
P SYSTEMS WITH INPUT IN BINARY FORM

ALBERTO LEPORATI∗

CLAUDIO ZANDRON†

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

and

MIGUEL A. GUTIÉRREZ-NARANJO‡

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Sevilla University
Avda Reina Mercedes s/n, 41012 Sevilla, Spain

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

Current P systems which solve NP–complete numerical problems represent instances
in unary notation. In classical complexity theory, based upon Turing machines, switching
from binary to unary encoded instances generally corresponds to simplify the problem.
In this paper we show that this does not occur when working with P systems. Namely,
we propose a simple method to encode binary numbers using multisets, and a family of
P systems which transforms such multisets into the usual unary notation.a

Keywords: Membrane Computing; P systems; Binary data; Partition

1. Introduction

P systems (also called membrane systems) were introduced in [?] as a new class of

distributed and parallel computing devices, inspired by the structure and function-

ing of living cells. The basic model consists of a hierarchical structure composed by

several membranes, embedded into a main membrane called the skin. Membranes

divide the Euclidean space into regions, that contain some objects (represented by

symbols of an alphabet) and evolution rules. Using these rules, the objects may

evolve and/or move from a region to a neighboring one. The rules are applied in a

nondeterministic and maximally parallel way: all the objects that may evolve are

∗leporati@disco.unimib.it.
†zandron@disco.unimib.it.
‡magutier@us.es

1

forced to evolve. A computation starts from an initial configuration of the system

and terminates when no evolution rule can be applied. The result of a computation

is the multiset of objects contained into an output membrane or emitted to the

environment from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions

and the terminology underlying P systemsb.

Many P systems which solve NP–complete decision problems have appeared in

the literature during the last few years. Both in the field of numerical problems,

that is, problems whose instances consist of sets or sequences of integer numbers

(see for example Subset Sum [?], Knapsack [?], Bin Packing [?] or Partition [?]

problems) or non-numerical problems as SAT [?, ?] or QSAT [?].

It is well known [?, ?] that the difficulty of such numerical problems is tied to

the magnitude of the numbers which appear into the instance. For example, let us

consider the Partition problem, which can be stated as follows:

Problem 1.1 Name: Partition.

• Instance: a set A = {a1, a2, . . . , an} of positive integer numbers

• Question: is there a subset A′ ⊆ A such that
∑

a′∈A′

a′ =
∑

a∈A\A′

a?

The following algorithm solves the problem using the well known Dynamic Program-

ming technique [?]. In particular, the algorithm returns 1 on positive instances, and

0 on negative instances.

Partition({a1, a2, . . . , an})
s←∑n

i=1 ai

if s mod 2 = 1 then return 0

for j ← 1 to s/2

do M [1, j]← 0

M [1, 0]←M [1, a1]← 1

for i← 2 to n

do for j ← 0 to s/2

do M [i, j]←M [i− 1, j]

if j ≥ ai and M [i− 1, j − ai] > M [i, j]

then M [i, j]←M [i− 1, j − ai]

return M [n, s/2]

First of all, the algorithm computes the sum s of all elements in the instance. If s

is odd then the instance is certainly negative, and thus the algorithm returns 0. If

s is even then the algorithm checks for the existence of a subset A′ ⊆ A such that
∑

a′∈A′ a′ = s
2 . In order to look for A′, the algorithm uses a n × (s

2 + 1) matrix

M whose entries are from {0, 1}. It fills the matrix by rows, starting from the first

row. Each row is filled from left to right. The entry M [i, j] is filled with 1 if and

bA layman-oriented introduction can be found in [?]; a formal description in [?] and the latest
information about P systems can be found on [?].

2

only if there exists a subset of {a1, a2, . . . , ai} whose elements sum up to j. The

given instance of Partition is thus a positive instance if and only if M [n, s
2] = 1

at the end of the execution.

Since each entry is considered exactly once to determine its value, the time

complexity of the algorithm is proportional to n(s
2 + 1) = Θ(ns). This means that

the difficulty of the problem depends on the value of s, that is, on the magnitude

of the values in A. In fact, let us denote by K the maximum element of A. If

K is polynomially bounded w.r.t. n then also s =
∑n

i=1 ai ≤ Kn is polynomially

bounded w.r.t. n, and thus the above algorithm works in polynomial time. On the

other hand, if K is exponential w.r.t. n, say K = 2n, then also s is exponential

and the above algorithm works in exponential time and space. This behavior is

usually referred to in the literature by telling that the Partition problem is a

pseudo–polynomial NP–complete problem.

The fact that in general the above algorithm is not a polynomial time algorithm

for Partition can be immediately understood by comparing its time complexity

with the instance size. The usual size for the instances of Partition is Θ(n log K)

(also O(n log s) in [?, page 91]), since for conciseness every “reasonable” encoding

is assumed to represent each element of A using a string whose length is O(log K).

Here all logarithms are taken with base 2. Stated differently, the size of the instance

is usually considered to be the number of bits which must be used to represent in

binary all the integer numbers which occur in A. If we would represent such numbers

using the unary notation, then the size of the instance would be Θ(nK). But in this

case we could write a program which first converts the instance in binary form and

then uses the above algorithm to solve the problem in polynomial time with respect

to the new instance size. We can thus conclude that the difficulty of a numerical

NP–complete problem depends also on the measure of the instance size we adopt.

The fact that the difficulty of a problem generally depends upon how we measure

the instance size is even more apparent if we consider the Factorization problem:

Problem 1.2 Name: Factorization.

• Instance: a positive integer number n which is the product of two prime

numbers p and q

• Output: p

This problem is generally considered intractable, which means that no polynomial

time algorithm is known that solves it on every instance. The conjectured in-

tractability of this problem is often exploited in Cryptography: a notable example

is the RSA cryptosystem [?]. Here the natural instance size for the problem is

Θ(log n), the number of bits which are needed to represent n in binary form. Also

for this problem, if we let the instance size be Θ(n) then the trivial algorithm which

tries to divide n by every number comprised between 1 and
√

n is a polynomial

time algorithm which solves the Factorization problem.

For these reasons we believe that it is important to show that P systems which

solve NP–complete numerical problems do not take their power from the fact that

the instances are represented in unary notation. Hence in this paper we first propose

3

a simple method to represent positive integer numbers in binary notation using

multisets of objects. Then, we propose a family of P systems which transforms this

binary encoding into the unary notation used in [?, ?, ?, ?].

The paper is organized as follows. In section 2 we introduce our encoding of

binary numbers using multisets. In section 3 we propose a family of simple P

systems which can be used to transform a given positive integer number from such

encoding to unary notation. Section 4 concludes the paper and gives some directions

for future research.

2. Encoding binary numbers using multisets

First of all let us show how a given positive integer number x can be represented

in binary notation using a multiset. Let xn, xn−1, . . . , x1 be the binary representa-

tion of x, so that x =
∑n

i=1 xi2
i−1. We use the objects from the following alphabet:

An = {〈b, j〉 | b ∈ {0, 1}, j ∈ {1, 2, . . . , n}} (1)

Object 〈b, j〉 is used to represent bit b into position j in the binary encoding of an

integer number. Hence, to represent the above number x we will use the following

multiset (actually, a set) of objects:

〈xn, n〉, 〈xn−1, n− 1〉, . . . , 〈x1, 1〉

Let us remark that the alphabet A depends on the length of the binary repre-

sentation of the number x, i.e., with the alphabet An we can represent from 1 to

2n − 1.

On the other hand, the unary representation of x is obtained by choosing a

symbol from an alphabet, say the symbol a from alphabet A′, and putting into the

multiset x copies of such symbol: ax. Hence, unary notation is exponentially longer

than binary notation. Our transformation thus solves another problem raised by

the solutions exposed in [?, ?, ?, ?]: in order to provide the input values to the

P systems, we should insert into such systems an exponential (with respect to the

instance size) number of objects. This means that an exponential amount of work

to prepare the system is required.

Working with binary encoded numbers, instead, allows one to prepare the system

by inserting a polynomially bounded number of objects.

3. Converting from binary to unary notation

In this section we propose a family of simple P systems which allows to convert

a given positive integer number x, expressed in binary notation as exposed in the

previous section, to the usual unary notation.

The objects used by the P systems form a subset of alphabet A of equation (??).

Namely, in order to represent x in binary notation we will use only the objects which

correspond to the bits of x which are equal to 1. For example, if x = 25 then its

binary representation is 11001, and we will use the objects 〈1, 5〉, 〈1, 4〉, and 〈1, 1〉
to represent it. Since the first element in the pairs of A used is always equal to 1,

4

we can be more concise by omitting it. Once omitted the first element of the pair,

also angular parenthesis are superflous.

The family of P systems which performs the transformation is formally defined

as follows:

Π(n) = (A(n), µ, w, R(n), iin, iout)

where:

• A(n) = {1, 2, . . . , n} ∪ {a} is the alphabet;

• µ = []
skin

is the membrane structure consisting of the skin only;

• w = ∅ is the multiset of objects initially present in region 1;

• R(n) is the following set of evolution rules associated with region 1:

[j → (j − 1)2]skin for all j ∈ {2, 3, . . . , n}
[1→ a]skin

• iin = skin specifies the input membrane of Π;

• iout = skin specifies the output membrane of Π.

The semantics of the rules is the usual for evolution rules. All they are applied in

a maximal parallel mode. The number of cellular steps of the P system is bounded

by n and the computation halts when no more rules can be applied. When this

happens, the multiset placed in the output membrane (the only one membrane) is

the output of the computation.

Computations proceed as follows. The objects which denote the positions of 1’s

in the binary representation of x are initially put into the region enclosed by the

skin. Then the computation starts, and the rules from R are applied. It is easily

seen that the presence of object j, with j ∈ {1, 2, . . . , n}, will produce 2j−1 copies of

object a. Hence at the end of the computation, when no more rules from R can be

applied, the skin will contain x copies of object a, that is, the unary representation

of x.

We conclude this section with an example of computation of the above P systems.

Let us consider again the value x = 25; as previously said, it will be represented

by means of objects 5, 4, and 1 (each in a unique copy). At the first step of

computation, we apply in parallel the rules 1→ a, 4→ 3, 3 and 5→ 4, 4, obtaining

the multiset a, 3, 3, 4, 4.

Then, we apply in parallel the rule 3→ 2, 2 on each copy of the symbol 3, thus

obtaining four copies of the symbol 2, and the rule 4 → 3, 3 on each copy of the

symbol 4, thus obtaining four copies of the symbol 3. The multiset we obtain after

the second step of computation will be a, 2, 2, 2, 2, 3, 3, 3, 3.

Hence, we apply the rules 2→ 1, 1 and 3→ 2, 2 obtaining a, 18, 28. By means of

the rules 1→ a and 2→ 1, 1 we then obtain the multiset a9, 116 and finally, applying

again 1 → a we obtain the multiset a25 which is exactly the unary codification of

the initially binary coded number.

5

From the previous definition and example, it is easy to see that the cardinality

of the alphabet and the number of computation steps are linear with respect to the

input size.

4. Composition of P systems

In the previous section, a method for converting natural number from binary into

unary notation has been described. Intuitively, such a P system could be composed

with a P system which solves an instance of a problem with input in unary form

and to get a new P system which solves the same problem with input in binary

form.

The formalization of such intuition has several technical details and, to the best

of our knowledge, the composition of P systems has not been defined.

In this section we present a definition for composing P systems which fit into

our purposes. The general definition and the study of its properties lies out of the

scope of this paper. First we define a joint of two P systems

A joint P1 ◦ P2 of P systems P1 and P2 is a new P system where the skin

membrane of P2 is identified to an elementary membrane of P1. In this way we

obtain a new labelled membrane structure. Each labelled membrane keeps its initial

multiset and set of rules. In the initial configuration, the new membrane obtained

by identification, the initial multiset and set of rules are the union of the multisets

and sets of rules of the identified membranes. Next we give a formal definition.

Definition 1 Let P1 = (O1, H1, EC1, µ1, w
1
1 , . . . , w

1
m1

, R1) and

P2 = (O2, H2, EC2, µ2, w
2
1 , . . . , w

2
m2

, R2) be two P systems where: m1, m2 ≥ 1 are

the initial degrees of the systems; O1 and O2 are the alphabets of objects; H1 and H2

are two disjoint finite set of labels for membranes; EC1 = EC2 are the finite sets

of electrical charges for membranes; µ1 and µ2 are the membrane structures con-

sisting (resp.) of m1 and m2 membranes labelled (not necessarily in a one-to-one

manner) with elements of H1 and H2; wi
1, . . . , w

i
m are strings over Oi, describing

the multisets of objects placed in the mi regions of µi (for i=1,2); R1 and R2 are

the finite sets of rules associated to P1 and P2.

Let i1 be the label of an elementary membrane of P1 and s2 the label of the skin

membrane of P2. And let µ be the membrane structure obtained by identifying i1
with s2. Since the none i1 is a leave in µ1 and the node s2 is the root of µ2 the new

graph is also a membrane structure. We keep the same label for all membranes and

label the joint membranes by α.

We define a joint P1 ◦ P2 as a P system

P1 ◦ P2 = (O, H, EC, µ, w1 , . . . , wm, R)

where m = m1 + m2 − 1 is the initial degree of the systems; O = O1 ∪ O2 is the

alphabet of objects; H = (H1−{i1})∪ (H2−{s2})∪{α} is the finite set of labels for

membranes; EC = EC1 = EC2 is the finite set of electrical charges for membranes;

µ and is the membrane structure labelled with elements of H; w1, . . . , wk are strings

over O, describing the multisets of objects placed in the m regions of; R = R1 ∪R2

is the finite set of rules.

6

Note that given two P systems with the same set of electrical charges (which can

be empty) there exists several posibilities of getting a joint: One for each elementary

membrane of P1. Next we define the composition of two P systems. In order to

define such composition we need two P systems with input and output.

Definition 2 Let P1 and P2 be two P systems with input and output such that:

• The input membrane of P1 is an elementary membrane. We will denote by i1
the label of such membrane.

• The output membrane of P2 is the skin membrane. We will denote by s2 the

label of such membrane.

The composition P1 ◦ P2 is the joint obtained by identifying i1 with s2.

Note that if P2 sends the output to the environment, we can consider a new external

membrane surrounding the whole P system which becomes the new skin. With this

new skin we can consider the composition with another P system.

5. A Case Study

In this section we describe two familes of P systems ΠB ans Ppart:

• The family ΠB = {PB(n, d) : n, d ∈ N} converts multisets of natural num-

bers from binary into unary notation. The P system PB(n, d) depends on the

number of elements that we want to convert and on d, where d is defined by

d = Ent[log2(maxA)] + 1 (2)

where A is the set of numbers to convert.

• The family Πpart = {P part(n) : n,∈ N} is a uniform family which solves the

NP-problem Partition. It is based on the solution presented in ... but with

small changes. Each P system P part(n) solves all instances of the problem

with n elements. The solution is obtained in polynomial time on n and the

input has to be provided in unary form.

Both families are designed with input and output and it has sense to consider the

composition of P systems of both families. We obtain the following family:

Π = {P part(n) ◦ PB(n, d) : n, d ∈ N}
where each P system P (n, d) = P part(n) ◦PB(n, d) is a cellular device which solves

all the instances of the Partition problem with the same parameters n and d.

5.1. The family ΠB

The P systems of this family are adapted from the model presented in the section

??. The differences are mainly two: Two membranes are considered, one as input

membrane and the second one (the skin) is the output membrane. In this way we

prepare the composition with P systems of the second family.

7

The second difference is due to technical reasons. We add new elements which

has no meaning in the encoding of the information, but they make sense after the

composition (objects e0, z and f) and a counter v1.

The problem can be stated as follows: Given a multiset A of natural numbers

expressed in binary form, to get a multiset A′ with such numbers expressed in binary

form.

We adapt the description from section refsec:enc. Instead of codifying a single

natural number, we look for a P system which convert a multiset of numbers. So,

for each element in the multiset, we consider a mark {x1, x2, . . .}, so in this way,

following section ?? the multiset {3, 4, 3, 11} can be expressed in binary form as the

set of pairs

{(x1, 1), (x1, 1), (x2, 3), (x3, 1), (x3, 2), (x4, 1)(x4, 2), (x4, 4)}

where (xi, j) represents that the i− th element in the enumeration of the multiset

has one in the j − th position of the binary representation.

We define the family ΠB = {PB(n, d) : n, d ∈ N} where each PB(n, d) solves

all the instances of the problem with the same number of elements n and the same

bound d, defined in the equation ??. (In fact, these n and d are upper bounds).

The P system PB(n, d) = (O(n, d), H, EC, µ, wt, ws, . . . , R(n, d)) is defined as

follows:

• O(n, d) = {e0, z, f} ∪ {y1, . . . , yn} ∪ {v1, . . . , vd+1}
∪ {(xi, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ d}

• H = {t, s} with t the label of the input membrane and s, the skin the label

of the output membrane.

• EC = ∅ (We can also consider the membranes with neutral charge along all

the computation)

• µ = [[]t]s

• wt = {e0, f, v1}; ws = ∅

• The following set of rules R(n, d):

[(xi, j)→ (xi, j − 1)]t for all i ∈ {1, . . . n} and j ∈ {1, . . . , d}.
[(xi, 1)→ yi]t for all i ∈ {1, . . . n}.
[vj → vj+1]t for all j ∈ {1, . . . , d}.
[vd+1]t → z.

All the rules are associated to the label t and are object evolution rule. The only

exception is the last one, which is a dissolution rule.

At the beginning of the computation, the input codifying the multiset of natural

numbers in binary form (as described above) is placed in the input membrane. The

P system evolves as described in section ??. After d steps the membrane t contains

the elements e0, f , vd+1 and a multiset of elements yi, 1 ≤ i ≤ n codifying the

input. In the next step vd+1 dissolves the membrane t and is transformed into z in

8

the skin. The remaining objects also go to the skin. No more rules can be applied

and the computation halts.

The computation is deterministic and halts after d + 1 steps.

5.2. The family Πpart

This family is a uniform familyc of P systems in the framework of active mem-

branes (see ...) which solves the NP-problem Partition. It is based on the solution

presented in ... but with small changes. Each P system P part(n) solves all instances

of the problem with n elements. The solution is obtained in polynomial time on

n and the input has to be provided in unary form. Each P sysstem of the family,

P part(n), n,∈ N consists on the following elements:

• O(n) = {a0, a, b0, b, c, d0, d1, d2, f, g, g0, g1, h0, h1, p0, p, q, z, #, yes, no, no0} ∪
{e0, . . . , en} ∪ {i1, i2, i3, i4} ∪ {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {z1, . . . , z2n+1}

• H = {e, r, s}; the skin s, the label e for the working membranes and a label r

for the membrane of control.

• EC = {+,−, 0}

• µ = [[]r []e]s

• we = ∅; ws = ∅; wr = {b0, h0}

• The set of rules R(n) described below. We follow the design for solving PAR-

TITION with active membranes presented in ..., with small changes due to

technical reasons. A detailed description and motivation for the rules can be

found there.

cIn the sense of ...

9

Set (a)
[ei]

−
e → [q]0e[ei]

+
e , for

i = 1, . . . , n,
[ei]

+
e → [ei+1]

−
e [ei+1]

+
e , for

i = 1, . . . , n− 1.

Set (b)
[x1 → a0]

−
e , [x1 → p0]

+
e ,

[xi → xi−1]
+
e , for i = 2, . . . , n,

[xi → p0]
0
e, for i = 2, . . . , n.

Set (c)
[en]+e → #, [a0 → #]0s,
[p0 → #]0s, [g → #]0s.

Set (d)
[q → i1]

0
e, [p0 → p]0e,

[a0 → a]0e, [g]0e → []0eg0.

Set (e)
[a]0e → []−e #, [p]−e → []0e#.

Set (f)
[i1 → i2]

0
e, [i2 → i1]

−
e .

Set (g)
[i1]

−
e → []+e no.

Set (h)
[i2 → i3c]

0
e,

[c]0e → []−e #, [i3 → i4]
−
e ,

[i4]
−
e → []+e Y es, [i4]

0
e → []+e no.

Set (i)
[p→ #]+e , [a→ #]+e .

Set (j)
[zi → zi+1]

0
s, for i = 1, . . . , 2n,

[z2n+1 → d0d1]
0
s,

d0[]0r → [d0]
−
r , [d1]

0
s → []+s d1,

[g0 → g1]
+
s ,

g1[]+e → [g1]
−
e .

Set (k)
[h0 → h1]

−
r , [h1 → h0]

+
r ,

[b0]
−
r → []+r b, g1[]+r → [g1]

−
r ,

b[]−r → [b0]
+
r , [g1]

+
r → []−r g1,

[h0]
+
r → []+r d2, [d2]

+
s → []−s d2.

Set (l)
[no→ no0]

−
s ,

[yes]−s → []0syes,
[no0]

−
s → []0sno.

The following set of rules does not appear in the design presented in ...

Set (m)

[z]0e → []−e z1, [e0 → e1]
0
e, [f → g]0e

[yi → xi]
0
e for i = 1, . . . , n

The first rule of the set, [z]0e → []−e z1 is the starting point of the clock. The

remaining rules are simply renaming.

Next we describe the input of the P system. In this input we provide the data

of the instance of the PARTITION in unary mode. For that we consider the

objects yi of the alphabet. Given a multiset of natural numbers {k1, . . . , km} rep-

resenting an instance of the problem, we place in the input membrane as many

objects yi as indicated by ki. For example, the multiset associated to {2, 3, 2, 1, 3}
is {y2

1 , y
3
2, y

3
3 , y4, y

3
5}. We also place in the input set three objects: e0, f, z. These

objects do not depend on the instance of the problem and can be considered as the

starting point of the clock of the P system.

Notice that the amount of resources needed to build a P system P part(n) (size of

the alphabet, number of rules, maximal length of the rules, number of membranes

and of objects in the initial configuration) is linearly bounded with respect to n.

The number of steps to get an answer is also lineal in n.

5.3. Composing ΠB and Πpart

10

As described above, ΠB = {PB(n, d) : n, d ∈ N} is a family of P systems

where each element PB(n, d) converts multisets of natural numbers from binary

into unary notation and the family Πpart = {P part(n) : n,∈ N} is a family of

P systems where each P system P part(n) solves all instances of the Partition

problem with n elements with the input provided in unary form. In each P system

PB(n, d), the output membrane is the skin and in P part(n) the input membrane

is an elementary membrane, so we are on the conditions of the definition ??. By

composing PB(n, d) and P part(n) for each n we obtain the following family:

Π = {P part(n) ◦ PB(n, d) : n, d ∈ N}
where each P system P (n, d) = P part(n) ◦PB(n, d) is a cellular device which solves

all the instances of the Partition problem with the same parameters n and d.

In the P systems P part(n)◦PB(n, d) the input membrane is the membrane with

label t from PB(n, d). We place in this membrane the instance of the problem in

binary form. After d + 1 steps, we obtain the output of PB(n, d) in the skin, which

is identified with the membrane e of P part(n). Note that in P part(n) no rule can be

applied till the input is placed in the corresponding membrane, so at this moment

the computation of P part starts and provides the answer to the problem.

6. Conclusions and directions for future work

When solving numerical NP–complete problems using P systems, integer num-

bers are usually represented in unary notation. However, in classical complexity

theory such numbers are assumed to be represented in binary notation, which is an

exponentially more compact encoding with respect to unary notation.

Switching from binary to unary notation simplifies NP–complete numerical

problems, because it modifies the way me measure the size of instances, as well

as the relation between instance size and the running time of algorithms which

solve the problem.

The eventual composition between our systems and the ones exposed in litera-

ture allows to solve NP–complete numerical problems working on instances whose

numbers are encoded in binary form. Moreover, since the instances must be injected

into the systems before starting computations, working with binary notation allows

to prepare such systems with a polynomially bounded effort. The preparation of

these systems requires instead an exponential amount of work when dealing with

instances whose numbers are encoded in unary form.

In this paper we present a family of P systems which solves Partition when the

data are provided in binary form. This family is obtained by the composition of two

families of P system. The first one is a semi-uniform family which converts multiset

of natural numbers in binary form into a multiset which codifies these numbers in

unary form. It is a semi-uniform family because the P system not only depends on

the cardinal on the multiset, but on the maximal number of the multiset.

On the other hand, we have a uniform family of P systems which solves Par-

tition, where each P system only depends on the cardinal of the instance of the

problem.

11

The composition of both families is a semi-uniform family which solves Parti-

tion with the data in unary form.

This paper extend the work from ... and the main contributions are the presen-

tation of P systems for the conversion of natural numbers from binary into unary

notation; a first attempt to define the composition of P systems and the solution of

Partition with the data in binary form. It remains the open problem of study-

ing if is is possible to find a uniform family which solves Partition (or whatever

NP-complete) problem with the data in binary form.

Acknowledgements

The present paper has been inspired by joint work with Seville research group

during the Third Brainstorming Week held in Seville from January 31st to Febru-

ary 4th , 2005. Miguel A. Gutiérrez-Naranjo acknowledges the support for this

research through the project TIC2002-04220-C03-01 of the Ministerio de Ciencia y

Tecnoloǵıa of Spain, cofinanced by FEDER funds.

12

