that is, the desired temperature of the cold air provided by the
CRAC. Thus Tc will follow Tr with a closed loop dynamics
that it is assumed to be first order with a certain time constant
τ and unity gain

τ
dTc(t)

dt
= Tr(t)− Tc(t) . (9)

Same as before, equation (9) turns into

Tc(k + 1) = Tc(k) +
ts
τ

(Tr(k)− Tc(k)) . (10)

On the other hand, the possible values of Tr must satisfy

15◦C ≤ Tr(t) ≤ 25◦C . (11)

Also, the CRAC unit coefficient of perfomance (CoP) will
change depending on the cold air temperature (Tc). The CoP

represents how expensive is to cool the inlet air till a certain
temperature, meaning that at lower temperatures it will need
more power consumption to reach it. As the CoP increases,
the cost will decrease. It can be calculated from the following
equation

CoP(Tc(k)) = 0.0068Tc(k)2 + 0.0008Tc(k) + 0.458 , (12)

which is widely adopted in the literature [12]. Thus, let
M∑
i=1

pi(k, xi, ui) be the server power consumption at time

instant k. The power consumption at the CRAC unit is

M∑
i=1

pi(k, xi, ui)

CoP(Tc(k))
. (13)

The total power consumption will be then the power drawn
by the servers added to the CRAC power consumption, thus

M∑
i=1

(
1 +

1

CoP(Tc(k))

)
pi(k, xi, ui) . (14)

D. Quality of Service

The Quality of Service (QoS) of a task is defined as the
time that is required to complete it since its arrival until
its completion. It includes the wait time in the queue and
the execution time once it is within pool. It is necessary to
guarantee the data center clients that this time will be lower
than an agreed one.

If the tasks were assigned to just one server, like in an
M/M/c queue (or Erlang-C model), the mean service time
would be

tc(k) =
1

m(k)
W (k) − L(k)

. (15)

This measurement would be used in practice with estimations
of W (k) and L(k), denoted as Ŵ (k) and L̂(k) respectively.
However, in the proposed approach, assuming that a task
can be executed concurrently by a number of servers, the
aforementioned measure is used to provide an upper bound
of the mean service time since in this case it only can be
lower or equal

tsv(k) ≤ 1
m(k)

Ŵ (k)
− L̂(k)

(16)

where Ŵ (k) is the expected value of W (k) at instant k for
the next L̂(k) requests and L̂(k) is the estimation of L(k) at
instant k. We consider that the QoS is satisfied at instant k if
the mean service time is no larger than a specified value D.
Thus, the QoS constraint is satisfied if the following condition
holds

1
m(k)

Ŵ (k)
− L̂(k)

≤ D

which implies that

m(k) ≥ Ŵ (k)

(
1

D
+ L̂(k)

)
. (17)

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 5

The term on the right represents the minimum number of
servers to fulfill the QoS constraint with a certain L̂, Ŵ and
D. This can be written as

mD(k) = Ŵ (k)

(
1

D
+ L̂(k)

)
. (18)

III. DATA CENTER MANAGEMENT APPROACH

In this paper, an optimal management policy inspired on
predictive control strategies is proposed. This controller de-
termines the number of servers that are to be on or off and
the set point temperature of the CRAC machines. The criteria
to decide the optimal values for those variables will be the
energy consumption and the control effort of the inputs (i.e.
server switching and temperature reference changes) subject
to thermal and QoS constraints.

First of all, we assume that the dynamics of the queue, task
arrivals, etc. run much faster than the process of switching
on a server (i.e. kon � 1). With such a large delay in the
control actions, the control decisions have to be made in a
superior time scale and separate them over time. This leads us
to a scheme where the predictive controller is not executed at
every instant k but it is executed at every instant kmts where
km is the number of instants between the controller execution.
Thus, the sample time of the controller is kmts. In order to
avoid switching off a server that is still booting (that is, never
reached the “on” state and did nothing but consuming power),
we take a sampling larger than the switching on time, i.e.
km ≥ kon.

Based on the model, the expected evolution of the data
center can be estimated and then, we can associate a predicted
cost to a sequence of candidate future control inputs. For
clarity purposes, we denote `j = k + jkm. This will work
as the time scale of the MPC controller. In this paper, we
propose the following predicted cost function to measure the
expected performance of the data center:

V (`0,x,u,Tr) =

Np∑
j=0

M∑
i=0

(
1 +

1

CoP(Tc(`j))

)
pi(`j , xi, ui)

+ λu

Nc∑
j=0

|∆u(`j)|+ λTr

Nc∑
j=0

|∆Tr(`j)| , (19)

where Np and Nc are the prediction and control horizons,
x is the sequence of x(`j) over the prediction horizon, u
and Tr are the sequences of “on”-“off” control actions of all
servers and temperature set points through the control horizon
respectively, ∆u(`j) is the total number of commutations to
either “on” or “off” at instant `j , ∆Tr(`j) is the increment
in Tr(`j), λu is a term weighting ∆u(`j) and λTr

is a term
weighting ∆Tr(`j). Also, the control actions further from the
control horizon are considered to remain constant.

In order to derive the proposed controller, it is necessary
to determine a prediction model such that for a given state at
time `j , x(`j) and for given control actions u(`j) and Tr(`j)
(that will remain constant throughout the sampling time km),
the state of the data center predicted at the next sampling
time x̂(`j+1) is calculated depending on the estimation of

the number of tasks and their workload L̂km(`j+1) and
Ŵkm(`j+1). This prediction model can be posed as:

x̂(`j+1) = f(x(`j), u(`j), Tr(`j), L̂km(`j+1), Ŵkm(`j+1)) ,
(20)

being f(·) the function that compute the following state given
the previous one, the inputs and the realisations of Lkm and
Wkm . Note that the function f(·) must compute all events
happening thorough the interval km for every instant k in order
to be able to return the state at the following sample time.

The optimal predicted number of servers and set point
temperatures for the CRAC will be then computed as the
solution of the optimization problem

min
m(`j),Tr(`j)

V (`0,x,u,Tr)

s. t. x̂(`j+1) = f(x(`j), u(`j),

Tr(`j), L̂km(`j+1), Ŵkm(`j+1))

m(`j) ∈ [1, M] ∀j ∈ [0, Nc] (21)
u(`j) = switch(m(`j)) ∀j ∈ [0, Nc]

15◦C ≤ Tr(`j) ≤ 25◦C ∀j ∈ [0, Nc]

Ti(`j) ≤ 80◦C ∀i ∈M ∀j ∈ [1, Np]

m(`j) ≥ mD(`j) ∀j ∈ [1, Np] ,

where switch(·) represents the policy to select which servers
are to be switched on. In this paper, a simple scheme is
proposed for such policy. That is, for a given number of
servers, the first m(k) will be switched on.

As it is customary in predictive controllers, the solution
of (21) is applied in a receding horizon manner, meaning that
only the control actions and temperature set points are actually
applied (i.e., ui(`0) and Tr(`0)) while the remaining decision
variables (ui(`1), . . . , ui(`Nc−1) and Tr(`1), . . . , Tr(`Nc−1))
computed at time k are discarded. The optimization of (21)
is then repeated at each sampling time so that the decision
variables to be applied are computed using the real state of
the data center at that sampling time.

It should be noted that in this optimization problem some of
the variables are integer (number of servers on) whereas other
are real valued (the set-point temperatures). This, together with
the complexity of the data center model motivates the use of
specialized optimization algorithms to solve (21), such as a
particle based optimization technique [29], [30] that will be
exposed in the following subsection.

A. Particle based optimization

In these techniques of iterative nature, a set of possible
candidate solutions (called particles) are evaluated at each
iteration and used to generate a new candidate solution set
that may be nearer to the solution of the optimization problem.
Here, the evaluation of each particle will be done by means
of simulations that will be used to assess the performance of
each candidate solution. The main ingredients of the proposed
technique are:

• Particles are candidate solutions of the optimization
problem. That is, a sequence of control actions over the
control horizon. At higher problem complexity (i.e., more

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 6

servers and longer control horizons), more particles are
needed in order to obtain a solution close to the optimal
one [32].

• Weights. Particles have associated a weight that represents
how good is a particle compared with the others. In this
work, the weight is based on the performance cost of each
particle computed by means of a computer simulation
of the data center model. These simulations predict the
evolution of the data center along the prediction horizon
if the decision variables are those of the particles. Once
the simulations for all particles are completed (this can be
done in parallel), a scaling of the performance costs of the
particles is made. Let Vmax and Vmin be the maximum
and minimum costs attained on the set of particles under
evaluation. If a given particle z , (m(·),Tr(·)) has a
performance cost Vz , then the scaled cost will be

Ṽz =
Vz − Vmin
Vmax − Vmin

(22)

which guarantees that Ṽz ∈ [0, 1]. Then the weight of the
particle z will be defined as

σz = 1− Ṽz, (23)

meaning that particles with higher costs will have lower
weights and vice versa. This is very important for the
resampling phase.

• Feasibility checking. Those particles that do not satisfy
the constraints in (21) will be assigned a zero weight so
that they cannot be selected in the resampling stage.

• Resampling is the step where a new generation of parti-
cles is created based on the performance (weights) at the
previous iteration. This is done by means of the Kitagawa
resampling algorithm with stratified scheme [33]. The
aim of this method is to form groups of particles with
good performance in different areas of the feasible set of
solutions. In this way, the risk of getting stuck at a local
minimum is reduced because the algorithm considers all
particles and not only the best one. Particles with higher
weights are more likely to be resampled at next iteration
(i.e., selected to be included in the next particle set).

• Perturbation. This process is inherently connected to
the previous one. Once particles are resampled, it is
necessary to ”move” them along the local search space in
order to discover new feasible solutions with potentially
lower costs. In this work, the perturbation is made by
adding a gaussian white noise. Figure 2 shows the result
of the resampling and perturbation steps in a 2 degree
of freedom minimization example. At first, there exists
a set of random-generated particles. At next iteration,
after resampling and perturbation, particles move towards
better possible solutions according to the costs obtained
previously. In our case, the optimization variables are
integer, thus this process ends rounding to the nearest
integer.

• Reseeding. The initial set of particles should be gener-
ated in a random manner. However, for the subsequent
sample times, the reseeding can be done by exploiting
the receding horizon nature of the predictive controller.

Then consider the solution of (21) for a given sampling
time k

m∗(`0) =

m∗(`0 | k)
m∗(`1 | k)

...
m∗(`Nc−1 | k)

 ,

Tr
∗(`0) =

T ∗
r (`0 | k)
T ∗
r (`1 | k)

...
T ∗
r (`Nc−1 | k)

 .
Thus, a particle generated as the shifted version of the
solution for `0

m(`1) =

m∗(`1 | k)

...
m∗(`Nc−1 | k)
m∗(`Nc−1 | k)

 ,

Tr(`1) =

T ∗
r (`1 | k)

...
T ∗
r (`Nc−1 | k)
T ∗
r (`Nc−1 | k)

 .
would be a good candidate solution for (21) in `1 al-
though it may not be optimal. Note that the last control
action is repeated. Thus, the reseeding scheme is based on
including in the initial particle set some shifted versions
of the best particles (those with greater weight) of the
final set obtained in the previous sampling time. These
reseed particles will not be perturbed so that they can not
be lost in the resampling process. Furthermore, in the
resampling step, the reseed particles will lead to more
particles close to them, and those may attain a higher
weight. Note that the fact that a set of reseed particles is
used instead of just one reduces the probability of getting
stuck in a local minima.

The particle algorithm is shown in Algorithm 1. According
to the receding horizon approach described earlier in section
III, Algorithm 1 is executed at each sampling time, yielding
as a result a sequence of number of servers to be on and set
point temperatures.

The stop condition can be just a fixed number of iterations
or a more elaborated scheme such as a small improving rate
of the cost of the best particle at each iteration.

1) Prediction of the future values of Lkm and Wkm : In
the proposed strategy, the QoS constraint is evaluated for
time intervals of length km, thus it is needed to estimate
Lkm and Wkm . It is assumed within the controller that tasks
will arrive uniformly every ka time units (that is, the mean
time of the exponential distribution (1)). On the other hand,
the workload of these incoming tasks will also be assumed
to be the expected value of the corresponding exponential
probability distribution, that is, 1

µ . These values will be used
by the controller to evaluate the QoS constraint.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u
2

Fig. 2. Optimization example with two real decision variables.

Algorithm 1: Particle based optimization.
Data: χ (Number of particles), Np , Nc (Prediction

and Control Horizon respectively), V (·, ·)
(Cost Function), χt (Number of particles to
reseed).

Result: Proposed control sequence m,Tr.
1 Reseed χt particles that showed best performance at

previous time step;
2 Generate randomly new control actions for χ− χt

particles;
3 Estimate L̂km and Ŵkm ;
4 repeat
5 Predict the system evolution for each particle

along the prediction horizon;
6 Verify the feasibility of each particle and set

weight zero for the unfeasible ones;
7 Calculate cost and weight for each particle;
8 Resampling process considering all particles;
9 Perturbation of particles excluding the χt reseed

particles;
10 until a stop condition is fulfilled;
11 Choose as result the particle with greatest weight;

B. Scenario based optimization

Another scheme for the estimation of Lkm and Wkm is
proposed at the expense of a heavier computation burden. As
the probability distribution of Lkm and Wkm are assumed
to be known, it is possible to draw random sequences of
those variables which will be called scenarios. These scenarios

represent hypothetical realizations of the variables in the
future and, as such, will be considered in the computation
of the optimal number of servers and temperature set points.
Algorithm 2 shows how to consider the scenarios.

Algorithm 2: Scenario PbO.
Data: χ (Number of particles), Np , Nc (Prediction

and Control Horizon respectively), V (·, ·)
(Cost Function), χt (Number of particles to
reseed), S (Number of scenarios).

Result: Best control sequence m∗,Tr
∗.

1 Reseed χt particles that showed best performance at
previous time step;

2 Generate randomly new control actions for χ− χt
particles;

3 Set the weights to an initial value 1
χ ;

4 repeat
5 for every scenario do
6 Extract a sequence of arrivals and workloads

from the distributions;
7 Estimate L̂ and Ŵ ;
8 Predict the system evolution for each particle

along the prediction horizon;
9 Verify the feasibility of each particle and set

weight zero for the unfeasible ones;
10 Calculate cost and update weight for each

particle;
11 end
12 Scale particle weights;
13 Resampling process considering all particles;
14 Perturbation of particles excluding the χt reseed

particles;
15 Reset the values of the weights to 1

χ ;
16 until a stop condition is fulfilled;
17 Choose as result the particle with greatest weight;

The main change from Algorithm 1 is the addition of a
“for” loop over all the scenarios. As the first step in each
iteration of this “for” loop, each scenario is drawn according
to the probability distributions of L and W . Once this has
been done, the evolution of the system is predicted like in
algorithm 1. The same goes for the feasibility verification of
the particles.

There are also several changes about the costs and weights
computation and meaning. In algorithm 1, the weight was
assigned directly once the cost was calculated applying equa-
tion (23). This could be done because there was only one
scenario (the expected values of the random variables). Now,
it is necessary that weights show the performance of each
particle for all scenarios. We chose to give them an initial
value of 1

χ and update them at each iteration of the “for” loop
with the information obtained from the scenario considered at
that iteration. The particle with the best cost will maintain its
weight meanwhile the rest will decrease theirs according to
how good their performance were. This is done by means of
the following equation:

σz ← σz(1− Ṽz) . (24)

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 8

The weights are now updated as the product of the old weight
and the new one computed from the cost in a specific scenario.
At the end of the “for” loop, it is required by the Kitagawa
resampling that the sum of the weights must be equal to one.
This is because the weights represent a discrete probability
density function. For that reason, the weights are scaled in
line 12. This is done using the following equation:

σz ←
σz∑χ
z=1 σz

. (25)

Also, it is important to reset the values at line 15 due to the
new weight updating from equation (24).

Taking into account different realisations of the random
variables will turn out to be a more conservative solution of
the initially proposed algorithm because of step 9. It means
that for a certain sequence of arrivals and workloads, particles
which do not fulfill the conditions on maximum temperature
and QoS will not be resampled at next iteration. That is, they
will disappear. In algorithm 1, this condition was checked only
once for the sequence obtained from the mean values of the
distributions. However, in algorithm 2, it is necessary to fulfill
this condition in every scenario (which is more restrictive).

C. Parallel implementation using GPU computations

Since its initial release in 2007, CUDA has become the first
programming platform that allowed general purpose comput-
ing on GPUs [34] and it has still better performance than
other interfaces such as OpenCL [35]. The main advantage
of GPU computing is the decrease of the computation time
[36] provided that the tasks considered fit in the CUDA
programming model which is based on a Single Instruction
Multiple Thread (SIMT) scheme [37].

Because of its nature, the particle algorithms proposed
are highly parallelizable in some of their steps such as the
prediction of the system evolution, feasibility verification, cost
calculation and weight updating. Others can not be completely
parallelizable (i.e. the resampling process) due to the nature
of the Kitagawa resampling [33]. The reason of this is that
the computation of the cumulative probability density function
requires that a certain thread z knows the value of the thread
z − 1 to do its job. Thus this resampling must be done in a
pure sequential manner.

For simplicity, the simulations presented in this section have
been coded in CUDA C kernels called from Matlab scripts.
Although not the most efficient way of using GPU computing
with CUDA, it allows an easy integration with Matlab CPU
code.

IV. PROBABILISTIC EVALUATION

Once reached to this point, we notice that the algorithms
proposed in the previous sections have some design parameters
that have to be chosen (i.e. Nc, the control horizon and
S, number of scenarios). Depending on these parameters,
a different controller will be obtained. In this section, we
propose a method to compute the constraint satisfaction level
for a given controller in order to be able to compare their
performance. This is in general an unmanageable problem

under the presence of unbounded uncertainty and non linearity
within the model [38]. For example, in a statistical learning
theory approach, the number of samples to be considered can
be very high when the accuracy parameter is relatively small
[39], [40], making the online problem intractable in some
cases.

An alternative would be to use an offline probabilistic
validation scheme [24] that reduces the online computational
burden required to endow the controller with probabilistic
guarantees. Those guarantees imply that the controllers does
not violate the imposed constraints with a pre-specified prob-
ability and confidence.

However, in this case, we opt for a probabilistic evaluation
scheme of our controllers instead. The main difference is
that the probabilistic validation scheme only gives a “yes”
or “no” answer to a certain controller if, with a pre-specified
probability and confidence, the controller achieves the desired
performance, in this case the constraint satisfaction. On the
other hand, the proposed probabilistic evaluation scheme com-
putes a different constraint satisfaction level for each controller
given the desired confidence level 1 − δ, which would let us
better compare the results.

For the sake of simplicity, only the QoS constraint will be
considered in the following, although it can be easily extended
to the temperature constraint as it is done in the numerical
results.

Let Yi be the number of tasks that a certain controller i must
complete and si ∈ [0, Yi] be a random variable showing the
total number of QoS violations for that controller. Then, an
empirical violation rate of the controller i for a certain number
of completed tasks Yi will be defined as

s̄i
Yi

=
QoS violations

Total number of tasks
.

Definition 4.1: Failure. Assuming that the real violation rate
is greater than a certain quantity ρi + ∆ρi, with ρi ∈ [0, 1),
∆ρi > 0, a failure is considered to occur when an empirical
violation rate of the controller is lower or equal than ρi.
That is, a failure happens when the empirical violation rate
leads to misleading results. The following theorem proves that,
with a properly chosen ∆ρi, failures occur with a probability
lower than a small confident parameter δ. This definition
of failure is slightly different than the one presented, for
example, in [39]. Denoting E(·) as the expectation operator,
the following theorem summarizes the result of this section.

Theorem 4.1 (Bound on the empirical constraint satisfaction
level): Assume that

E

(
si
Yi

)
> ρi + ∆ρi ,

with ρi ∈ [0, 1] and ∆ρi satisfying

∆ρi ≥
1

Yi
log

1

δ
+ 2

√
ρi
Yi

log
1

δ
. (26)

Then,

Pr
{
s̄i
Yi
≤ ρi

}
≤ δ ,

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 9

where s̄i is an empirical value of si. This implies that the
real constraint satisfaction level is bounded by ρi + ∆ρi with
probability greater than 1− δ.
Proof. We are interested in upper bounding Pr

{
s̄i
Yi
≤ ρi

}
under the assumption that E

(
si
Yi

)
> ρi + ∆ρi. Since the

number of empirical violations grows with E
(
si
Yi

)
, we have

that this probability has a maximum when E
(
si
Yi

)
= ρi+∆ρi.

That is,

Pr
{
s̄i
Yi
≤ ρi |E

(
si
Yi

)
> ρi + ∆ρi

}
≤

Pr
{
s̄i
Yi
≤ ρi |E

(
si
Yi

)
= ρi + ∆ρi

}
.

Once reached this point, we notice that the probability of QoS
violation for a certain task and controller i can be interpreted
as a Bernoulli random variable. Therefore, the probability
of having less than a certain number of violations for some
number of trials can be expressed as the binomial tail.

On the other hand, consider a random variable X following
a binomial random distribution B(N, p) and given a constant
x, we have from Chernoff’s bound [41], [42] that if x ≤ p
then

Pr
{
X̄

N
≤ x |E

(
X

N

)
= p

}
≤ exp (−Nϕ(x, p))

where exp(·) refers to the exponential function and

ϕ(x, p) = x log
x

p
+ (1− x) log

1− x
1− p

.

The convergence rate provided by this bound is known to be
tight from Cramér’s theorem of large deviations when N →∞
([43], chapter 23 in [44]). It is easy to see that the above
Chernoff’s bound can be applied to our problem making X̄ =
s̄i, N = Yi and ∆ρi > 0, obtaining

Pr
{
s̄i
Yi
≤ ρi |E

(
si
Yi

)
= ρi + ∆ρi

}
≤

exp (−Yiϕ(ρi, ρi + ∆ρi)) .

Thus, we can design this upper-bound to be lower than the
confidence δ by imposing

exp (−Yiϕ(ρi, ρi + ∆ρi)) ≤ δ .

Taking logarithms in both sides and rearranging the terms, we
obtain

ϕ(ρi, ρi + ∆ρi) ≥
1

Yi
log

1

δ
. (27)

We have that ∆ρi is embedded within the function ϕ(ρi, ρi +
∆ρi) so, in order to be able to obtain a closed expression for
∆ρi, we apply the bound presented by Okamoto (Lemma 2
in [42])

ϕ(ρi, ρi + ∆ρi) ≥
(√

ρi + ∆ρi −
√
ρi

)2

.

Thus, we obtain the following sufficient condition for equation
(27) (√

ρi + ∆ρi −
√
ρi

)2

≥ 1

Yi
log

1

δ
.

For ∆ρi ≥ 0, this is equivalent to√
ρi + ∆ρi ≥

√
ρi +

√
1

Yi
log

1

δ
,

and thus

ρi + ∆ρi ≥
(
√
ρi +

√
1

Yi
log

1

δ

)2

.

This is easily rewritten as

∆ρi ≥
1

Yi
log

1

δ
+ 2

√
ρi
Yi

log
1

δ
.

This completes the proof. �
Using the previous results, the probabilistic evaluation

scheme will be carried out using the following steps for each
controller to be validated:

1) Determine a number of closed loop simulations (H).
Note that higher H implies higher Yi and thus lower
∆ρi. In practice, H should be chosen as the highest
affordable value.

2) Run H closed loop simulations with different values of
the parameters in the probability distributions in the data
center model to reflect different operating conditions.

3) Denote Yi,H as the number of tasks executed during the
H simulations for controller i and si,H as the number
of QoS violations in the Yi,H . Then, after running
these simulations for every controller, Yi,H and si,H are
known. Then compute ρi as

ρi =
si,H
Yi,H

. (28)

4) Once done that, ∆ρi can be calculated for each con-
troller with equation (26) for the specified confidence
1 − δ. In case that the resulting ∆ρi is considered too
large, it is possible to repeat from step (1) with an
increased number of simulations.

5) Choose the best controller according to the desired
criteria. For example, minimum constraint violation per-
formance, trade-off between constraint satisfaction level
and operating costs, etc.

V. NUMERICAL SIMULATIONS

The proposed management schemes and the probabilistic
validation method will be illustrated by means of examples.
The improvements from the parallel implementation will be
also shown.

Four controllers with different parameters will be compared
by means of simulations. These simulations have a fixed time
step of 2500 time units. A number of H = 100 simulations
were enough to have a large number of tasks to apply the
probabilistic evaluation method explained above. In each one
of these simulations, to reflect different operating conditions,
the variables L and W were given different mean values taking
into account the maximum workload and number of tasks that
a data center of M = 25 servers can handle with respect to
equation (4). Note that the number of completed tasks Yi will
depend on the values of L and W .

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 10

On the other hand, the integration step is ts = 1s, the
sampling time of the controller km = 100 time units (i.e.
100s) and the prediction horizon is set to Np = 10 sampling
times (i.e. 1000 time units). Also, the maximum temperature
and QoS are set to 80◦C and 50 time units respectively.
On the other hand, the time constant of the CRAC unit is
τ = 180 time units. The values of the power consumption
are a1 = 180W and a2 = 120W . Other thermal parameters
like the server thermal capacity and the product of the air
heat capacity times the air flow are Kt = 160 J

K and
cp qa = 5 W

K . The weighting factors in (19) are λu = 200 and
λTr = 100. Finally, table I shows the parameters of the four
controllers considered and the line pattern for every controller
in the following figures.

C1 S-Pbo,Nc = 1, S = 25 Solid line Orange
C2 S-Pbo,Nc = 5, S = 25 Dotted line Blue
C3 Pbo,Nc = 1 Dashed-dotted line Purple
C4 Pbo,Nc = 5 Dashed line Yellow

TABLE I
CONTROLLERS CONSIDERED AND LINE PATTERNS. PBO REFERS TO

ALGORITHM 1 WHEREAS S-PBO REFERS TO ALGORITHM 2

Figure 3 shows the mean queue length, number of “on”
servers in and number of idle servers. It can be seen how the
controller without scenarios and longest control horizon Nc
(C4) has the largest mean queue length in the experiments.
This implies longer waiting times and, thus, the elapsed time
to be expected for a certain task with this controller will
be higher. Taking into account multiple scenarios, as in C2,
results in a lower queue length. This come from the fact
that considering multiple scenarios yields a more robust and
conservative management. The other controllers (C1 and C3)
shows the effect of working with minimal control horizons.
In that case, the controller is forced to satisfy the constraints
along a large prediction horizon with few degrees of freedom,
resulting in a more conservative management in the case of
C1 that keeps the queue length very small at the cost of a
greater power consumption and very similar to C4 for C3. That
is, without taking into account scenarios, the operation of the
controllers is practically not affected by the control horizon. A
more conservative management also implies a higher number
of “on” servers, as shown in the middle subplot, and also
more idle servers (bottom subplot) when the real operating
conditions are less demanding than the predicted ones. Having
more servers “on” but idle also make sense in order to be
able to deal with the unknown upcoming tasks, due to the
delay time kon needed to get the servers active from the “off”
condition.

Figure 4 shows the mean values of the terms of the cost
function (19) for each controller. The top subplot shows the
power consumption term in Watts (W). As it can be guessed,
the controllers with larger number of active servers will have
greater power consumption, due to the consumption of the
servers themselves but also for the greater consumption of the
CRAC unit (which following (12) is assumed proportional to
that of the servers). The lower subplots are referred to the
control efforts of the control actions. Here, it can be seen

0 500 1000 1500 2000 2500
0

0.5

1

1.5

0 500 1000 1500 2000 2500
4

6

8

10

0 500 1000 1500 2000 2500

Time (s)

0

2

4

6

Fig. 3. From top to bottom, Mean Queue Length, Mean Number of On
Servers and Mean Number of Idle Servers

that the controllers with Nc = 5 tend to change more their
control actions which leads to greater control efforts, but also
facilitates a more tuned application of the control action that
results in lower overall costs as seen in Figure 5. In this
figure, the instantaneous total cost for each controller is shown.
As expected, the more conservative controllers are the most
expensive ones in terms of performance cost.

0 500 1000 1500 2000 2500
1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500
0

500

1000

0 500 1000 1500 2000 2500

Time (s)

0

200

400

Fig. 4. From top to bottom: Mean Power Consumption, Mean Control
Effort for booting servers and Mean Control Effort for changing the CRAC
temperature reference

0 500 1000 1500 2000 2500

Time (s)

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Fig. 5. Instantaneous total cost

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 11

A. Probabilistic evaluation
Once all simulations are carried out, the probabilistic evalu-

ation scheme proposed in the section IV can be applied to the
four controllers. Table II shows the results of the probabilistic
evaluation for the QoS constraint. The final result is shown in
the ρi+∆ρi column which is the upper bound (with confidence
1 − δ) of the probability of not meeting the agreed service
time D. Lower numbers imply better probabilistic guarantees,
which as expected corresponds to the more conservative con-
trollers (C1 and C2).

ρi ρi + ∆ρi Yi

S-Pbo, Nc = 1 0.0032 0.0050 65960
S-Pbo, Nc = 5 0.0040 0.0060 65926
Pbo, Nc = 1 0.0278 0.0328 65708
Pbo, Nc = 5 0.0337 0.0392 65678

TABLE II
PROBABILISTIC EVALUATION OF THE PROPOSED CONTROLLERS FOR THE

QOS CONSTRAINTS WITH δ = 10−6

The probabilistic evaluation has also been applied to the
temperature constraint with table III summarizing the results.
In this case, Y stands as the number of total time instants for
all the simulations H (which were all of the same length), and
the upper bound is on the probability of reaching a temperature
higher than 80◦C. Again the more conservative a controller is,
the better its probabilistic guarantees, but at the expense of a
higher cost.

ρi ρi + ∆ρi Yi

S-Pbo, Nc = 1 0.0000 0.0055 2500
S-Pbo, Nc = 5 0.0000 0.0055 2500
Pbo, Nc = 1 0.0001 0.0071 2500
Pbo, Nc = 5 0.0000 0.0055 2500

TABLE III
PROBABILISTIC EVALUATION OF THE PROPOSED CONTROLLERS FOR THE

MAXIMUM TEMPERATURE CONSTRAINT WITH δ = 10−6

B. Parallel computation improvement
In order to prove the speed-ups obtained with a parallel

implementation, the algorithms have been implemented in the
CPU and also in a CUDA capable GPU using the indications
of section III.C The CPU version is coded completely in
Matlab while the GPU version uses Matlab code for the serial
operations and C code for the CUDA kernels. Table IV shows
the execution time of the controllers for a different number of
particles. Cells with a hyphen mean that the time exceeded the
sampling time. On the other hand, figure 6 shows the relative
speed-up for different numbers of particles.

As it can be expected, at a higher number of particles, the
execution time within the CPU grows strongly whereas the
GPU time yields almost constant in comparison which leads to
the increasing slope shown in figure 6. It also should be noted
that once reached a number of particles greater than 1000, the
execution times of the CPU become unmanageable and the
simulations are extremely costly. However, this improvement
will stop increasing and remain constant once reached the
point where the GPU is saturated.

S-Pbo GPU S-Pbo CPU Pbo GPU Pbo CPU
10 17.0931 23.4282 0.6974 1.0001
100 17.8046 - 0.7230 9.4192

1000 30.2881 - 1.2267 93.6546
10000 91.4658 - 3.7208 -

TABLE IV
MEAN COMPUTATION TIME OF THE CONTROLLERS IN SECONDS.

0 100 200 300 400 500 600 700 800 900 1000

Number of Particles ()

0

10

20

30

40

50

60

70

80

E
x
e

c
u

ti
o

n
 s

p
e

e
d

-u
p

Fig. 6. Speed-up obtained with the GPU computing for the controller
execution.

C. Computation time analysis

Also, an analysis of the computation time of the algorithm
with respect to different number of servers has been done
in order to study its behavior for the problem of large data
centers. The results are shown in figure 7. We also add to
the figures a polynomial of order n = 2 that confirms a
quadratic complexity. Thus, the algorithm is feasible from a
computational point of view and it can be used with larger data
centers. Nevertheless, for higher numbers of servers, besides
adding more computational power, one could consider multiple
controllers each one for each cold aisle or consider that the
control actions handle clusters of servers instead of individual
ones.

VI. CONCLUSIONS

The use of predictive control in the energy efficient man-
agement of data center under service and temperature con-
straints has been considered. The data center dynamics have
been simulated using a queue model based on more realistic
assumptions than others found in the literature. The control
variables are the temperature set points of the CRAC unit and
the number of servers “on” through the control horizon. A
massive-parallelizable particle algorithm is used to deal with
the MPC optimization problem to be solved. Each particle is a
candidate solution to the problem and generates a simulation
of the future behaviour of the system for its unique control
actions so that its performance can be measured. A proba-
bilistic evaluation procedure to choose among different values
of the controller parameters has been presented. This scheme
provides guarantees of constraint satisfaction with a certain
probabilistic performance level. Finally, the results of the paper
have been illustrated by means of simulated examples. Future

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 12

0 50 100 150 200 250 300

Number of Servers

0

50

100

150

200

250

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

Real

Fitting

25 30 35 40 45 50 55 60

Number of Servers

20

40

60

80

100

120

140

160

180

200

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

Real

Fitting

Fig. 7. Computation times of the algorithms for an increasing number of
servers. Top: Algorithm without scenarios. Bottom: Algorithm with scenarios

work involves the addition of new control variables such as
CPU frequency scaling in order to improve the management.
On the other hand, hyperparameter selection is a task to be
tackled. While the data center dynamics is modelled, making
the control task suitable for MPC, there is no model for the
influence of the hyper-parameters of the proposed algorithm.
Learning techniques like Reinforcement Learning [45] can
be considered for hyper-parameter selection as this technique
does not need such model. In this context, the probabilistic
evaluation scheme could be used in the design of the reward
function of a Reinforcement Learning algorithm that explores
the possible values of the controller hyperparameters (e.g.,
prediction and control horizons, weight factors, etc.) in search
of the best possible controller.

ACKNOWLEDGMENT

This work was supported in part by the Agencia Es-
tatal de Investigación (AEI) under Grant PID2019-106212RB-
C41/AEI/10.13039/501100011033, by MINERCO-Spain and
FEDER funds under Grant DPI2016-76493-C3-1-R and Junta
de Andalucia under Grant PY20 00546.

REFERENCES

[1] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A cyber–physical
systems approach to data center modeling and control for energy
efficiency,” Proceedings of the IEEE, vol. 100, no. 1, pp. 254–268, 2011.

[2] J. Scaramella, “Worldwide server power and cooling expense 2006-2010
forecast,” Market analysis, IDC Inc, 2006.

[3] A. S. Andrae and T. Edler, “On global electricity usage of communica-
tion technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157,
2015.

[4] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being
green,” in Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer
communication, 2012, pp. 211–222.

[5] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consump-
tion modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 732–794, 2015.

[6] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and
P. Demeester, “Trends in worldwide ict electricity consumption from
2007 to 2012,” Computer Communications, vol. 50, pp. 64–76, 2014.

[7] N. Lazic, C. Boutilier, T. Lu, E. Wong, B. Roy, M. Ryu, and G. Imwalle,
“Data center cooling using model-predictive control,” in Advances in
Neural Information Processing Systems, 2018, pp. 3814–3823.

[8] H. Endo, S. Suzuki, H. Kodama, T. Hatanaka, H. Fukuda, and M. Fujita,
“Development of predictive control system using just-in-time modeling
and enthalpy-aware control in air conditioners for large-scale data
center,” in 2018 18th International Conference on Control, Automation
and Systems (ICCAS). IEEE, 2018, pp. 1278–1283.

[9] M. Ogawa, H. Fukuda, H. Kodama, H. Endo, T. Sugimoto, T. Kasajima,
and M. Kondo, “Development of a cooling control system for data
centers utilizing indirect fresh air based on model predictive control,” in
2015 7th International Congress on Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT). IEEE, 2015, pp. 132–
137.

[10] L. Fu, J. Wan, J. Yang, D. Cao, and G. Zhang, “Dynamic thermal and
it resource management strategies for data center energy minimization,”
Journal of Cloud Computing, vol. 6, no. 1, p. 25, 2017.

[11] C. Bash and G. Forman, “Cool job allocation: Measuring the power
savings of placing jobs at cooling-efficient locations in the data center.”
in USENIX Annual Technical Conference, vol. 138, 2007, p. Page 140.

[12] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Mak-
ing scheduling” cool”: Temperature-aware workload placement in data
centers.” in USENIX annual technical conference, 2005, pp. 61–75.

[13] S. Li, H. Le, N. Pham, J. Heo, and T. Abdelzaher, “Joint optimization
of computing and cooling energy: Analytic model and a machine room
case study,” in 2012 IEEE 32nd International Conference on Distributed
Computing Systems, 2012, pp. 396–405.

[14] E. F. Camacho and C. Bordons Alba, Model Predictive Control, 2nd ed.
Springer London, 2007.

[15] L. Parolini, B. Sinopoli, and B. H. Krogh, “Model predictive control
of data centers in the smart grid scenario,” IFAC Proceedings Volumes,
vol. 44, no. 1, pp. 10 505–10 510, 2011.

[16] M. Ogura, J. Wan, and S. Kasahara, “Model predictive control for
energy-efficient operations of data centers with cold aisle containments,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 209–214, 2018.

[17] Q. Fang, J. Wang, and Q. Gong, “QoS-driven power management of data
centers via model predictive control,” IEEE Transactions on Automation
Science and Engineering, vol. 13, no. 4, pp. 1557–1566, 2016.

[18] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control. Springer, 1999,
pp. 207–226.

[19] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[20] R. Tempo, G. Calafiore, and F. Dabbene, Randomized algorithms for
analysis and control of uncertain systems: with applications. Springer
Science & Business Media, 2012.

[21] A. T. Schwarm and M. Nikolaou, “Chance-constrained model predictive
control,” AIChE Journal, vol. 45, no. 8, pp. 1743–1752, 1999.

[22] G. C. Calafiore and L. Fagiano, “Robust model predictive control
via scenario optimization,” IEEE Transactions on Automatic Control,
vol. 58, no. 1, pp. 219–224, 2012.

[23] S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros, “A
scenario approach for non-convex control design,” IEEE Transactions
on Automatic Control, vol. 61, no. 2, pp. 334–345, 2015.

[24] B. Karg, T. Alamo, and S. Lucia, “Probabilistic performance valida-
tion of deep learning-based robust NMPC controllers,” arXiv preprint
arXiv:1910.13906, 2019.

[25] M. Alamir, “On probabilistic certification of combined cancer therapies
using strongly uncertain models,” Journal of theoretical biology, vol.
384, pp. 59–69, 2015.

[26] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez, “Randomized meth-
ods for design of uncertain systems: Sample complexity and sequential
algorithms,” Automatica, vol. 52, pp. 160–172, 2015.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020 13

[27] J. Yao, Z. Pan, and H. Zhang, “A distributed render farm system
for animation production,” in Entertainment Computing – ICEC 2009,
S. Natkin and J. Dupire, Eds. Springer Berlin Heidelberg, 2009, pp.
264–269.

[28] B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41,
no. 2, pp. 159–178, 2007.

[29] A. L. Visintini, W. Glover, J. Lygeros, and J. Maciejowski, “Monte
carlo optimization for conflict resolution in air traffic control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp.
470–482, 2006.

[30] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini, “Sequential monte
carlo for model predictive control,” in Nonlinear model predictive
control. Springer, 2009, pp. 263–273.

[31] G. Andreadis, L. Versluis, F. Mastenbroek, and A. Iosup, “A reference
architecture for datacenter scheduling: design, validation, and experi-
ments,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage, and Analysis, 2018, p. 37.

[32] J. P. De Villiers, S. Godsill, and S. Singh, “Particle predictive control,”
Journal of Statistical Planning and Inference, vol. 141, no. 5, pp. 1753–
1763, 2011.

[33] G. Kitagawa, “Monte carlo filter and smoother for non-gaussian non-
linear state space models,” Journal of computational and graphical
statistics, vol. 5, no. 1, pp. 1–25, 1996.

[34] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming, portable documents. Addison-
Wesley Professional, 2010.

[35] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison
of CUDA and OpenCL,” arXiv preprint arXiv:1005.2581, 2010.

[36] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” Journal of parallel and distributed computing,
vol. 68, no. 10, pp. 1370–1380, 2008.

[37] P. Bialas and A. Strzelecki, “Benchmarking the cost of thread divergence
in CUDA,” in International Conference on Parallel Processing and
Applied Mathematics. Springer, 2015, pp. 570–579.

[38] V. D. Blondel and J. N. Tsitsiklis, “A survey of computational com-
plexity results in systems and control,” Automatica, vol. 36, no. 9, pp.
1249–1274, 2000.

[39] T. Alamo, R. Tempo, and E. F. Camacho, “Randomized strategies
for probabilistic solutions of uncertain feasibility and optimization
problems,” IEEE Transactions on Automatic Control, vol. 54, no. 11,
pp. 2545–2559, 2009.

[40] T. Alamo, V. Mirasierra, F. Dabbene, and M. Lorenzen, “Safe approx-
imations of chance constrained sets by probabilistic scaling,” in 2019
18th European Control Conference (ECC). IEEE, 2019, pp. 1380–1385.

[41] H. Chernoff et al., “A measure of asymptotic efficiency for tests
of a hypothesis based on the sum of observations,” The Annals of
Mathematical Statistics, vol. 23, no. 4, pp. 493–507, 1952.

[42] M. Okamoto, “Some inequalities relating to the partial sum of binomial
probabilities,” Annals of the institute of Statistical Mathematics, vol. 10,
no. 1, pp. 29–35, 1959.

[43] H. Cramér, “Les sommes et les fonctions de variables aléatoires,”
Actualités Scientifiques et Induestrielles. Conférences Internationales de
Sciences. Paris Hermann, vol. 3, 1938.

[44] A. Klenke, Probability theory: a comprehensive course. Springer
Science & Business Media, 2013.

[45] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

A. Daniel Carnerero received his M. Eng. Degree in
Industrial Engineering from the University of Seville
in 2019. He is currently a PhD candidate in the
Department of Systems Engineering and Automation
at the University of Seville. His current research
interests include GPU computing, metaheuristic op-
timization, model predictive control, randomized al-
gorithms and data-driven methods.

Daniel R. Ramirez received M.Eng. and PhD de-
grees in Computer Engineering from the University
of Seville in 1996 and 2002, respectively. From 2009
he is Associate Professor of the Department of Sys-
tem Engineering and Automation of the University
of Seville. He has authored and co-authored more
than 70 technical papers in international journals
and conference proceedings. His current research
interests include randomized algorithms, model pre-
dictive control, data-based forecasting and soft com-
puting techniques.

Teodoro Alamo received the M.Eng. degree in
telecommunications engineering from the Polytech-
nic University of Madrid in 1993, and the PhD
degree in telecommunications engineering from the
University of Seville in 1998. He has been a Full
Professor of the Department of System Engineering
and Automation in the University of Seville since
2010. He is the author or co-author of more than
200 publications, including books, book chapters,
journal articles and conference proceedings. His
current research interests include decision-making,

model predictive control, data-driven methods, randomized algorithms, and
optimization strategies.

Daniel Limon received the M.Eng. and Ph.D. de-
grees in electrical engineering from the University
of Seville, Seville, Spain, in 1996 and 2002, re-
spectively. From 2017 he is Full Professor of the
Department of System Engineering and Automation
in the University of Seville. He has been visiting
researcher at the University of Cambridge and the
Mitsubishi Electric Research Labs in 2016 and 2018
respectively. His current research interests include
model predictive control, stability and robustness
analysis, tracking control and data-based control.

