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a b s t r a c t

This paper presents a new methodology to obtain prediction regions of the output of a dynamical
system. The proposed approach uses stored past outputs of the system and it is entirely data-based.
Only two hyperparameters are necessary to apply the proposed methodology. These scalars are chosen
so that the size of the obtained regions is minimized while fulfilling the desired empirical probability
in a validation set. In this paper, methods to optimally estimate both hyperparameters are provided.
The provided prediction regions are convex and checking if a given point belongs to a computed
prediction region amounts to solving a convex optimization problem. Also, approximation methods
to build ellipsoidal prediction regions are provided. These approximations are useful when explicit
descriptions of the regions are necessary. Finally, some numerical examples and comparisons for the
case of a non-linear uncertain kite system are provided to prove the effectiveness of the proposed
methodology.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Dynamical models, either linear or nonlinear, suffer from a
ertain degree of modeling errors and uncertainty that results in
naccurate predictions of the outputs. One way to consider these
ncertainties is by using prediction regions in which the future
utputs are guaranteed to be contained with a pre-specified
robability [1,2]. There are many applications where this kind of
trategy is useful. For example, in stochastic programming and
hance constrained problems [3,4], some of the parameters are
andom variables and, thus, it is necessary to characterize such
ncertainty. Also, stochastic model predictive control (MPC) and
hance constrained MPC [5] require some sort of uncertainty or
isturbance characterization within the model of the system in
rder to solve the control problem.
For the case of single-output systems, interval predictions can

e used. This is a particular and easier case of the aforementioned
rediction regions. These intervals can be constructed in two dif-
erent ways, one consisting on following a robust scheme, that is,
he prediction will be included in the interval with a probability
qual to one. For this uni-variate setting, there are state-of-the-
rt techniques that work reasonably well. For example, if the
ncertainty is bounded, set membership methods can be used to
btain robust intervals [6,7]. However, robust approaches can be
verly conservative and thus a second approach has gained the

∗ Correspondence to: Avenida Camino de los descubrimientos s/n, 41092,
evilla, Spain.
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ttps://doi.org/10.1016/j.isatra.2023.03.048
019-0578/© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This i
icenses/by/4.0/).
attention of researchers. This approach is the use of stochastic
methods. In a stochastic setting, the prediction belongs to the
aforementioned interval with a certain probability 1 − τ . In
his context, one could rely on parametric regression techniques,
btaining a quantile regressor (QR) [8,9]. The main limitation
f these methods is that a large number of training samples is
ecessary when τ is close to the extremes of (0, 1). Similarly,
s an extension of QR techniques, one could rely on Interval
redictor Model (IPM) approaches [10].
The aforementioned methods can deal with prediction inter-

als, i.e., single output systems. However, computing prediction
egions for multi-variate systems becomes a harder task. The sim-
lest way would be to obtain intervals considering each variable
ndependently and then construct rectangular prediction regions
see Section 2.2.3 in [11]). The main advantage of this method
ies in its simplicity. However, the desired probability may not be
ttained or the size of the regions may be too large. Bootstrap
ethods are used in [12,13] to construct regions that contain
path of a random variable with at least a certain probability.
his means that the obtained regions are actually intervals for
p−step prediction. In the case of multi-variable dynamical

ystems, the literature is rather scarce. For example, in [14],
rediction regions for a simple multivariate linear regression
odel are obtained. On the other hand, [15] proposes a method

o calculate prediction regions of a system by computing the
acobian of the Partial Least-Squares Regression (PLS) parameters.
hus, by means of this local linearization, an ellipsoid-shaped
egion can be obtained. Also, [16] manages to obtain ellipsoid
egions for dynamical systems by means of an Inverse Regression
s an open access article under the CC BY license (http://creativecommons.org/
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IR) scheme. This IR scheme is more efficient and reliable than
he classic regression approaches, when high dimensional data
s available. In [17], a data-driven framework to generate and
valuate ellipsoidal prediction regions to characterize the uncer-
ainty of a time-series is proposed. This methodology is applied
o the electricity prices as a path forecasting problem. In the field
f machine learning, Conformal Prediction techniques [18] are
sed to obtain prediction regions for any method producing a
entral prediction of the outputs. Similarly, it is proposed in [19]
framework to obtain a stochastic model based on a determin-

stic model of a robotic dynamic system. On the other hand,
ssuming that any finite set of samples follows a multivariate
ormal distribution, Gaussian processes (GPs) [20] can also be
sed. The main limitation of this approach is that it relies heavily
n the knowledge of the first two moments of the underlying
ultivariate probability distribution.
In this paper, we propose a new methodology to compute pre-

iction regions of a multivariate dynamical system by means of
issimilarity functions. These functions have been used in [21,22]
o obtain uni-variate interval predictors. In those papers, an em-
irical probability distribution is obtained and then the intervals
re computed from the quantiles of such empirical distribution.
ere, the dissimilarity functions are used in a different setting to
btain prediction regions for the multidimensional case. The pro-
osed region is defined implicitly through a convex optimization
roblem, skipping the computation of the empirical distribution,
hat would be intractable for the multivariate case. Thus, the
rocedure is much lighter in terms of computational burden than
he one presented in [21]. Also, the hyperparameters in which
he methodology relies are computed to minimize the size of
he regions while achieving the desired empirical probability.
oreover, the proposed approach does not make any assumption
n the data or the shape of the region, being able to represent
ore tightly different types of regions. Also, in order to tackle

he case where explicit regions are necessary, a method to obtain
llipsoid approximations of the regions is provided.
The rest of the paper is organized as follows. Section 2 presents

he dissimilarity function that will be used throughout the
anuscript whereas its role in forecasting the output of a non-

inear system is presented in Section 3. Section 4 defines the
redictions regions and proposes a method to tune the hyperpa-
ameters. Also, in Section 5 an approximation method based on a
uadratic upper bound of the optimization problem is proposed.
y means of this approximation, an ellipsoidal region can be
btained. In Section 6, two numerical examples of nonlinear
ynamical systems are proposed in order to compare the per-
ormance of the region predictor with other baselines. Finally,
ection 7 presents the conclusions.

. Dissimilarity functions

Dissimilarity functions [21] are used to measure the similarity
f an element to the elements of a given set. They will play
key role in the remaining sections of the paper, thus a brief

ummary of the key concepts is given in the following. Consider
set D =

[
d1 d2 . . . dN

]
∈ Rn×N , where di ∈ Rn. We are

nterested in determining how similar a given vector d ∈ Rn is
with respect to the other vectors of the set D. Thus, a dissimilarity
function J(·) : Rn

× D → [0, ∞], measures the dissimilarity
between a given point d and the data set D. Large values of J(d,D)
imply a high dissimilarity whereas small values correspond to a
high similarity. A first candidate could be the minimum distance
of the point d to each member in the data set D. That is

J(d,D) = min ∥d − di∥, (1)

i=1,...,N

50
Fig. 1. Elements of set D ⊂ R2 (in red) and three points in R2 (in blue). Note
that d1i and d2i denote the first and second component of each di respectively.

where ∥ · ∥ is a given norm. Another possibility would be to
consider the mean value of the distances of d to each member
of D. However, these dissimilarity functions, although simple,
are not invariant with respect to affine transformations and thus
they depend on the choice of the coordinate system. A better
dissimilarity function would be

Jγ (d,D) = min
λ1,...,λN

(1 − γ )
N∑
i=1

wiλ
2
i + γ

N∑
i=1

|λi| (2a)

s.t. d =

N∑
i=1

λidi (2b)

1 =

N∑
i=1

λi, (2c)

where γ ∈ [0, 1) is a tuning parameter and wi > 0 constant
weights. This dissimilarity function returns a small value when
the vector is very similar to the elements of D and it returns a
large value when the vector is very dissimilar. To illustrate this
concept, consider Fig. 1 in which a set D (red markers) and three
element examples (blue markers) denoted as d1, d2 and d3 are
plotted. The values of the dissimilarity function with γ = 0 and
wi = 1, ∀i for each regressor are:

J0(d1,D) = 0.0021, J0(d2,D) = 0.0085, J0(d3,D) = 0.0226.

Thus, d1 attains the lowest dissimilarity, i.e. it is more similar with
respect to the set because the concentration of points around d1
is larger than around d2 and d3. On the other hand, d3 attains the
highest dissimilarity due to the fact that d3 is actually outside the
region in which all the elements of D lie.

This optimization problem is strictly convex and thus it has a
unique solution. In order to guarantee that this solution exists,

we assume that
[
d1 . . . dN
1 . . . 1

]
is full row rank. To justify that

problem (2) is strictly convex, consider that it can be rewritten
as

Jγ (d,D) = min
λ

(1 − γ ) λ⊤Hλ + γ ∥λ∥1 (3a)

s.t.
[
D
1

]
λ =

[
d
1

]
, (3b)

where ∥λ∥1 =
∑N

i=1 |λi| and H > 0 because the weighting factors
w are strictly positive. It is easy to see that the quadratic term
i
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Fig. 2. Relation between past inputs, outputs, the operator h(·) and the regressor zk .
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(1 − γ ) λ⊤Hλ is strictly convex because H > 0 and (1 − γ ) > 0.
Also, the 1-norm term ∥λ∥1 is convex as well because γ ∈ [0, 1).
Thus, the sum of the quadratic term and the absolute value term
is a strictly convex function. Therefore, the optimization problem
is strictly convex.

Remark 1. This dissimilarity function is invariant to affine trans-
formations, being more convenient than the ones based only
on the distance of the point d with respect to the data set D
because they are dependent with respect to the reference system
(see [21,23]).

3. Forecasting nonlinear systems using dissimilarity functions

Consider a discrete time nonlinear system

xk+1 = f (xk, uk)

yk = g(xk, vk), (4)

where k is the time instant, xk ∈ Rnx are the states, uk ∈ Rnu

are the inputs, yk ∈ Rny are the outputs, vk ∈ Rnv accounts
for measurement noise, f (·) and g(·) are unknown nonlinear
functions such that f (·) : Rnx×nu → Rnx and g(·) : Rnx×nv → Rny .
We assume that only past outputs and inputs are accessible.

In this section, we aim to obtain the prediction of the out-
put value denoted as ŷk. This prediction will be computed as a
function of a regressor denoted as zk and a given data set of
past regressors and their corresponding output values. As we
assumed that only past outputs and inputs are measurable, the
regressor zk is obtained by applying a certain operator h(·) to
past outputs and inputs, with h(·) : Rnunpu+nynpy → Rnz where
npu and npy are the number of past terms of the input and the
output respectively, and nz is the dimension of the regressor
(see Fig. 2). It is also assumed that this operator is known. The
operator, included for generality, could be the identity, which
would provide the raw past values of the inputs and the out-
puts without doing any mathematical operation, that is, zk =

[uk−1
⊤, . . . , uk−npu

⊤, yk−1
⊤, . . . , yk−npy

⊤
]
⊤. However, more com-

plex operators can be used, such as kernel or neural networks
based operators (like in the numerical example of Section 6).

Denoting by z̄i ∈ Rnz and ȳi ∈ Rny the past samples of the
regressor and the output respectively, we assume that the data
sets are stored in the form of the matrices

Z =
[
z̄1 z̄2 . . . z̄N

]
, Y =

[
ȳ1 ȳ2 . . . ȳN

]
,

where N is the number of samples. These data sets will be used to
obtain the prediction of the system output for a given regressor z.
51
Here, it is proposed to compute such prediction using a weighted
sum of the elements of Y , that is,

ŷ(z) =

N∑
i=1

λ∗

i ȳi. (5)

We will discuss in the following how to compute the weights λ∗

i .
To obtain the desired prediction of the output using the proposed
structure, we consider the dissimilarity function given in the
previous section written for the forecasting problem as

Jγ

([
z
y

]
,

[
Z
Y

])
= min

λ1,...,λN
(1 − γ )

N∑
i=1

wiλ
2
i + γ

N∑
i=1

|λi| (6a)

s.t. z =

N∑
i=1

λiz̄i (6b)

y =

N∑
i=1

λiȳi (6c)

1 =

N∑
i=1

λi. (6d)

We will compute ŷ(z), the expected value for the output y
iven the value of the regressor z, as the one that gives the
inimum value of the dissimilarity function, that is,

ˆ(z) = argmin
y

Jγ

([
z
y

]
,

[
Z
Y

])
. (7)

he following lemma states how to find ŷ(z) by solving a simpler
ptimization problem which in turn will return the optimal val-
es of the weights necessary to compute ŷ(z) using the structure
f (5).

emma 1 (Computation of the Prediction). The prediction ŷ(z) can
e obtained as:

ˆ(z) = Yλ∗
=

N∑
i=1

λ∗

i ȳi, (8)

here λ∗ is computed as

∗
= arg min

λ1,...,λN
(1 − γ )

N∑
i=1

wiλ
2
i + γ

N∑
i=1

|λi| (9a)

s.t. z =

N∑
λiz̄i (9b)
i=1
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1 =

N∑
i=1

λi. (9c)

roof. Let us consider Jγ (z,Z), that is,

Jγ (z,Z) = min
λ1,...,λN

(1 − γ )
N∑
i=1

wiλ
2
i + γ

N∑
i=1

|λi| (10a)

s.t. z =

N∑
i=1

λiz̄i (10b)

1 =

N∑
i=1

λi. (10c)

s this optimization problem is a less constrained version of that
n (6), the optimal value of the cost of the more constrained
roblem is always greater or equal to the optimal value of the
ost of the less constrained one, that is,

γ (z,Z) ≤ Jγ

([
z
y

]
,

[
Z
Y

])
. (11)

ow, denote the vector of weights λ that minimizes the optimiza-
ion problem in (10) as λ∗. Then, it is easy to see that

γ (z,Z) = Jγ

([
z

Yλ∗

]
,

[
Z
Y

])
.

Because of this and (11), it is not possible to find a value of y
mproving the value of the dissimilarity function. Thus, ŷ(z) =

λ∗
=
∑N

i=1 λ∗

i ȳi, computed using the optimal weights from (10),
s the one that minimizes the dissimilarity function for a fixed z
n Eq. (7). ■

An important property is the uniqueness of the prediction. The
ollowing remark states that ŷ(z) is unique.

emark 2 (Uniqueness Of ŷ(z)). From the results stated in the
revious section problem (6) is strictly convex and because
ZT YT 1T

]T is assumed to be full rank, its solution exists.
herefore, for a certain z, Z and Y , the dissimilarity function (6)
as a unique minimum at ŷ(z) = Yλ∗, where λ∗ corresponds to
he optimal solution of problem (10), and therefore the prediction
ˆ(z) is unique.

The numerical computation of problem (9) can be addressed
y means of a dual formulation. For this particular optimization
roblem, the number of dual decision variables corresponds to
he number of equality constraints, i.e. (nz +1) which is obviously
uch smaller than the number of data points (N). Also, note

hat once the dual variables are fixed, the primal variables can
e obtained by solving N unidimensional problems which have
xplicit solutions. In this paper, the numerical examples have
een computed by using an accelerated gradient method in the
ual variables [24,25].
For the univariate case (ny = 1) and for the particular choice
= 0, it was proved in [21] that this forecasting corresponds

o the one obtained by means of least-squares regression. As we
xplain in what follows, strictly positive values of γ encourage
he components of λ to be positive (which means that the central
stimation is often obtained from an interpolation of points).
hen every λi ≥ 0, ∀i = 1, . . . ,N , ∥λ∥1 = 1. However,
hen some of the components of λ are negative, we infer that
λ∥1 > 1. In other words, the cost term ∥λ∥1 becomes larger
hen extrapolating points (i.e. using negative values of λi). This
eans that convex combinations of λi are encouraged and thus

nterpolation is preferred, which may improve the predictions.
he choice of γ will be further discussed in the context of the
roposed methodology in Section 4.4.
52
emark 3. The weighting factors wi offer a way to add flexibility
o the forecasting scheme. They could be used to consider locality
n the data, by making wi = max{∥z − zi∥2

2, ϵ}, where ϵ is
small positive constant. In this way, local estimation can be

mplemented (see [21]).

. Region estimation

Besides obtaining a forecasting for the next output, the afore-
entioned dissimilarity function allows us to compute regions

hat will contain the output with a pre-specified probability.
his is an extension of the method proposed in [21] where only
ne-dimensional outputs were considered and, thus, interval pre-
ictions were obtained. In the present work, we address the
ultidimensional case, providing prediction regions for the mul-

idimensional output. The scheme proposed in [21] is based on
numerical integration in a unidimensional space. The gener-
lization of [21] to the multidimensional setting is not trivial
ecause of the well-known complexity of high-dimensional nu-
erical integration. Therefore, that technique is not useful in
ractice for multivariable systems. In what follows, we show how
o obtain prediction regions in multidimensional spaces without
esorting to numerical integration, providing a fundamental ad-
antage with respect to the results presented in [21]. In order to
haracterize such a region, two issues must be tackled: the choice
f the region center and the computation of the region itself.

.1. Choosing the center

In the previous section, we denoted ŷ(z) as the value of y
hat minimizes the dissimilarity function given z (7). This optimal
alue can be obtained as ŷ(z) = Yλ∗ where λ∗ corresponds to the
ptimal solution of the strictly convex problem (10).
As the prediction ŷ(z) is unique (see Remark 2), it will be used

o define the center of the region that will contain the real value
f the predicted output with a given probability. From now on,
n order to make the manuscript more readable, we simplify the
otation by removing Z and Y from the dissimilarity function,
ince they are assumed to be fixed. That is, we use the notation

γ

([
z
y

]
,

[
Z
Y

])
= Jγ (z, y) .

oreover, the minimal value of the dissimilarity function given z
s denoted as J∗γ (z). That is,
∗

γ (z) = Jγ (z, ŷ(z)) = min
y

Jγ (z, y).

4.2. Computing the regions

The dissimilarity function can be seen as a sort of surrogate of
the probability distribution of y given z [21]. Thus, the prediction
region will be defined in relation to the value of J∗γ (z). We con-
sider that this probability distribution has a maximum at ŷ(z) and
decreases as the dissimilarity function increases. For that reason,
we consider prediction regions that are defined as those points
for which the dissimilarity function does not exceed more than
a given factor α the one corresponding to the central prediction
ŷ(z). This is formally stated in the following definition.

Definition 1 (Prediction Region). For a given z, γ , data sets Z , Y
and a tunable parameter α > 1, we define a prediction region as
the set

∆(z) =
{
y : Jγ (z, y) ≤ αJ∗γ (z)

}
, (12)

that is, the points y that obtain a dissimilarity less or equal to
αJ∗(z).
γ
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Table 1
Numerical results of the clarifying example.

Area Empirical probability

γ = 0 1.1423 0.9600
γ = 0.2 1.0077 0.9580
γ = 0.4 0.9834 0.9640
γ = 0.8 0.9561 0.9520

We note that the provided regions are defined in an implicit
ay (we address explicit ellipsoidal regions in the next section).
ince the dissimilarity function is convex in y, the obtained im-
licit regions are convex and can be used in different settings,
.g. in chance-constrained optimization. For example, in many
ases, it is not necessary to compute a prediction region, but to
erify if a certain point ȳ belongs to it. This is an affordable task
s it suffices to compute the dissimilarity Jγ (z, ȳ) and check that
12) holds.

.3. Clarifying example: multivariate uniform distribution

To illustrate the role of γ , consider the easier case of a multi-
ariate uniform distribution. As we are not considering a dynamic
ystem, conditioned distributions are not taken into account. A
umber of samples N = 500 are extracted from a uniform
istribution in R2 and gathered into a data set Y . This uniform
istribution is generated considering that both dimensions are
ndependent one with respect the other, with values ranging from
to 1. Then, the obtained distribution is rotated with an angle of

π
6 rad in order to misalign the previously computed distribution.
e will approximate the support of the generated distribution by
eans of prediction regions of the form

=
{
y : Jγ (y,Y) ≤ αJ∗γ

}
.

Here, we consider a finite family of four possible values of γ ,
denoted as Γ = {0, 0.2, 0.4, 0.8}. As we stated in the previous
sections, γ = 0 corresponds to the least-squares solution [21] and
thus an ellipsoid will be obtained. However, more appropriate
shapes can be obtained with different values of γ . Also, note
hat the empirical expectation turns out to be the center of the
egion. In this example, we consider τ = 0.05, that is, we would
ike the probability of the samples falling within the region to be
5%. The results are shown in Fig. 3. The blue crosses correspond
o the points falling inside the region whereas the red crosses
orrespond to the points falling outside. It is easy to see that
= 0.8 is the element of Γ that captures best the shape of the

roposed probability distribution, leading to a tighter region.
Also, it can be seen in Table 1 that, for this example, increas-

ng the value of γ provides a smaller area (tighter approxima-
ion) while still fulfilling the desired empirical probability. Even
hough the difference might seem small at first, we note that
his difference may increase when considering regions of greater
imensions.

.4. Tuning the hyperparameters α and γ

Regarding which value of γ should be used, consider a valida-
ion set

= {(z̃1, ỹ1), (z̃2, ỹ2), . . . , (z̃Nv , ỹNv )},

omposed of pairs (z̃j, ỹj) gathered from the system. The problem
of determining the best value of γ ∈ [0, 1) can be addressed in
different ways. Suppose that, in order to reduce the complexity
of the problem, γ is constrained to belong to a set Γ ⊆ [0, 1) of
finite cardinality (e.g. a set of equidistant points in the interval
[0, 1)), i.e., a finite family of γ . Then, a reasonable choice would
 t

53
be the value that minimizes the error of the central predictions
{ŷ(z̃)} with respect to the real outputs {ỹ} in the validation set V ,
that is:

γ ∗
= argmin

γ∈Γ

1
Nv

Nv∑
j=1

ŷ(z̃j) − ỹj
2
2 .

Note that minimizing the errors of the predictions is related to
minimizing the size of the regions. This is due to the fact that
reducing the gap between ŷ(z̃j) and ỹj leads to a smaller value of

needed to fulfill the desired probability 1 − τ .
Given γ , smaller values of α make the regions smaller. This can

e easily seen by looking at Definition 1, where the equation of
he prediction region is presented. There, we note that α appears
ultiplying the optimum value J∗γ (z), i.e. the optimum value of

he dissimilarity function given z. Therefore, α is a parameter that
mplicitly defines the size of the region. That is, for the case when
= 1, we have that the region is composed of just the point ŷ(z̃j)

whereas for larger values of α, the number of points included in
the region increases. The procedure to obtain α presented in the
following aims to obtain the smallest possible region that guaran-
tees that a point ỹj taken from the validation set V is contained in
the computed region ∆(z̃j) with a pre-specified probability 1− τ .
n order to circumvent the difficulty of generating i.i.d. samples
(z, y)}, we consider that the discrete probability described in
he validation set V is assumed to represent the true probability
istribution. Then, α is chosen so that it fulfills

robV (y ∈ ∆(z)) ≥ 1 − τ ,

hat is, guaranteeing that the fraction of points y in the validation
et that fall out of the corresponding prediction region does not
xceed τ . Denote

˜ j =
Jγ (z̃j, ỹj)
J∗γ (z̃j)

, j = 1, . . . ,Nv.

Then, the value of α satisfying the probabilistic specification in
the set V is the one corresponding to the rτ = ⌈τNv⌉ largest
value of {α̃j}

Nv
j=1. This choice makes the number of points that fall

out of the prediction region equal to rτ − 1 which implies that
the fraction of such points out of the region is equal to rτ −1

NV
=

⌈τNv⌉−1
Nv

≤
τNv

Nv
= τ . Thus, the number of points out of the region

do not exceed τ as desired. On the other hand, if i.i.d. samples are
available, one could resort to the concept of probabilistic scaling
to choose the value of rτ and Nv (see [26–28]). In that case, two
levels of probability results are obtained that apply to any pair
(z̄, ȳ) generated according to the underlying distribution of (z, y).

4.5. Comparison with the approach presented in [21]

In this subsection, we show that the proposed approach is
superior to the one presented in [21] in terms of computational
complexity. For this purpose, we consider the example presented
in [21] corresponding to the Lorenz attractor. This is a chaotic
system following the set of differential equations:
do
dt

= σ (p − o)

dp
dt

= o(ρ − q) − p

dq
dt

= op − βq ,

where σ , ρ and β are real scalar parameters. In this example,
hese parameters take the values σ = 10, ρ = 28 and β = 8/3.
Considering a sample time of Ts = 0.1 s, we tackle the problem
f obtaining 1−step ahead interval predictions of the output of
he system, that is y = o . The regressor z is composed of the
k k k
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Fig. 4. Computed intervals for the proposed approach (τ = 0.2).

wo previous values of the outputs, i.e. zk = [yk−1, yk−2]
⊤. The

ize of the data set, validation set and test set is 300, 500 and
00 respectively. The considered finite family of γ , that is Γ , is
omposed of the values [0, 0.1, 0.2]. Also, we consider the same
rid on the probability distribution as in [21].
The results are shown in Fig. 4 and Table 2. There, it can

e seen that the new approach attains a much smaller compu-
ational time. Also, the obtained interval widths and empirical
robabilities are better (that is, the interval is smaller and the
mpirical probability higher). Note that the computational time
orresponds to the total amount of required time to calculate the
yperparameters and compute the intervals for all the points in
he test set.
 t
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Table 2
Numerical results of the example in [21].

Interval width Empirical probability Time (s)

Approach in [21] 2.0352 0.8900 296.47
Proposed 1.9773 0.8980 6.9201

5. Ellipsoidal regions

Due to the term γ
∑N

i=1 |λi| appearing in the definition of
he dissimilarity function, the prediction regions cannot be com-
uted explicitly. Instead, in order to check if a point y belongs

to a prediction region, a convex optimization problem must be
solved. We provide in this section a quadratic upper bound to
the dissimilarity function that leads to ellipsoidal regions that
can be computed in an explicit way. The idea is to upper bound
the absolute values {|λi|}

N
i=1 with scalar quadratic functions. This

transforms the functional into a quadratic one and thus the
optimization problem can be solved explicitly since the mini-
mization of a convex quadratic function subject to linear equality
constraints has an explicit solution. In order to upper bound the
absolute values, we use the following lemma.

Lemma 2 (Quadratic Upper Bound Of |λi|). Given a scalar λc
i and

> 0,

λi| ≤
|λc

i | + ν

2

((
|λi|

|λc
i | + ν

)2

+ 1

)
, ∀λi ∈ R . (13)

roof. See Appendix B in [29]. ■

We choose λc
i as the λ∗

i used to obtain the central prediction
ˆ(z) (8). We note that the upper bound provided by Lemma 2 is
ight when λ = λc

= λ∗ and ν → 0. Thus, we choose ν as a
i i i
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mall constant. Applying Eq. (13) to the optimization problem in
6), we obtain

γ (z, y) ≤ Qγ (z, y),

here

γ (z, y) = min
λ1,...,λN

1
2
λTHγ λ + cγ (14a)

s.t.
[
Z
1

]
λ =

[
z
1

]
(14b)

Yλ = y, (14c)

γ is a diagonal matrix with entries

γ |i,i = 2(1 − γ )wi +
γ

|λc
i | + ν

, i = 1, . . . ,N

and cγ = γ
∑N

i=1
|λci |+ν

2 . The following lemma characterizes the
ew dissimilarity function Qγ (·).

emma 3. Assume that Hγ > 0 and that the matrix
ZT YT 1T

]T is full rank. Denote

γ (z, y) = min
λ1,...,λN

1
2
λ⊤Hγ λ + cγ

s.t.

[
Z
Y
1

]
λ =

[z
y
1

]
,

y∗
= argmin

y
Qγ (z, y),

Q ∗

γ (z) = Qγ (z, y∗).

Then,

y∗
= Γ1,2

⊤Γ −1
1,1

[
z
1

]
, Q ∗

γ (z) =
1
2

[
z
1

]
⊤Γ −1

1,1

[
z
1

]
+ cγ

γ (z, y) = Q ∗

γ (z) +
1
2
(y − y∗)⊤Φ2,2(y − y∗).

here

1,1 =

[
Z
1

]
H−1

γ

[
Z
1

]
⊤, Γ1,2 =

[
Z
1

]
H−1

γ Y⊤,

2,2 = YH−1
γ Y⊤, Φ2,2 =

(
Γ2,2 − Γ1,2

⊤Γ −1
1,1 Γ1,2

)−1
.

roof. The proof is shown in Appendix. ■

We now define, by means of the new dissimilarity function
γ (z, y), the following ellipsoidal regions

γ ,α(z) =
{
y : Qγ (z, y) ≤ αQ ∗

γ (z)
}

=
{
y : (y − y∗)⊤Φ2,2(y − y∗) ≤ 2(α − 1)Q ∗

γ (z)
}
,

here, the values for y∗, Φ2,2 and Q ∗
γ (z) are given in Lemma 3.

We note that, given γ ≥ 0, the optimal value for α could be
btained by means of a validation set V as in the case of implicit
egions. In this case, the scalars α̃j are defined as

˜ j =
Qγ (z̃j, ỹj)
Q ∗

γ (z̃j)
, j = 1, . . . ,Nv.

The optimal value for α would be the rτ largest one, where rτ =

τNv⌉. We also remark that, in this case, one could obtain γ in
uch a way that a measure of the size of the obtained ellipsoids
s minimized.
 o
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6. Numerical example

In this section, we propose as an example the application of
the proposed methodology to compute prediction regions for the
predictions of the outputs of two different multivariable systems.

6.1. Towing kite

In this section, we propose as an example the application
of the proposed methodology to compute prediction regions for
the predictions of the outputs of a multivariable system. As the
system to be forecasted, we consider the non-linear model of a
towing kite presented in [30]. It has three states, which corre-
sponds to the angles of the kite, θ , φ and ϕ, a control input u and
two uncertain parameters. The equations governing the system
are the following

θ̇ =
va

LT

(
cosϕ −

tan θ

E

)
,

˙ = −
va

LT sin θ
sinϕ,

˙ =
va

LT
u + φ̇ cos θ,

here

a = v0 E cos θ,

E = E0 − 0.028u.

From this system of equations, the parameter LT (length of the
ether) is considered to be known whereas v0 (wind speed) and E0
(base glide ratio) are considered to be uncertain parameters. Note
that these uncertainties affect directly va, which can be described
as the effect of the wind and the glide ratio E, and thus it also
affects the states θ , φ and ϕ. Furthermore, only the states θ and
φ are considered as outputs with an additive correlated gaussian
noise so that

N (µ, Σ) : µ =

[
0
0

]
, Σ =

[
0.01 −0.0085

−0.0085 0.01

]
.

e assume that the control input u is computed following a
ertain stabilizing control policy κ(θ, φ, ϕ) whose exact nature is
rrelevant for this paper (see [31] for more details on a possible
ontrol law). In fact, we treat the kite as an autonomous closed
oop system. Thus, it is assumed that we have some stable trajec-
ories of the closed-loop system for different values of the base
lide ratio E0 and the wind speed v0 that are used to build the
ata sets Z,Y with a sample time of Ts = 0.15 s. We consider two
ifferent data sets in this example, one with N = 250 samples
nd another one with N = 500 samples. Also, a validation set V
omposed of Nv = 500 samples to compute the optimal values of
and α is considered. On the other hand, we have a test set T of
T = 1000 samples to compare the obtained results with other
aseline strategies. We consider a finite family of γ denoted as
. This Γ is composed of the values Γ = {0, 0.2, 0.4, 0.6, 0.8}.
In this example, the operator h(·) is chosen as a Neural Net-

ork (NN). That is, the NN is working as an encoder network.
his means that the feature space of the whole data sets Z and
are transformed by means of this given NN. In this case, the
N is comprised of 2 hidden layers of 10 neurons each one.
urthermore, the inputs of the NN are the last 5 outputs of the
ystem. The outputs of the last layer are used as the regressor z.
ote that this regressor z is the same for the proposed approach
nd the baselines and thus the following numerical comparisons
re fair. Also, it is assumed that this NN is given. This means that
he problems related to training appropriately the NN, finding the

ptimal number of layers, etc. are outside the scope of this paper.
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Fig. 5. Obtaining the data sets Z and Y for the kite example. Note that yk−j corresponds to (θk−j, φk−j).
Fig. 6. Projected regions for a representative trajectory (τ = 0.2).
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ig. 5 shows the flow of the data used to build the data sets Z
nd Y in this example. There, we note that the previous values
f the output go into the neural network, whose output is the
egressor zk. On the other hand, the previous state along with the
ontrol input given by the control law κ(θk−1, φk−1, ϕk−1) go into
he system, producing the next value of the output yk. Then, the
air (zk, yk) is stored in the data sets Z and Y .
Three baseline strategies are considered for the sake of com-

arison. First, a quantile regression (QR) approach. This technique
s well established for the single output case. In order to obtain
egions, a probabilistic interval of probability τ is obtained for
ach output independently and then combined to form a box-
haped region. However, combining two intervals of probability
does not turn out to be a prediction region of probability

. Actually, a lower probability will be attained. To tackle this
roblem, a back-off parameter is calculated so that the computed
oxes fulfill the empirical probability in the validation set V . The
econd one is based on GPs. Here, the matlab function ‘‘fitgrp’’
s used to obtain a model for each output independently. This
unction automatically finds an appropriate Kernel function for
he input–output data and optimizes the values of the hyperpa-
ameters. Then, using ‘‘predict’’, it is possible to obtain intervals
f a specified probability τ . Same as before, it is necessary to
ompute a back-off parameter in the validation set V to achieve

he desired empirical probability. Finally, an implementation of 0

56
he prediction regions based on Inverse Regression (IR) of [16] is
onsidered.
Fig. 6 shows the obtained predictions projected as intervals

sing the proposed approach for the case of a representative
rajectory of the test set employing τ = 0.2 and N = 250. It
an be seen how the noisy trajectory (in red) is enclosed by the
omputed region most of the times, as it was expected.
The results for τ = 0.1 and τ = 0.2 are shown in Ta-

le 3. It can be seen how the implicit regions of the proposed
pproach and the approximation ellipsoids outperform the base-
ines considered for both values of τ and different data set sizes.
hat is, the proposed approach obtains regions of considerably
maller area while still fulfilling the specified probability given
y τ (i.e. with an empirical probability (E.P.) no smaller than
− τ ). This means that the proposed approach provides regions
f smaller uncertainty in comparison to the baselines considered.
t is clear that obtaining smaller regions will allow us to take
etter decisions if we implement the proposed methodology in
n optimization setting.
The average time required for N = 250 to check if a certain

oint belongs to the region is 5.813 ms for the proposed approach
we allude here to the true region not the approximation). On the
ther hand, for the case of GPs, QR and IR, the values are 0.011 ms,
.001 ms and 0.023 ms respectively.
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Table 3
Area of the regions and empirical probabilities obtained for the proposed methodology, the approximation with
ellipsoidal regions, Gaussian processes (GPs), quantile regression (QR) and inverse regression (IR).

Proposed Approximation GPs QR IR

N Area E.P. Area E.P. Area E.P. Area E.P. Area E.P.

τ = 0.1 250 0.1695 0.9200 0.1885 0.9170 0.2235 0.9250 0.5839 0.9120 0.4331 0.9031
500 0.1551 0.9260 0.1656 0.9170 0.2092 0.9240 0.2645 0.8960 0.4101 0.9043

τ = 0.2 250 0.1119 0.8070 0.1176 0.8070 0.1518 0.8450 0.2341 0.8550 0.2466 0.7446
500 0.1053 0.8150 0.1142 0.8260 0.1403 0.8310 0.1590 0.8080 0.2335 0.7454
Fig. 7. Projected regions for a representative trajectory (τ = 0.2).
.2. Rössler attractor

As a different example, consider the system described by the
ollowing differential equations
do
dt

= −p − l

dp
dt

= o + ap

dl
dt

= b + l(o − c) ,

which is known as the Rössler attractor. In this example, the
parameters take the values a = 0.2, b = 0.2, c = 5.7 and the
ample time is 0.1 s. The aforementioned system along with the
roposed parameters show a chaotic behavior. Two different sizes
150 and 250 samples) for the data set (Z and Y) are available.
or the validation set V and the test set T , we consider a total
f 1000 samples in each one. The regressor is comprised of the
ast output of the system, i.e. zk = [ok−1, pk−1]

⊤. Note that this
orresponds to choosing h(·) as the identity operator. Also, the
utput of the system is affected by some gaussian noise so that

(µ, Σ) : µ =

[
0
0

]
, Σ =

[
0.05 0.025
0.025 0.05

]
.

The baselines used for comparison will be the same as in the
revious example: GPs, QR and IR. However, in this example, the
R method fails to obtain the desired regions (the obtained regions
re several orders of magnitude larger), leading to unacceptable
esults. For this reason, we removed IR from the table of results.

The results are shown in Fig. 7, and Table 4. Fig. 7 shows the
eal evolution of the output and the prediction region obtained
57
with the proposed approach and projected as in the previous
example. Table 4 summarizes the numerical results of the ex-
periment. It can be seen that the proposed strategy achieves the
smallest areas. On the other hand, the ellipsoidal approximation
obtains similar areas with respect to GPs when considering the
small data set (150 samples) and smaller areas when considering
the larger data set (250 samples).

7. Conclusions

This work presents a new data-based approach to obtain pre-
diction regions to be used in nonlinear systems. The hyperparam-
eters in which the methodology relies are computed so that the
empirical probability is at least higher than the desired one in a
validation set. Also, it is shown that checking if a point belongs
to the computed region is as simple as solving a convex opti-
mization problem. Finally, the proposed method has been used to
generate prediction regions of a non-linear system, which have
been compared favorably with the ones obtained by means of
other baselines strategies based on Gaussian processes, quantile
regression and inverse regression. As a future work, we consider
the application of the proposed strategy in the context of devel-
oping novel stochastic or chance constrained MPC approaches,
where the output of the prediction model is a whole region which
heavily depend on uncertainty quantification and therefore could
leverage the results of this paper. Another field of application
would be failure detection, where the proposed technique could
be used to obtain the regions of normal operation of the system.
These regions could be then used to detect abnormal behaviors,
which could be attributed to failures of the system.
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Table 4
Area of the regions and empirical probabilities (E.P.) obtained for the proposed methodology, the approximation
with ellipsoidal regions, Gaussian processes (GPs) and quantile regression (QR).

Proposed Approximation GPs QR

N Area E.P. Area E.P. Area E.P. Area E.P.

τ = 0.1 150 2.3008 0.9010 2.5061 0.9100 2.4443 0.9050 33.914 0.9090
250 2.0605 0.9020 2.0612 0.9030 2.3636 0.9110 31.966 0.8990

τ = 0.2 150 1.4753 0.8000 1.5897 0.8040 1.5769 0.8040 9.1792 0.8060
250 1.4080 0.7960 1.3504 0.8050 1.5424 0.8190 8.9740 0.7980
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ppendix. Proof of Lemma 3

We first note that the optimization problem that defines
(z, y) is always feasible because of the full rank assumption
n
[
ZT YT 1T

]T . Moreover, because of the definite positive-
ess of Hγ , the problem has a unique minimum. For notational

convenience, we define

A1 =

[
Z
1

]
, A2 = Y, A =

[
A1
A2

]
, b =

[
z
1

]
.

onsider now a related optimization problem in which the equal-
ty constraint A2λ = y is removed:

Q ∗

γ (z) = min
λ1,...,λN

1
2
λ⊤Hγ λ

s.t A1λ = b.

It is clear that Q ∗
γ (z) ≤ Qγ (z, y), for every y. The optimal vector

λ∗ corresponding to the optimization problem that defines Q ∗
γ (z)

can be directly obtained from the the Karush-Kuhn–Tucker (KKT)
conditions (see Subsection 10.1.1 in [32]):

λ∗
= H−1

γ AT
1(A1H−1

γ AT
1)

−1b.

This leads to

Q ∗

γ (z) =
1
2
(λ∗)⊤Hγ λ∗

=
1
2
b⊤(A1H−1

γ AT
1)

−1b =
1
2
b⊤Γ −1

1,1 b.

enote now
∗

= A2λ
∗

= A2H−1
γ AT

1(A1H−1
γ AT

1)
−1

= Γ1,2
⊤Γ −1

1,1 b.

rom A1λ
∗

= b, we have that λ∗ is also a feasible solution for the
optimization problem corresponding to Qγ (z, y∗) = Qγ (z, A2λ

∗).
Thus,

Qγ (z, y∗) = Q ∗

γ (z).

From this and the inequality Q ∗
γ (z) ≤ Qγ (z, y), ∀y, we obtain the

first two claims of the lemma.
Denote λ∗

y as the optimal value for λ in the optimization prob-
lem that provides Qγ (z, y). Using again the Karush-Kuhn–Tucker
(KKT) conditions, we obtain

λ∗

y = H−1
γ AT (AH−1

γ AT )−1
[
b
]

.
y
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Thus,

Qγ (z, y) =
1
2
λ∗

⊤

y Hγ λ∗

y =
1
2

[
b
y

]
⊤(AH−1

γ AT )−1
[
b
y

]
=

1
2

[
b
y

]
⊤

[
Γ1,1 Γ1,2
Γ1,2

⊤ Γ2,2

]−1 [
b
y

]
Now, making[

Γ1,1 Γ1,2
Γ1,2

⊤ Γ2,2

]−1

=

[
Φ1,1 Φ1,2
Φ1,2

⊤ Φ2,2

]
,

we obtain

Qγ (z, y) =
1
2

[
b
y

]
⊤

[
Φ1,1 Φ1,2
Φ1,2

⊤ Φ2,2

][
b
y

]
.

It is well known that every quadratic function q(y) with hessian
q can be rewritten as q(y) = q(y∗)+ 1

2 (y− y∗)⊤Φq(y− y∗). Thus,

Qγ (z, y) = Q ∗

γ (z) +
1
2
(y − y∗)⊤Φ2,2(y − y∗).

he matrix Φ2,2 can be obtained from the inverse of the parti-
ioned matrix Γ using Schur complements (see e.g. Subsection
.3.4 in [33]), that is

2,2 =
(
Γ2,2 − Γ1,2

⊤Γ −1
1,1 Γ1,2

)−1
. ■
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