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Summary

In this paper, a heuristic historian data based predictive control strategy is presented
and used to control a water distribution system simulated using the EPANET soft-
ware, in particular, the Richmond water distribution system. The control actions are
computed based on past historian data. The historian stores closed loop operation
data of the process with different controllers used in the past which may not provide
sufficient information for a precise system nor controller identification. The proposed
predictive controller computes the current control actions as a weighted sum of past
control actions so that an estimation of the performance cost over a prediction hori-
zon is minimized. Only a subset of the past control actions in the historian close to
the current state of the process are considered in the current control computations
to carry out a local linearization. This predictive strategy is well suited to control
applications of large and complex processes for which it is difficult to carry out iden-
tification experiments such as water distribution systems. In the application example,
the trajectories of a set of relay controllers are used through the proposed approach
to take into account pressure constraints and periodic references.
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1 INTRODUCTION

In optimal andmodel predictive control the use of a model is a key concept.While there are many applications in which obtaining
a prediction model is not a problem using standard identification techniques1, there are also large and complex processes for
which the task of identifying a good model can be very difficult. Moreover, in those cases, the resulting model (if identified)
may be too complex to be used with most techniques, although there are many different strategies to simplify the problems such
as linear-convex and linear-quadratic convex approximations2,3 or, more recently, learning based approximations (see Karg et
al.4 and references therein). This situation appears in the control of large infrastructures such as water distribution networks in
which simplified models are often used, see for example5,6,7.
Nowadays, there has been an increasing interest of the control community on developing controllers based onmachine learning

techniques because of the recent theoretical and technological groundbreaking advances in this field. There are several data-
driven approaches in optimal control such as Zhang et al.8 in which a neural network is used to infer a model which is used later in
an approximate dynamic programming problem with a robustifying term. A similar approach has been applied to water-gas shift
reaction systems in9. Other data-driven techniques like J-learning and Q-learning have been applied to approximate dynamic
programming in10. Data based learning techniques have been applied to other aspects of optimal control such as predicting the
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evolution of control targets11. Furthermore, learning from data has been also used to improve optimal controllers in iterative
learning control schemes12,13. All these works use the data, in different ways, in the solution of the corresponding approximate
dynamic programming problem. However, in this paper we focus on applying machine learning techniques to model predictive
control (MPC) without using a dynamic programming formulation.
In this setting, a widely used approach is to derive an explicit model from data to later use it in the controller. Regression trees

and ensemble learning have been used by Jain et al.14 to obtain a prediction model from data. A major breakthrough in system
identification was the developing of subspace identification methods (see the book15 and works16,17 of Van Overschee and De
Moor) which have also been used in the context of data driven predictive control18. A different technique used by Canale et
al.19, based on nonlinear set membership20, is used to obtain an approximate model with a bound on the worst-case model error
that can be used to infer closed loop-stability properties. Prediction models are also inferred from experimental data of inputs
and outputs of the plant in the work of Limon et al.21. Prediction methods can also return an interval obtained from historic
input-output measurements that bounds the system output as in the work of Bravo et al.22.
A different approach is to completely avoid the model estimation phase. Favoreel et al.23 used this approach to derive, by

means of matrix decompositions, an LQG control law directly from data. Model free data driven MPC has been presented by
Piga et al.24 in which no model is explicitly obtained from data and a hierarchical structure with an inner linear controller is
used. Other strategy without explicit model is presented by Tanaskovic et al.25, where past data obtained from the system are
used off-line to guarantee a predictable closed loop behaviour whereas on-line collected data is used to adapt the controller.
Finally, a fourth approach would be the use of some form of machine learning technique to learn the controller directly from

data, like in the work of Fagiano et al.26 where a l1-norm regularized learning algorithm based on convex programming is
presented; or to solve iteratively infinite horizon control problems by using approximate dynamic programming27,28 or approx-
imate Q-learning techniques29 in which the direct computation of the performance function is avoided by using a suitable
approximation30.
Most of these approaches assume that although the model is unknown, appropriate data for identifying the system dynamics or

a specific control law is available, either from appropriate identification experiments or through the extensive use of a simulator,
which may not be possible for some applications. In this paper1, however, we do not assume that the trajectories stored in the
database have been chosen or designed to provide sufficient information for a precise identification of the system dynamics or the
corresponding control law. This is the case when historian trajectories are available from the closed-loop operation of the system
under different conditions, controllers and even control objectives. This issue limits the applicability of standard identification
procedures in which the quality of the information available greatly affects the quality of the resulting identified models.
In this work we take a different approach. Instead of first identifying amodel and then find the best future input trajectory based

on this model, we limit the set of possible input trajectories to a convex combination of past trajectories with an initial state close
(in some sense) to the current state of the system. We will then use the information in the database to estimate the performance
of the chosen trajectory using a heuristic linear approximation based on a particular extreme case of direct weight optimization
methods31 that results in the solution of a quadratic programming problem (or linear programming if only regulation around a
set point is considered). This is a predictive control strategy in the sense that it uses the future in the past to predict the future
evolution of the process. Note that this concept is very general and it does not impose almost any condition on the closed loop
trajectories stored in the database, although it would be logical to consider only those that resulted in a good control performance.
The proposed control strategy can be applied to large processes, for example water distribution systems. Water distribution

systems pose control problems due to their size, diverse nature of the process and manipulated variables and disturbance rich
operating conditions. Motivated by these issues, the proposed controller has been applied to the Richmond case study32 using
the EPANET software assuming that the only historian available is obtained from a set of relay controllers. Different scenarios
are considered, including regulation, periodic reference tracking and pressure constraints.
The paper is organized as follows: In Section 2 the problem formulation is presented. The controller formulation is introduced

in Section 3. The results of the application of the controller to the water distribution system case study are shown in Section 4.
The paper ends with some conclusions in Section 5.

1A preliminary version of this paper has been presented at the European Control Conference, Limassol, Cyprus, June 2018.
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2 PROBLEM FORMULATION

The system considered throughout the paper will be represented by a discrete time invariant system:

x(k + 1) = f (x(k), u(k)), (1)

where x ⊂ ℝnx is the state, u ⊂ ℝnu is the input and f is the unknown transition function.
A regulation problem is considered along this paper, thus the control objective is to regulate the system to the origin while

minimizing the performance defined by a stage cost l(⋅, ⋅). Standard model predictive control33,34 is based on solving an optimal
control finite horizon problem in which the cost of a predicted trajectory of length N is minimized at each time step to obtain
an optimal control sequence that is applied in a receding horizon manner. In order to approximate an infinite horizon problem,
often a terminal cost function F (⋅) is also considered, which leads to the finite horizon performance cost J ∶ ℝnx ×ℝnuN → ℝ:

J (x(k), U ) =
N−1
∑

i=0
l(x(k + i|k), u(k + i|k)) + F (x(k +N|k)), (2)

where x(k + i|k) is the predicted state obtained applying the future input sequence u(k + i|k) with i = {0,… , N − 1} from the
initial state x(k), l(⋅, ⋅) and F (⋅) are convex positive definite functions,N defines the prediction horizon and

U =

⎡

⎢

⎢

⎢

⎢

⎣

u(k|k)
u(k + 1|k)

⋮
u(k +N − 1|k)

⎤

⎥

⎥

⎥

⎥

⎦

(3)

is the optimization variable.
Standard MPC solves an optimization problem based on the model. In this work, as the function that models the system f is

unknown, a database will be used to obtain a straightforward estimation of the cost J which implicitly predict the behaviour of
the system. The database stores different closed loop trajectories. These trajectories contain the state and the input trajectories
of different controllers applied in the past. The information stored in the historian database is used to generate a set of candidate
trajectories of appropriate length. This set of candidates is built using all the sample times in the historian database for which
a N step trajectory is available. Each candidate trajectory q is defined by its state and input after i time steps, xq(i), uq(i) with
i = 0,…N , where xq(0) is the initial state of the candidate trajectory and they satisfy

xq(i + 1) = f (xq(i), uq(i)). (4)

We denote its corresponding input trajectory as

Uq =

⎡

⎢

⎢

⎢

⎢

⎣

uq(0)
uq(1)
⋮

uq(N − 1)

⎤

⎥

⎥

⎥

⎥

⎦

(5)

and its corresponding cost for the objective function considered as

Jq =
N−1
∑

i=0
l(xq(i), uq(i)) + F (xq(k +N)). (6)

In this paper, we propose to use a control law derived from the control trajectories in the candidates set. Following a receding
horizon approach, at each sampling time, the control signal to be applied will be computed as a weighted sum of the initial
control signals of the candidates considered, that is

u∗(k) =
∑

q
�∗q uq(0), (7)

where the optimal values of the weights �q are chosen to minimize an estimation of J (x(k),
∑

�qUq). The following section
discuss how to define this estimation and implement the proposed controller.
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3 CONTROLLER FORMULATION

This section presents the main contributions of the paper, which are based on using an approach closely related to direct weight
optimization to forecast the future performance cost, and the controller formulation itself, in which only a subset of the past
control actions in the historian are considered in the control computations to carry out a local linearization. The proposed
predictive controller computes the current control actions as a weighted sum of past control actions. In order to minimize the
computational burden and to provide good cost estimations based on local data, only a subset of the past control actions in the
historian are considered in current control computations. This subset is comprised of closed loop trajectories starting from an
initial state close to the current state of the process.
In particular, at time k, we propose to choose the Q candidates with an initial state xq(0) closest to the current state x(k)

taking into account a given metric2. Once theQ candidate trajectories are obtained, the optimal control sequence will be chosen
among the convex combination of the control sequences of the candidate trajectories with an initial state equal to x(k), that is,
the optimization variables are the Q weights �q with q = 1,… , Q such that:

x(k) =
Q
∑

q=1
�qxq(0),

Q
∑

q=1
�q = 1,

�q ≥ 0, ∀q ∈ {1,… , Q}.

(8)

For a given choice of candidates weights �q , we consider the following estimation of its corresponding cost

J
(

x(k),
∑

�qUq
)

= J
(

∑

�qxq(0),
∑

�qUq
)

≃
∑

�qJq . (9)

This approach is related to direct weight optimization nonlinear identification methods31. Direct weight optimization methods
are based on postulating an estimator that is linear in the observed outputs of the estimated function (in this case the predicted
cost) and then determining the weights in this estimation by direct optimization of a suitable chosen criterion. Different criteria
can be defined depending on the properties of the estimated function in order to take into account the non linearities of the
function by penalizing far away points and the effect of noise. In the proposed approach, we assume that for the set of Q closest
candidates, the function can be approximated by a linear function and we neglect the effect of noise. In practice, using local
trajectories is similar to carrying out an online linearization of the dynamics around the current state. Under these assumptions,
(9) is a valid estimation of the cost for any particular choice of weights (see remark 4 in31). The optimization then is carried out to
optimize the expected predicted performance as in standardMPC. Note that because of the receding horizon implementation, the
estimation of the future cost is recalculated at each sampling time, reducing the effect of the prediction error through feedback.
Summing up, the proposed controller is based on solving the following linear programming optimization problem based on

minimizing the upper bound on the trajectory defined by the convex combination of the candidate trajectories that start from the
current state:

min
�∈ℝQ

Q
∑

q=1
�qJq

s.t. x(k) =
Q
∑

q=1
�qxq(0),

Q
∑

q=1
�q = 1,

�q ≥ 0, ∀q ∈ {1,… , Q}.

(10)

Problem (10) is a linear programming problem that can be solved using off-the-shelf algorithms, even for large number of
optimization variables. In the next section, in order to illustrate the proposed strategy, it is applied to control the Richmond water
distribution system.

Remark 1. We notice that if J ∶ ℝnx ×ℝnuN → ℝ is a convex function in ℝnx ×ℝnuN then, in view of Jensen’s inequality35, we
have

J
(

x(k),
∑

�qUq
)

= J
(

∑

�qxq(0),
∑

�qUq
)

≤
∑

�qJq . (11)

2Candidates with the same distance value will be randomly selected if necessary so that only Q candidates are included in the set.
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FIGURE 1 Feasibility problem in ℝ2: left infeasible, right feasible.

Thus, the proposed approach, under the convexity assumption, minimizes an upper bound of the cost for the chosen future input
trajectory. Note that J is convex for linear systems and quadratic cost functions, which are widely used in the MPC literature.

Remark 2. Although we have considered a state feedback setting, the proposed approach can also be used in an output feedback
setting in which the output measurements are stored in the database. In addition, constraints can be taken into account using
the weighted predicted state and input trajectories. In section 4 we present an example in which a constraint on an output of the
system (the pressure at one of the demand nodes of the water drinking network) is considered.

Remark 3. The cardinality of the candidate trajectoriesQ is important because larger values carry higher computational burdens.
Moreover, a large number of candidates increases the distance from x(k) of the last candidate selected with a local linearity
loss (if the system were nonlinear). On the opposite side, smaller values of Q could produce feasibility problems. Figure 1
shows the feasibility problem in ℝ2. On the left side, S3 is the subset contained in the convex envelope formed by states xq(0)
with Q = 3. It is shown that x(k) ∉ S3, so the optimization problem is infeasible. On the right side, S4 is the subset contained
in the convex envelope formed by states xq(0) with Q = 4. In this case, x(k) ∈ S4, so the minimization problem is feasible.
The solution to feasibility problems could be to increase the value of Q to find a convex envelope that contains x(k). However,
sometimes this may not be possible because there is not enough information in the database or because the current state is
close to the system operating boundaries and the trajectories in the database operate far from these boundaries. In these cases, a
different solution has to be considered. In this paper we propose to apply the uq(0) of the closest candidate. However, there are
other options like using the input corresponding to the nearest point of the convex envelope of the candidates or consider some
form of extrapolation procedure.

Remark 4. Hyperparameters of the trajectories stored in the data base are defined as additional information of the controllers
that generate these trajectories. Examples of hyperparameters are the tuning values of a PID controller, reference and hysteresis
of a relay controller or the prediction horizon and the matrices that define the cost of a MPC controller. Hyperparameters can
be taken into account in the distance function, the cost function, or in the constraints of the optimization problem to improve
the performance of the proposed approach. In section 4 we present an example in which the information of the reference of the
controller of each trajectory stored in the database is used as an hyperparameter in the proposed controller.

4 APPLICATION TO A WATER DISTRIBUTION SYSTEM

The Richmond water distribution system is a well known case study32,36 that can be simulated using the EPANET hydraulic
simulation software37. This case study describes a system that is a good candidate for the historian data based predictive control
strategy presented in this paper which has also been used in a standard MPC framework, see38. Although the system is nonlinear
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FIGURE 2 Richmond water distribution network diagram.

and complex, it can be approximated by a linear water balance based model with sufficiently large sampling times, in this case,
one hour. Figure 2 shows the Richmond water distribution system diagram which is composed by 6 tanks, 7 pumps, 41 nodes
of which 11 are demand nodes, 44 pipes of which 8 are unidirectional pipes and 1 source.
Note that for a given tank there are several demand nodes that withdraw water from that tank. Water is introduced by the

pumps from a single water source and demand nodes consume this water, lowering the levels in the tanks. The control objective
in this paper is to keep the water levels in each tank around a specified set-point, while satisfying the demands. The state vector x
is composed by the levels of the 6 tanks, that is, x ∈ ℝ6. Demands are considered disturbances, modeled by the disturbance
signal vector d ∈ ℝ11.
In order to attain the control objective, water flows are used as manipulated variables, thus the input signal vector u ∈ ℝ7

contains the water flows that have to be attained using each pump in the system. Note that in the Richmond case study (as in
many water distribution systems), pumps are operated with an ON-OFF mode, thus the necessity of a low level switching logic
that transform each real component of u into an equivalent logic sequence for each particular pump. In this paper, discrete time
intervals of 1 hour (k ∈ ℕ) and low level switching logic intervals of 1

24
hours = 2.5 minutes are considered. To minimize the

number of pump switches, a duty cycle policy consisting on applying the control effort in a single pulse is used.
It is assumed that the water demand is composed by a periodic signal with a random component, that is:

d(k) = dp(k) + dr(k), (12)

where dp ∈ ℝ11 is a set of periodic signals that satisfy dp(k) = dp(k + T ) with T = 24 obtained from the demand profiles used
by Zyl32,36 and dr(k) is a set of random zero mean signals, which added to dp(k) result in a demand signals with 5% of variation
around dp(k).
The Richmond water distribution system has 6 tanks, however, because of the network structure, in order to maintain the

desired levels, Tank 5 is always full in normal operating conditions. For this reason, only the rest of the tanks are considered for
the purposes of computing the control signals. Note, however, that the EPANET simulation uses the whole state information.
The cost function in these examples is the following tracking error penalty stage cost that only depend on x (i.e., in these

examples l(x, u) = l(x)):
l(x) = |xc − xr|22, (13)

where xc ∈ ℝ5 are the levels of the 5 tank levels considered of x and xr ∈ ℝ5 are their corresponding reference values.
Furthermore, the terminal cost is equal to the stage cost, that is F (⋅) = l(⋅).
The database stores the closed loop trajectories of four different controllers, each one based on a different set of relays denoted

RbC1, RbC2, RbC3 and RbC4 respectively. Every pump is switched on and off depending on the level of the tank that is directly
downstream. Table 1 shows this relation and the switching on and off levels for every pump of each controller.
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RbC 1 RbC 2 RbC 3 RbC 4
Pump Tank Level ON Level OFF Level ON Level OFF Level ON Level OFF Level ON Level OFF
u1 x1 2.3685 2.9799 2.4785 3.0899 1.5018 2.1132 1.9352 2.5466
u2 x1 3.0405 3.2513 3.1505 3.3613 2.1738 2.3846 2.6072 2.8180
u3 x1 2.8888 3.1126 2.9988 3.2226 2.0221 2.2459 2.4555 2.6793
u4 x2 3.2623 3.5789 3.3323 3.6489 2.5956 2.9122 2.9290 3.2456
u5 x3 0.7185 1.8850 0.8285 1.9950 0.5852 1.7517 0.6518 1.8183
u6 x4 1.5907 1.9708 1.7207 2.1008 1.2774 1.6575 1.4340 1.8141
u7 x6 1.7037 2.1095 1.7837 2.1895 0.7037 1.1095 1.2037 1.6095

TABLE 1 Switching levels (in meters) of the relays of each of the controllers used to generate the data base.

x1r x2r x3r x4r x6r
RbC1 2.9403 3.4206 1.3018 1.7808 1.9066
RbC2 3.0503 3.4906 1.4118 1.9108 1.9866
RbC3 1.6403 2.4206 1.1018 1.3108 0.4066
RbC4 2.5069 3.0873 1.2351 1.6241 1.4066

TABLE 2 Set-points (in meters) of the controllers used to generate the data base.

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6
Min. level 1.02 2.03 0.5 1.1 0.2 0.19
Max. level 3.37 3.65 2 2.11 2.69 2.19

TABLE 3 Maximum and minimum safety tank water levels in Richmond system.

Table 2 shows set-points values for each controller. The set-points are obtained as the middle point of the corresponding
pump switching on and off levels. In the case of tank 1, denoted as x1 which is the first component of x, the set-point is the
average of the three middle switching levels of pumps 1, 2 and 3, denoted as u1, u2 and u3 respectively.
For each controller, there are 100 trajectories stored in the data base, each one with 96 hours of closed loop simulated operation

of the system. Each of the trajectories starts with different random initial values of the tank levels that satisfy the minimum and
maximum safety constraints of table 3 . In addition, the head at the demand node four, denoted z(k), is also included in the
database. Head information will be used to include a soft constraint to limit the maximum pressure in that particular demand
node to demonstrate that historic data can be used to model complex, possibly nonlinear, outputs and take them into account
in the control decision. The amount of information stored in the database is equivalent to 4.38 years of historian information.
Although a realistic size for a historian, the database is very small in relation to the dimensionality of the problem which is ℝ6,
which could lead to identification problems.
Using the information of these simulations, over 38000 24-h candidates trajectories are defined, for which at each sampling

time, only Q will be considered to formulate the controller. The choice of the number of candidates considered depends mainly
on the density and quality of the historian trajectories stored in the database. There is a trade-off between complexity, feasibility
and relevance. Higher number of candidates in general avoid feasibility issues, but may take into account candidates whose
information is not relevant because its initial state is too far away from the current state leading to lower quality cost estimations.
In this example, a value of Q = 500 has been found to be appropriate in regard to the aforementioned trade-off.

4.1 Example 1
The example is a closed loop simulation of 120 hours with initial state:

x(0) = [3, 2.44, 1.58, 1.5, 0.99, 1.51], (14)
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and the reference used is:
xr = [3.0503, 3.4906, 1.4118, 1.9108, 1.9866]. (15)

This reference is equal to the reference of one of the controllers used to create the database, in particular the relay based con-
troller 2 (RbC 2). In order to take into account the periodic nature of the demand, the distance function takes the following form:

distq = ‖x(k) − xq(0)‖2� + �pΔq(k)
2 (16)

where � is a diagonal matrix given by

� = diag(
[

1.0831 1 1.825 1.7299 1.6667
]

), (17)

and �p = 0.2. The term Δq(k) is the time difference, in hours, between the candidate initial time and the current time. This
distance function (16) takes into account the periodic nature of the demands of the system, penalizing candidates trajectories
that start at a different hour because the demand differs.
The optimization problem solved at each time instant is defined in (10) and the control input applied is calculated as in (7).

A standard linear programming solver can be used to obtain the solution as, in our case, linprog in Matlab. Figure 3 shows the
water levels in the six tanks of the Richmond system during the closed loop simulation using EPANET. Minimum, maximum
and reference levels are represented for each tank (in red dashed and black dashed respectively). Tank 5 is not controllable and
there is not any reference signal in its level graphic.
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FIGURE 3 References (black dash) and closed-loop trajectories (blue solid) of the tank levels with the proposed controller.
Maximum and minimum physical level constraints (red dashed) are represented for each tank.

The pump flows, in litres per second, can be observed in figure 4 . Notice that the solution obtained with the proposed
controller tends to a quasi periodic behaviour. Since demand signals periodicity produces periodic trajectories and control action
stored in the database when system is controlled with relay controllers, the convex combination of the control actions in the
database is almost periodic too.
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FIGURE 4 Closed-loop control actions for each pump with the proposed controller.

To evaluate the performance of the controller it is necessary to take into account the periodic nature of the system. The
performance metric will be the summation of the closed loop performance cost over a period of d(k) computed at each hour of
the simulation as:

PC(x(k)) =
N
∑

i=0
l(x(k + i)), (18)

where x(k+ i) are the values of the tank levels of the closed loop simulation, l(⋅) is defined as in (13) andN = 24. Note that in
this system, the instantaneous performance cost has no meaning, as it will go up and down as the periodic disturbance changes.
The summation of the closed loop performance cost over a period is a sensible choice as it should converge to a constant value
when the closed-loop system reaches a quasi steady state periodic trajectory, provided that the controller is working fine. Note
that the random part of d(k) has an impact on the behaviour of PC(x(k)).
Figure 5 shows the evolution of PC(x(k)) for two of the relay based controllers and the proposed strategy. The relay based

controllers 3 and 4 are not represented because their performance costs are much higher. In particular, their mean cost are 76.99
and 27.7 respectively, while the mean cost of the proposed historian data based predictive control is 3.36. The historian data
based predictive controller improves the controllers included in the data-base, although the performance and behaviour is similar
to a relay controller.

4.2 Example 2
In this example the proposed strategy is applied taking into account the set-point value of each closed loop trajectory stored in
the database. The reference of each relay based controller is shown in table 2 . According to Remark 4, which presents hyper-
parameters and the way to use them in the proposed strategy, this example focuses on applying the hyperparameter information
in both the distance and the cost function.
Firstly, hyperparameters are used when building the subset of Q candidate trajectories. Defining xrq as the set-point value of

candidate q, the distance function in (16), is modified adding a term which penalizes candidate trajectories whose references are
far from the reference of the problem xr, that is:

distq = ‖x(k) − xq(0)‖2� + �pΔq(k)
2 + �r‖xr − xrq‖

2
2, (19)

where �r = 10 weights the deviation between the current reference and the reference of the candidate.
Secondly, the cost function is also modified to take into account the hyperparameters. In the previous example, the stage

cost does not consider the particular target of the candidates. This can affect the set-point tracking capabilities of the controller.
One possibility is to add a constraint to optimization problem (10) to guarantee that the convex combination of the candidates
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FIGURE 5 Performance cost comparison of the proposed controller (JDbPC ) and the relay based controllers 1 and 2 (JRbC1
and JRbC2).

corresponding references xrq is equal to the target reference of the predictive controller xr, that is

Q
∑

q=1
�qx

r
q = xr.

This constraint aims at taking into account not only where a given trajectory is, but also where is headed. However, adding this
constraint may compromise the feasibility of the optimization problem. For this reason, in this example we propose to add it as
a soft constraint modifying the objective function. To this end, at each sampling time the historian based controller solves the
following optimization problem:

min
�

Q
∑

q=1
�qJq + �r

|

|

|

|

|

|

|

|

|

|

xr −
Q
∑

q=1
�qxrq

|

|

|

|

|

|

|

|

|

|

2

2

s.t. x(k) =
Q
∑

q=1
�qxq(0),

Q
∑

q=1
�q = 1,

�q ≥ 0, ∀q ∈ {1,… , Q}.

(20)

Any standard quadratic programming solver can be used as, in our case, quadprog in Matlab. Figure 6 shows the level
trajectories of the closed loop simulation of the proposed control strategy using hyperparameters with a weight �r = 1. Figure
7 shows the closed-loop performance of the proposed controller with and without hyperparameters and the cost of the two
best relay based controllers. It can be seen that the use of hyperparameters leads to better set-point regulation and to a lower
performance cost.
Figure 8 shows the number of candidates provided by each relay controller along the whole simulation for the proposed

controller with and without the use of the information provided by the hyperparameters.
Note that in both cases most candidates trajectories belong to relay based controller 1 and 2 because their set-points are

close to the reference, in fact relay based controller 2 has the same reference and it can be seen that when hyperparameters are
considered, almost all candidates belong to this controller. Note also that, even if most of the trajectories are of a single relay
controller, the proposed strategy achieves a better performance cost.
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FIGURE 6 References (black dash) and closed-loop trajectories (blue solid) of the tank levels with the proposed controller
using hyperparameters.

4.3 Example 3
In this subsection, constraints are taken into account, in particular, a maximum average head constraint in demand node four.
Hydraulic head is a specific measurement of liquid pressure above a geodetic datum and it relates the energy in an incompressible
fluid to the height of an equivalent static column of the fluid. As mentioned before, the historian data includes the average head
in this node for all the trajectories, which we denote as z.
There exist a nonlinear relation between head and flow, which we can observe if we consider the head loss Hazen-William

formula39:

z = 
u1.852, (21)

where 
 is a parameter calculated with the length of the pipe, the pipe roughness coefficient and the inside pipe diameter. Despite
this nonlinear relation, the estimated average pressure sequence:

ẑk+i =
Q
∑

q=1
�qzq(i), (22)

provides a good approximation based on local data.
Head constraints are included in the optimization problem as soft constraints (slack variables) instead of hard constraints in

order to eliminate feasibility issues caused by this sort of constraints. Note that these feasibility issues are related to the high
dimension of the state in relation to the database size in this example. Thus, for lower dimensional systems it could be possible
to use hard constraints. The number of slack variables added to the optimization problem is equal to the prediction horizonN to
ensure that all the average heads in the estimated average head sequence, denoted as ẑ and obtained as the convex combination
of the candidate head sequences, satisfy this soft constraints.
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FIGURE 7 Performance cost comparison with relay based controllers and historian predictive control with and without
hyperparameters.
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FIGURE 8 Comparison of number of candidates provided by each relay based controller along the whole simulation between
proposed strategy without hyperparameters (left side) and with hyperparameters (right side).

Including constraints in z modifies the optimization problem (20) in the following form:

min
�,�

Q
∑

q=1
�qJq + �r

|

|

|

|

|

|

|

|

|

|

xr −
Q
∑

q=1
�qxrq

|

|

|

|

|

|

|

|

|

|

2

2

+ �z
N−1
∑

i=0
(�2i + �i)

s.t. x(k) =
Q
∑

q=1
�qxq(0),

Q
∑

q=1
�q = 1,

�q ≥ 0, ∀q ∈ {1,… , Q},

zcons ≥

(

Q
∑

q=1
�qzq(i)

)

− �i, ∀i ∈ {0,… , N − 1},

�i ≥ 0, ∀i ∈ {0,… , N − 1},

(23)
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where � is a set of slack variables which lets a small violation of the average head constraints, �z is the weight of the slack
variables with respect to the other terms, zcons are the average head constraint values and zq(i) is the average head of the q-th
candidate sequence at instant i3. Similar to problem (20), a standard quadratic programming solver can be used to obtain the
solution of (23).
The optimization problem solved tracks the same reference in level as in (15) and implement the proposed controller with

hyperparameters using a number of candidatesQ = 500 and without hyperparameters. The value of the head constraints weight
is �z = 105. For simplicity, head constraint are considered only in one demand node, that is, demand node 4, and the average
head constraint values in meters is:

zcons = 187.3. (24)
Figure 9 shows a comparison between the average head in demand node 4 obtainedwith andwithout head average constraints.

In case of the proposed controller without constraints, the constraint in average head is clearly violated by the optimal solution.
When the controller takes into account this constraint, the optimal solution mostly satisfies it. Figure 10 shows the average head
estimation signal error for the demand node 4, which is calculated as the difference between the real average head, obtained by
simulation, and the estimation of the average head, obtained as in 22. We can observe that the error signal has approximately
zero mean (0.21%).
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FIGURE 9 Comparison between the average head in demand node 4 with and without constraints.

4.4 Example 4
In this subsection, we consider a set of periodic level reference signals instead of the constant signals used in the previous
examples. Typically, water distribution networks are controlled taking into account economic issues such as the tariff pattern
related to the electricity price. In the Richmond benchmark, the electricity costs considered had a different tariff during day
and night hours. In general, this leads to non-steady level in the tanks, which fill during the night in which pumping water is
more economic, and discharge to satisfy the demands during the day. According to this idea and considering the period of the
tariff pattern and demand signals, a sinusoidal signal of 24-hours period is taken into account with its maximal at 3 a.m. and its
minimal at 15 p.m. in order to build the reference signals for the tank levels. Table 4 shows the amplitude and offset for every
reference signal considered.

3Notice that with the same slight abuse of the notation used before, we define the head of the q-th candidate trajectory zq(i) as the i-th row ahead average head after
the initial row nr of the candidate trajectory.
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Tank 1 Tank 2 Tank 3 Tank 4 Tank 6
Amplitude 1.41 1.07 0.31 0.6 1.58
Offset 2.3453 2.9556 1.2568 1.6108 1.1966

TABLE 4 Amplitude and offset of the sinusoidal reference signal of each controllable tank.

Figure 11 shows the level references considered and the closed loop trajectories of the proposed controller, together with
that of the relay-based controller 4 (which provided the best performance of all the relay based-controllers). This figure shows
that the proposed controller provides a quasi-periodic closed-loop trajectory which is almost in phase with the reference, while
clearly the relay based trajectory (which is akin to the trajectories of the database) is not correlated. This implies that the proposed
strategy does not simply learn (or identify) the control law in the database, but, rather than that, it uses the stored trajectories to
fullfill as best as possible the current control objective, which can be different from that used to build the database.

5 CONCLUSIONS

In this paper we have proposed a heuristic data based predictive controller based optimizing an estimation of the performance
over a convex combination of past trajectories. This approach can be used in complex systems in which models or enough data
for identification are not available. The proposed approach is applied to a water distribution network demonstrating that it is able
to consider different issues such as periodic level references and pressure constraints explicitly in its formulation. Future works
include the development of stabilizing designs and estimation error bounds.

ACKNOWLEDGEMENT

This work was supported by the MINECO-Spain and FEDER Funds under projects DPI2013-48243-C2-2-R and DPI2016-
76493-C3-1-R and by the University of Seville under grant 2014/425.



15

time (h)

0 20 40 60 80 100 120

le
v
e

l 
(m

)

0

0.5

1

1.5

2

2.5

3

x
1

time (h)

0 20 40 60 80 100 120

le
v
e

l 
(m

)

0

0.5

1

1.5

2

2.5

3

3.5

x
2

time (h)

0 20 40 60 80 100 120

le
v
e

l 
(m

)

0

0.5

1

1.5

2

x
3

time (h)

0 20 40 60 80 100 120

le
v
e

l 
(m

)

0

0.5

1

1.5

2

x
4

time (h)

0 20 40 60 80 100 120

le
v
e

l 
(m

)

0

0.5

1

1.5

2

2.5

x
5

time (h)

0 20 40 60 80 100 120
le

v
e

l 
(m

)

0

0.5

1

1.5

2

x
6

FIGURE 11 Periodic reference for every tank (dashed black), closed-loop simulation with the proposed controller (blue) and
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