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Simplicial map neural networks (SMNNs) are topology-based neural networks with interesting

properties such as universal approximation ability and robustness to adversarial examples under

appropriate conditions. However, SMNNs present some bottlenecks for their possible application

in high-dimensional datasets. First, SMNNs have precomputed fixed weight and no SMNN training

process has been defined so far, so they lack generalization ability. Second, SMNNs require the

construction of a convex polytope surrounding the input dataset. In this paper, we overcome these

issues by proposing an SMNN training procedure based on a support subset of the given dataset

and replacing the construction of the convex polytope by a method based on projections to a
hypersphere. In addition, the explainability capacity of SMNNs and effective implementation are

also newly introduced in this paper.

1. Introduction

In recent years, Artificial Intelligence (AI) methods in general and Machine Learning methods in particular have reached success

in real-life problems that were unexpected only a few years ago. Many different areas have contributed to this development. Among

them, we can cite the research on new theoretical algorithms, the increasing computational power of the latest generation hardware,

and the rapid access to a huge amount of data. Such a combination of factors leads to the development of increasingly complex

self-regulated AI methods.

Many AI models currently used are based on backpropagation algorithms, which train and regulate themselves to achieve a
goal, such as classification, recommendation, or prediction. These self-regulating models achieve some kind of knowledge as they

successfully evaluate test data independent of the data used to train them. Nonetheless, such knowledge is usually expressed in a
non-human-readable way.

To fill the gap between the recent development of AI models and their social use, many researchers have focused on the develop-

ment of Explainable Artificial Intelligence (XAI), which consists of a set of techniques to provide clear, understandable, transparent,

intelligible, trustworthy, and interpretable explanations of the decisions, predictions, and reasoning processes made by the AI models,

rather than just presenting their output, especially in domains where AI decisions can have significant consequences on human life.

A global taxonomy of interpretable AI with the aim of unifying terminology to achieve clarity and efficiency in the definition of
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regulations for the development of ethical and reliable AI can be found in [1]. Moreover, a nice introduction and general vision can

be found in [2]. Another clarifying paper with definitions, concepts, and applications of XAI in [3].

The so-called Simplicial Map Neural Networks (SMNNs) were introduced in [4] as a constructive approach to the problem of

approximating a continuous function on a compact set in a triangulated space. Since the original aim of the definition of SMNNs was

focused on building a constructive approach, the computation of their weights was not based on an optimization process, as usual in
neural networks, but on a deterministic calculus. The architecture of SMNNs and the computation of the set of weights are based

on a combinatorial topology tool called simplicial maps. Moreover, SMNNs can be used for classification and can be constructed to
be robust to adversarial examples [5]. Besides, their architecture can be reduced while maintaining accuracy [6], being invariant to
transformation if the transformation preserves the barycentric coordinates (scale, rotation, symmetries, etc.). As defined in [4,6,5],

SMNNs are built as a two-hidden-layer feed-forward network where the set of weights is precomputed based on the calculation of a
triangulated convex polytope surrounding the input data. As other approximations to continuous functions with arbitrary precision

(see, for example, [7]), SMNNs have fixed weights, which means that the weights depend only on the triangulation made with the

points of the dataset as the support set and no training process is applied.

Summing up, some of the limitations of the SMNNs until now are that they are costly to calculate since the number of neurons

is proportional to the number of simplices of the triangulation supported on the input dataset, and they suffer from overfitting and

therefore not generalize well. These aspects make SMNNs not used in practice so far, although the idea of relating simplicial maps to
neural networks is disruptive and provides a new bridge that can enrich both areas.

In this paper, we propose a method to make SMNNs efficient by reducing their size (in terms of the number of neurons that

depends on the vertices of the triangulation) and that successfully makes SMNNs trainable and with generalization ability. Besides,

we also present a study of the selection of the vertices from which we obtain the triangulation. Although SMNNs consider the

vertices of a simplex as part of the necessary information for the classification task, the approach presented in this paper is far from

the classic Machine Learning instance-based methods. Such methods rely on a deterministic computation based on distances, but,

in the approach presented in this paper, the computation of the weights is the result of an optimization method in a probability

distribution space. Finally, from an XAI point of view, we will see in this paper that SMNNs are explainable models since all decision

steps to compute the output of SMNNs are understandable and transparent, and therefore trustworthy.

The paper is organized as follows. First, some concepts of computational topology and the definition of SMNNs are recalled in
Section 2. Next, in Section 3 we develop several technical details needed for the SMNN training process, which will be introduced

in Section 4. Section 5 is devoted to the explainability of the model. Section 6 is devoted to discussion and limitations. Finally, the

paper ends with some experiments and conclusions.

2. Background

In this section, we assume that the reader is familiar with the basic concepts of computational topology. For a comprehensive

presentation, we refer to [8].

2.1. Simplicial complexes

Consider a finite set of points 𝑉 = {𝑣1, … , 𝑣𝛽} ⊂ ℝ𝑛 whose elements will be called vertices. A subset

𝜎 = ⟨𝑣𝑖0 , 𝑣𝑖1 ,… , 𝑣𝑖𝑑 ⟩
of 𝑉 with 𝑑 + 1 vertices (in general position) is called a 𝑑-simplex. The convex hull of the vertices of 𝜎 will be denoted by |𝜎| and 
corresponds to the set:{

𝑥 ∈ℝ𝑛 ∶ 𝑥 =
∑

𝑗∈�0,𝑑�

𝑏𝑗 (𝑥)𝑣𝑖𝑗

}
where �𝑎, 𝑏� = {𝑎, 𝑎 + 1, … , 𝑏} for 𝑎 < 𝑏 ∈ℤ, and

𝑏(𝑥) = (𝑏0(𝑥), 𝑏1(𝑥),… , 𝑏𝑑 (𝑥))

are called the barycentric coordinates of 𝑥 with respect to 𝜎, and satisfy that:∑
𝑗∈�0,𝑑�

𝑏𝑗 (𝑥) = 1 and 𝑏𝑗 (𝑥) ≥ 0 ∀𝑗 ∈ �0, 𝑑� .

The barycentric coordinates of 𝑥 can be interpreted as masses placed at the vertices of 𝜎 so 𝑥 is the center of mass. All these masses

are positive if and only if 𝑥 is inside 𝜎. For example, let us consider the 1-simplex 𝜖 = ⟨𝑣𝑖0 , 𝑣𝑖1 ⟩ which is composed of two vertices of 
𝑉 . Then |𝜖| is the set of points in ℝ𝑛 corresponding to the edge with endpoints 𝑣𝑖0 and 𝑣𝑖1 , and if, for example, 𝑏(𝑥) = (0.5, 0.5) then 
𝑥 is the midpoint of |𝜖|.

A simplicial complex 𝐾 with vertex set 𝑉 consists of a finite collection of simplices satisfying that if 𝜎 ∈ 𝐾 then either 𝜎 = ⟨𝑣⟩ for 
some 𝑣 ∈ 𝑉 or any face (that is, a nonempty subset) of 𝜎 is a simplex of 𝐾 . Furthermore, if 𝜎, 𝜇 ∈ 𝐾 then |𝜎| ∩ |𝜇| = ∅ or |𝜎| ∩ |𝜇| = |𝛾|
2

for some 𝛾 ∈ 𝐾 . The set 
⋃

𝜎∈𝐾 |𝜎| will be denoted by |𝐾|. A maximal simplex of 𝐾 is a simplex that is not the face of any other 
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Fig. 1. On the left, two triangles that do not intersect in a common face (an edge or a vertex). On the right, the geometric representation |𝐾| of a pure 2-simplicial

complex 𝐾 composed of three maximal 2-simplices (the triangles 𝜎1, 𝜎2 and 𝜎3). The edge 𝜇2 is a common face of 𝜎2 and 𝜎3 . The edge 𝜇1 is a face of 𝜎1 .

simplex of 𝐾 . If the maximal simplices of 𝐾 are all 𝑑-simplices then 𝐾 is called a pure 𝑑-simplicial complex. These concepts are

illustrated in Fig. 1.

The barycentric coordinates of 𝑥 with respect to the simplicial complex |𝐾| are defined as the barycentric coordinates of 𝑥 with 
respect to 𝜎 ∈ 𝐾 such that 𝑥 ∈ |𝜎|. Let us observe that the barycentric coordinates of 𝑥 ∈ |𝐾| are unique.

An example of simplicial complexes is the Delaunay triangulation Del(𝑉 ) defined from the Voronoi diagram of a given finite set 
of vertices 𝑉 . The following result extracted from [9, page 48] is just an alternative definition of Delaunay triangulations.

The empty ball property [9]: Any subset 𝜎 of 𝑉 is a simplex of Del(𝑉 ) if and only if |𝜎| has a circumscribing open ball empty of 
points of 𝑉 .

2.2. Simplicial maps

Let 𝐾 be a pure 𝑛-simplicial complex and 𝐿 a pure 𝑘-simplicial complex with vertex sets 𝑉 and 𝑊 , respectively. The map

𝜑(0) ∶ 𝑉 → 𝑊 is called a vertex map if it satisfies that the set obtained from 
{
𝜑(0)(𝑣𝑖0 ), … , 𝜑(0)(𝑣𝑖𝑑 )

}
after removing duplicated vertices 

is a simplex in 𝐿 whenever ⟨𝑣𝑖0 , … , 𝑣𝑖𝑑 ⟩ is a simplex in 𝐾 . The vertex map 𝜑(0) always induces a continuous function, called a 
simplicial map 𝜑 ∶ |𝐾| → |𝐿|, which is defined as follows. Let 𝑏(𝑥) = (𝑏0(𝑥), … , 𝑏𝑛(𝑥)) be the barycentric coordinates of 𝑥 ∈ |𝐾| with 
respect to 𝜎 = ⟨𝑣𝑖0 , … , 𝑣𝑖𝑛 ⟩ ∈ 𝐾 . Then

𝜑(𝑥) =
∑

𝑗∈�0,𝑛�

𝑏𝑗 (𝑥)𝜑(0)(𝑣𝑖𝑗 ).

Let us observe that 𝜑(𝑥) = 𝜑(0)(𝑥) if 𝑥 ∈ 𝑉 .

A special kind of simplicial map used to solve classification tasks will be introduced in the next subsection.

2.3. Simplicial maps for classification tasks

Next, we will show how a simplicial map can be used to solve a classification problem (see [5] for details). From now on, we will

assume that the input dataset is a finite set of points 𝑉 in ℝ𝑛 together with a set of 𝑘 labels Λ such that each 𝑣 ∈ 𝑉 is tagged with a 
label 𝜆 taken from Λ.

Firstly, the intuition is that the space surrounding the dataset is labelled as unknown. For this, we add a new label to Λ, called 
unknown label, and a one-hot encoding representation 𝑊 𝑘+1 ⊂ ℝ𝑘+1 of these 𝑘 + 1 labels being:

𝑊 𝑘+1 =
{
𝓁𝑗 = (0, 𝑗…,0,1,0, 𝑘−𝑗… ,0) ∶ 𝑗 ∈ �1, 𝑘�

}
,

where the one-hot vector 𝓁𝑗 encodes the 𝑗-th label of Λ for 𝑗 ∈ �1, 𝑘� and where 𝓁0 encodes the unknown label.

We now consider a convex polytope  with a vertex set 𝑃 surrounding the set 𝑉 . The polytope  always exists since 𝑉 is finite.

Next, we define a map 𝜑(0) ∶ 𝑉 ∪ 𝑃 → 𝑊 𝑘+1 mapping each vertex 𝑣 ∈ 𝑉 tagged with label 𝜆 to the one-hot vector in 𝑊 𝑘+1 that 
encodes the label 𝜆. The vertices of 𝑃 are sent to the vertex 𝓁0. Observe that 𝜑(0) is a vertex map.

Let 𝐿 denote the simplicial complex with vertex set 𝑊 𝑘+1 consisting of only one maximal 𝑘-simplex and let Del(𝑉 ∪ 𝑃 ) denote 
the Delaunay triangulation computed for the set of points 𝑉 ∪ 𝑃 . Note that | Del(𝑉 ∪ 𝑃 )| =  . The simplicial map 𝜑 ∶  → |𝐿| is 
induced by the vertex map 𝜑(0) as explained in Subsection 2.2.

Remark 1. The space |𝐿| can be interpreted as the discrete probability distribution space Ω𝑘+1 with 𝑘 + 1 variables.

As an example, in Fig. 2, on the left, we can see a dataset with four points 𝑉 = {𝑏, 𝑐, 𝑘, 𝑑}, labelled red and blue. The green points 
𝑃 = {𝑎, 𝑒, 𝑔, 𝑓} are the vertices of a convex polytope  containing 𝑉 and are sent by 𝜑(0) to the green vertex 𝓁0 on the right. The 
simplicial complex 𝐾 =Del(𝑉 ∪𝑃 ) is drawn on the left and consists of ten maximal 2-simplices. On the right, the simplicial complex 
3

𝐿 consists of one maximal 2-simplex. The dotted arrows illustrate some examples of 𝜑 ∶  → |𝐿|.
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Fig. 2. Illustration of a simplicial map for a classification task.

2.4. Simplicial map neural networks

Artificial neural networks can be seen as parametrized real-valued mappings between multidimensional spaces. Such mappings

are the composition of several maps (usually many of them) that can be structured in layers. In [5], the simplicial map 𝜑 defined

above was represented as a two-hidden-layer feed-forward neural network 𝜑. This kind of artificial neural network is called 
simplicial map neural network (SMNN).

In the original definition [5], the first hidden layer of an SMNN computes the barycentric coordinates of Del(𝑉 ∪ 𝑃 ). However, 
we will see here that if we precompute the barycentric coordinates, we can simplify the architecture of 𝜑 as follows.

As before, consider an input dataset consisting of a finite set 𝑉 ⊂ ℝ𝑛 endowed with a set of 𝑘 labels and a convex polytope 
with a set of vertices 𝑃 surrounding 𝑉 . Let Del(𝑉 ∪ 𝑃 ) be the Delaunay triangulation with vertex set

𝑉 ∪ 𝑃 = {𝜔1,… ,𝜔𝛼} ⊆ ℝ𝑛 .

Then, 𝜑(0) ∶ 𝑉 ∪ 𝑃 → 𝑊 𝑘+1 is a vertex map. Let us assume that, given 𝑥 ∈  , we precompute the barycentric coordinates 𝑏(𝑥) =
(𝑏0(𝑥), … , 𝑏𝑛(𝑥)) ∈ ℝ𝑛+1 of 𝑥 with respect to the 𝑛-simplex 𝜎 = ⟨𝜔𝑖0 , … , 𝜔𝑖𝑛 ⟩ ∈ Del(𝑉 ∪ 𝑃 ) such that 𝑥 ∈ |𝜎|, and that we also 
precompute the vector

𝜉(𝑥) = (𝜉1(𝑥),… , 𝜉𝛼(𝑥)) ∈ℝ𝛼

satisfying that, for 𝑡 ∈ �1, 𝛼�, 𝜉𝑡(𝑥) = 𝑏𝑗 (𝑥) if 𝑖𝑗 = 𝑡 for some 𝑗 ∈ �0, 𝑛�. Let us remark that 𝜉(𝑥) should be a column vector, but we will 
use row notation, for simplicity.

The SMNN 𝜑 induced by 𝜑 that predicts the ℎ-label of 𝑥, for ℎ ∈ �0, 𝑘�, has the following architecture:

• The number of neurons in the input layer is 𝛼.

• The number of neurons in the output layer is 𝑘 + 1.

• The set of weights is represented as a (𝑘 + 1) × 𝛼 matrix  such that the 𝑗-th column of  is 𝜑(0)(𝜔𝑡) for 𝑡 ∈ �1, 𝛼�.

Then,

𝜑(𝑥) = ⋅ 𝜉(𝑥) .

Observe that as defined so far, the SMNN weights are precomputed. Furthermore, the computation of the barycentric coordinates

of the points around 𝑉 implies the calculation of the convex polytope  surrounding 𝑉 . Finally, the computation of the Delaunay

triangulation Del(𝑉 ∪ 𝑃 ) is costly if 𝑉 ∪ 𝑃 has many points since its time complexity is 𝑂(𝑛 log𝑛 + 𝑛
⌈ 𝑑

2 ⌉) (see [9, Chapter 4]).

In the next sections, we will propose some techniques to overcome the SMNN construction drawbacks while maintaining its
advantages. We will see that one way to overcome the computation of the convex polytope  is to consider a hypersphere 𝑆𝑛

instead. We will also see how to avoid the use of the artificially created unknown label. Furthermore, to reduce the cost of Delaunay

computation and add trainability to 𝜑 to avoid overfitting, a subset 𝑈 ⊂ 𝑉 will be considered. The set 𝑉 will be used to train and 
test a map 𝜑(0)

𝑈
∶ 𝑈 →ℝ𝑘. Such a map will induce a continuous function 𝜑𝑈 ∶ 𝐵𝑛 → |𝐿| which approximates 𝜑.

3. The unknown boundary and the function 𝝋𝑼

In this section, we will see how to compute a function 𝜑𝑈 that approximates the simplicial map 𝜑 and avoids the computation

of the convex polytope  and the artificial consideration of the unknown label, reducing, at the same time, the computation of the

Delaunay triangulation used to construct SMNNs. The general description of the methodology is described in Algorithm 1.

First, let us compute a hypersphere surrounding 𝑉 . One of the simplest ways to do that is to translate 𝑉 so that its center of mass
4

is placed at the origin 𝑜 ∈ℝ𝑛. Then, the hypersphere



Information Sciences 667 (2024) 120474E. Paluzo-Hidalgo, R. Gonzalez-Diaz and M.A. Gutiérrez-Naranjo

Fig. 3. An example of the point 𝑤𝑥 computed from 𝑥 and the (𝑛− 1)-simplex 𝜇 = ⟨𝑢1 , 𝑢2⟩ ∈ Γ such that 𝑥 ∈ |𝜎| for 𝜎 = ⟨𝑤𝑥, 𝑢1, 𝑢2⟩.
𝑆𝑛 = {𝑤 ∈ℝ𝑛 ∶ ||𝑤|| = 𝑅}

such that 𝑅 > max{||𝑣|| ∶ 𝑣 ∈ 𝑉 } satisfies that 𝑆𝑛 surrounds 𝑉 . Second, let us assume that we have selected a subset 𝑈 =
{𝑢1, … , 𝑢𝑚} ⊆ 𝑉 (we will compare different strategies to select 𝑈 in Section 7) and that we have computed Del(𝑈 ). Then, we 
have that

𝑉 ⊂ 𝐵𝑛 = {𝑥 ∈ℝ𝑛 ∶ ||𝑥|| ≤ 𝑅} and 𝑜 ∈ |Del(𝑈 )| .
Let us consider the boundary of Del(𝑈 ), denoted as 𝛿Del(𝑈 ), which consists of the set of (𝑛 − 1)-simplices that are faces of exactly 
one maximal simplex of Del(𝑈 ).

Now, let us define 𝜉𝑈 (𝑥) ∈ℝ𝑚 for any 𝑥 ∈ 𝐵𝑛 as follows. Given 𝑥 ∈ 𝐵𝑛, to find the 𝑛-simplex 𝜎 = ⟨𝜔0, … , 𝜔𝑛⟩ such that 𝑥 ∈ |𝜎|, 
we have to consider two cases: 𝑥 ∈ | Del(𝑈 )| and 𝑥 ∉ | Del(𝑈 )|.

If 𝑥 ∈ | Del(𝑈 )| then 𝜎 is the 𝑛-simplex in Del(𝑈 ) such that 𝑥 ∈ |𝜎|. If 𝑥 ∉ | Del(𝑈 )| then 𝜎 is a new 𝑛-simplex defined by the 
vertices of an (𝑛 − 1)-simplex of 𝛿Del(𝑈 ) and a new vertex consisting of the projection of 𝑥 to 𝑆𝑛. Specifically, if 𝑥 ∉ | Del(𝑈 )| then 
𝜎 is computed in the following way:

1. Consider the set

Γ =
{
𝜇 ∈ 𝛿Del(𝑈 ) ∶ (𝑁 ⋅ 𝑢𝑖0 + 𝑐)(𝑁 ⋅ 𝑥+ 𝑐) < 0

}
where 𝑁 is the vector normal to the hyperplane containing 𝜇 = ⟨𝑢𝑖1 , … , 𝑢𝑖𝑛 ⟩, 𝑐 = 𝑁 ⋅𝑢𝑖1 , and 𝑢𝑖0 ∈ 𝑈 such that ⟨𝑢𝑖0 , 𝑢𝑖1 , … , 𝑢𝑖𝑛 ⟩ ∈
Del(𝑈 ).

2. Compute the point 𝑤𝑥 = 𝑅
𝑥||𝑥|| ∈ 𝑆𝑛.

3. Find 𝜎 = ⟨𝑤𝑥, 𝑢𝑖1 , … , 𝑢𝑖𝑛 ⟩ such that

𝜇 = ⟨𝑢𝑖1 ,… , 𝑢𝑖𝑛 ⟩ ∈ Γ and 𝑥 ∈ |𝜎|.
Observe that, by construction, 𝜇 always exists since | Del(𝑈 )| is a convex polytope.

Now, let 𝑏(𝑥) = (𝑏0(𝑥), … , 𝑏𝑛(𝑥)) ∈ℝ𝑛+1 be the barycentric coordinates of 𝑥 with respect to 𝜎. Then, 𝜉𝑈 (𝑥) = (𝜉1(𝑥), … , 𝜉𝑚(𝑥)) is 
the point in ℝ𝑚 satisfying that, for 𝑡 ∈ �1, 𝑚�,

𝜉𝑡(𝑥) =
{

𝑏𝑗 (𝑥) if 𝑢𝑡 = 𝜔𝑗 for some 𝑗 ∈ �0, 𝑛�,

0 otherwise.

Observe that 𝜉𝑈 (𝑥) always exists and is unique. An example of points 𝑥 and 𝑤𝑥 and simplex 𝜇 is shown in Fig. 3 and Example 1.

Let us observe that, thanks to the new definition of 𝜉𝑈 (𝑥) for 𝑥 ∈ 𝐵𝑛, if we have a map 𝜑(0)
𝑈
∶ 𝑈 →ℝ𝑘 then it induces a continuous 

function 𝜑𝑈 ∶ 𝐵𝑛 → |𝐿| defined for any 𝑥 ∈ 𝐵𝑛 as:

𝜑𝑈 (𝑥) = sof tmax
(∑

𝑡∈�1,𝑚�
𝜉𝑡(𝑥)𝜑

(0)
𝑈
(𝑢𝑡)

)
= sof tmax(𝑈 ⋅ 𝜉𝑈 (𝑥))

where for 𝑧 = (𝑧1, … , 𝑧𝑘) ∈ℝ𝑘,(
𝑒𝑧1 𝑒𝑧𝑘

)

5

sof tmax(𝑧) = ∑
ℎ∈�1,𝑘�

𝑒𝑧ℎ
,… , ∑

ℎ∈�1,𝑘�
𝑒𝑧ℎ

.



Information Sciences 667 (2024) 120474E. Paluzo-Hidalgo, R. Gonzalez-Diaz and M.A. Gutiérrez-Naranjo

Fig. 4. The relative positions of the vertices 𝑣̃𝑖 for 𝑖 ∈ �1,5� and the points 𝑥̃1 and 𝑥̃2 of Example 1.

Let us observe that, to obtain a categorical distribution from 𝜑𝑈 (𝑥) ∈ ℝ𝑘, we could just divide each of its coordinates by the total 
sum. However, sof tmax is introduced here to obtain a simplified formula for the gradient descent algorithm as shown in Theorem 1.

Example 1. Let us consider

𝑉 =
{
𝑣1 =

(1
2

,
1
2
)
, 𝑣2 =

(1
2

,1
)
, 𝑣3 =

(
1, 1

2
)
, 𝑣4 =

(
1,1

)}
with label 𝜆1 = 0 for 𝑣𝑖 with 𝑖 = 1, 2 and 𝜆2 = 1 for 𝑣𝑖 with 𝑖 = 3, 4. Firstly, we translate 𝑉 so that the center of mass of 𝑉 is the origin 
𝑜 ∈ℝ2. The translated dataset 𝑉 is{

𝑣̃1 =
(−1
4

,
−1
4
)
, 𝑣̃2 =

(−1
4

,
1
4
)
, 𝑣̃3 =

(1
4

,
−1
4
)
, 𝑣̃4 =

(1
4

,
1
4
)}

.

Let us consider 𝑥1 =
( 3
4 , 35

)
and 𝑥2 =

( 3
4 , 54

)
. Hence, the translated input data is 𝑥̃1 =

(
0, −320

)
and 𝑥̃2 =

(
0, 12

)
.

To simplify the explanation of the method, consider 𝑈 = 𝑉 , that is, 𝑢𝑖 = 𝑣̃𝑖 for 𝑖 ∈ �1, 4�. Then, the maximal simplices of Del(𝑈 ) are 
𝜎̃1 = ⟨𝑣̃1, 𝑣̃2, 𝑣̃3⟩ and 𝜎̃1 = ⟨𝑣̃2, 𝑣̃3, 𝑣̃4⟩

• The matrix 𝑈 is:

(
1 1 0 0
0 0 1 1

)
• Since the barycentric coordinates of 𝑥̃1 with respect to |𝜎̃1| are (0.5, 0.3, 0.2) then 𝑥̃1 is in |𝜎̃1| ⊂ | Del(𝑈 )| and 𝜉𝑈 (𝑥̃1) =
(0.3, 0.2, 0, 0.5). Then

𝜑𝑈 (𝑥̃1) = sof tmax(𝑈 ⋅ 𝜉𝑈 (𝑥̃1)) = (0.5,0.5).

• On the other hand, the point 𝑥̃2 is outside | Del(𝑈 )|. Assuming that, for example, we have fixed 𝑅 = 1, we add a new simplex

𝜎3 = {𝑤𝑥, 𝑣̃1, 𝑣̃2} where 𝑤𝑥 =𝑣̃5 = (0, 1) which is the projection of 𝑥̃2 to the hypersphere of radius 𝑅 centered in the origin.

See Fig. 4. Then, the barycentric coordinates of 𝑥̃2 with respect to 𝜎3 are (0.33, 0.33, 0.33) and then 𝜉𝑈 (𝑥̃2) = (0, 0.33, 0.33, 0),
concluding that

𝜑𝑈 (𝑥̃2) = sof tmax(𝑈 ⋅ 𝜉𝑈 (𝑥̃2)) = (0.5,0.5).

The pseudocode for computing 𝜑𝑈 (𝑥) is provided in Algorithm 1.

The following property holds.

Lemma 1 (Continuity). Let 𝑥 ∈ 𝐵𝑛. Then,

lim
𝑦→𝑥

𝜉𝑈 (𝑦) = 𝜉𝑈 (𝑥).

Proof. If 𝑥 ∈ | Del(𝑈 )| then the result holds due to the continuity of the barycentric coordinates transformation. If 𝑥 ∉ | Del(𝑈 )|, 
since the origin 𝑜 ∈ | Del(𝑈 )|, then ||𝑥|| ≠ 0. Therefore, for 𝑦 close to 𝑥, ||𝑦|| ≠ 0 and 𝑤𝑦 = 𝑅

𝑦||𝑦|| ∈ℝ𝑛. Besides,

lim
𝑦→𝑥

𝑤𝑦 = 𝑤𝑥
6

and therefore
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Algorithm 1 Pseudocode to compute 𝜑𝑈 (𝑥) for 𝑥 ∈ 𝐵𝑛 and a subset 𝑈 of an input dataset 𝑉 surrounded by a hypersphere of radius 
𝑅.

Input: 𝑈 ⊂ 𝑉 ⊂ ℝ𝑛 labelled using a set of labels Λ = {𝜆1 , … , 𝜆𝑘}, a radius 𝑅, and a point 𝑥 ∈𝐵𝑛 .

Output: The value of 𝜑𝑈 (𝑥)
compute Del(𝑈 )
𝑊 𝑘 ∶=

{
𝓁𝑗 ∶= (0, 𝑗−1…, 0, 1, 0, 𝑘−𝑗… , 0) for 𝑗 ∈ �1, 𝑘�

}
init an empty matrix 𝑈

init an empty vector 𝑥𝑖(𝑥)
for 𝑢 ∈ 𝑈 do

if 𝜆𝑗 is the label of 𝑢 then

add 𝓁𝑗 as a column of 𝑈

end if

end for

for 𝜎 maximal simplex of Del(𝑈 ) do

compute 𝑏(𝑥)
if 𝑏𝑗 ≥ 0 for all 𝑗 ∈ �0, 𝑛� then

stop: compute 𝜉𝑈 (𝑥)
end if

end for

if 𝜉𝑈 (𝑥) is empty then

compute Γ, 𝑤𝑥 , 𝜇 and 𝜎
compute 𝑏(𝑥) with respect to 𝜎 and 𝜉𝑈 (𝑥)

end if

𝜑𝑈 (𝑥) ∶= sof tmax(𝑈 ⋅ 𝜉𝑈 (𝑥))

lim
𝑦→𝑥

𝜉𝑈 (𝑦) = 𝜉𝑈 (𝑥) ,

concluding the proof. □

Lemma 2 (Consistence). Let 𝜑(0) be the map defined in Subsection 2.3. If 𝑈 = 𝑉 and 𝜑(0)
𝑈
(𝑢) = 𝜑(0)(𝑢) for all 𝑢 ∈ 𝑈 then

argmax𝜑𝑈 (𝑥) = argmax𝜑(𝑥); for all 𝑥 ∈Del(𝑉 ) .

Proof. Let us observe that if 𝑈 = 𝑉 and 𝜑(0)
𝑈
(𝑢) = 𝜑(0)(𝑢) for all 𝑢 ∈ 𝑈 then, for any 𝑥 ∈Del(𝑉 ), we have that:

𝜑(𝑥) =
∑

𝑡∈�1,𝑚�

𝜉𝑡(𝑥)𝜑(0)(𝑢𝑡) =
∑

𝑡∈�1,𝑚�

𝜉𝑡(𝑥)𝜑
(0)
𝑈
(𝑢𝑡).

Then, 𝜑𝑈 (𝑥) = sof tmax
(
𝜑(𝑥)

)
and argmax𝜑𝑈 (𝑥) = argmax𝜑(𝑥). □

One of the keys to our study is the identification of the points of ℝ𝑛 allocated inside a given simplex, with the set of all probability 
distributions with 𝑛 + 1 support values. In this way, the barycentric coordinates of a point can be seen as a probability distribution. 
From this point of view, given 𝑥 ∈ 𝐵𝑛, then 𝜑(𝑥) and 𝜑𝑈 (𝑥) are both in the set |𝐿| of probability distributions with 𝑘 support points. 
This is why the categorical cross-entropy loss function  will be used to compare the similarity between 𝜑 and 𝜑𝑈 . Specifically, for 
𝑣 ∈ 𝑉 ,  is defined as:

(𝜑𝑈 ,𝜑, 𝑣) = −
∑

ℎ∈�1,𝑘�

𝑦ℎ log(𝑠ℎ) ,

where 𝜑(0)(𝑣) = (𝑦1, … , 𝑦𝑘) and 𝜑𝑈 (𝑣) = (𝑠1, … , 𝑠𝑘).
The following lemma establishes a specific set 𝑈 ⊂ 𝑉 and a function 𝜑̂𝑈 such that (𝜑𝑈 , 𝜑, 𝑣) = 0 for all 𝑣 ∈ 𝑉 .

Lemma 3 (-optimum simplicial map). Let 𝑈 be a subset of 𝑉 satisfying, for all 𝑢 ∈ 𝑈 , that:

1. 𝜑
(0)
𝑈
(𝑢) = 𝜑(0)(𝑢), and

2. if 𝑣 ∈ 𝑉 such that 𝜑(0)(𝑣) ≠ 𝜑(0)(𝑢) and ⟨𝑣, 𝑢⟩ ∈ Del(𝑉 ) then 𝑣 ∈ 𝑈 .

Then,

argmax𝜑𝑈 (𝑥) = argmax𝜑(𝑥); for all 𝑥 ∈Del(𝑈 ) .

Proof. As proved in [6], under the assumptions stated in this lemma, we have that, for all 𝑥 ∈< | Del(𝑈 )|:
𝜑(𝑥) =

∑
𝑡∈�1,𝑚�

𝜉𝑡(𝑥)𝜑
(0)
𝑈
(𝑢𝑡)
7

and then argmax𝜑𝑈 (𝑥) = argmax𝜑(𝑥). □
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Unfortunately, to compute the subset 𝑈 satisfying the conditions stated in Lemma 3, we need to compute the entire triangulation

Del(𝑉 ) which is computationally expensive, as we have already mentioned above.

4. Training SMNNs

The novel idea of this paper is to learn the function 𝜑(0)
𝑈

for any given 𝑈 ⊂ 𝑉 , using the gradient descent algorithm, in order to
minimize the loss function (𝜑𝑈 , 𝜑, 𝑣) for any 𝑣 ∈ 𝑉 . The following result provides an expression of the gradient of  in terms of the 
functions 𝜑𝑈 and 𝜑, and the set 𝑉 .

Theorem 1. Let 𝑈 = {𝑢1, … , 𝑢𝑚} be a subset with 𝑚 elements taken from a finite set of points 𝑉 ∈ℝ𝑛 tagged with labels taken from a set 
of 𝑘 labels. Let 𝜑𝑈 ∶ 𝐵𝑛 → |𝐿| and 𝜑(0) ∶ 𝑉 → 𝑊 𝑘. Let us consider that{

𝜑
(0)
𝑈
(𝑢𝑡) = (𝑝𝑡

1,… , 𝑝𝑡
𝑘
) ∶ 𝑡 ∈ �1,𝑚�

}
is a set of variables. Then, for 𝑣 ∈ 𝑉 ,

𝜕(𝜑𝑈 ,𝜑, 𝑣)
𝜕𝑝𝑡

𝑗

= (𝑠𝑗 − 𝑦𝑗 )𝜉𝑡(𝑣)

where 𝑗 ∈ �1, 𝑘�, 𝑡 ∈ �1, 𝑚�, 𝜑(0)(𝑣) = (𝑦1, … , 𝑦𝑘) and 𝜑𝑈 (𝑣) = (𝑠1, … , 𝑠𝑘).

Proof. We have:

𝜕(𝜑𝑈 ,𝜑, 𝑣)
𝜕𝑝𝑡

𝑗

= −
𝜕
(∑

ℎ∈�1,𝑘� 𝑦ℎ log(𝑠ℎ)
)

𝜕𝑝𝑡
𝑗

= −
∑

ℎ∈�1,𝑘�

𝑦ℎ

𝜕 log(𝑠ℎ)
𝜕𝑝𝑖

𝑗

= −
∑

ℎ∈�1,𝑘�

𝑦ℎ

𝜕 log(𝑠ℎ)
𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑝𝑖
𝑗

.

Since 𝑠ℎ = 𝑒𝑧ℎ∑
𝑡∈�1,𝑘� 𝑒𝑧𝑡

then

𝜕 log(𝑠ℎ)
𝜕𝑧𝑗

=
𝜕 log

( 𝑒𝑧ℎ∑
𝑡∈�1,𝑘� 𝑒𝑧𝑡

)
𝜕𝑧𝑗

=
𝜕 log(𝑒𝑧ℎ )

𝜕𝑧𝑗

−
𝜕 log

(∑
𝑡∈�1,𝑘� 𝑒𝑧𝑡

)
𝜕𝑧𝑗

=
𝜕𝑧ℎ

𝜕𝑧𝑗

− 1∑
𝑡∈�1,𝑘� 𝑒𝑧𝑡

∑
𝑡∈�1,𝑘�

𝜕𝑒𝑧𝑡

𝜕𝑧𝑗

= 𝛿ℎ𝑗 −
𝑒𝑧𝑗∑

𝑡∈�1,𝑘� 𝑒𝑧𝑡
= 𝛿ℎ𝑗 − 𝑠𝑗 .

Besides, since 𝑧𝑗 =
∑

ℎ∈�1,𝑚�
𝜉ℎ(𝑣)𝑝ℎ

𝑗
then

𝜕𝑧𝑟

𝜕𝑝𝑡
𝑗

=
∑

ℎ∈�1,𝑚�

𝜉ℎ(𝑣)
𝜕𝑝ℎ

𝑟

𝜕𝑝𝑡
𝑗

= 𝜉𝑡(𝑣) .

Finally,

𝜕(𝜓,𝜑, 𝑣)
𝜕𝑝𝑡

𝑗

= −
∑

ℎ∈�1,𝑘�

𝑦ℎ(𝛿ℎ𝑗 − 𝑠𝑗 )𝜉𝑡(𝑣)

= −𝜉𝑡(𝑣)
( ∑

ℎ∈�1,𝑘�

𝑦ℎ𝛿ℎ𝑗 − 𝑠𝑗

∑
ℎ∈�1,𝑘�

𝑦ℎ

)
= (𝑠𝑗 − 𝑦𝑗 )𝜉𝑡(𝑣) . □

Let us now see how we add trainability to the SMNN 𝜑𝑈
induced by 𝜑𝑈 . Let 𝑉 be the training set and let 𝑈 be a support set

lying in the same space as 𝑉 . First, assuming that 𝑈 = {𝑢1, … , 𝑢𝑚} has 𝑚 elements, then 𝜑𝑈
is a multiclass perceptron with an 

input layer with 𝑚 neurons that predicts the ℎ-th label for ℎ ∈ �1, 𝑘� using the formula:( )

8

𝜑𝑈
(𝑥) = sof tmax ̃ ⋅ 𝜉𝑈 (𝑥)
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Fig. 5. Two-dimensional synthetic dataset with points divided into two classes: blue and yellow. Triangle-shaped points belong to the test set and square-shaped

points belong to the support set 𝑈 . The diamond-shaped point is the vertex on the hypersphere (the blue circumference) used to classify the triangle-shaped point 𝑣
(surrounded by a small red circumference) outside the triangulation.

where ̃ = (𝑝𝑡
𝑗
)𝑗∈�1,𝑘�, 𝑡∈�1.𝑚� is a matrix of weights and 𝜉𝑈 (𝑥) ∈ ℝ𝑚 is obtained from the barycentric coordinates of 𝑥 ∈ 𝐵𝑛 as in 

Section 3. Let us observe that

sof tmax
(
̃ ⋅ 𝜉𝑈 (𝑥)

)
∈ |𝐿|.

The idea is to modify the initial values of

𝜑
(0)
𝑈
(𝑢𝑡) = (𝑝𝑡

1,… , 𝑝𝑡
𝑘
) for 𝑢𝑡 ∈ 𝑈 and 𝑡 ∈ �1,𝑚�,

in order to obtain new values for 𝜑𝑈
(𝑣) for 𝑣 ∈ 𝑉 in a way that the error (𝜑𝑈

,𝜑, 𝑣) decreases. We will do it by avoiding 
recomputing Del(𝑈 ) or the barycentric coordinates (𝑏0(𝑣), … , 𝑏𝑛(𝑣)) for each 𝑣 ∈ 𝑉 during the training process.

In this way, given 𝑣 ∈ 𝑉 , if 𝑣 ∈ | Del(𝑈 )|, we compute the maximal simplex 𝜎 = ⟨𝑢𝑖0 , … , 𝑢𝑖𝑛 ⟩ ∈ Del(𝑈 ) such that 𝑣 ∈ |𝜎| and 
𝑖ℎ ∈ �1, 𝑚� for ℎ ∈ �0, 𝑛�. If 𝑣 ∉ | Del(𝑈 )|, we compute 𝑤 ∈ 𝑆𝑛 and the simplex 𝜎 = ⟨𝑤, 𝑢𝑖1 , … , 𝑢𝑖𝑛 ⟩ such that 𝑣 ∈ |𝜎| and 𝑖ℎ ∈ �1, 𝑚�

for ℎ ∈ �1, 𝑛�. Then we compute the barycentric coordinates 𝑏(𝑣) of 𝑣 with respect to 𝜎 and the point 𝜉𝑈 (𝑥) = (𝜉1(𝑥), … , 𝜉𝑚(𝑥)) ∈ℝ𝑚

as in Section 3.

Using the gradient descent algorithm, we update the variables 𝑝𝑡
𝑗

for 𝑗 ∈ �1, 𝑘� and 𝑡 ∈ �1, 𝑚� as follows:

𝑝𝑡
𝑗
∶= 𝑝𝑡

𝑗
− 𝜂

𝜕(𝜑𝑈
,𝜑, 𝑣)

𝜕𝑝𝑡
𝑗

= 𝑝𝑡
𝑗
− 𝜂(𝑠𝑗 − 𝑦𝑗 )𝜉𝑡(𝑣).

An illustrative picture of the role of each point in a simple two-dimensional binary classification problem is provided in Fig. 5.

The pseudocode of the method to train SMNNs using Stochastic Gradient Descent is provided in Algorithm 2.

Algorithm 2 Pseudocode of the proposed method to train SMNNs using SGD.

Input: Dataset 𝑉 ⊂ ℝ𝑛 surrounded by a hypersphere of radius 𝑅 and a model 𝜑𝑈
.

Parameter: 𝜂 > 0
Output: The trained model 𝜑𝑈

init ̃, the matrix of weights of 𝜑𝑈

for 𝑣 ∈ 𝑉 do

compute 𝜉𝑈 (𝑣) as in Section 3

for each column 𝑝 of  do

𝑝 ∶= 𝑝 − 𝜂
𝜕(𝜑𝑈

,𝜑,𝑣)
𝜕𝑝

end for

end for

𝜑𝑈
(𝑥) ∶= sof tmax(̃ ⋅ 𝜉𝑈 (𝑥))

5. Explainability

In this section, we provide insight into the explainability capability of SMNNs. In the literature, many different approaches can be

found to what is an explanation of the prediction of an AI model. In our case, explainability will be provided based on similarities and
9

dissimilarities of the point 𝑥 to be explained with the points corresponding to the vertices of the simplex 𝜎 containing it. Based on
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Fig. 6. Table with the five flowers taken from the training set that influence the classification of a given flower in the test set, i.e., the vertices of 𝜎. The SMNN was

trained for 1000 epochs and 𝑅 ≈ 6.16.

this idea, the barycentric coordinates of 𝑥 with respect to 𝜎 can be considered indicators of how much a vertex of 𝜎 will contribute to
the prediction of 𝑥. Specifically, the barycentric coordinates of 𝑥 multiplied by the evaluation of the trained map 𝜑(0)

𝑈
at the vertices

of 𝜎 encode the contribution of each vertex of 𝜎 to the label assigned to 𝑥 by the SMNN.

As an illustration, consider the Iris dataset1 as a toy example and split it into a training set (75%) and a test set (25%). Since we 
focus on this section on explainability, let us take 𝑈 = 𝑉 , containing 112 points. Then, initialize 𝑝𝑡

𝑗
with a random value in [0, 1], for 

𝑗 ∈ �1, 4� and 𝑡 ∈ �1, 112�.
After the training process, the SMNN reached 92% accuracy and 0.5 loss value on the test set. Once the SMNN is trained, we may 

be interested in determining why a certain output is given for a specific point 𝑥 in the test set.

As mentioned above, the explanation for why the SMNN assigns a label to 𝑥 is based on the labels of the vertices of the simplex

of Del(𝑈 ) containing 𝑥. Therefore, the first step is to find the maximal simplex 𝜎 that contains the point 𝑥 to be explained. As 
an example, in Fig. 6, the point 𝑥 = (5.5, 2.4, 3.8, 1.1) ∈ ℝ4 in the test set is chosen to be explained, to which the SMNN predicts 
to assign class 2. The coordinates of the five vertices (𝑢26, 𝑢55, 𝑢69, 𝑢84 and 𝑢95) of the simplex 𝜎 containing 𝑥 together with the 
classes they have been assigned are shown in the table at the bottom of Fig. 6. The contribution of the class assigned to each vertex

of 𝜎 to the class assigned to 𝑥 by the SMNN is displayed in the bar chart, and is measured in terms of 𝑝𝑡
𝑗
⋅ 𝜉𝑡(𝑥) for 𝑗 ∈ �0, 2� and 

𝑡 ∈ {26, 55, 69, 84, 95}. Let us notice that the contributions can be positive or negative. For example, the vertex with index 95 with the 
greatest influence on the prediction negatively affected the classification of 𝑥 corresponding to the first and third class, but positively

to the second class, which is the correct classification. Let us note that the Euclidean distance between points is not the only factor

making a vertex of 𝜎 contribution greater. That is, even if two vertices are equally close to the point to be explained, they do not

contribute the same. For example, the vertices 84 and 95 are similarly close to the test point, but their contribution is very different 
in magnitude.

6. Discussion and limitations

Let us remark that SMNNs are in between an instance-based method and a multilayer perceptron. The previous definition of

SMNNs ([4,5]) shared advantages with instance-based methods such as the k-Nearest Neighbor Algorithm. Some of the advantages

are: there was no training phase, it handles easily complex decision boundaries by barycentric subdivisions, it is effective in low-

dimensional spaces, it adapts well to local patterns in the data, and the decision-making is transparent and interpretable. However, it
was computationally expensive for large high-dimensional datasets due to the Delaunay triangulation computation and the required

convex polytope, it suffered from overfitting and lacked generalization ability. The proposed update in this paper provides a substitute

for the convex polytope which reduces the number of points needed to compute the Delaunay triangulation. Delaunay computation

is also less expensive thanks to the use of a support set 𝑈 .

Nevertheless, one of the main limitations of SMNNs is the need for an input triangulable space. Hence, structured data such as

images need to be embedded by, for example, applying a dimensionality reduction technique such as UMAP [10] so that the dataset

is a point cloud.
10

1 https://archive .ics .uci .edu /ml /datasets /iris.
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Table 1

Accuracy score and loss values obtained after training both

the SMNN and a feed-forward neural network (FFNN). The

experiments were repeated 100 times and the results pro-

vided are the mean of the accuracy values of the repeti-

tions. The size 𝑚 of the subset considered to compute the

Delaunay triangulation also varies in each experiment de-

pending on a parameter 𝜅. The FFNN is composed of two

hidden layers of size 32 and 16, respectively, with ReLu 
activation functions and an output layer with a softmax

activation function. The datasets used are synthetic binary-

class datasets with 𝑛 = 2, 3, 4, 5 features.

SMNN FFNN

𝑛 𝜅 𝑚 Acc. Loss Acc. Loss

2

1000 3560 0.87 0.64

0.91 0.23
100 1282 0.90 0.51

50 626 0.9 0.42

10 53 0.87 0.33

3

1000 3750 0.76 0.66

0.8 0.61
100 3664 0.76 0.66

50 3252 0.77 0.65

10 413 0.81 0.5

4

50 3728 0.69 0.67

0.72 0.69
10 1410 0.73 0.64

5 316 0.73 0.57

2 26 0.72 0.56

5

50 3743 0.77 0.66

0.8 0.91
10 1699 0.81 0.63

5 323 0.8 0.52

2 17 0.74 0.53

Regarding the explainability of the model, it is not a feature-based explainability such as [11,12] and, hence, it does not provide

direct insight on the importance of the features of the input data. However, it provides instance-based explainability [13]. When

predicting input data, the vertices of the simplex where it belongs and their contribution to the classification give a similarity measure

inferred by the SMNN which is understandable by an expert.

7. Experiments

In this section, we provide experiments that show the performance of SMNNs. In all the experiments, we split the given dataset

into a training set and a test set composed of 75% and 25% of the dataset, respectively. The datasets used for experimentation

are (1) a two-dimensional binary classification spiral synthetic dataset, and (2) dimension-varying binary classification synthetic

datasets composed of different noisy clusters for each class (we refer to [14] for a specific description of how data is generated). All

experiments were developed using a 3.70 GHz AMD Ryzen 9 5900X 12-Core Processor.

In the first two experiments, 𝜀-representative subsets of the training set are used as the support set 𝑈 for different values of 𝜀. The

notion of 𝜀-representative sets was introduced in [15]. Specifically, a support set 𝑈 is 𝜀-representative of a set 𝑉 if, for any 𝑣 ∈ 𝑉 , 
there exists 𝑢 ∈ 𝑈 such that the distance between 𝑢 and 𝑣 is less than 𝜀.

Let us now describe the methodology of each experiment.

First experiment: we consider a two-dimensional spiral dataset for binary classification composed of 400 two-dimensional points. 
We selected three different values of 𝜀 obtaining three 𝜀-representative sets (the support sets) of size 5, 9 and 95, respectively. In
Fig. 7, the spiral dataset and the three different support sets with the associated Delaunay triangulation are shown. In this case, we

observed that the accuracy of the SMNNs increases with the size of the support set. We can also appreciate that the topology of the

dataset is characterized by the support set, which we guess is responsible for the successful classification.

Second experiment: we consider four synthetic datasets of size 5000 using the adaptation of [14] in the scikit-learn [16]

implementation. The four datasets generated have, respectively, 𝑛 = 2, 3, 4 and 5 features. Then, the corresponding training set 
𝑉 obtained from each dataset and a fully connected two-hidden-layer feed-forward (32 × 16) neural network (FNNN) with ReLU 
activation functions were considered.

To train the SMNN, we use four different 𝜀-representative sets of each 𝑉 . In our experiments, the different values of 𝜀 are

calculated as the maximum distance from the origin to the farthest point in the dataset plus 12 and divided by a parameter 𝜅. The 
different values for 𝜅 considered are 1000, 100, 50, 10. Using the different values of 𝜅 we then obtain support sets 𝑈 of different sizes 
𝑚. For example, for 𝑛 = 2 and 𝑘 = 1000, we obtain a support set 𝑈 of size 𝑚 = 3560. The sizes 𝑚 of the support sets 𝑈 generated for 
11

𝑛 = 2, 3, 4, 5 and 𝜅 = 1000, 100, 50, 10 are provided in Table 1.
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Fig. 7. Spiral dataset for binary classification. On each figure, the points in the support set are square-shaped, the points in the test set are triangle-shaped and the

points in the training set are circle-shaped.

First, the SMNN was trained using the gradient descent algorithm and the cross-entropy loss function during 500 epochs for 
𝑛 = 2, 3, 4, 5 and 𝜅 = 1000, 100, 50, 10. Besides, the two-hidden-layer feed-forward neural network FFNN was trained using the Adam 
training algorithm [17] for 𝑛 = 2, 3, 4, 5. Both training processes were carried out for 500 epochs. The accuracy and loss results 
provided in Table 1 are the mean of 100 repetitions. We can observe that both the SMNN and the FFNN have similar performance, 
but the SMNN generally reaches lower loss values. The variance in the results was on the order of 10−8 to 10−5 in the case of the 
SMNN and of 10−5 to 10−2 in the case of the FFNN.

Third experiment: we compare the performance of the SMNN depending on the choice of the support set 𝑈 . To do this, we

applied two different methods to choose 𝑈 . On the one hand, we use the 𝜀-representative sets previously computed in the first

experiment for different values of 𝜅. On the other hand, we use the two outlier-robust subsampling methods presented in [18]

for different values of Topological Density (TD). In Fig. 8, examples of different support sets computed using the three different

approaches are shown. Let us remark that the outlier-robust subsampling method can be tuned to keep outliers, which the authors

call vital landmark set, or not, obtaining a representative landmark set. The two methods were tested on synthetic datasets composed

of 1000 points. The SMNN was trained for 1000 epochs using the 75% of the dataset and tested in the remaining 25%. The number of 
12

features 𝑛 of each dataset considered, the size 𝑚 of each support set computed, and the mean accuracy and loss results of 5 repetitions 
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Fig. 8. Examples of support sets obtained using the different methods proposed in the third experiment.

when training the SMNN are provided in Table 2. In Table 3, the time for the computation of the barycentric coordinates is provided.

As we can see, the time of execution does not have to be directly related to the size of the support set and it may increase if many of

the points to be evaluated are outside the Delaunay triangulation of 𝑈 . In this experiment, the results suggest that 𝜀-representative

datasets provide better results than the other support sets. However, thorough theoretical studies should be developed to confirm the
13

last statement. Such a study is outside of the scope of this paper.
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Table 2

Accuracy score and loss values obtained after training the SMNN. The size 𝑚 of the subset considered to compute the Delaunay

triangulation varies in each experiment depending on a parameter 𝜅 (for 𝜀-representative sets) or a parameter TD (for landmark sets).

The datasets used are synthetic binary-class datasets with 𝑛 = 2, 3, 4 features.

Sampling method Parameter 𝑛 = 2 𝑛 = 3 𝑛 = 4

𝑚 Acc. Loss 𝑚 Acc. Loss 𝑚 Acc. Loss

Representative sets

𝜅 = 10 48 0.94 0.22 109 0.94 0.29 407 0.9 0.53

𝜅 = 50 371 0.94 0.47 730 0.95 0.53 748 0.87 0.6

𝜅 = 100 570 0.93 0.54 747 0.96 0.56 750 0.87 0.6

ORS

Representative landmark sets

TD=0.1 75 0.79 0.49 75 0.9 0.35 75 0.85 0.46

TD=0.4 300 0.85 0.57 300 0.86 0.5 300 0.87 0.62

TD=0.6 450 0.86 0.52 450 0.89 0.52 450 0.86 0.55

TD=0.8 600 0.89 0.56 600 0.92 0.52 600 0.86 0.58

Vital landmark sets

TD=0.1 75 0.93 0.27 75 0.84 0.4 75 0.88 0.37

TD=0.4 300 0.93 0.37 300 0.88 0.46 300 0.9 0.45

TD=0.6 450 0.91 0.44 450 0.96 0.44 450 0.89 0.53

TD=0.8 600 0.93 0.5 600 0.95 0.52 600 0.87 0.57

Table 3

Time in seconds for the 𝜉𝑈 (𝑥) computation for the experiments in Table 2. The values 
are the mean of 5 iterations. Let us remark that higher values can be expected when

increasing the number of points outside the Delaunay triangulation of the support set.

Sampling method Parameter 𝑛 = 2 𝑛 = 3 𝑛 = 4

Representative sets

𝜅 = 10 0.08 0.14 0.54

𝜅 = 50 0.12 0.22 0.79

𝜅 = 100 0.14 0.24 0.79

ORS

Representative landmark sets

TD=0.1 1.04 2.89 21.75

TD=0.4 0.33 0.29 7

TD=0.6 0.12 0.37 3.03

TD=0.8 0.1 0.23 1.29

Vital landmark sets

TD=0.1 0.17 3.22 3.87

TD=0.4 0.15 2.31 1.69

TD=0.6 0.08 0.53 1.17

TD=0.8 0.15 0.27 0.82

8. Conclusions

The balance between efficiency and explainability will be one of the major problems of AI in the next years. Although AI models

based on network architectures and backpropagation algorithms are currently among the most successful models, they are far from

providing a human-readable explanation of their outputs. On the other hand, simpler models not based on gradient descent methods

usually do not provide a comparable level of performance. In this way, a trainable version of SMNNs provides a new step in filling

the gap between both approaches.

Simplicial map neural networks provide a combinatorial approach to artificial intelligence. Its simplicial-based definition provides

nice properties, such as easy construction and robustness capability against adversarial examples.

In this work, we have extended its definition to provide a trainable version of this architecture. The training process is based on a
local search and links this model based on simplices with the most efficient methods in AI. Moreover, we have demonstrated in this

paper that such a simplicial-based construction provides a human-understandable explanation of the decision.

The ideas presented in this paper can be extended in many different ways. In future work, we intend to study less-data-dependent

approaches so that the Delaunay triangulation is needless. Besides, this architecture should be extended to Deep Learning models so
that it can be applied to more complex classification problems such as image classification and provides extra explainability to Deep

Learning models.

Code availability

The code is available in the GitHub repository: https://github .com /Cimagroup /TrainableSMNN.
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