
1

Solving SUBSET SUM by Spiking Neural P Systems with
Pre–computed Resources

Alberto Leporati ∗ C

Dipartimento di Informatica, Sistemistica e Comunicazione

Universit̀a degli Studi di Milano – Bicocca

Viale Sarca 336/14, 20126 Milano, Italy

alberto.leporati@unimib.it

Miguel A. Guti érrez-Naranjo†

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence

University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

magutier@us.es

Abstract. Recently the possibility of using spiking neural P systems for solving computationally
hard problems has been considered. Such solutions assume that some (possibly exponentially large)
pre–computed resources are given in advance, provided that their structure is “regular” and they
do not contain neither “hidden information” that simplify the solution of specific instances, nor
an encoding of all possible solutions (that is, an exponential amount of information that allows to
cheat while solving the instances of the problem). In this paper we continue this research line, and
we investigate the possibility of solving numericalNP-complete problems such as SUBSET SUM.
In particular, we first propose a semi–uniform family of spiking neural P systems in which every
system solves a specific instance of SUBSET SUM. Then, we exploit a technique used to calculate
ITERATED ADDITION with Boolean circuits to obtain a uniform family of spiking neural P systems
in which every system is able to solve any instance of SUBSET SUM of a fixed size. All the systems

∗The work of the authors was partially supported by the project “Azioni Integrate Italia–Spagna — Theory and Practice of
Membrane Computing” (Acción Integrada Hispano-Italiana HI 2005-0194).
CCorresponding author
†The second author acknowledges the support of the project TIN2006-13425 of the Ministerio de Educación y Ciencia of Spain,
cofinanced by FEDER funds, and the support of the project of excellence TIC-581 of the Junta de Andalucı́a.



2 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

here considered are deterministic, and their size generally grows exponentially with respect to the
instance size.

Keywords: Membrane computing, spiking neural P systems, NP-completeproblems, Subset Sum

1. Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [12] as a new class of dis-
tributed and parallel computing devices, inspired by the neurophysiological behavior of neurons sending
electrical impulses (spikes) along axons to other neurons. SN P systems are the third model of com-
putation in the framework of Membrane Computing, together with the cell-like model [26] inspired by
the compartmental structure and functioning of a living cell and the tissue-like model [21, 22], based
on intercellular communication and cooperation between neurons. In particular, [32] is the first paper in
which P systems with membranes arranged on an arbitrary graph have been considered. SN P systems
can also be viewed as an evolution of P systems [26, 27, 29, 31](the latest information can be found
in [37]) corresponding to a shift fromcell-like to neural-likearchitectures wheretime is used to encode
information. We recall that this biological background hasalready led to several models in the area of
neural computation, e.g., see [8, 19, 20].

In SN P systems the cells (also calledneurons) are placed in the nodes of a directed graph, called the
synapse graph. The contents of each neuron consist of a number of copies of asingle object type, called
thespike. Every cell may also contain a number offiring andforgettingrules. Firing rules allow a neuron
to send information to other neurons in the form of electrical impulses (also calledspikes) which are
accumulated at the target cell. The applicability of each rule is determined by checking the contents of
the neuron against a regular set associated with the rule. Ineach time unit, if a neuron can use one of its
rules, then one of such rules must be used. If two or more rulescould be applied, then only one of them
is nondeterministically chosen. Thus, the rules are used inthe sequential manner in each neuron, but
neurons function in parallel with each other. Observe that,as usually happens in membrane computing, a
global clock is assumed, marking the time for the whole system, and hence the functioning of the system
is synchronized. When a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period, the neuron does not
accept new inputs and cannot “fire” (that is, emit spikes). Another important feature of biological neurons
is that the length of the axon may cause a time delay before a spike arrives at the target. In SN P systems
this delay is modeled by associating a delay parameter to each rule which occurs in the system. If no
firing rule can be applied in a neuron, there may be the possibility to apply aforgetting rule, that removes
from the neuron a predefined number of spikes.

Formally, aspiking neural membrane system(SN P system, for short) of degreem ≥ 1, as defined
in [11], is a construct of the form

Π = (O,σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is calledspike);

2. σ1, σ2, . . . , σm areneurons, of the formσi = (ni, Ri), 1 ≤ i ≤ m, where:



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 3

(a) ni ≥ 0 is theinitial number of spikescontained inσi;

(b) Ri is a finite set ofrulesof the following two forms:

(1) firing (alsospiking) rulesE/ac → a; d, whereE is a regular expression overa, and
c ≥ 1, d ≥ 0 are integer numbers; ifE = ac, then it is usually written in the following
simplified form:ac → a; d;

(2) forgettingrulesas → λ, for s ≥ 1, with the restriction that for each ruleE/ac → a; d
of type (1) fromRi, we haveas 6∈ L(E) (whereL(E) is the regular language defined
by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the directed graph of
synapsesbetween neurons;

4. in, out ∈ {1, 2, . . . ,m} indicate theinput and theoutputneurons ofΠ.

A firing rule E/ac → a; d ∈ Ri can be applied in neuronσi if it contains k ≥ c spikes, and
ak ∈ L(E). The execution of this rule removesc spikes fromσi (thus leavingk − c spikes), and
prepares one spike to be delivered to all the neuronsσj such that(i, j) ∈ syn. If d = 0 then the spike
is immediately emitted, otherwise it is emitted afterd computation steps of the system. As stated above,
during thesed computation steps the neuron isclosed, and it cannot receive new spikes (if a neuron has a
synapse to a closed neuron and tries to send a spike along it, then that particular spike is lost), and cannot
fire (and even select) rules. Aforgettingrule as → λ can be applied in neuronσi if it containsexactlys
spikes, and no firing rules are applicable. The execution of this rule simply removes all thes spikes from
σi.

The initial configurationof the system is described by the numbersn1, n2, . . . , nm of spikes present
in each neuron, with all neurons being open. During the computation, a configuration is described by
both the contents of each neuron and itsstate, which can be expressed as the number of steps to wait
until it becomes open (zero if the neuron is already open). Thus,〈r1/t1, . . . , rm/tm〉 is the configuration
where neuronσi containsri ≥ 0 spikes and it will be open afterti ≥ 0 steps, fori = 1, 2, . . . ,m; with
this notation, the initial configuration of the system isC0 = 〈n1/0, . . . , nm/0〉.

A computationstarts in the initial configuration. In order to compute a function f : N → N, a
positive integer number is given as input to a specifiedinput neuron. In the original model, as well as in
some early variants, the number is encoded as the interval oftime steps elapsed between the insertion of
two spikes into the neuron. To pass from a configuration to another one, for each neuron a rule is chosen
among the set of applicable rules, and it is executed. Generally, a computation may not halt. However, in
any case the output of the system is considered to be the time elapsed between the arrival of two spikes
in a designatedoutput cell. Other possibilities exist to encode input and output numbers, as discussed
in [11]: as the number of spikes contained in a given neuron atthe beginning (resp., the end) of the
computation, as the number of spikes fired in a given intervalof time, etc.

A useful extension to the standard model defined above, already considered in [15, 16, 17, 13], is
to use several input neurons, so that the introduction of theencoding of an instance of the problem to
be solved can be done in a faster way, introducing parts of thecode in parallel in various input neurons.
Formally, we can define an SN P system of degree(m, ℓ), with m ≥ 1 and0 ≤ ℓ ≤ m, just like a
standard SN P system of degreem, the only difference being that now there areℓ input neurons denoted
by in1, . . . , inℓ. A valid input for an SN P system of degree(m, ℓ) is a set ofℓ binary sequences, that
collectively encode an instance of a problem.



4 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

The previous definitions cover many types of systems/behaviors. By neglecting the output neuron
we can defineacceptingSN P systems, in which the natural number (or the vector of natural numbers, in
the case of systems havingℓ > 1 input neurons) given in input is accepted if the computationhalts. On
the other hand, by ignoring the input neuron (and thus starting from a predefined input configuration) we
can definegenerativeSN P systems. In [12] it was shown that generative SN P systemsare universal,
that is, can generate any recursively enumerable set of natural numbers. Moreover, a characterization
of semilinear sets was obtained by spiking neural P systems with a bounded number of spikes in the
neurons. These results can be obtained also for some restricted forms of SN P systems: [10] shows
that one of the following features can be avoided while keeping universality: time delay greater than0,
forgetting rules, outdegree of the synapse graph greater than 2, and regular expressions of complex form.
In [6] it is shown that universality is kept even if we remove some combinations of two of the above
features. Finally, in [30] the behavior of SN P systems on infinite strings and the generation of infinite
sequences of0 and1 was investigated, whereas in [3] SN P systems were studied aslanguage generators
(over the binary alphabet{0, 1}).

Spiking neural P systems can also be used to solve decision problems, both in asemi–uniformand in
a uniformway. When solving a problemQ in the semi–uniform setting, for each specified instanceI of
Q we build an SN P systemΠQ,I , whose structure and initial configuration depend uponI, that halts (or
emits a specified number of spikes in a given interval of time)if and only if I is a positive instance of
Q. On the other hand, a uniform solution ofQ consists in a family{ΠQ(n)}n∈N of SN P systems such
that, when having an instanceI ∈ Q of sizen, we introduce a polynomial (inn) number of spikes in
a designated (set of) input neuron(s) ofΠQ(n) and the computation halts (or, alternatively, a specified
number of spikes is emitted in a given interval of time) if andonly if I is a positive instance. The
preference for uniform solutions over semi–uniform ones isgiven by the fact that they are more strictly
related to the structure of the problem, rather than to specific instances. If the instances of a problemQ
depend upon two parameters (as is the case of SUBSET SUM, wheren+1 is the number of integer values
of the generic instance(V = {v1, v2, . . . , vn}, S), andk is the number of bits needed to represent each
of these values), then we will denote the family of SN P systems that solves Q by{ΠQ(〈n, k〉)}n,k∈N,
where〈n, k〉 indicates the positive integer number obtained by applyingan appropriate bijection (for
example, Cantor’s pairing) fromN2 to N.

The present paper considers SN P systems for solving decision problems, continuing the papers
[15], [16] and [17], where one deals with theNP-complete decision problems SUBSET SUM, SAT and
3-SAT. For all these problems, constant time and polynomial time solutions were provided by using SN P
systems constructed both in the semi–uniform and in the uniform setting, working in a non–deterministic
way, and also using a series of ingredients added to SN P systems of the standard form: rules that produce
several spikes at a time, the possibility to have a choice between spiking rules and forgetting rules,
forgetting rules controlled by regular expressions, rulesapplied in the maximally parallel way, etc. Here
we consider a different situation: we assume that a pre–computed (standard) SN P system is given in
advance, possibly having an exponential size with respect to the size of the instances of the problem we
want to solve, and we provide a semi–uniform and a uniform constructions that solve SUBSET SUM in a
polynomial time. All the systems we will propose work in adeterministicway. Note that this setting was
already considered in [13], where polynomial time uniform solutions toSAT and 3-SAT were provided.

An important observation is that we will not specify how our pre–computed systems could be built.
However, we require that such systems have aregular structure, and that they do not contain neither
“hidden information” that simplify the solution of specificinstances, nor an encoding of all possible



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 5

solutions (that is, an exponential amount of information that allows to cheat while solving the instances
of the problem). These requirements were inspired by open problem Q27 in [29]. Let us note in passing
that the regularity of the structure of the system is relatedto the concept ofuniformity, that in some sense
measures the difficulty of constructing the system. For example, when considering families{C(n)}n∈N

of Boolean circuits, or other computing devices whose number of inputs depends upon an integer param-
etern ≥ 1, it is required that for eachn ∈ N a “reasonable” description (see [2] for further discussion
on the meaning of the term “reasonable” in this context) ofC(n), the circuit of the family which hasn
inputs, can be produced in polynomial time and logarithmic space (with respect ton) by a deterministic
Turing machine whose input is1n, the unary representation ofn. In this paper we will not delve further
into the details concerning uniformity; we just rely on reader’s intuition, by stating that it should be
possible to build the entire structure of the system using only a polynomial amount of information and a
controlled replication mechanism, as it already happens inP systems with cell division.

The paper is organized as follows. In Section 2 we recall the definition of the SUBSET SUM problem,
as well as a classical solution algorithm based on the dynamic programming paradigm. In Section 3 we
elaborate such an algorithm to obtain a family of SN P systemsthat solves SUBSET SUM in a semi–
uniform way. In Section 4 we propose a completely different construction, that allows us to uniformly
solve all the instances of SUBSET SUM of any specified size; the instances are provided in input to
the systems of the family by specifying their values in binary form. Finally, Section 5 contains the
conclusions and some directions for further research.

2. TheSUBSET SUM Problem

SUBSET SUM is one of the most knownNP-complete decision problems. We can state it as follows, in a
form which is equivalent to the one given in [7, p. 223].

Problem 1. NAME: SUBSET SUM.

• INSTANCE: a (multi)setV = {v1, v2, . . . , vn} of positive integer numbers, and a positive integer
numberS.

• QUESTION: is there a sub(multi)setB ⊆ V such that
∑

b∈B

b = S?

The following well known algorithm [5] solves SUBSET SUM by using the dynamic programming
technique. In particular, the algorithm returns1 on positive instances, and0 on negative instances.

SUBSET SUM({v1, v2, . . . , vn}, S)

for j ← 0 to S

do M [1, j]← 0
M [1, 0]←M [1, v1]← 1

for i← 2 to n
do for j ← 0 to S

do M [i, j]←M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j] ←M [i− 1, j − vi]



6 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

return M [n, S]

In order to look for a subsetB ⊆ V such that
∑

b∈B b = S, the algorithm uses ann× (S + 1) matrixM
whose entries are from{0, 1}. It fills the matrix by rows, starting from the first row. Each row is filled
from left to right. The entryM [i, j] is filled with 1 if and only if there exists a subset of{v1, v2, . . . , vi}
whose elements sum up toj. The given instance of SUBSET SUM is thus a positive instance if and only
if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine itsvalue, the time complexity of the algo-
rithm is proportional ton(S + 1) = Θ(nS). This means that the difficulty of the problem depends on
the value ofS, as well as on the magnitude of the values inV . In fact, letK = max{v1, v2, . . . , vn, S}.
If K is polynomially bounded with respect ton, then the above algorithm works in polynomial time. On
the other hand, ifK is exponential with respect ton, sayK = 2n, then the above algorithm may work in
exponential time and space. This behavior is usually referred to in the literature by telling that SUBSET

SUM is apseudo–polynomialNP–complete problem.
The fact that in general the running time of the above algorithm is not polynomial can be immediately

understood by comparing its time complexity with the instance size. The usual size for the instances of
SUBSET SUM is Θ(n log K), since for conciseness every “reasonable” encoding is assumed to represent
each element ofV (as well asS) using a string whose length isO(log K). Here all logarithms are
taken with base2. Stated differently, the size of the instance is usually considered to be the number
of bits which must be used to represent in binaryS and all the integer numbers which occur inV .
If we would represent such numbers using the unary notation,then the size of the instance would be
Θ(nK). But in this case we could write a program which first convertsthe instance in binary form and
then uses the above algorithm to solve the problem in polynomial time with respect to the new instance
size. We can thus conclude that the difficulty of a numericalNP–complete problem depends also on the
measure of the instance size we adopt. Indeed, SUBSET SUM is not NP-complete in thestrong sense,
meaning that it does not remainNP-complete when we represent its instances in unary form [7].Stated
otherwise, stronglyNP-complete problems remainNP-complete even when the numbers contained into
their instances are small.

As a consequence of these observations, the SN P systems thatwe will consider in Section 4 will
take in input the instances of SUBSET SUM asn + 1 strings encoded in binary form, where the length of
each string will bek = log K. Before presenting the uniform solution of Section 4, in thenext section
we first elaborate the above dynamic programming algorithm to provide a semi–uniform family of SN P
systems that solves the SUBSET SUM problem.

3. A Semi–uniform Solution toSUBSET SUM

Let SS(n, k) denote the set of instances of SUBSET SUM which can be built by usingn+1 positivek-bit
integer numbers. In this section we present a semi–uniform family {Π(I)}I∈SS(n,k) of SN P systems
such that for everyI ∈ SS(n, k) the systemΠ(I) determines whetherI = ({v1, v2, . . . , vn}, S) is a
positive instance of SUBSET SUM. The size ofΠ(I) will be Θ(nS), hence exponential with respect to
the instance size. However, the computation time ofΠ(I) will be linear inn and independent ofk.

SystemΠ(I) is depicted in Figure 1 in a schematic way. The system is composed ofn layers, hor-
izontally arranged (note that Figure 1 is rotated by 90 degrees counterclockwise), one for each iteration
of the dynamic programming algorithm illustrated in the previous section. The computation starts in



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 7

Figure 1. A schematic view of the systemΠ(I) used to solve a specific instanceI = ({v1, v2, . . . , vn}, S) of
SUBSET SUM, where each of the valuesv1, v2, . . . , vn, S is ak-bit positive integer number.



8 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

the first (the uppermost) layer, and proceeds downwards until the lowest (i.e., then-th) layer has been
reached. The neurons of the first layer contain the firing rulea → a; 0, that propagates the spikes even-
tually contained in these neurons to the appropriate neurons of the second layer. All the other neurons,
from layer 2 down to layern, contain two firing rules:

a→ a; 0 and a2 → a; 0

that make the neurons operate likeOR Boolean gates.
The connections among the neurons depend upon the instanceI = ({v1, v2, . . . , vn}, S) of SUBSET

SUM to be solved. Precisely, to determine the value ofM [i, j] in the above algorithm we need to compute
the maximum between the valuesM [i−1, j] andM [i−1, j−vi], provided thatj−vi ≥ 0, otherwise we
put M [i, j] equal toM [i − 1, j]. The rationale behind these formulas is the following: as stated above,
M [i, j] has to be set to1 if and only if there exists a subset of{v1, v2, . . . , vi} such that the sum of its
elements is equal toj. Thus we have two possibilities: either the subset containsvi, or not. In the former
case, there must be a subset of{v1, v2, . . . , vi−1} such that the sum of its elements is equal toj − vi

(that is,M [i− 1, j− vi] must be1); in the latter case, there must be a subset of{v1, v2, . . . , vi−1} whose
elements sum up toj (that is,M [i − 1, j] = 1). If j < vi then clearlyvi cannot be in any subset of
{v1, v2, . . . , vi} whose sum is equal toj, and thus in this case we only check the value ofM [i− 1, j]. If
i = 1 then these formulas cannot clearly be applied. However, we note that the only two subsets of{v1}
we can build are the empty set∅ and{v1} itself, henceM [1, 0] = M [1, v1] = 1 whereasM [1, j] = 0
for all j 6∈ {0, v1}. Since the admissible values ofM [i − 1, j] and ofM [i − 1, j − vi] are0 and1,
computing the maximum is the same as computing a logicalOR. In the system depicted in Figure 1, the
j-th neuron from the left,0 ≤ j ≤ S, corresponds toM [i, j]. We denote1 (resp.,0) by the presence
(resp., absence) of a spike. Such a neuron, for1 ≤ i ≤ n, has a synapse going to the neuron that

Figure 2. The two cases to be considered to compute the value of M [i, j].

corresponds toM [i + 1, j], and possibly (ifvi+1 + j ≤ S) another synapse going to the neuron that
corresponds toM [i+ 1, j + vi+1]. Such connections implement the above rules that determinethe value
of M [i, j], as one can easily check by looking at Figure 2 (where the attention is focused on the synapses
that start from the(i− 1)-th layer andarrive to the neuron that corresponds toM [i, j]). In the last layer,
only the neuron that corresponds toM [n, S] has a synapse going to a neuron namedout, which is the
output neuron and does not contain any rule.



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 9

In the initial configuration of the system, one spike is put inthe neurons that correspond toM [1, 0]
andM [1, v1]; all the other neurons are empty. During thei-th computation step, with1 ≤ i ≤ n− 1, the
neurons in thei-th layer perform their computation, and send the corresponding result to the appropriate
neurons of the next layer. At then-th computation step, all the neurons in the last layer send the spikes
produced by them to the environment (where they are lost) butthe rightmost neuron, that sends the result
of its computation (0 or 1 spikes) to neuronout. Hence, the instanceI of SUBSET SUM represented by
the structure and the initial configuration ofΠ(I) is positive if and only if one spike arrives in neuronout
during then-th computation step. After the result of the computation (0 or 1 spikes in neuronout) has
been produced, the computation halts and the spike eventually contained in neuronout remains there.
The computation time ofΠ(I) is linear inn, independent of the valuesv1, v2, . . . , vn andS contained
in I, but the number of neurons in the system isn(S + 1) + 1, which is exponential with respect to
the instance size. This last fact would be considered unacceptable in traditional complexity theory, but
recall that in this paper (as well as in [13]) we are assuming that exponential size resources — encoded
in exponential size SN P systems ofregular structure — are admitted, provided that they do not contain
hidden informationthat allow to cheat while solving the instances of the problem.

The structure ofΠ(I) is indeed very regular: all the instances composed ofn integer values plus
a required sum equal toS produce systems havingn layers, each composed ofS + 1 neurons. The
valuesv1, v2, . . . , vn determine some of the connections between the neurons (all the other connections
go from every neuron in each layer to the neuron that occurs inthe same position in the next layer);
precisely, for alli ∈ {1, 2, . . . , n− 1} the valuevi determines the presence of a synapse from everyj-th
neuron in layeri, such thatj + vi+1 ≤ S, to the(j + vi+1)-th neuron of layeri + 1. Valuev1 also
determines the neuron in the first layer (apart from the leftmost) that will receive one spike in the initial
configuration. An open question, that we will not address in this paper, is: what kind of operations are
needed to augment the power of deterministic Turing machines so that, given any instanceI of SUBSET

SUM, the new machine is able to produce a “reasonable” description of Π(I) in a polynomial time?
Note that in this case we should also recast the meaning of theterm “reasonable”, since in [7] this notion
concerns only polynomial size constructions.

4. A Uniform Solution to SUBSET SUM

Let us present now a uniform family{Π(〈n, k〉)}n,k∈N of SN P systems that solves the SUBSET SUM

problem in a uniform way. Precisely, for alln, k ∈ N the systemΠ(〈n, k〉) will solve all the instances
I ∈ SS(n, k) which are composed ofn + 1 positivek-bit integer numbers. Such instances are provided
in input in binary form, as a sequence of(n+1)k bits that are fed to the system in parallel (which means
that each bit is inserted into an appropriate input neuron).

Figure 3 depicts the systemΠ(〈n, k〉) in a schematic way. The instanceI ∈ SS(n, k) is inserted into
the leftmost neurons, which are labelled with a name that indicates the bit which has to be inserted. These
neurons simply propagate their spikes to subsystems SUM1, SUM2, . . ., SUM2n−1 by using a firing rule
of type a → a; 0. The SUM subsystems are bijectively associated to every possible non-empty subset
of {v1, v2, . . . , vn}. As the name indicates, every SUM subsystem computes the sum of the elements of
the corresponding subset of{v1, v2, . . . , vn}, and thus the synapses outgoing from the leftmost neurons
reflect this situation; that is, a synapse leaving from neuron vi,j, 1 ≤ i ≤ n and1 ≤ j ≤ k, reaches
the subsystem SUMℓ if and only if valuevi is involved in the sum computed by SUMℓ. The sums are



10 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

Figure 3. A schematic view of the systemΠ(〈n, k〉) used to solve all the instances of SUBSET SUM which are
composed ofn + 1 positivek-bit integer numbers.

computed in binary (we will return later on this point) and hence every SUM subsystem produces a bit
vector as a result. This vector is then compared with the sequence of bits that compose the valueS; the
comparison is performed by the COMPARE subsystems, that produce a1 (that is, a spike) if and only if
the two sequences given in input are equal. Recall that two integer numbers expressed in binary form
are equal if and only if their binary expansions are equal; the comparison thus amounts to compute the
following Boolean function:

COMPARE(x0, . . . , xk−1, y0, . . . , yk−1) =

k−1
∧

i=0

(

¬(xi ⊕ yi)
)

= ¬

(

k−1
∨

i=0

(xi ⊕ yi)

)

wherex =
∑k−1

i=0 xi2
i and y =

∑k−1
i=0 yi2

i are the numbers to be compared, and∨,∧,¬,⊕ denote
the OR, AND, NOT andXOR (also PARITY ) logical connectives, respectively. Figure 4 shows an SN P



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 11

Figure 4. The subsystem ofΠ(〈n, k〉) that compares twok-bit natural numbers.

(sub)system which can be used to compute this function. Thissubsystem works as follows. Bitsxi and
yi areXORed by the neurons depicted on the left of the figure. The neuronlabelled with∨ computes
the logicalOR of its inputs: precisely, it emits one spike if and only if at least one spike enters into the
neuron. Neuronres receives the output produced by∨ and computes its logical negation (NOT). In order
to be able to produce one spike if no spikes come fromres, we use one auxiliary neuron that sends to
res one spike after two computation steps. Indeed, the delay of the rule contained in neuron1 (whose
contents will be initialized with one spike at the beginningof the computation) should be set in order
to make neuron1 fire exactly when the results computed by the SUM subsystems reach the COMPARE

subsystems (plus two steps).

Observe thatS is ak-bit number, just likev1, v2, . . . , vn, and thus if we sum a subset of these lat-
ter values we could easily end up with a result that needs morethank bits to be expressed in binary
form, thus complicating a little bit the comparison withS. However, recall thatk = log K where
K = max{v1, v2, . . . , vn, S}, and thus in many cases a large portion of the most significantbits of
v1, v2, . . . , vn will be equal to zero. Anyway, since the COMPARE subsystems perform ak-bit compari-
son, we should avoid the situation in which a SUM subsystem produces anm-bit sequence, withm > k,
such that itsk less significant bits coincide with the bits that composeS. Fortunately it is easy to check
whether we are in this situation: we just design each of the SUM subsystems so that it produces anm-bit
sequence, wherem = k + ⌈log2 n⌉ (in fact, the maximum integer number that we can represent using
k bits is2k − 1, so if we sumn of such numbers we obtain a result which is less thann2k, that requires
k + ⌈log2 n⌉ bits to be represented in binary form), and we check that them − k most significant bits
of this sequence are all zero. This is easily done by sending these bits (that is, the corresponding spikes)
to a neuron whose contents (the presence of at least one spike) signals to the user of the system that the
above situation occurred.

The core of the system is composed of the SUM subsystems. In a generic SUM subsystem,r values



12 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

from the set{v1, v2, . . . , vn} have to be summed together, and this sum has to be performed inpolyno-
mial time. If r = 2 then we can use either a traditional ripple carry adder, or a carry look-ahead adder
[35, p. 6]. Letx =

∑k−1
i=0 xi2

i andy =
∑k−1

i=0 yi2
i be the twok-bit binary numbers to be summed.

We denote bys0, s1, . . . , sk the bits of the sum, and byc0, c1, . . . , ck the carries generated during the
addition. The traditional addition algorithm (which can betrivially implemented using a Boolean circuit)
putss0 = x0⊕y0, c0 = 0, and then defines inductivelyci = (xi−1∧yi−1)∨(xi−1∧ci−1)∨(yi−1∧ci−1)
(that is,ci = 1 if and only if at least two ofxi−1, yi−1, ci−1 is 1), si = xi ⊕ yi ⊕ ci for 1 ≤ i < k, and
sk = ck. Such an algorithm sums the twok-bit integer numbers inO(k) steps.

A carry look-ahead adder operates by computing the values ofthe carriesci in a finite number of
steps, independent ofk, starting from the values ofx0, x1, . . . , xk−1 andy0, y1, . . . , yk−1. The crucial
observation is that a carry is generated at positioni if and only if both input bitsxi andyi are1, and a
carry is eliminated at positioni if and only if both input bitsxi andyi are0. This observation yields to
the following definitions: for0 ≤ i < k, let:

gi = xi ∧ yi (positioni generatesa carry)

pi = xi ∨ yi (positioni propagatesa carry)

Now, a carry ripples into positioni if and only if there exists a positionj < i where a carry is generated,
and all positions in between propagate it. Formally:

ci =
i−1
∨

j=0



gj ∧
i−1
∧

k=j+1

pk



 for 1 ≤ i ≤ k (1)

Once we have computed the carries, the bits of the sum are computed as before:s0 = x0 ⊕ y0, si =
xi⊕ yi⊕ ci for 1 ≤ i < k, andsk = ck. It is easily seen that the above formulas allow to compute all the
ci in parallel, since they only depend on the input bitsx0, x1, . . . , xk−1 andy0, y1, . . . , yk−1, in constant
time: allgi andpi are computed in one step, and two more steps are needed to compute theANDs and the
ORs that appear in (1). By usingXOR (⊕) gates, all the bits of the sum are computed in one more step.

The Boolean circuit that implements a carry look-ahead adder can be easily simulated by an SN P
system, simply substituting every logical gate with an appropriate neuron. Figure 5 shows this mapping
from AND, OR andXOR gates to neurons. When needed, for example when the output value of a gate has
to skip one or more layers and go directly to one of the subsequent layers, for synchronization purposes
we can also use delay neurons, that contain the rulea→ a; d for an appropriate value ofd. It is clear that
the size of the SN P system thus obtained is polynomially related with the size of the simulated Boolean
circuit, and that if the simulated circuit performs its computations in constant time then also the SN P
system performs its computations in constant time.

If we need to compute the sum ofr > 2 binary numbers of lengthk, then a slightly more complicated
construction is needed. As shown in [35, p. 13], while designing a Boolean circuit that computes the
ITERATED ADDITION (which is defined as the sum ofn natural numbers, each ofn bits), the addition
of threek-bit binary numbersa =

∑k−1
i=0 ai2

i, b =
∑k−1

i=0 bi2
i andc =

∑k−1
i=0 ci2

i can be reduced to the



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 13

Figure 5. Simulation ofn-input AND, OR andXOR gates by means of single–neuron SN P systems.

addition of two(k + 1)-bit numberse andd, by defining:

e0 = 0

ei = (ai−1 ∧ bi−1) ∨ (ai−1 ∧ ci−1) ∨ (bi−1 ∧ ci−1) for all 1 ≤ i ≤ k

di = ai ⊕ bi ⊕ ci for 0 ≤ i < k

dk = 0

The rationale behind these formulas is the following. If we look at a single positioni, then we have to
addai, bi andci. The result is given by the two-bit numberei+1di; bit ei+1 is 1 if and only if at least two
of the bitsai, bi andci are1, anddi = 1 if and only if an odd number ofai, bi andci is 1. We can thus
conclude thata + b + c = d + e.

If we are givenr > 2 binary numbers of lengthk, we can group them into three-element sets (plus
one set with only one or two numbers, ifr is not a multiple of3), and then compute for each set as just
explained two numbers whose sum is equal to the sum of all the three numbers from the set. In this way
we end up withr′ numbers ofk + 1 bits each, where:

r′ =











2
3 r if r ≡ 0 mod 3
2
3 (r − 1) + 1 if r ≡ 1 mod 3
2
3 (r − 2) + 2 if r ≡ 2 mod 3



14 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

In any case, ifr > 2 thenr′ ≤ 4
5 r. Thus, givenr numbers ofk bits each, by iterating this reduction

procedureO(log r) times we end up with two numbers ofk + O(log r) bits each. These two numbers
can then be added using a carry look-ahead adder, as explained above. In the worst case, we have
to add all the numbers from{v1, v2, . . . , vn}. The reduction process can thus be implemented by a
O(log n) depth Boolean circuit, since each reduction involves a constant depth (and bounded fan-in)
circuit. At the end of the reduction process we have to add two(k + O(log n))-bit numbers, which can
be done by a Boolean circuit of polynomial (quadratic ink + O(log n)) size and constant depth. The
fan-in of such a circuit is unbounded, and thus also the in-degree of the neurons of the SN P system
that simulates it is unbounded. However, any unbounded fan-in AND or OR gate can be simulated by
a polynomial size logarithmic depth circuit composed of bounded fan-inAND and OR gates, and thus
we can conclude that the SUM subsystems can be implemented by polynomial size SN P systems which
are composed of a logarithmic number of layers and whose in-degree is bounded (that is, constant).
The same argumentation holds for the COMPARE subsystems: they can be implemented as polynomial
size logarithmic depthOR/XOR circuits of bounded fan-in, and hence as polynomial size SN Psystems
composed of a logarithmic number of layers, each composed ofconstant in-degree neurons. Finally, the
largeOR that provides the output to the environment has2n − 1 inputs, and thus it can be realized as an
exponential size polynomial depth tree of bounded fan-inOR gates.

The systemΠ(〈n, k〉) thus obtained is able to solve all the instancesI ∈ SS(n, k) of SUBSET

SUM which can be expressed as sequences ofn + 1 natural numbers, each ofk bits. The family
{Π(〈n, k〉)}n,k∈N thus constitutes a uniform solution to the SUBSET SUM problem. The size ofΠ(〈n, k〉)
is exponential with respect to the instance size, but the computation time it takes to determine whether
the instanceI ∈ SS(n, k) is positive or not is polynomial with respect ton andk. The fact thatI is a
positive instance is signalled by the emission of a spike from neuronout; in any case, after computing the
solution the system halts. An important observation is thatthe systemΠ(〈n, k〉) has a very regular struc-
ture, and hence also in this case we can assume that it can be built in a polynomial time by a deterministic
Turing machine whose computational power has been augmented by adding some controlled duplication
instruction. Just like in the case of the semi–uniform solution illustrated in the previous section, it is an
open problem to determine how precisely this controlled duplication instruction should work.

5. Conclusions and Directions for Future Research

We have proposed two families of spiking neural P systems that solve SUBSET SUM, the well known
NP-complete decision problem. The peculiarity and importance of SUBSET SUM, while trying to assess
the computational power of a new computational device, is that it is anumericalNP-complete problem,
and thus the difficulty of solving it depends upon the magnitude of the integer numbers that appear in
its instances. To be precise it is notNP-complete in the strong sense, and hence the problem becomes
easy to solve (through a well known algorithm which is based on the dynamic programming paradigm)
when the numbers contained into the instances are small; equivalently, we can say that it becomes easy
to solve when its instances are expressed in unary form.

For this reason, after showing in Section 3 how for any instance of SUBSET SUM an SN P system
that solves it can be built (thus working in the so called semi–uniform setting), in Section 4 we have
illustrated a uniform solution. Precisely, we have defined afamily {Π(〈n, k〉)}n,k∈N of SN P systems
such that for alln, k ∈ N the systemΠ(〈n, k〉) solves all the instancesI ∈ SS(n, k) which are composed



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 15

of n+1 positivek-bit integer numbers. The systemΠ(〈n, k〉) performs its computations in a time which
is polynomial inn andk, but its size generally grows exponentially with respect tothese parameters.
However the structure ofΠ(〈n, k〉) is so regular that we can assume that the system may be built ina
polynomial time by a deterministic Turing machine whose computational power has been augmented by
adding to its set of instructions some form of controlled duplication, that replicates (possibly substituting
some pieces of the structure) part of the output it has built up to that moment. It is an open problem to
precisely determine how this controlled duplication should work, and hence what kind of exponential
size pre–computed resources may be considered acceptable.Then, an interesting direction for further
research would be to study the complexity classes that arisefrom the (possibly many different) choices
of duplication operations we may adopt.

It is important to note that, as proved in [16], an SN P system of polynomial size cannot solve in a
deterministic way and in a polynomial time anNP-complete problem (unlessP = NP), hence efficient
solutions toNP-complete problems cannot be obtained without introducingfeatures which enhance the
efficiency (pre–computed resources, ways to exponentiallygrow the workspace during the computation,
non–determinism, and so on). A more careful examination of such features — in particular, possible re-
lations with the well known notions ofuniformitytraditionally studied in the theory of circuit complexity
— is another research direction of a clear interest.

Acknowledgements

We gratefully thank the anonymous referees for their comments and suggestions, that allowed us to
improve a previous version of this paper.

References

[1] Alhazov, A., Pérez-Jiménez, M. J.: Uniform Solution to QSAT Using Polarizationless Active Membranes,
Fourth Brainstorming Week on Membrane Computing(M. A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez,
F. J. Romero-Campero, Eds.), RGCN Report 02/2006, Sevilla University, Fénix Editora, Vol. I, 2006, 29–40.

[2] Balcázar, J. L, Dı́az, J., Gabarró, J.:Structural Complexity, Voll. I and II, Springer-Verlag, Berlin, 1988–1990.

[3] Chen, H., Freund, R., Ionescu, M., Păun, Gh., Pérez-Jiménez, M. J.: On String Languages Generated by
Spiking Neural P Systems,Fourth Brainstorming Week on Membrane Computing(M. A. Gutiérrez–Naranjo,
Gh. Păun, A.Riscos–Núñez, F. J. Romero–Campero, Eds.),RGCN Report 02/2006, Sevilla University, Fénix
Editora, Vol. I, 2006, 169–194.

[4] Chen, H., Ionescu, M., Ishdorj, T.-O: On the Efficiency ofSpiking Neural P Systems,Proc. 8th Intern. Conf.
on Electronics, Information, and Communication, Ulanbator, Mongolia, June 2006, 49–52.

[5] Cormen, T. H., Leiserson, C. H, Rivest, R. L.:Introduction to Algorithms, MIT Press, Boston, 1990.

[6] Garcı́a-Arnau, M., Pérez, D., Rodrı́guez-Patón, A.,Sosı́k, P.: Spiking Neural P Systems. Stronger Normal
Forms,Fifth Brainstorming Week on Membrane Computing(M. A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-
Jiménez, A. Riscos-Núñez, Eds.), RGCN Report 01/2007, Sevilla University, Fénix Editora, 2007, 157–178.

[7] Garey, M. R., Johnson, D. S.:Computers and Intractability. A Guide to the Theory onNP–Completeness,
W.H. Freeman and Company, 1979.

[8] Gerstner, W., Kistler, W.:Spiking Neuron Models. Single Neurons, Populations, Plasticity, Cambridge Uni-
versity Press, 2002.



16 A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems

[9] Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez, A.: A Fast P System for Finding a Balanced
2–partition.Soft Computing, 9(9), 2005, 673–678.

[10] Ibarra, O. H., Păun, A., Păun, Gh., Rodrı́guez-Patón, A., Sosı́k, P., Woodworth, S.: Normal Forms for Spiking
Neural P Systems,Theoretical Computer Science, 372(2–3), 2007, 196–217.

[11] Ionescu, M., Păun, A., Păun, Gh., Pérez-Jiménez, M. J.: Computing with Spiking Neural P Systems: Traces
and Small Universal Systems,DNA Computing,12th International Meeting on DNA Computing (DNA12),
Revised Selected Papers(C. Mao, T. Yokomori, B.-T. Zhang, Eds.), LNCS 4287, Springer-Verlag, Berlin,
2006, 1–16.

[12] Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural PSystems,Fundamenta Informaticae, 71(2-3), 2006,
279–308.

[13] Ishdorj, T.-O., Leporati, A.: Uniform Solutions to SATand 3-SAT by Spiking Neural P Systems with Pre-
computed Resources,Natural Computing, in press, DOI 10.1007/s11047-008-9081-0. A preliminary version
appeared as Turku Centre for Computer Science – TUCS Report No. 876, 2008.

[14] Krishna, S. N., Rama, R.: A Variant of P Systems with Active Membranes: SolvingNP-complete Problems,
Romanian Journal of Information Science and Technology, 2(4), 1999, 357–367.

[15] Leporati, A., Mauri, G., Zandron, C., Păun, Gh., Pérez-Jiménez, M. J.:Uniform Solutions toSAT andSUBSET

SUM by Spiking Neural P Systems, submitted.

[16] Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the Computational Power of Spiking Neural P Systems,
Intern. J. Unconventional Computing, 2007, in press.

[17] Leporati, A. Zandron,, C., Ferretti, C., Mauri, G.: Solving NumericalNP–complete Problems with Spiking
Neural P Systems,Membrane Computing, International Workshop, WMC8, Selected and Invited Papers, (G.
Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa, Eds.), LNCS 4860, Springer-Verlag, Berlin,
2007. 336–352.

[18] Leporati, A., Zandron, C., Gutiérrez-Naranjo, M. A.:P Systems with Input in Binary Form,International
Journal of Foundations of Computer Science, 17(1), 2006, 127–146.

[19] Maass, W.: Computing with spikes,Special Issue on Foundations of Information Processing of TELEMATIK,
8(1), 2002, 32–36.

[20] Maass, W., Bishop, C. (Eds.),Pulsed Neural Networks, MIT Press, Cambridge (MA), 1999.

[21] Martı́n Vide, C., Pazos, J., Păun, Gh., Rodrı́guez Patón, A.: A New Class of Symbolic Abstract Neural Nets:
Tissue P Systems,Computing and Combinatorics,8th Annual International Conference, COCOON 2002,
LNCS 2387, Springer-Verlag, Berlin, 2002, 290–299.

[22] Martı́n Vide, C., Pazos, J., Păun, Gh., Rodrı́guez Patón, A.: Tissue P systems,Theoretical Computer Science,
296, 2003, 295–326.

[23] Obtulowicz, A: Deterministic P Systems for SolvingSAT problem,Romanian Journal of Information Science
and Technology, 4(1–2), 2001, 551–558.

[24] Papadimitriou, C. H.:Computational Complexity, Addison-Wesley, 1994.

[25] Păun, A., Păun, Gh.: Small Universal Spiking Neural PSystems,BioSystems, 90(1), 2007, 48–60.

[26] Păun, Gh.: Computing with Membranes,Journal of Computer and System Sciences, 1(61), 2000, 108–143.
See also Turku Centre for Computer Science – TUCS Report No. 208, 1998.

[27] Păun, Gh.: Computing with Membranes. An Introduction, Bulletin of the EATCS, 67, 1999, 139–152.



A. Leporati, M.A. Gutiérrez-Naranjo / SolvingSUBSET SUM by Spiking Neural P Systems 17

[28] Păun, Gh.: P Systems with Active Membranes: AttackingNP-complete Problems,Journal of Automata,
Languages and Combinatorics, 6(1), 2001, 75–90.

[29] Păun, Gh.:Membrane Computing. An Introduction, Springer–Verlag, Berlin, 2002.

[30] Păun, Gh., Pérez-Jiménez, M. J., Rozenberg, G.:Infinite spike trains in spiking neural P systems, submitted.

[31] Păun, Gh., Rozenberg, G.: A Guide to Membrane Computing, Theoretical Computer Science, 287(1), 2002,
73–100.

[32] Păun, Gh., Sakakibara, Y., Yokomori, T.: P Systems on Graphs of Restricted Forms,Publicationes Mathe-
maticae Debrecen, 60, 2002, 635–660.

[33] Pérez-Jiménez, M. J., Riscos-Núñez, A.: A Linear–time Solution to the KNAPSACK Problem Using P Sys-
tems with Active Membranes,Membrane Computing, International Workshop, WMC 2003, Revised Selected
and Invited Papers (C. Martı́n-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, Eds.), LNCS 2933, Springer-
Verlag, Berlin, 2004, 250–268.

[34] Pérez-Jiménez, M. J., Riscos-Núñez, A.: Solving the SUBSET SUM Problem by Active Membranes,New
Generation Computing, 23(4), 2005, 367–384.

[35] Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach, Springer–Verlag, Berlin, 1999.

[36] Zandron, C., Ferretti, C., Mauri, G.: SolvingNP-complete Problems Using P Systems with Active Mem-
branes,Unconventional Models of Computation(I. Antoniou, C.S. Calude, M.J. Dinneen, Eds.), Springer-
Verlag, Berlin, 2000, 289–301.

[37] The P systems Web page: http://ppage.psystems.eu


