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a b s t r a c t 

The 3-COL problem consists on deciding if the regions of a map can be coloured with only

three colors bearing in mind that two adjacent regions must be coloured with different

colors. It is a NP problem and it has been previously used in complexity studies in mem- 

brane computing to check the ability of a model for solving problems of such complexity

class. Recently, tissue P systems with proteins on cells have been presented and its ability

to solve NP problems has been proved, but it remained as an open question to know if

such model was still able to solve such problems if the environment was removed. In this

paper, we provide an affirmative answer to this question by showing a uniform family of

tissue P systems without environment and with proteins on cells which solves the 3-COL

problem in linear time.

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

The P versus NP problem is one of the most important unsolved problem in computer science and it was chosen as

one of the seven Millennium Prize Problems [8] . The precise statement of the problem was introduced in 1971 by Cook [4] ,

although it was essentially mentioned in a personal communication between K. Gödel and J. von Neumann [7] . 

Whereas the main question is unsolved (i.e., to decide if P and NP are or not the same complexity class), many effort s

have been oriented in the last years in order to find frontiers of tractability , i.e., to identify some features of the computa-

tional models such that the corresponding device is able to solve or not NP problems depending if it is endowed or not

with such feature. 

Membrane computing [21] is a bio-inspired research area where many effort s have been addressed in order to discover

new frontiers able to shed a new light on the P vs. NP problem. In this research area, the computational devices are called

P systems . They consist on encapsulated pieces of information represented as multisets of objects placed in membranes and

a set of rules which allows modify the multisets or even modify the membrane structure. In membrane computing, there

exists an extensive literature devoted to this issue (see [27] and the references therein) and the present paper is a novel

contribution in such research area. Recently, many other research lines in membrane computing have been open, see e.g.,

[11,22,23,28,33,34] . 
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We consider here a variant of one of the most popular P systems architectures: tissue P systems. Such model was firstly

presented in [13,14] by placing the cells in a general graph instead on a tree-like graph as in the cell-like model. Under the

hypothesis P � = NP , Zandron et al. [35] established the limitations of P systems that do not use membrane division concerning

the efficient solution of NP -complete problems. From this premise, P ̆aun et al. presented in [19] the model of tissue P

systems endowed with cell division, able to solve NP -problems. Since then, many other variants have been presented, e.g.,

[5,9,10,16,17] . 

Tissue P systems with protein on cells have been introduced by Song et al. [29] . Previously, tissue P systems with proteins

on membranes had been presented [20] and many of their properties have been explored (see, e.g., [18,30,31] ). Nonetheless,

the model of tissue P systems with protein on cells is quite different to the model with proteins on membranes: In the first

one, proteins can move with multisets of objects but they cannot change. In the model with proteins on membranes, they

can be changed, but they cannot move between membranes. 

The ability of tissue P system with proteins on cells for solving NP problems has been proved [15,20] , but it is an open

question to know if after dropping some of the features, the model is still able to solve NP problems. In this paper 1 , we

prove that the model of tissue P system with proteins on cells can solve NP problems if the environment is not considered.

The environment in tissue P systems has a singular feature which makes it different to any other region: based on a

biological inspiration, cells can take from the environment the necessary resources for any computation in a similar way

that a biological cell can take as many oxygen molecules from the atmosphere (or the corresponding environment) as it

needs. This means that the number of objects in the environment is not important and the designer does not need to take

care of it. Avoiding the environment is a strong restriction, since all the resources are inside the cells from the beginning

of the computation and nothing is taken from outside. The importance of the environment in other membrane computing

models has been previously discussed in the literature (see, e.g. [3,12,25,26] ). In this paper, we provide a uniform family of

P systems with proteins on cells without environment which solves the 3-COL problem in linear time and hence, we prove

that such systems are able to solve NP problems even if the environment is not considered. 

The paper is organized as follows: Next, a formal description of the P system model used in this paper is given and some

basics on recognizer P systems are recalled. In Section 3 , we present the uniform family of P systems which solve the 3-COL

problem in linear time and prove that NP problems can be solved in this model in polynomial time. Finally, the paper ends

with some conclusions and open research lines. 

2. Formal framework

Tissue P systems 2 with proteins on cells and cell division were introduced in [29] . In the same paper, the definition

of recognizer tissue P systems [19] was presented in this framework. We adapt these definitions to the case where the

environment is not considered. 

Definition 1. A tissue P system without environment, with protein on cells and cell division of degree q ≥ 1 is a tuple of the

form 

� = (�, P, M 1 /p 1 , . . . , M q /p q , R , i in , i out ) ,

where: 

• � and P are finite non–empty alphabets such that � ∩ P = ∅ ; � is the working alphabet and P is the set of proteins;

• M i are finite multisets over �, 1 ≤ i ≤ q ;

• p i are elements from P , 1 ≤ i ≤ q ;

• R is a finite set of rules of the following types:

• Communication rules: (i, ( p k , u ) / ( p l , v ) , j) , for i, j ∈ { 1 , . . . , q } , i � = j, p k , p l ∈ P, u, v ∈ �∗. The length of a communication

rule is the total number of objects and proteins involved in that rule.

• Division rules: [ p j | a ] i → [ p k | b] i [ p l | c] i for i ∈ { 1 , . . . , q } , p j , p k , p l ∈ P, a, b, c ∈ �, i � = i out

• i in , i out ∈ { 1 , . . . , q } .
A tissue P system without environment, with protein on cells and cell division can be viewed as a set of q cells, labelled

by { 1 , . . . , q } such that M 1 , . . . , M q represent the finite multisets of objects initially placed in the q cells of the system and

p 1 , . . . , p q represent one and only one copy of protein initially placed on the q cells of the system; i in is the cell where

the input is placed in the initial configuration; and i out represents a distinguished cell which will encode the output of

the system. A configuration of the P system at any instant is described by all multisets of objects over � associated with

all the cells present in the system and the proteins presented on them. The initial configuration is (M 1 /p 1 , . . . , M q /p q ) . A

communication rule of type ( i , ( p k , u )/( p l , v ), j ) is applicable to a configuration at an instant if cell i contains the protein p k
and the multiset u of objects, cell j contains the protein p l and the multiset v of objects (multisets u, v may be empty; the

empty multiset will be denoted by the symbol λ). When applying such a rule, under the control of the proteins p k on cell
1 A preliminary version of this paper will appear in the Proceedings of the 14th Brainstorming Week on Membrane Computing (BWMC2016).
2 The reader is supposed to be familiar with basic membrane computing concepts, see [21] .
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i and p l on cell j , both the protein p k and the multiset u of objects are sent from cell i to cell j , and simultaneously, the

protein p l and the multiset v of objects are sent from cell j to cell i . 

A division rule [ p j | a ] i → [ p k | b ] i [ p l | c ] i is applicable to a configuration if cell i contains the protein p j and the object a .

When applying such a rule, under the influence of protein p j and the object a in cell i , the cell is divided into two cells with

the same label; in the first copy of the cell the protein p j is replaced by p k and the object a is replaced by b , in the second

copy of the cell the protein p j is replaced by p l and the object a is replaced by c ; all the remaining objects in the original

cell are replicated and distributed in each of the new cells. 

Rules are used in a maximally parallel way: at each step, all cells which can evolve must evolve and a maximal multiset

of rules is applied (no further rule can be added being applicable). Let us remark that only one protein is placed in each

cell and therefore only one rule can be applied to a cell in a computation step, regardless if it is a communication one or a

division one. 

2.1. Recognizer tissue P systems with protein on cells and cell division 

The notion of recognizer P system is general enough to cover many P system variants. Roughly speaking, a recognizer P

system is a P system which takes some information as input and outputs an object yes or no which can be considered as

a decision on the input. Of course, some other conditions are imposed, but the general framework does not depend on the

use of proteins or the existence of environment. 

Next, we recall the main notions related to the theory of recognizer P systems, which fit into the presented model in a

natural way. For a detailed description see, e.g., [24,27] . A decision problem X is a pair ( I X , θX ) such that I X is a language

over a finite alphabet (whose elements are called instances ) and θX is a total Boolean function over I X . In general, in a

P system with input and output of any P systems variant, we consider a working alphabet �, with q membranes labelled

by 1 , . . . , q, and initial multisets M 1 , . . . , M q associated with them; �, which is an (input) alphabet strictly contained in

�; the initial multisets are over � − �; and i in , i out are the labels of two distinguished membranes (input and output).

Let � be the working alphabet of �, μ its membrane structure, and M 1 , . . . , M p the initial multisets 3 of �. Let m be a

multiset over � encoding the input. The multisets of objects placed into the membranes in the initial configuration are

M 1 , . . . , M i in 
∪ m, . . . , M q . 

A recognizer P system is a P system with input and output such that: 

• The working alphabet contains two distinguished elements yes, no .

• All its computations halt.

• If C is a computation of �, then either the object yes or the object no (but not both) must have been released into the

output region (denoted with label i out ), and only in the last step of the computation. We say that C is an accepting com-

putation (respectively, rejecting computation) if the object yes (respectively, no ) appears in the output region associated

to the corresponding halting configuration of C.

A decision problem X can be solved in a polynomially uniform way by a family � = { �(n ) } n ∈ N of P systems of type F if

the following holds: 

• There is a deterministic Turing machine M such that, for every n ∈ N , starting M with the unary representation of n on

its input tape, it constructs the P system �( n ) in polynomial time in n .

• There is a deterministic Turing machine N that started with an instance I ∈ I X with size n on its input tape, it computes

a multiset w I (called the encoding of I ) over the input alphabet of �( n ) in polynomial time in n .

• For every instance I ∈ I X with size n , starting �( n ) with w I in its input membrane, every computation of �( n ) halts and

sends out to the environment yes if and only if I is a positive instance of X .

According to the standard notation, ̂ TPDC (k ) denotes the class of recognizer tissue P systems without environment with 

protein on cells and communication rules of length at most k and PMC ̂ T PDC (k )
the set of all decision problems which can be

solved by means of such class. This class is closed under polynomial time reduction and under complement. 

3. The 3-COL problem

A k –coloring ( k ≥ 1) of an undirected graph G = (V, E) is a function f : V → { 1 , . . . , k } , where { 1 , . . . , k } are interpreted

as colors. We say that G is k –colorable if there exists a k –coloring, f , such that f ( u ) � = f ( v ) for every edge { u, v } ∈ E (such a

k –coloring f is said to be valid ). 

In particular, when k = 3 , we have the well-known 3–coloring problem: given an undirected graph G, decide whether or

not G is 3-colorable ; that is, if there exists a valid 3–coloring of G. For the sake of readability, we will use { R, G, B } instead

of {1, 2, 3} to represent the colors ( R, G and B standing for red, green and blue , respectively). This problem is related to
3 In the case of P systems with proteins, the initial description also includes the corresponding proteins. The occurrence of such proteins does not have

influence in the definitions of recognizer P systems.
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the famous Four Color Conjecture (proved by Appel and Haken [1,2] ). The NP -completeness of the 3–coloring problem was

proved by Stockmeyer [32] (see [6] ). 

Next, we will prove that the 3–coloring problem can be solved in a linear time by a family of recognizer tissue P systems

without environment and with proteins on cells. The resolution will be addressed via a brute force algorithm, which consists

in the following stages: 

• Generation stage : All the possible 3–coloring are generated, each of them placed in a different cell. This is done by using

division rules and an exponential amount of cells is obtained in linear time.

• Checking stage : If a generated 3–coloring has two objects K i and K j ( K ∈ { R, G, B }) and the graph has an edge A ij linking

the nodes i and j , this coloring is not valid. In this case, cells encoding non-valid colorings change their proteins. If a cell

encoding a colouring keeps its protein after this stage, it means that it is a valid colouring. This stage takes only one

step.

• Output stage : It suffices that one of the possible coloring satisfies the conditions in order to have a positive answer. If

such coloring exists, a distinguished protein will be sent to the appropriate cell. We can control via a counter the number

of steps for it. If such protein occurs in the right cell at the right moment, the system sends yes to the output cell. If

such step is reached and the protein has not been released, an object no is sent to the output cell.

Each of the P systems of the uniform family � = { �n } n ∈ N described below depends only on one parameter n which

represents the number of nodes of the graph. Each of these �n is supplied with the encoding of a concrete instance of a

graph with n vertices in order to start the computation. The graph will be encoded by using an input alphabet � = { A i j : 1 ≤
i < j ≤ n } , and an object A ij will belong to the input multiset if and only if there is an edge in the graph linking the nodes i

and j . For the sake of simplicity we drop the subscript in �n . Formally, for each n ∈ N , the tissue P system is defined as 

� = (�, P, �, M 1 / p 1 , M 2 / p 2 , M 3 / p 3 , M 4 / p 4 , M 5 / p 5 , M 6 / p 6 , R , i in , i out ) ,

• 

� = � ∪ { A i , R i , G i , B i , U i , V i : 1 ≤ i ≤ n }
∪{ a i : 0 ≤ i ≤ 2 n + 1 }
∪{ b i : 0 ≤ i ≤ 2 n + 2 }
∪{ T , yes , no } 

• � = { A i j : 1 ≤ i < j ≤ n }

• 
P = { p i, j : i ∈ { 1 , 2 } j ∈ { 1 , . . . , 2 n + 1 }
∪{ q i, j : i ∈ { 1 , 2 } j ∈ { 1 , . . . , 2 n }
∪{ p 0 }

• M 1 = { A 1 , . . . , A n } with the initial protein p 1, 1 in cell 1;

• M 2 = { A 1 , . . . , A n } with the initial protein p 2, 1 in cell 2;

• M 3 = { a 0 } with the initial protein p 0 in cell 3;

• M 4 = { b 0 , yes , no } with the initial protein p 0 in cell 4;

• M 5 = { a 1 , . . . , a 2 n +1 } with the initial protein p 0 in cell 5;

• M 6 = { b 1 , . . . , b 2 n +2 } with the initial protein p 0 in cell 6;

• R is the following set of rules:

1. Division rules: For i ∈ {1, 2} and j ∈ { 1 , . . . , n }
r 1, i, j ≡ [ p i, j | A j ] i → [ q i, j | U j ] i [ q i, j | V j ] i
r 2 ,i, j ≡ [ q i, j | U j ] i → [ p i, j+1 | R j ] i [ p i, j+1 | G j ] i
r 3 ,i, j ≡ [ q i, j | V j ] i → [ p i, j+1 | B j ] i [ p i, j+1 | T ] i

2. Communication rules:

r 4 ,i, j,K ≡ (1 , (p 1 , 2 n +1 , A i j ) / (p 2 , 2 n +1 , K i K j ) , 2) for i, j ∈ { 1 , . . . , n } , i < j, K ∈ { R, G, B } 

r 5 ,i ≡ (3 , (p 0 , a i ) / (p 0 , a i +1 ) , 5) for i = { 0 , . . . , 2 n }
r 6 ,i ≡ (4 , (p 0 , b i ) / (p 0 , b i +1 ) , 6) for i = { 0 , . . . , 2 n + 1 }
r 7 ≡ (2 , (p 2 , 2 n +1 , λ) / (p 0 , a 2 n +1 ) , 3)

r 8 ≡ (4 , (p 0 , b 2 n +2 yes ) / (p 2 , 2 n +1 , λ) , 3)

r 9 ≡ (4 , (p 0 , b 2 n +2 no ) / (p 0 , λ) , 3)

• i in = 1 , is the input cell

• i out = 3 , is the output cell

Fig. 1 shows a scheme of the initial configuration and the communication rules. The presented uniform family � =
{ �n } n ∈ N is the key point for proving the main result of this paper

Theorem 1. 3-COL ∈ PMC ̂ T PDC(5)

Before going on with an outline of the formal proof. We provide some intuitions with an overview of the computation.

Each P system of the family is deterministic and it exploits the parallelism intrinsic to membrane computing systems and

the specific feature of tissue P system with proteins on cells which fix one and only one protein in each membrane. 

From the initial configuration, four processes start: 
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Fig. 1. Scheme of the initial configuration with the initial multisets and proteins. The communication rules are also marked.

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Cell 1 is divided by the application of rules r 1,1, j , r 1,2, j and r 1,3, j . The configuration C 2 n has 2 2 n membranes with label 1,

each of them containing a copy of the input and a protein p 1 , 2 n +1 .

2. Cell 2 is divided by the application of rules r 2,1, j , r 2,2, j and r 2,3, j in parallel with the cell of label 1. The configuration C 2 n

has 2 n membranes with label 2 all of them with the protein p 2 , 2 n +1 . Some of these membrane contain one or more

copies of the object T . Each of the remaining 3 n membranes contain a different 3-coloring, i.e., a multiset of objects

C 1 C 2 . . . C n with C i ∈ { R i , G i , B i }.

3. Cell 3 interchanges one object a i with cell 5 during the 2 n first steps, so at C 2 n it contains the protein p 0 and the object

a 2 n .

4. Analogously, cell 4 interchanges one object b i with cell 6 during the 2 n first steps, so at C 2 n it contains the protein p 0
and the object b 2 n .

At the configuration C 2 n , cells 1 contain the protein p 1 , 2 n +1 and cells 2 contain the protein p 2 , 2 n +1 . If a cell 2 contain

two objects K i K j with the same color ( K ∈ { R, G, B }) and there exists an edge A ij in the input, then the rule r 4, i,j,K is applied

and the corresponding cells interchange their proteins. Since there are enough cells with label 1, the following holds: 

• If a cell 2 represent a valid coloring, then the rule r 4, i,j,K is not applied and the cell has the protein p 2 , 2 n +1 at the

configuration C 2 n +1 .

• Otherwise, if the coloring represented in the cell is not valid, then the rule r 4, i,j,K is applied and the cell has the protein

p 1 , 2 n +1 at the configuration C 2 n +1 .

• Moreover, at C 2 n +1 , cell 3 has protein p 0 and an object a 2 n +1 and cell 4 has protein p 0 and and object b 2 n +1

Let us recall that if there exists at least one valid coloring, then the answer to the 3-COL problem must be affirmative.

Let us consider that there exist such valid coloring and then, at C 2 n +1 there exists (at least) one cell 2 with protein p 2 , 2 n +1 .

In such case the rule 7 applied and at C 2 n +2 the cell 3 contains the protein p 2 , 2 n +1 . Otherwise, if none of the cells 2 has

the protein p 2 , 2 n +1 , then the rule 7 is not applied and cell 3 has the protein p 0 at C 2 n +2 . In such configuration the object

b 2 n +2 has reached cell 4. Finally, depending on the protein p 0 or p 2 , 2 n +1 in cell 3, rule 8 or rule 9 will be applied sending

the right answer to cell 3. No more rules can be applied and C 2 n +3 is a halting configuration. 

Outline of the proof The result can be obtained from the following partial results. 

Lemma 1. The family � = { �n } n ∈ N is polynomially uniform

This lemma can be proven with standard techniques of membrane computing complexity [27] . In order to prove it, it

must checked that the initial resources depends polynomially on the parameter n . The amount of resources used in the

construction of the P system �n can be summarized as follows: The working alphabet � is O ( n ) with 10 n + 8 objects; the

input alphabet is O ( n 2 ) with 

n 2 −n 
2 objects; the set of proteins is O ( n ) with 6 n + 3 proteins; and the number of rules is O ( n 2 )

with 

3 
2 n 

2 + 

17 
2 n + 6 rules. Moreover, all the computation halt after 2 n + 3 steps and the communication rules have length 5

at most. Therefore the main result of this paper holds. 

Lemma 2. Given r ∈ { 0 , . . . , 2 n } , there are 2 r cells with label 2 at the configuration C r .

In the initial configuration C 0 , there is 2 0 = 1 cell with label 1 and protein p 2,1 . By application of the unique applicable

rule, r 1,2,1 , two cells with label 2 and protein q 2,1 are obtained at C 1 . Next, by application of rules r 2,2,1 and r 3,2,1 , 2 
2 = 4 cells

with label 2 and protein p 2,2 are obtained at C 2 . By iteration of the process, 2 2 n cells with label 2 and protein p 2 , 2 n +1 are

obtained at C 2 n . 

Lemma 3. Given r ∈ { 1 , . . . , n } 
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• The multiset of each cell with label 2 at the configuration C 2 r is one of the following ones

p 2 ,r+1 , K 1 , . . . , K r , A r+1 , . . . , A n 

with K i ∈ { R i , G i , B i , T } for i ∈ { 1 , . . . , r} .
• The multiset of each cell with label 2 at the configuration C 2 r−1 is one of the following ones

q 2 ,r , K 1 , . . . , K r−1 , W r , A r+1 , . . . , A n 

with W r ∈ { U r , V r }, K i ∈ { R i , G i , B i , T } for i ∈ { 1 , . . . , r − 1 } .
This lemma can be easily checked bearing in mind that the P system is deterministic and the evolution of the multiset

of a generic cell with label 2 can be summarized as follows 

C ′ ≡ p 2 , 1 A 1 A 2 A 3 . . . A n −− r 1 , 2 , 1 is applied 

C 1 ≡ q 2 , 1 W 1 A 2 A 3 . . . A n −− r k, 2 , 1 , k ∈ { 2 , 3 } is applied
C 2 ≡ p 2 , 2 K 1 A 2 A 3 . . . A n − − r 1 , 2 , 2 , is applied 

C 3 ≡ q 2 , 2 K 1 W 2 A 3 . . . A n − − r k, 2 , 2 , k ∈ { 2 , 3 } is applied
. . . . . .

C 2 n ≡ p 2 , 2 n +1 K 1 K 2 K 3 . . . K n 

Let us recall that Lemmas 2 and 3 refer to cells with label 2. Analogous lemmas for cells with label 1 can be proved. The

unique difference concerns to the codification of the input, which is placed in all the copies of cells with label 1 at C 2 n . 

Lemma 4. If there exists a valid colouring for the instance of the problem, then the P system halts and an object yes is placed in

the output cell in the last step of computation. Otherwise, if there does not exist a valid colouring for the instance of the problem,

then the P system halts and an object no is placed in the output cell in the last step of computation. 

The key features here are, on the one hand, the massive parallelism of the P system and, on the other hand, that each

cell can be involved in the application of one rule at most. Since there are the same number, 2 2 n cells of label 1 and 2 at

the configuration C 2 n , all the cells 1 and 2 encoding a non valid colouring interchange their proteins. In this way, all cells of

label 2 which contains a protein p 2 , 2 n +1 at the configuration C 2 n +1 represents a valid colouring and all cells of label 2 which

contains a protein p 1 , 2 n +1 at the configuration C 2 n +1 represents a non-valid colouring. It may exist several valid colouring,

but in this case, rule 7 is applied once. In C 2 n +2 there are two possibilities for the cell with label 3. If there exist at least one

valid colouring, it contains a protein p 2 , 2 n +1 ; otherwise, if all the colouring are not valid, it contains a protein p 0 . Finally, in

the next step rule 8 or rule 9 is applied and the corresponding answer yes or not is placed in the output cell. Let us notice

that these rules cannot be applied before because they need to wait the occurrence of the object b 2 n +2 in the cell with label

4. 

Corollary 1. NP ∪ co - NP ⊆ PMC ̂ T PDC(5)

This result holds from the previous theorem and the closure under polynomial-time reduction and under complement of

the complexity class. 

4. Conclusions

Whereas the P vs. NP is unsolved, the search of new frontiers of tractability allows us to have a deeper knowledge of the

problem. In the framework of membrane computing, and in natural computing in general, the use of bio-inspired features

in such complexity studies sheds a new light on an old problem. In this paper, we present a new solution to the 3-COL

problem with tissue P systems with proteins on cells and without environment which uses communication rules of length

at most 5. By using environment, the solution for the SAT problem proposed in [29] uses communication rules of length at

most 4. In [15] , the proposed solution for the 3-COL problem also uses communication rules of length at most 4. Although

both problems, SAT and 3-COL, are different, it remains open the question if it is possible to find a solution to a NP problem

in the model of tissue P systems with proteins on cells by removing the environment and using communication rules of

length at most 4. Further research can be done by considering new ways to generate exponential space. 
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