Solving SUBSET SUM by Spiking Neural P Systems with
Pre—computed Resources

Alberto Leporati * ©

Dipartimento di Informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano — Bicocca

Viale Sarca 336/14, 20126 Milano, Italy
alberto.leporati@unimib.it

Miguel A. Guti érrez-Naranjof

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
magutier@us.es

Abstract. Recently the possibility of using spiking neural P systems for solving computationally
hard problems has been considered. Such solutions assume that some (possibly exponentially large)
pre—computed resources are given in advance, provided that their structure is “regular” and they
do not contain neither “hidden information” that simplify the solution of specific instances, nor
an encoding of all possible solutions (that is, an exponential amount of information that allows to
cheat while solving the instances of the problem). In this paper we continue this research line, and
we investigate the possibility of solving numeri®diP-complete problems such a®/SSET SUM.

In particular, we first propose a semi—uniform family of spiking neural P systems in which every
system solves a specific instance efeESET SuM. Then, we exploit a technique used to calculate
ITERATED ADDITION with Boolean circuits to obtain a uniform family of spiking neural P systems

in which every system is able to solve any instance @8 ST SuM of a fixed size. All the systems

*The work of the authors was partially supported by the project “Azioni Integrate Italia—Spagna — Theory and Practice of
Membrane Computing” (Accion Integrada Hispano-Italiana HI 2005-0194).

CCorresponding author

TThe second author acknowledges the support of the project TIN2006-13425 of the Ministerio de Educacion y Ciencia of Spain,
cofinanced by FEDER funds, and the support of the project of excellence TIC-581 of the Junta de Andalucia.

2 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

here considered are deterministic, and their size gegegeds exponentially with respect to the
instance size.

Keywords: Membrane computing, spiking neural P systems, NP-completglems, Subset Sum

1. Introduction

Spiking neural P systems (SN P systems, for short) have Inéeluced in [12] as a new class of dis-
tributed and parallel computing devices, inspired by theoghysiological behavior of neurons sending
electrical impulsesgpike3 along axons to other neurons. SN P systems are the thirdlrobdem-
putation in the framework of Membrane Computing, togethith whe cell-like model [26] inspired by
the compartmental structure and functioning of a livind eeld the tissue-like model [21, 22], based
on intercellular communication and cooperation betweemares. In particular, [32] is the first paper in
which P systems with membranes arranged on an arbitranh draye been considered. SN P systems
can also be viewed as an evolution of P systems [26, 27, 29(tl3d Jatest information can be found
in [37]) corresponding to a shift froroell-like to neural-like architectures wherémeis used to encode
information. We recall that this biological background laéeady led to several models in the area of
neural computation, e.g., see [8, 19, 20].

In SN P systems the cells (also calleeuron3 are placed in the nodes of a directed graph, called the
synapse graphThe contents of each neuron consist of a number of copiesiafje object type, called
thespike Every cell may also contain a numberfioing andforgettingrules. Firing rules allow a neuron
to send information to other neurons in the form of electriogpulses (also calledpike$ which are
accumulated at the target cell. The applicability of eadb isidetermined by checking the contents of
the neuron against a regular set associated with the rueadhn time unit, if a neuron can use one of its
rules, then one of such rules must be used. If two or more ndakl be applied, then only one of them
is nondeterministically chosen. Thus, the rules are usetidrsequential manner in each neuron, but
neurons function in parallel with each other. Observe #mtjsually happens in membrane computing, a
global clock is assumed, marking the time for the whole sgstend hence the functioning of the system
is synchronized. When a cell sends out spikes it becomesédlo(inactive) for a specified period of
time, that reflects the refractory period of biological rang. During this period, the neuron does not
accept new inputs and cannot “fire” (that is, emit spikes)othrr important feature of biological neurons
is that the length of the axon may cause a time delay beforika apives at the target. In SN P systems
this delay is modeled by associating a delay parameter to ®ée which occurs in the system. If no
firing rule can be applied in a neuron, there may be the pdisgitni apply aforgetting rule that removes
from the neuron a predefined number of spikes.

Formally, aspiking neural membrane syst€®N P system, for short) of degree > 1, as defined
in [11], is a construct of the form

I1=(0,01,09,...,0m,syn,in,out),
where:
1. O = {a} is the singleton alphabet {s calledspike;

2. 01,09,...,0, areneurons of the formo; = (n;, R;), 1 <i < m, where:

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 3

(&) n; > 0is theinitial number of spikesontained inv;;
(b) R;is a finite set ofulesof the following two forms:

(1) firing (alsospiking)rules E/a® — a;d, whereE is a regular expression over and
c > 1,d > 0 are integer numbers; £ = a, then it is usually written in the following
simplified form:a® — a; d;

(2) forgettingrulesa® — A, for s > 1, with the restriction that for each rule/a — a;d
of type (1) fromR;, we havea® ¢ L(E) (whereL(E) is the regular language defined
by E);

3. syn C {1,2,...,m} x {1,2,...,m}, with (i,i) &€ syn for 1 < i < m, is the directed graph of
synapsedetween neurons;

4. in,out € {1,2,...,m} indicate thanput and theoutputneurons oflI.

A firing rule E/a® — a;d € R; can be applied in neuros; if it contains & > ¢ spikes, and
a* € L(E). The execution of this rule removesspikes fromo; (thus leavingk — c spikes), and
prepares one spike to be delivered to all the neuegrsuch that(i, j) € syn. If d = 0 then the spike
is immediately emitted, otherwise it is emitted affecomputation steps of the system. As stated above,
during thesel computation steps the neurorclesed and it cannot receive new spikes (if a neuron has a
synapse to a closed neuron and tries to send a spike aloheritthat particular spike is lost), and cannot
fire (and even select) rules. fargettingrule a®* — X can be applied in neuras; if it containsexactlys
spikes, and no firing rules are applicable. The executiohisfrile simply removes all thespikes from
;.

Theinitial configurationof the system is described by the numbeysna, ..., n,, of spikes present
in each neuron, with all neurons being open. During the caatjmn, a configuration is described by
both the contents of each neuron andsiigte which can be expressed as the number of steps to wait
until it becomes open (zero if the neuron is already openlisTir, /t1, ..., /ty) is the configuration
where neuromr; containsr; > 0 spikes and it will be open aftér > 0 steps, fori = 1,2,...,m; with
this notation, the initial configuration of the systenUig = (n1/0,...,n,,/0).

A computationstarts in the initial configuration. In order to compute adiion f : N — N, a
positive integer number is given as input to a speciiingait neuron In the original model, as well as in
some early variants, the number is encoded as the intertimhefsteps elapsed between the insertion of
two spikes into the neuron. To pass from a configuration toreamane, for each neuron a rule is chosen
among the set of applicable rules, and it is executed. Gpyex@omputation may not halt. However, in
any case the output of the system is considered to be the tapsesl between the arrival of two spikes
in a designateautput cell Other possibilities exist to encode input and output nusibas discussed
in [11]: as the number of spikes contained in a given neuratheteginning (resp., the end) of the
computation, as the number of spikes fired in a given intesf/ime, etc.

A useful extension to the standard model defined above,direansidered in [15, 16, 17, 13], is
to use several input neurons, so that the introduction oktteding of an instance of the problem to
be solved can be done in a faster way, introducing parts afdde in parallel in various input neurons.
Formally, we can define an SN P system of degmee/), with m > 1 and0 < ¢ < m, just like a
standard SN P system of degnee the only difference being that now there dri@put neurons denoted
by ini,...,ing. A valid inputfor an SN P system of degréen, /) is a set of¢ binary sequences, that
collectively encode an instance of a problem.

4 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

The previous definitions cover many types of systems/beraviBy neglecting the output neuron
we can defin@cceptingSN P systems, in which the natural number (or the vector afrabhumbers, in
the case of systems havirfig> 1 input neurons) given in input is accepted if the computatiafts. On
the other hand, by ignoring the input neuron (and thus ataftom a predefined input configuration) we
can definggenerativeSN P systems. In [12] it was shown that generative SN P syséeengniversal,
that is, can generate any recursively enumerable set ofatatumbers. Moreover, a characterization
of semilinear sets was obtained by spiking neural P systeitisasbounded number of spikes in the
neurons. These results can be obtained also for some tedtfmrms of SN P systems: [10] shows
that one of the following features can be avoided while kegpiniversality: time delay greater than
forgetting rules, outdegree of the synapse graph greaarahand regular expressions of complex form.
In [6] it is shown that universality is kept even if we remowvarse combinations of two of the above
features. Finally, in [30] the behavior of SN P systems omitdistrings and the generation of infinite
sequences df and1 was investigated, whereas in [3] SN P systems were studileh@sage generators
(over the binary alphabd0, 1}).

Spiking neural P systems can also be used to solve decisiabepns, both in @emi—uniformand in
auniformway. When solving a proble® in the semi—uniform setting, for each specified instaha#

@ we build an SN P systeiii 7, whose structure and initial configuration depend uppthat halts (or
emits a specified number of spikes in a given interval of tithapd only if Z is a positive instance of
@. On the other hand, a uniform solution @fconsists in a family{Ilg(n)},cn of SN P systems such
that, when having an instan@e € @ of sizen, we introduce a polynomial (in) number of spikes in

a designated (set of) input neuron(s)Iff(n) and the computation halts (or, alternatively, a specified
number of spikes is emitted in a given interval of time) if amdly if Z is a positive instance. The
preference for uniform solutions over semi—uniform oneggiven by the fact that they are more strictly
related to the structure of the problem, rather than to fipenstances. If the instances of a problém
depend upon two parameters (as is the casaeB&T SuM, wheren + 1 is the number of integer values
of the generic instance” = {v;, v2,...,v,},5), andk is the number of bits needed to represent each
of these values), then we will denote the family of SN P systémat solves Q byIIg((n, k))}n ken,
where (n, k) indicates the positive integer number obtained by applgingappropriate bijection (for
example, Cantor’s pairing) from? to N.

The present paper considers SN P systems for solving deqsiblems, continuing the papers
[15], [16] and [17], where one deals with tihNP-complete decision problemsuBsSET Sum, SAT and
3-sAT. For all these problems, constant time and polynomial tiohat®ns were provided by using SN P
systems constructed both in the semi—uniform and in thetmitetting, working in a non—-deterministic
way, and also using a series of ingredients added to SN Fhsystithe standard form: rules that produce
several spikes at a time, the possibility to have a choicevdmrt spiking rules and forgetting rules,
forgetting rules controlled by regular expressions, ralgglied in the maximally parallel way, etc. Here
we consider a different situation: we assume that a pre—otedp(standard) SN P system is given in
advance, possibly having an exponential size with resjpetttet size of the instances of the problem we
want to solve, and we provide a semi—uniform and a unifornstantions that solve 88SET SuMm in a
polynomial time. All the systems we will propose work imleterministiovay. Note that this setting was
already considered in [13], where polynomial time uniforotugions toSAT and 3SAT were provided.

An important observation is that we will not specify how ouegcomputed systems could be built.
However, we require that such systems havegalar structure, and that they do not contain neither
“hidden information” that simplify the solution of specifinstances, nor an encoding of all possible

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 5

solutions (that is, an exponential amount of informatioat tdlows to cheat while solving the instances
of the problem). These requirements were inspired by opeinlgmn Q27 in [29]. Let us note in passing
that the regularity of the structure of the system is relédetie concept ofiniformity, that in some sense
measures the difficulty of constructing the system. For gtapwhen considering familiegC'(n) } ,en
of Boolean circuits, or other computing devices whose nurobmputs depends upon an integer param-
etern > 1, it is required that for each € N a “reasonable” description (see [2] for further discussion
on the meaning of the term “reasonable” in this contextl’'¢#), the circuit of the family which has
inputs, can be produced in polynomial time and logarithrpiace (with respect ta) by a deterministic
Turing machine whose input i’, the unary representation af In this paper we will not delve further
into the details concerning uniformity; we just rely on regsl intuition, by stating that it should be
possible to build the entire structure of the system usirlg apolynomial amount of information and a
controlled replication mechanism, as it already happemssgstems with cell division.

The paper is organized as follows. In Section 2 we recall dfmition of the SJBSET Sum problem,
as well as a classical solution algorithm based on the dynanigramming paradigm. In Section 3 we
elaborate such an algorithm to obtain a family of SN P systératsolves BBSET Sum in a semi—
uniform way. In Section 4 we propose a completely differagmistruction, that allows us to uniformly
solve all the instances ofUBSET Sum of any specified size; the instances are provided in input to
the systems of the family by specifying their values in bjinform. Finally, Section 5 contains the
conclusions and some directions for further research.

2. The SUBSET SuM Problem

SUBSET SuM is one of the most knowNP-complete decision problems. We can state it as follows, in a
form which is equivalent to the one given in [7, p. 223].

Problem 1. NAME: SUBSET SuM.

e INSTANCE a (multi)setV = {vy,vq,...,v,} oOf positive integer numbers, and a positive integer
numbers.

e QUESTION: is there a sub(multi)seéB C V such that) b = S?
beB
The following well known algorithm [5] solves @ SET Sum by using the dynamic programming
technique. In particular, the algorithm returhen positive instances, aridon negative instances.

SUBSET SUM ({v1,v2,...,vn},5)

forj«0toS

do M[1,5] <0
MI1,0] «— M[1,v] 1
fori«+— 2ton

do forj«—0toS

do M[i, j] « M[i —1,]
if j>wv;and M[i — 1,5 — v;] > M|i, j]
then M[i,j] « M[i —1,j — v;]

6 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

return M|[n, S|

In order to look for a subsd® C V' such thad _,_; b = S, the algorithm uses am x (S + 1) matrix M
whose entries are frof0, 1}. It fills the matrix by rows, starting from the first row. Eaabwr is filled
from left to right. The entnyM/[s, j] is filled with 1 if and only if there exists a subset 0#, va, ..., v;}
whose elements sum up jo The given instance of 8BSET SuM is thus a positive instance if and only
if M[n,S] =1 at the end of the execution.

Since each entry is considered exactly once to determinalit®, the time complexity of the algo-
rithm is proportional tox(S + 1) = ©(n.S). This means that the difficulty of the problem depends on
the value ofS, as well as on the magnitude of the value¥/inin fact, letK' = max{vy, va,...,vn, S}.

If K is polynomially bounded with respect g then the above algorithm works in polynomial time. On
the other hand, ifX is exponential with respect to, say K = 2", then the above algorithm may work in
exponential time and space. This behavior is usually refeto in the literature by telling thatU8seT
SuM is apseudo—polynomiallP—complete problem.

The fact that in general the running time of the above algorits not polynomial can be immediately
understood by comparing its time complexity with the instaBize. The usual size for the instances of
SUBSET SuM is ©(nlog K), since for conciseness every “reasonable” encoding israss$to represent
each element o/ (as well asS) using a string whose length 8(log K'). Here all logarithms are
taken with base. Stated differently, the size of the instance is usuallysiaered to be the number
of bits which must be used to represent in bin&hand all the integer numbers which occur lih
If we would represent such numbers using the unary notatiem the size of the instance would be
©(nK). Butin this case we could write a program which first convéresinstance in binary form and
then uses the above algorithm to solve the problem in polyaldime with respect to the new instance
size. We can thus conclude that the difficulty of a numeni¢t-complete problem depends also on the
measure of the instance size we adopt. Indee®s&T SuM is not NP-complete in thestrong sense
meaning that it does not remanP-complete when we represent its instances in unary formgidted
otherwise, strongl\NP-complete problems remaMP-complete even when the numbers contained into
their instances are small.

As a consequence of these observations, the SN P systemsetheitl consider in Section 4 will
take in input the instances ofUBSET SuM asn + 1 strings encoded in binary form, where the length of
each string will bek = log K. Before presenting the uniform solution of Section 4, inlest section
we first elaborate the above dynamic programming algorithprovide a semi—uniform family of SN P
systems that solves thayBSET Sum problem.

3. A Semi—uniform Solution to SUBSET Sum

Let SS(n, k) denote the set of instances afSSET Sum which can be built by using + 1 positivek-bit
integer numbers. In this section we present a semi—unifamily {I1(Z)}7cgss(n,k) Of SN P systems
such that for everf € SS(n, k) the systemI(Z) determines whethef = ({v1,ve,...,v,},5) is a
positive instance of $8SET SuM. The size oflI(Z) will be ©(nS), hence exponential with respect to
the instance size. However, the computation tim& () will be linear inn and independent df.
SystemlII(Z) is depicted in Figure 1 in a schematic way. The system is cesbofn layers, hor-
izontally arranged (note that Figure 1 is rotated by 90 degomunterclockwise), one for each iteration
of the dynamic programming algorithm illustrated in thevyimes section. The computation starts in

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 7

;O

2
a —a

rules:a—a;0
rules:a—a;0

00 00

Figure 1. A schematic view of the systdif{Z) used to solve a specific instanfe= ({vy,vq,...,v,},S) of
SUBSET SuM, where each of the values, v, . . ., v,, S is ak-bit positive integer number.

8 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

the first (the uppermost) layer, and proceeds downwardsthetiowest (i.e., thea-th) layer has been
reached. The neurons of the first layer contain the firing dwe a; 0, that propagates the spikes even-
tually contained in these neurons to the appropriate nsupbthe second layer. All the other neurons,
from layer 2 down to layer, contain two firing rules:

a— a;0 and a? = a0

that make the neurons operate like Boolean gates.

The connections among the neurons depend upon the insfaadg vy, va, . .., v, }, S) of SUBSET
SuM to be solved. Precisely, to determine the valué4t, j] in the above algorithm we need to compute
the maximum between the valugs[i — 1, j] andM[i — 1, j —v;], provided that —v; > 0, otherwise we
put M i, j] equal toM[i — 1, j]. The rationale behind these formulas is the following: atest above,
M]i, j] has to be set ta if and only if there exists a subset ¢f1, vo, ..., v;} such that the sum of its
elements is equal th Thus we have two possibilities: either the subset containg not. In the former
case, there must be a subset{of,vs,...,v;—1} such that the sum of its elements is equaj te v;
(thatis,M[i — 1, j — v;] must bel); in the latter case, there must be a subsgtfv,, ..., v;—1} whose
elements sum up tg¢ (that is, M[i — 1,5] = 1). If j < v; then clearlyv; cannot be in any subset of
{v1,v9,...,v;} whose sum is equal ti and thus in this case we only check the valud gt — 1, j]. If
i = 1 then these formulas cannot clearly be applied. However,ote that the only two subsets 0# }
we can build are the empty sétand{v, } itself, henceM[1,0] = M|[1,v1] = 1 whereasM|[1,j] = 0
for all j ¢ {0,v1}. Since the admissible values 8f[i — 1, ;] and of M[i — 1,5 — v;] are0 and 1,
computing the maximum is the same as computing a logiealin the system depicted in Figure 1, the
j-th neuron from the left) < j; < S, corresponds td/[i, j]. We denotel (resp.,0) by the presence
(resp., absence) of a spike. Such a neuron,1fet i < n, has a synapse going to the neuron that

J
i—1 i—1
i i
Casel: j=zv, Case2: j<v,
Mli, jl=M[i=1,j=v, v M[i=1,] Mli, jl=Mli=1,]

Figure 2. The two cases to be considered to compute the vallE©;].

corresponds td/[: + 1, j], and possibly (ifv;11 + j < S) another synapse going to the neuron that
corresponds td/[i + 1, j + v;+1]. Such connections implement the above rules that detertinénealue

of M|z, 7], as one can easily check by looking at Figure 2 (where thataiteis focused on the synapses
that start from thei — 1)-th layer andarrive to the neuron that correspondsitfi, j]). In the last layer,
only the neuron that corresponds td[n, S| has a synapse going to a neuron namet] which is the
output neuron and does not contain any rule.

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 9

In the initial configuration of the system, one spike is puthie neurons that correspond 8|1, 0]
andM 1, v4]; all the other neurons are empty. During thiln computation step, with < i < n — 1, the
neurons in the-th layer perform their computation, and send the corregipgnresult to the appropriate
neurons of the next layer. At theth computation step, all the neurons in the last layer skadpikes
produced by them to the environment (where they are losthieutightmost neuron, that sends the result
of its computation ({ or 1 spikes) to neuromut. Hence, the instancg of SUBSET SuM represented by
the structure and the initial configurationIdfZ) is positive if and only if one spike arrives in neuromt
during then-th computation step. After the result of the computatidomr 1 spikes in neuromut) has
been produced, the computation halts and the spike evbntimdtained in neuromut remains there.
The computation time ofI(Z) is linear inn, independent of the values, v, ..., v, andS contained
in Z, but the number of neurons in the systemn{$ + 1) + 1, which is exponential with respect to
the instance size. This last fact would be considered upétaicke in traditional complexity theory, but
recall that in this paper (as well as in [13]) we are assuntiag éxponential size resources — encoded
in exponential size SN P systemsrefjular structure — are admitted, provided that they do not contain
hidden informatiorthat allow to cheat while solving the instances of the pnoble

The structure ofI(Z) is indeed very regular: all the instances composed ofteger values plus
a required sum equal t8 produce systems having layers, each composed 6f+ 1 neurons. The
valuesvy, vo, . . ., v, determine some of the connections between the neuronéiéadither connections
go from every neuron in each layer to the neuron that occutkdrsame position in the next layer);
precisely, for ali € {1,2,...,n — 1} the valuev; determines the presence of a synapse from ejtny
neuron in layeri, such thatj + v;+1 < S, to the(j 4+ v;11)-th neuron of layer + 1. Valuev; also
determines the neuron in the first layer (apart from the lefththat will receive one spike in the initial
configuration. An open question, that we will not addresshia paper, is: what kind of operations are
needed to augment the power of deterministic Turing mastsoehat, given any instan@eof SUBSET
SuM, the new machine is able to produce a “reasonable” desmmiff IT1(Z) in a polynomial time?
Note that in this case we should also recast the meaning ¢étite“reasonable”, since in [7] this notion
concerns only polynomial size constructions.

4. A Uniform Solution to SUBSET SuM

Let us present now a uniform familffI((n, k)) }, ren of SN P systems that solves th&ESET Sum
problem in a uniform way. Precisely, for all £ € N the systendI((n, k)) will solve all the instances
T € SS(n, k) which are composed of + 1 positive k-bit integer numbers. Such instances are provided
in input in binary form, as a sequence(af+ 1)k bits that are fed to the system in parallel (which means
that each bit is inserted into an appropriate input neuron).

Figure 3 depicts the systef(n, k)) in a schematic way. The instan€ez SS(n, k) is inserted into
the leftmost neurons, which are labelled with a name thétates the bit which has to be inserted. These
neurons simply propagate their spikes to subsystems; SSuM,, ..., SUMon_1 by using a firing rule
of typea — a;0. The UM subsystems are bijectively associated to every possiliieenpty subset
of {vi,ve,...,v,}. Asthe name indicates, every® subsystem computes the sum of the elements of
the corresponding subset ff, vo, ..., v, }, and thus the synapses outgoing from the leftmost neurons
reflect this situation; that is, a synapse leaving from neusg, 1 < i < nandl < j < k, reaches
the subsystem &v, if and only if valuev; is involved in the sum computed byu$i,. The sums are

10 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

Compare

W

Compare

\V Y

Compare

Figure 3. A schematic view of the systdii{(n, k)) used to solve all the instances o S&SET Sum which are
composed of + 1 positivek-bit integer numbers.

computed in binary (we will return later on this point) andhbe every ™M subsystem produces a bit
vector as a result. This vector is then compared with theesszpiof bits that compose the valbigthe
comparison is performed by theod®PARE subsystems, that produce dthat is, a spike) if and only if
the two sequences given in input are equal. Recall that ttegén numbers expressed in binary form
are equal if and only if their binary expansions are equa;dbmparison thus amounts to compute the
following Boolean function:

k—1 k—1
COMPARE(Z(, - -« y Tk—1, Y05 - - - s Yk—1) = /\ (=(z; ®y)) = (\/(ml @yi)>
=0 =0
wherez = S5 12,20 andy = S2F 1 ;2" are the numbers to be compared, and\, -, @ denote
the OR, AND, NOT and XOR (also RARITY) logical connectives, respectively. Figure 4 shows an SN P

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 11

a
a—a;?2
1 Compare

Figure 4. The subsystem Bif((n, k)) that compares twé-bit natural numbers.

(sub)system which can be used to compute this function. diisystem works as follows. Biig and

y; arexored by the neurons depicted on the left of the figure. The nelatoelled withyy computes
the logicaloRr of its inputs: precisely, it emits one spike if and only if aaét one spike enters into the
neuron. Neuromes receives the output produced tyand computes its logical negationdT). In order

to be able to produce one spike if no spikes come frer) we use one auxiliary neuron that sends to
res one spike after two computation steps. Indeed, the delajeofule contained in neuroh(whose
contents will be initialized with one spike at the beginnimigthe computation) should be set in order
to make neuron fire exactly when the results computed by thevMSsubsystems reach theo®IPARE
subsystems (plus two steps).

Observe thalS is a k-bit number, just likevy, vo, ..., v,, and thus if we sum a subset of these lat-
ter values we could easily end up with a result that needs mhamek bits to be expressed in binary
form, thus complicating a little bit the comparison with However, recall thak = log K where
K = max{vy,ve,...,v,, S}, and thus in many cases a large portion of the most significasitof
v1, U9, ..., v, WIill be equal to zero. Anyway, since theoOmPARE subsystems perform/abit compari-
son, we should avoid the situation in which ans subsystem produces am-bit sequence, withn > &,
such that itsk less significant bits coincide with the bits that comp6&sd-ortunately it is easy to check
whether we are in this situation: we just design each of the Subsystems so that it producesrarbit
sequence, where. = k + [log, 1] (in fact, the maximum integer number that we can represeéngus
k bits is2* — 1, so if we sumn of such numbers we obtain a result which is less th2f that requires
k + [log, n| bits to be represented in binary form), and we check thabthe & most significant bits
of this sequence are all zero. This is easily done by sentigggtbits (that is, the corresponding spikes)
to a neuron whose contents (the presence of at least ong sjgkals to the user of the system that the
above situation occurred.

The core of the system is composed of thevSsubsystems. In a generic®8 subsystemy values

12 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

from the sef{vy, v, ..., v,} have to be summed together, and this sum has to be perfornpedyimo-
mial time. Ifr = 2 then we can use either a traditional ripple carry adder, @areydook-ahead adder
[35, p. 6]. Letz = > F 1 z,27 andy = 3%} 4;:2° be the twok-bit binary numbers to be summed.
We denote by, s1, ..., s; the bits of the sum, and by, ¢y, ..., ¢; the carries generated during the
addition. The traditional addition algorithm (which canthieially implemented using a Boolean circuit)
putssy = xo @ yo, co = 0, and then defines inductively = (z;—1 Ayi—1)V (xi—1 Aci—1)V (yi—1 Aci—1)
(thatis,c; = 1 if and only if at least two ofc; 1, y;-1,¢;i_1is1), 8, = x; Py; B¢ forl < i < k, and
sk = cx. Such an algorithm sums the tvkebit integer numbers i (k) steps.

A carry look-ahead adder operates by computing the valugiseofarriesc; in a finite number of
steps, independent &f starting from the values afy, z1,...,x,_1 andyg, y1,...,yx—1. The crucial
observation is that a carry is generated at positidrand only if both input bitsz; andy; arel, and a
carry is eliminated at positiohif and only if both input bitsz; andy; are0. This observation yields to
the following definitions: foh < i < k, let:

gi = x; Ny (positioni generatesa carry)
Pi = x; Vi (positioni propagatesa carry)

Now, a carry ripples into positiohif and only if there exists a positiof < i where a carry is generated,
and all positions in between propagate it. Formally:

i—1 1—1

CZ':\/ g; N /\pk forl1 <i<k Q)
j=0 k=j+1

Once we have computed the carries, the bits of the sum areutethps beforesy = zg ® yo, s; =

T Dy e forl <i < k,andsg = ¢. Itis easily seen that the above formulas allow to computinal

¢; in parallel, since they only depend on the input bigsz1, ..., xx_1 andyg, y1, - .., yx_1, IN constant
time: all g; andp; are computed in one step, and two more steps are needed toteotng@aND S and the
ORS that appear in (1). By usingoRr () gates, all the bits of the sum are computed in one more step.

The Boolean circuit that implements a carry look-ahead adde be easily simulated by an SN P
system, simply substituting every logical gate with an appate neuron. Figure 5 shows this mapping
from AND, OR andxOR gates to neurons. When needed, for example when the outlpetafea gate has
to skip one or more layers and go directly to one of the subm#dayers, for synchronization purposes
we can also use delay neurons, that contain thearalea; d for an appropriate value af It is clear that
the size of the SN P system thus obtained is polynomialljtedlavith the size of the simulated Boolean
circuit, and that if the simulated circuit performs its camgtions in constant time then also the SN P
system performs its computations in constant time.

If we need to compute the sumof> 2 binary numbers of length, then a slightly more complicated
construction is needed. As shown in [35, p. 13], while ddasigra Boolean circuit that computes the
ITERATED ADDITION (which is defined as the sum efnatural numbers, each efbits), the addition
of threek-bit binary numbers: = S"7 1 4,2/, b = S5~ 1 1,27 ande = 325! ;27 can be reduced to the

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 13

/aﬂa;O

2

X, X, a —A
3

| a—a,0

¥ ——> . y

" o

X, X, —> a"—>a;0 ifnisodd

\ a"—A ifniseven

Figure 5. Simulation ofi-inputAND, OR andxOR gates by means of single—neuron SN P systems.

addition of two(k + 1)-bit numberse andd, by defining:

€y — 0

€e; = (ai_l VAN bz‘_l) vV (ai_l A Ci—l) V (bz‘_l A Cz‘_l) foralll <i <k
di=a;Db;®c foro0<i<k

dp, =0

The rationale behind these formulas is the following. If wel at a single position, then we have to
adda;, b; andc;. The result is given by the two-bit number, 1 d;; bit e; 1 is 1 if and only if at least two
of the bitsa;, b; and¢; arel, andd; = 1 if and only if an odd number of;, b; andc¢; is 1. We can thus
conclude thatt + b+ c=d + e.

If we are givenr > 2 binary numbers of lengtk, we can group them into three-element sets (plus
one set with only one or two numbersifs not a multiple of3), and then compute for each set as just
explained two numbers whose sum is equal to the sum of alhtiee humbers from the set. In this way
we end up withr’ numbers ofc + 1 bits each, where:

%r if r=0 mod 3
o= %(r—1)+1 if r=1 mod 3
%(r—2)+2 if r=2 mod 3

14 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

In any case, ifr > 2 thenr’ < %7“. Thus, givenr numbers ofk bits each, by iterating this reduction
procedureO(log r) times we end up with two numbers bf+ O(logr) bits each. These two numbers
can then be added using a carry look-ahead adder, as explabwe. In the worst case, we have
to add all the numbers fronfw;, ve,...,v,}. The reduction process can thus be implemented by a
O(logn) depth Boolean circuit, since each reduction involves a temtslepth (and bounded fan-in)
circuit. At the end of the reduction process we have to add(#e O(log n))-bit numbers, which can
be done by a Boolean circuit of polynomial (quadratickin- O(logn)) size and constant depth. The
fan-in of such a circuit is unbounded, and thus also the greke of the neurons of the SN P system
that simulates it is unbounded. However, any unboundednfatnD or OR gate can be simulated by
a polynomial size logarithmic depth circuit composed of fsed fan-inAND and OR gates, and thus
we can conclude that theus subsystems can be implemented by polynomial size SN P systéiich
are composed of a logarithmic number of layers and whosegneg is bounded (that is, constant).
The same argumentation holds for theMPARE subsystems: they can be implemented as polynomial
size logarithmic deptlorR/XOR circuits of bounded fan-in, and hence as polynomial size Sijidfems
composed of a logarithmic number of layers, each composedraftant in-degree neurons. Finally, the
large OR that provides the output to the environment Bas- 1 inputs, and thus it can be realized as an
exponential size polynomial depth tree of bounded faofrgates.

The systemlI((n, k)) thus obtained is able to solve all the instan@es SS(n,k) of SUBSET
SuM which can be expressed as sequences ef 1 natural numbers, each af bits. The family
{II({n, k)) }n ken thus constitutes a uniform solution to theBSET SuM problem. The size dfl((n, k))
is exponential with respect to the instance size, but thepcation time it takes to determine whether
the instanc& € SS(n, k) is positive or not is polynomial with respect toandk. The fact thatZ is a
positive instance is signalled by the emission of a spikefn@urorout; in any case, after computing the
solution the system halts. An important observation istiasystenil((n, k£)) has a very regular struc-
ture, and hence also in this case we can assume that it caiitie Aypolynomial time by a deterministic
Turing machine whose computational power has been augthbyitadding some controlled duplication
instruction. Just like in the case of the semi—uniform gotutllustrated in the previous section, it is an
open problem to determine how precisely this controlledidation instruction should work.

5. Conclusions and Directions for Future Research

We have proposed two families of spiking neural P systemissihiae SUBSET Sum, the well known
NP-complete decision problem. The peculiarity and importaoicSUBSET SuM, while trying to assess
the computational power of a new computational device,asittis anumericalNP-complete problem,
and thus the difficulty of solving it depends upon the magtdtof the integer numbers that appear in
its instances. To be precise it is MdP-complete in the strong sense, and hence the problem becomes
easy to solve (through a well known algorithm which is basedhe dynamic programming paradigm)
when the numbers contained into the instances are smalijaeptly, we can say that it becomes easy
to solve when its instances are expressed in unary form.

For this reason, after showing in Section 3 how for any insasf SUBSET SUM an SN P system
that solves it can be built (thus working in the so called semiform setting), in Section 4 we have
illustrated a uniform solution. Precisely, we have definderaily {II((n,k))}, xen Of SN P systems
such that for alh, & € N the systenil((n, k)) solves all the instanc&s € SS(n, k) which are composed

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 15

of n+ 1 positivek-bit integer numbers. The systdii{(n, k)) performs its computations in a time which
is polynomial inn and k, but its size generally grows exponentially with respecthise parameters.
However the structure dfi({n, k)) is so regular that we can assume that the system may be bailt in
polynomial time by a deterministic Turing machine whose patational power has been augmented by
adding to its set of instructions some form of controlledlaation, that replicates (possibly substituting
some pieces of the structure) part of the output it has bpitiouthat moment. It is an open problem to
precisely determine how this controlled duplication skowbrk, and hence what kind of exponential
size pre—computed resources may be considered accepfdi@e, an interesting direction for further
research would be to study the complexity classes that fideethe (possibly many different) choices
of duplication operations we may adopt.

It is important to note that, as proved in [16], an SN P systéipotynomial size cannot solve in a
deterministic way and in a polynomial time &P-complete problem (unled® = NP), hence efficient
solutions toNP-complete problems cannot be obtained without introdubiagures which enhance the
efficiency (pre—computed resources, ways to exponentiatiw the workspace during the computation,
non—determinism, and so on). A more careful examinatioruolfi $eatures — in particular, possible re-
lations with the well known notions afiformitytraditionally studied in the theory of circuit complexity
— is another research direction of a clear interest.

Acknowledgements

We gratefully thank the anonymous referees for their contmand suggestions, that allowed us to
improve a previous version of this paper.

References

[1] Alhazov, A., Pérez-Jiménez, M. J.: Uniform Solutian@sAT Using Polarizationless Active Membranes,
Fourth Brainstorming Week on Membrane CompufiMgA. Gutiérrez-Naranjo, Gh. Paun, A. Riscos-Nifiez,
F. J. Romero-Campero, Eds.), RGCN Report 02/2006, Sewvilledusity, Fénix Editora, Vol. |, 2006, 29-40.

[2] Balcazar, J. L, Diaz, J., Gabarrd, $tructural ComplexityMoll. | and I, Springer-Verlag, Berlin, 1988—1990.

[3] Chen, H., Freund, R., lonescu, M., Paun, Gh., Pére#&dez, M. J.: On String Languages Generated by
Spiking Neural P SystemBpurth Brainstorming Week on Membrane Compufikig A. Gutiérrez—Naranjo,
Gh. Paun, A.Riscos—Nufez, F. J. Romero—Campero, RISEN Report 02/2006, Sevilla University, Fénix
Editora, Vol. |, 2006, 169—-194.

[4] Chen, H., lonescu, M., Ishdorj, T.-O: On the EfficiencySdiking Neural P SystemByroc. 8th Intern. Conf.
on Electronics, Information, and Communicatj@ianbator, Mongolia, June 2006, 49-52.

[5] Cormen, T. H., Leiserson, C. H, Rivest, R. Ilntroduction to AlgorithmsMIT Press, Boston, 1990.

[6] Garcia-Arnau, M., Pérez, D., Rodriguez-Patén, osik, P.: Spiking Neural P Systems. Stronger Normal
Forms Fifth Brainstorming Week on Membrane Computiig A. Gutiérrez-Naranjo, Gh. Paun, A. Romero-
Jiménez, A. Riscos-NUfiez, Eds.), RGCN Report 01/206vill& University, Fénix Editora, 2007, 157-178.

[7] Garey, M. R., Johnson, D. SComputers and Intractability. A Guide to the Theory dR—Completeness
W.H. Freeman and Company, 1979.

[8] Gerstner, W., Kistler, W.Spiking Neuron Models. Single Neurons, Populations, Riggt Cambridge Uni-
versity Press, 2002.

16 A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfSuBSET SuM by Spiking Neural P Systems

[9] Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J.,dRis-Nlfiez, A.: A Fast P System for Finding a Balanced
2—partition.Soft Computingd(9), 2005, 673-678.

[10] Ibarra, O. H., Paun, A., Paun, Gh., Rodriguez-Ra£0, Sosik, P., Woodworth, S.: Normal Forms for Spiking
Neural P System§ heoretical Computer Sciencg’22-3), 2007, 196-217.

[11] lonescu, M., Paun, A., Paun, Gh., Pérez-Jiménez].MComputing with Spiking Neural P Systems: Traces
and Small Universal SystemBNA Computing12t" International Meeting on DNA Computing (DNA12),
Revised Selected Pap€iG. Mao, T. Yokomori, B.-T. Zhang, Eds.), LNCS 4287, Sprinyerlag, Berlin,
2006, 1-16.

[12] lonescu, M., Paun, Gh., Yokomori, T.: Spiking NeurgsiistemsFundamenta Informaticag1(2-3), 2006,
279-308.

[13] Ishdorj, T.-O., Leporati, A.: Uniform Solutions to SAAnd 3-SAT by Spiking Neural P Systems with Pre-
computed Resourcelatural Computingin press, DOI 10.1007/s11047-008-9081-0. A preliminamsion
appeared as Turku Centre for Computer Science — TUCS Repo&1%, 2008.

[14] Krishna, S. N., Rama, R.: A Variant of P Systems with &etMembranes: SolvinblP-complete Problems,
Romanian Journal of Information Science and Technaglg¢), 1999, 357-367.

[15] Leporati, A., Mauri, G., Zandron, C., Paun, Gh., Red@aménez, M. J.Uniform Solutions tGsAT andSUBSET
SuM by Spiking Neural P Systepsubmitted.

[16] Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: GretComputational Power of Spiking Neural P Systems,
Intern. J. Unconventional Computing007, in press.

[17] Leporati, A. Zandron,, C., Ferretti, C., Mauri, G.: 8iolg NumericalNP-complete Problems with Spiking
Neural P Systemdylembrane Computing, International Workshop, WMCS8, Seteahd Invited PapergG.
Eleftherakis, P. Kefalas, Gh. Paun, G. Rozenberg, A. Saégrds.), LNCS 4860, Springer-Verlag, Berlin,
2007. 336-352.

[18] Leporati, A., Zandron, C., Gutiérrez-Naranjo, M. A&: Systems with Input in Binary Fornipternational
Journal of Foundations of Computer Scient@(1), 2006, 127-146.

[19] Maass, W.: Computing with spikeSpecial Issue on Foundations of Information ProcessindgdfAMATIK
8(1), 2002, 32—36.

[20] Maass, W., Bishop, C. (EdsBulsed Neural Network®$IT Press, Cambridge (MA), 1999.

[21] Martin Vide, C., Pazos, J., Paun, Gh., Rodriguebi®Rah.: A New Class of Symbolic Abstract Neural Nets:
Tissue P Systems&omputing and Combinatorics!® Annual International Conference, COCOON 2002
LNCS 2387, Springer-Verlag, Berlin, 2002, 290-299.

[22] Martin Vide, C., Pazos, J., Paun, Gh., Rodriguedia.: Tissue P system$heoretical Computer Science
296, 2003, 295-326.

[23] Obtulowicz, A: Deterministic P Systems for SolvisgT problem,Romanian Journal of Information Science
and Technology4(1-2), 2001, 551-558.

[24] Papadimitriou, C. H.Computational ComplexifyAddison-Wesley, 1994.
[25] Paun, A., Paun, Gh.: Small Universal Spiking Neur@y’temsBioSystem90(1), 2007, 48—60.

[26] Paun, Gh.: Computing with Membrangsurnal of Computer and System Sciendé61), 2000, 108-143.
See also Turku Centre for Computer Science — TUCS Report 08).1098.

[27] Paun, Gh.: Computing with Membranes. An IntroductiBulletin of the EATCS57, 1999, 139-152.

A. Leporati, M.A. Gutiérrez-Naranjo / SolvirfBuBSET SuM by Spiking Neural P Systems 17

[28] Paun, Gh.: P Systems with Active Membranes: AttacKifrcomplete Problems]ournal of Automata,
Languages and Combinatoric®(1), 2001, 75-90.

[29] Paun, Gh.Membrane Computing. An IntroductioBpringer—\Verlag, Berlin, 2002.
[30] Paun, Gh., Pérez-Jiménez, M. J., Rozenbergirinite spike trains in spiking neural P systeragbmitted.

[31] Paun, Gh., Rozenberg, G.: A Guide to Membrane Compuliheoretical Computer Scienc@87(1), 2002,
73-100.

[32] Paun, Gh., Sakakibara, Y., Yokomori, T.: P Systems oapBs of Restricted FormBublicationes Mathe-
maticae Debrecer60, 2002, 635-660.

[33] Pérez-Jiménez, M. J., Riscos-NUfez, A.: A Lingane Solution to the IKKAPSACK Problem Using P Sys-
tems with Active Membranesjembrane Computing, International Workshop, WMC 20R&ised Selected
and Invited Papers (C. Martin-Vide, Gh. Paun, G. Rozemb&r Salomaa, Eds.), LNCS 2933, Springer-
Verlag, Berlin, 2004, 250-268.

[34] Pérez-Jiménez, M. J., Riscos-NUflez, A.: Solving BJBSET SuM Problem by Active Membranedjew
Generation Computing3(4), 2005, 367-384.

[35] Vollmer, H.: Introduction to Circuit Complexity: A Uniform ApproacBpringer—Verlag, Berlin, 1999.

[36] Zandron, C., Ferretti, C., Mauri, G.: SolvingP-complete Problems Using P Systems with Active Mem-
branesUnconventional Models of Computati¢h Antoniou, C.S. Calude, M.J. Dinneen, Eds.), Springer-
Verlag, Berlin, 2000, 289-301.

[37] The P systems Web page: http://ppage.psystems.eu

