

ANALYSIS OF MACROECONOMIC FACTORS AFFECTING AIRLINE STOCK PRICES

ANÁLISIS DE FACTORES MACROECONÓMICOS QUE AFECTAN LA COTIZACIÓN DE ACCIONES DE LAS COMPAÑÍAS AÉREAS

Abdulkadir Alici aalici@erbakan.edu.tr Necmettin Erbakan University, Turquía https://orcid.org/0000-0002-4796-6385

Abstract

Change in stock prices and development of the market vary depending on decisions made by investors. Decisions made by investors are determined by corporate performance, the country's economic situation, political developments and changes in macroeconomic factors. In this study, the relationship between stock prices of airlines and macroeconomic variables was analyzed. To accomplish this, daily macroeconomic data of 14 airlines covering the years 2009-2018 were analyzed by Toda Yomamato and Hatemi-J asymmetric causality tests, and macroeconomic factors (Brent oil price, dollar exchange rate and interest rate) determining stock prices were identified. According to the results of the Toda and Yomamato causality test, it was found that there was a significant relationship among variables of the dollar exchange rate, the price of oil and stock prices of airlines. Except for one airline, there was no significant relationship between interest rate and stock price. According to the results of the Hatemi-J asymmetric causality test, it was found that there were significant relationships among variables of the dollar exchange rate, oil price, interest rate, and airline stock prices. In light of these findings, innovation and adoption of alternative fuel technology by the aviation industry and airlines can be a successful alternative to oil price risk. Results on exchange rate and interest rate changes indicate that airlines and related governments should focus on policies that increase growth of the aviation industry.

Keywords: Air transportation, Airline performance, Toda Yomamato causality test, Hatemi-J asymmetric causality test.

Resumen

La evolución de las cotizaciones bursátiles y el desarrollo del mercado varían en función de las decisiones tomadas por los inversores. Las decisiones de los inversores vienen determinadas por los resultados de las empresas. la situación económica del país, la evolución política y los cambios en los factores macroeconómicos. En este estudio se analizó la relación entre los precios de las acciones de las compañías aéreas y las variables macroeconómicas. Para ello, se analizaron los datos macroeconómicos diarios de 14 aerolíneas correspondientes a los años 2009-2018 mediante las pruebas de causalidad asimétrica Toda Yomamato y Hatemi-J. y se identificaron los factores macroeconómicos (precio del petróleo Brent, tipo de cambio del dólar y tipo de interés) que determinan los precios de las acciones. Según los resultados de la prueba de causalidad de Toda y Yomamato, se constató que existía una relación significativa entre las variables del tipo de cambio del dólar, el precio del petróleo y las cotizaciones bursátiles de las compañías aéreas. Excepto en el caso de una compañía aérea, no existía una relación significativa entre el tipo de interés y el precio de las acciones. Según los resultados de la prueba de causalidad asimétrica de Hatemi-J, se constató que existían relaciones significativas entre las variables del tipo de cambio del dólar, el precio del petróleo, el tipo de interés y el precio de las acciones de las compañías aéreas. A la luz de estos resultados, la innovación y la adopción de tecnología de combustibles alternativos por parte de la industria de la aviación y las compañías aéreas puede ser una alternativa acertada al riesqo del precio del petróleo. Los resultados sobre las variaciones del tipo de cambio y el tipo de interés indican que las aerolíneas y los gobiernos relacionados deberían centrarse en políticas que aumenten el crecimiento de la industria de la aviación.

Palabras clave: transporte aéreo, desempeño de las aerolíneas, prueba de causalidad Toda Yomamato, prueba de causalidad asimétrica Hatemi-J.

Cómo citar este artículo/ citation: Alici, Abdulkadir (2024). Analysis of Macroeconomic Factors Affecting Stock Price in Airlines. ANDULI. Revista Andaluza de Ciencias Sociales, (25), 93-137. https://doi.org/10.12795/anduli.2024.i25.05.

• 93 •

1. Introduction

One of the main goals of companies is to maximize the market value by increasing the stock price. The economic situation of the countries is of great importance in determining the stock price of companies. The relationship between the general economic situation and stock prices has been of interest to experts for many years. Some researchers tried to predict the rise or fall in stock prices with the help of economic indicators. There are many studies¹ that reveal the relationship between macroeconomic factors and the stock price.

Theoretically, the value of a firm's stock should equal the expected present value of the firm's future cash flow, and its future cash flow depends on the firm's performance. Airline companies face operational, financial, strategic and unpredictable (hazard) risks (Zea, 2002, s.2). As airlines' future cash flows are exposed to these risks, it is of great importance to manage risks. Airlines have a fragile structure against economic fluctuations and negativities. Therefore, there are many financial risk factors that affect airlines. The most common financial risks in the literature are; fuel price, exchange rate, interest rate, liquidity risks (Morrell, 2007; Vasigh, 2015; Budd and Ison, 2017; Fernando, 2006; Loudon, 2004; Tsai, 2008). Thus, a change in any macroeconomic variable can potentially affect stock prices.

There are many studies in different sectors that reveal the relationship between macroeconomic factors and stock price, and a meaningful relationship can be mentioned. However, although there are not enough studies on the airline industry, studies in the literature prove the existence of a relationship between macroeconomic factors and stock returns. Unsystematic risks in the airline industry can cause many damages to businesses. The biggest unsystematic financial risk factor is oil price. Increases in the prices of jet fuel (which increases in parallel with the price of Brent oil) negatively affect the stock prices by reducing the profitability of airlines (Vasigh, 2015, s. 149; Morrell and Swan, 2006, s. 3). It is understood that there are significant relationships between oil price volatility and stock price, especially in studies conducted in the transportation sector (Hammoudeh ve Li, 2005; Nandha ve Brooks, 2009; Narayan ve Sharma, 2014; Aggarwal vd. 2012). In four studies (Loudon, 2004; Tsai, 2008; Elyasiani et al, 2011; Kristjanpoller & Concha, 2016) conducted in the airline industry, it was concluded that oil prices have significant effects on stocks. Airlines generally report that foreign exchange movements have a negative impact on profits (Morrell, 2007, p. 178). Global airlines often generate revenue in multiple currencies and pay for fuel, labor and other costs. As such, they are exposed to exchange rate fluctuations (Pyke and Sibdari, 2018, p. 293). In the study conducted by Yashodha et al., 2011, it was concluded that the exchange rate risk is effective on stock prices for Cathay Pacific and China Airways airlines. While interest rates are not as volatile as fuel prices or exchange rates, the amounts of debt accrued by global airlines are a serious risk from adverse changes in interest rates. If market interest rates rise, airlines will have to pay higher interest rates. For example, at the end of 2012, American Airlines had outstanding debts of around \$7 billion (Vasigh vd., 2014, s. 491-491). 1% increase in the interest rate would increase American Airlines' interest expenses by \$70 million. The increase in interest expenses may reduce the profitability and negatively affect the value of the company's stock. In the study by Tsai, (2008), it was concluded that the stock price of the South African Airways is affected by the interest rate. However, in the study of Loudon (2004), no significant relationship was found between the interest rate and the stock price for Qantas and Air New Zealand airlines.

¹ The literature summary about the studies is available in the annex2-3

The subject of this study is the mutual financial relationships between the stock prices of airline companies and macroeconomic factors. In this context, the main objective of the study is to determine the macroeconomic factors affecting the stock prices of airline companies around the world. Many studies have been conducted in different sectors examining the relationship between macroeconomic factors and stock prices and significant results have been obtained. There are several studies on the airline sector. In most of these studies, a few (2-3) airline companies were examined in the research sample. In this study, 14 airline companies were analysed. Therefore, it is thought to make a great contribution to the literature. Another contribution of this study to the literature is that Toda-Yamamato (1995) causality test and Hatemi-J (2012) asymmetric causality test are analysed together. In addition, another point that distinguishes the study from similar studies is that a large period (2009-2018) is analysed by using daily data. Thus, it is aimed to obtain more reliable results.

There are many factors affecting the stock prices of airlines. The study investigates the effect of macroeconomic factors on stock prices. Before the analysis, the relationship between macroeconomic factors and stock price was explained in a conceptual framework, and also the relevant literature was addressed. After that, analysis method was presented. In the analysis part of the study, the findings were reached and comments were made about the findings.

1.1. Conceptual Framework and Literature

The aim of the study is to estimate the relationship between stock price of airlines and macroeconomic factors. In this context, it is necessary to decipher the conceptual relationship between stock prices and macroeconomic factors. Macroeconomic factors used in the study include Brent oil price, Dollar exchange rate, and interest rate.

After the collapse of the Bretton Woods system, almost all countries soon switched to a floating exchange rate regime, and fluctuations in exchange rates began to affect financial markets. In addition, a large increase in world trade volume and capital movements has made the exchange rate one of the important determinants of operating profitability and stock prices (Yilmaz et al., 2006, p.5). Sudden ups and downs in exchange rates negatively affect the capital market and can cause large losses to businesses and investors (Korkmaz and Ceylan, 2015).

Due to a higher-valued currency, companies can buy the raw materials they need for production cheaper. This results in reducing the costs of the business and increasing its earnings. In low exchange rate environments, interest rates fall while foreign exchange reserves and money supply increase. This, in turn, reduces the financing costs of businesses. Reductions in financing costs and prices of imported goods increase future cash flows of businesses (Candan, 2015). Therefore, a decrease in the exchange rate can raise stock prices.

Most of the revenue generated by airlines is exposed to exchange rate risk. Airlines sell tickets to many countries and in many currencies. Airline operations in foreing countries results in an additional exchange risk. For example, revenues from the operations of South Africa Airways operating in Rwanda must be converted into US dollars and then into the South African currency Rand (Tsai, 2008). Exchange rate fluctuations affect the profitibility of airlines. For example, Turkish Airlines flies to many international routes. Due to exchange rate changes(increase/decrease) in dollar and Euro currency fluctuations and the number of international passengers are the determining factors affecting profitability.

A rise in oil prices means an increase in raw material prices and production costs. High production costs lead to a decline in the profit of businesses. This reduces cash flow in stock markets and leads to a decline in stock returns (Saygan and Süslü, 2011). A rise in oil prices can cause prices to rise in the market, that is, inflation. Such a situation could lead the country's central banks to increase interest rates in order to control the increase in the inflation rate. High interest rates can cause stock returns to fall (Basher and Sadorsky, 2006).

Fuel price management is very important for airlines as jet fuel costs include an important component of airline operating costs. In a study conducted by Koopmasn and Lieshout (2016), they found that fuel costs were 20% -50% of total costs in 2014. Therefore, jet fuel price risk makes economic sense for airlines. Likewise, Loudon (2004) suggested that short-term cash flows may be directly related to changes in fuel prices due to price change inertia.

One of the key factors affecting stock returns is interest rates. Changes in interest rates can affect the prospects of expected returns. If interest rates fall, a certain increase in stock prices occurs, as businesses will have the opportunity to find cheaper loans (Ercan and Ban, 2008). Based on this, it can be said that changes in the interest rate have a negative impact on stock prices. An increase in interest rates leads to an increase in the expected rate of return and a decrease in stock prices. Likewise, a rise in interest rates increases the opportunity cost of holding cash. In this case, investors turn to other securities that provide a return on interest, rather than holding capital. This, in turn, can be reflected as a decline in stock returns (Gan et al., 2006). Interest rates are the most important factor affecting competition between stock market and the bond market (Kalmanbetova, 2010). When interest rates rise, investors sell equity investment instruments, preferring alternative securities investment instruments. Investors, in particular, tend to turn to bond markets (Brigham, 2006; Süslü, 2011).

Interest rate risk is an important factor for airlines, as they borrow heavily for financing the purchase of aircraft. High leverage ratios are common in the airline industry due to capital intensity and relatively high cost of equity. In the airline industry, attracting capital may be more difficult due to high earnings volatility (Loudon, 2004; Tsai, 2008). In summary, as airlines borrow heavily, interest rates increase, as well as the interest cost incurred by airlines increases. Increased interest expenses can reduce profitability and therefore stock prices.

There are many studies in the literature on the subject, except for the airline industry. There are several studies examining this relationship in the airline industry (Loudon, 2004; Fernando, 2006; Tsai, 2008; Puncreobutr and Sowaros (2016); Yashodha (2016)). Details of these studies are given below.

Loudon (2004) investigated the exposure to interest rate, exchange rate and fuel price risks of Qantas and Air New Zealand, using weekly stock price and independent variables between 1995-2003. According to linear and nonlinear regression model analysis, Qantas and Air New Zealand airlines were not exposed to interest rate and currency risk in the short term, but were negatively exposed to fuel price volatility. In the long term, it was stated that the incidence of all risks increased.

Fernando (2006) examined 15 airlines' risk exposures and usage of derivatives to mitigate these risk exposures specifically volatility in jet fuel prices. The data was obtained from financial reports of airlines. As a result of the analysis, it was stated that fuel price risk is the most important risk indicator and that protection instruments should be used more against this risk.

Tsai (2008) analysed the impact of financial risk factors, including interest rate exposures, currency fluctuations, and fuel price changes on the airline industry. This study investigated risk exposures in the South African airline industry and used data on South African Airways (SAA) and Comair to calculate the impact of risk factors on exposure significance. According to the linear and non-linear regression model results, one of the most prominent findings of the study is that South African Airways was affected by all risk factors in all time periods, all risk factors significantly affected financial performance to a certain extent when losses rather than profits were observed. Another important finding is that Comair was exposed to fuel price risk in the short term.

Puncreobutr and Sowaros (2016) aimed to study the risk factors affecting the lowcost carrier industry and also to provide guidelines to reduce the risk. The research was conducted by studying the documents, in depth interviews with personnel at the airports in Thailand. It was found that the risk affecting the low-cost carriers industry consists of 2 main factors.

Yashodha et al. (2016) examined relationships between the stock price of Cathay Pacific Airways and China Airlines against key determinants of financial risks exposure confronting the airline industry, which include interest-rate, exchange rate and fuel price risk exposures for the period of January 1996 to December 2011. The study suggests that exchange rate movements have a substantial impact, compared to the fuel price and interest rate exposures against the stock price of the analysed airline.

In addition, fuel price, interest rate and exchange rate risks are considered among the most important risks in the ranking of risks in the airline industry according to IATA (2017) report.

Thorbecke (2020) investigated the impact of the Covid-19 pandemic on the stock market in the US and analyzed the effects of macroeconomic factors such as oil price, exchange rate, interest rate and inflation on stocks. As a result of the regression analysis, it was determined that airline stock prices were driven by idiosyncratic factors rather than macroeconomic factors.

According to Horobet et al. (2022) in their work, this study explores the impact of oil price volatility on the stock returns of global airlines, with a focus on the long and short-term effects of oil price risk on the airline industry. The authors use a macroeconomic framework to analyze various risk factors and employ a panel ARDL model and PMG estimator to estimate long-term and short-term coefficients for the relationship between variables. The study finds that oil price volatility has a significant and negative impact on airlines' stock returns, and this impact has particularities when the long versus short-run perspective is considered. The authors suggest that investors and stakeholders in the airline industry need to be aware of the potential risks associated with oil price fluctuations and consider them when valuing companies in the stock market. The study also highlights the need for airline companies to rethink their operational and financial policies to cope with the challenges posed by oil price volatility, particularly in the post-pandemic world.

Apart from these studies, there are several studies (Samunderu et al., 2023; Wang and Gao, 2020; Kang et al., 2021; Felix et al., 2023; Atems, 2021) investigating the effect of oil price volatility on stock returns in airline companies. Most studies have found that oil prices negatively affect airline stock prices. It is also stated that it is possible to get rid of the negative effect with the hedging strategy.

Within the scope of the literature on the airline industry, it has been observed that oil price, exchange rate and interest rate variables have significant relationships with stock prices in the context of macroeconomic factors. Three studies (Loudon (2004); Tsai (2008) and Yashodha et al. (2016)) related to macroeconomic factors affecting the stock prices of airlines were reached. Fernando (2006) and Puncreobutr and Sowaros (2016) determined risk factors in airlines. Examining the literature, there are a few studies examining the relationship of macroeconomic factors with the stock prices of airlines. Therefore, further research is needed. There are several studies on the airline sector. In most of these studies, a few (2-3) airline companies were examined in the research sample. In this study, 14 airline companies were analysed. In addition, Toda-Yamamato (1995) causality test and Hatemi-J (2012) asymmetric causality test are used in the study. Finally, another point that distinguishes the study from similar studies is that a wide period (2009-2018) is analysed by using daily data. Thus, it is aimed to obtain more reliable results.

2. Research Methodolgy

The subject of this study is the mutual financial relations of airlines' stock prices and macroeconomic factors. In this context, the main purpose of the study is to determine the macroeconomic factors that affect the stock prices of airlines. Many studies in different sectors have examined the relationship between macroeconomic factors and stock price and proved the relationship. There are several studies examining this relationship in the airline industry (Loudon, 2004; Fernando, 2006; Tsai, 2008; Puncreobutr and Sowaros (2016); Yashodha (2016)). In most of these studies, research sample was composed of a few (2-3) airlines. In this study, 14 airlines were examined. Therefore, it is thought that it will make great contributions to the literature. Another contribution of this study to the literature is that the Toda-Yamamato (1995) causality test and the Hatemi-J (2012) asymmetric causality test were used together. In addition, another aspect that distinguishes the study from similar studies is the consideration of a wide period (2009-2018) using daily data. Thus, it is aimed to obtain better results.

The study has three main research questions: (i) What is the impact of exchange rate changes on global airlines' stock returns? (ii) What is the impact of changes in oil prices on global airlines' stock returns? (iii) What is the impact of interest rate changes on global airlines' stock returns? However, is there a significant difference between symmetrical and asymmetrical macroeconomic effects? The hypothesis of this study is that macroeconomic factors (exchange rate, oil price and interest rate) have a significant and negative effect on stock returns

In this study, factors affecting airline stock prices were examined. 14 airlines whose financial data showed continuity in the period 2009-2018 were included in the study. Stock price of airlines and macroeconomic data included in the sample were obtained from the Thomson Reuters Datastream. In the analysis, the VAR model will be estimated and dynamic relationships will be analyzed with Toda and Yamamoto (1995) causality analysis and Hatemi-J (2012) asymmetric causality analysis.

Toda-Yamamoto causality test, as in traditional causality tests (Granger causality test, etc.), without depending on cointegration condition (Erbaykal and Okuyan, 2007), causality can be established and causality analysis with VAR model regardless of whether the series is stationary or not. It is a test that minimizes the risks that can be

made and that the series can be wrongly evaluated due to integration (Mavrotas and Kelly, 2001).

Toda and Yamamoto (1995) causality test is carried out through the Vector Autoregressive (VAR) model, which includes the level values of the variables. By determining the optimal lag length (p) of the VAR model and the maximum degree of integration (*dmax*), which is the highest stationarity level of the variables, the VAR (p+*dmax*) system is estimated by SUR (Seemingly Unrelated Regression) method. Then, it is decided to determine the causality with the MWALD test whether the coefficients of the p lags in the VAR (p+*dmax*) system are equal to zero as a group. (Tandoğan and Genç, 2016). The rejection of the *H*o hypothesis, which was established as the coefficients are equal to zero as a group, shows that there is a causality relationship. In the causality analysis between the stock prices of the airlines and the macroeconomic indicators, logaritms of the stock prices of the companies (LASP), the currency value of the countries against the dollar (LDER), the brent oil price (LBOP) and the 10-year bond interest rates (LFAIZ) of the countries were used. Binary VAR systems consisting of LASP and LDER, LBOP and LFAIZ variables are shown in equations (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6):

$$LHSF_{t} = \alpha_{0} + \sum_{i=1}^{p+d} \alpha_{1(i+d)} LHSF_{t-(i+d)} + \sum_{i=1}^{p+d} \alpha_{2(i+d)} LDLKUR_{t-(i+d)} + \varepsilon_{1t}$$
(4.1)

$$LDLKUR_{t} = \beta_{0} + \sum_{i=1}^{p+d} \beta_{1(i+d)} LDLKUR_{t-(i+d)} + \sum_{i=1}^{p+d} \beta_{2(i+d)} LHSF_{t-(i+d)} + \varepsilon_{1t}$$
(4.2)

$$LHSF_{t} = \delta_{0} + \sum_{i=1}^{p+d} \delta_{1(i+d)} LHSF_{t-(i+d)} + \sum_{i=1}^{p+d} \delta_{2(i+d)} LBPETROL_{t-(i+d)} + \varepsilon_{1t}$$
(4.3)

$$LBPETROL_{t} = \omega_{0} + \sum_{i=1}^{p+d} \omega_{1(i+d)} LBPETROL_{t-(i+d)} + \sum_{i=1}^{p+d} \omega_{2(i+d)} LHSF_{t-(i+d)} + \varepsilon_{1t}$$
(4.4)

$$LHSF_{t} = \varphi_{0} + \sum_{i=1}^{p+d} \varphi_{1(i+d)} LHSF_{t-(i+d)} + \sum_{i=1}^{p+d} \varphi_{2(i+d)} LFAIZ_{t-(i+d)} + \varepsilon_{1t}$$
(4.5)

$$LFAIZ_{t} = \theta_{0} + \sum_{i=1}^{p+d} \theta_{1(i+d)} LFAIZ_{t-(i+d)} + \sum_{i=1}^{p+d} \theta_{2(i+d)} LHSF_{t-(i+d)} + \varepsilon_{1t}$$
(4.6)

p VAR represents the number of lags in the VAR model, and p+d represents the maximum degree of integration of the variables included in the model. The basic idea of this approach is to increase the number of lags in the VAR model by the maximum degree of integration of the variables entering the model (Erbaykal and Okuyan, 2007).

Causality tests, which are frequently used in the literature (Granger, 1969; Hsiao, 1981; Sims, 1972; Hacker and Hatemi, 2006; Toda and Yamamoto, 1995) have causality results by ignoring positive and negative shocks between the series. Hatemi-J (2012) asymmetric causality test focuses on the relationship between positive and negative shocks between series. It was first suggested by Granger and Yoon (2002) that this relationship may differ from the relationship between variables. On the other hand, Hatemi-J (2012) developed the Granger and Yoon (2002) method for causality analysis. In summary, in the Hatemi-J (2012) asymmetric causality test, it is aimed to observe the different causal effects of positive and negative shocks and to find the

hidden structure that will allow for the development of foresight for the future (Yılancı & Bozoklu, 2014; Contuk & Güngör, 2016).

In the Hatemi-J causality and Toda-Yamamoto causality tests, analyzes are performed by considering the level values of the series. In the Toda-Yamamoto causality test, symmetrically relationships are analyzed, while in the Hatemi-J causal test, asymmetric relationships are analyzed. With the Hatemi-J causality analysis method, it is possible to test whether an increase in one dependent or independent variable causes an increase/decrease in another variable and/or whether a decrease in any variable causes a decrease/increase in another variable by separating the positive and negative shocks of the series (Büberkökü and Şahmaroğlu, 2016).

In the study, independent variables determining stock prices were selected from macroeconomic variables used in the literature. In this context, Brent oil price, interest rates, and exchange rates were used as independent variables. All variables in the study were normalized by taking their natural logarithms. Details about the variables used in the study are listed in Table 1. Stock price of airlines and macroeconomic data included in the sample were obtained from the Thomson Reuters Datastream.

Variables	Symbol	Measurement Indicator	Measurment Method
Dependent Variables	ariables LASP Airlines Stock Price		Reel Stock Price
	LBOP	Brent Oil Price	Reel Brent Oil Price
Inde- pendent Variables	LDER	Dolar Exchange Rate	Exchange Rate Between the Currency of the Countries and the US Dollar (Ex: TL_USD)
	LIR	Interest Rate	10-Year Bond Interest Rates of Countries

Table 1. Details About Variables

As a result of the literature review, it is desired to examine the relationship between the variables in Table 1 above. The hypothesis regarding the related variables is as follows:

Ho: There is a relationship between macroeconomic indicators (dollar exchange rate, oil price and interest rate) and stock prices.

H1: There is no relationship between macroeconomic indicators (dollar exchange rate, oil price and interest rate) and stock prices.

3. RESEARCH FINDINGS

Using the data of this study, the relationship between the stock prices of the airlines and the macroeconomic factors was investigated using the daily data between 2009 and 2018, and the dynamic relationship between stock price, Dollar exchange rate, Brent oil price and Interest rate was examined. In the study, the model was established by taking the logarithm of all variables. In the analysis, the VAR model will be estimated and dynamic relationships will be analyzed with Toda and Yamamoto (1995) causality analysis and Hatemi-J (2012) asymmetric causality analysis.

In order to achieve more accurate causality results in the Toda-Yamamoto causality test, it is necessary to correctly determine the delay length and maximum integration level of the variables in the established model. In the study, the integration levels of

the series were determined using the Augmented Dickey Fuller unit root test. Delay length of series was determined using SC, HQ, FPE, LR and ACI information criteria.

When the series of all airline companies are examined according to the unit root test results, it has been determined that the independent variables are not stationary at the level, and they become stationary when the first difference of the series is taken². In the Toda-Yamamoto causality test, the series are included in the analysis without the need to make them stationary. This allows series of variables to have more information and thus obtain better results from analysis (Çil Yavuz, 2006, p. 169). In Hatemi-J (2012) asymmetric causality analysis, the analysis was performed by taking the first differences of the variables. The study firstly gives the results of the Toda-Yamamoto (1995) causality test. Only significant relationships are shown in the table. All Toda-Yamamoto Causality Analyzes are annex.

Airlines	Direction of Causality	x²Stat	Var (p+d)	Probability Value
United Airlines	LASP ⇒ LDER*	5.454473	2+1	0.0654
United Airlines		-		
Turkish Airlings	LDER ⇒ LASP	23.00338	5+1	0.0003
	LBOP LASP	12.72166	5+1	0.0261
	LASP ⇒ LIR	12.28137	5+1	0.0311
		1		
Cinnenana	LASP ⇒ LDER*	4.613838	2+1	0.0996
Airlines	LDER ⇒ LASP	14.28926	2+1	0.0008
	LDER ⇒ LASP*	19.15354	11+2	0.0584
Qantas Airways	LBOP ⇒ LASP	22.47271	11+2	0.021
	LDER ⇒ LASP	12.08459	4+1	0.0167
1	LASP ⇒ LBOP*	9.412552	4+1	0.0516
Airlines	LBOP ⇒ LASP	14.71976	4+1	0.0053
	LASP ⇒ LIR	10.41648	4+1	0.034
	LDER ⇒ LASP	8.574296	2+1	0.0137
Air China	LBOP LASP	11.20648	2+1	0.0037
Aeroflot	LDER ⇒ LASP	22.90321	10+2	0.0111
Aeronot				
Air Canada	LBOP LASP	8.734665	2+1	0.0127
Air Canada				

Table 2. Toda-Yamamoto Causality Analysis

2 Related unit root test results are included in the annex-4

Airlines	Direction of Causality	x²Stat	Var (p+d)	Probability Value	
Easyjet	LDER ⇒ LASP	11.57768	2+1	0.0031	
	LIR ⇒ LASP	7.755625	2+1	0.0207	
Gol Linhas	LDER ⇒ LASP	9.666582	2+1	0.008	
Aeras					
lotBlue	No significant result could be reached.				
Jetblue					
	LASP ⇒ LDER	4.622919	2+1	0.0991	
Norwegian	LDER ⇒ LASP	5.914692	2+1	0.052	
	LASP ⇒ LBOP	7.848946	2+1	0.0198	
Southwest	LBOP ⇒ LASP*	5.423005	2+1	0.0664	
Westigt	LBOP ⇒ LASP*	13.0928	8+1	0.0987	
Westjet					

Note1: The *⇒* sign indicates the null hypothesis that there is no causality. In the estimated VAR model, different lag lengths (p) were used, which were determined as the most appropriate according to LR, FPE, ACI, SC and HQ criteria. Note 2: The causalities marked with * are those at the 10% significance level.

In order to investigate the causality relationship between stock price and macroeconomic (brent oil, interest, dollar exchange rate) variables, a Toda Yamamoto (1995) causality test was performed for all airlines separately, and the findings are shown in Table 3. Analysis comments were made by evaluating all airlines together. A holistic causality interpretation was made in the context of the variable.

As a result of the analysis of the relationship between the dollar exchange rate variable (LDER) and the stock price variable (LASP), it was found that the dollar exchange rate was the cause of the stock prices for 9 airlines (Turkish Airlines, Singapore Airlines, Qantas Airways, Lufthansa Airlines, Air China, Aeroflot, Easyjet, Gol Linhas Aeras and Norwegian). It has been observed that there is bidirectional causality for Norwegian and Singapore Airlines. Accordingly, changes in exchange rate can have a significant impact on the stock prices of airlines.

As a result of the analysis of the relationship between the Brent oil price variable (LBOP) and stock price variable (LASP), it was found that the Brent oil price variable was the cause of the stock prices for 7 airlines (Turkish Airlines, Qantas Airways, Lufthansa Airlines, Air China, Air Canada, Westjet, and Southwest). It has been observed that there is a bidirectional causality relationship for Southwest and Lufthansa Airlines. In this context, changes in brent oil prices could have significant effects on airline stock prices.

As a result of the analysis of the relationship between the 10-year bond interest rate variable (LFAIZ) and the stock price variable (LASP), it has been determined that the interest rate variable is the cause of the stock price variable in only 1 airline (Easyjet). Accordingly, we can say that interest rates do not have a significant impact on airline stock prices.

Examining asymmetric causality in cases where symmetric causality cannot be explained is important in terms of revealing possible relationships between variables. Hatemi-J (2012) asymmetric causality test findings are given in Table 4. In Table 4, only the findings (variables) with causality are given. All asymmetric causality test results are included in the annex.

	Hatemi-J (2012) Asymmetric Causality Analysis				
A 1-11			Critical Bootstrap Value		
Airlines	Direction of Causality	wald Stat.	1%	5%	10%
	LASP- ≠ > LDER-	3.777*	7,089	3,952	2,751
	LDER- ≠ > LASP+	5.525**	6,934	3.88	2,754
	LASP- ≠ > LBOP+	5.089**	6,805	4,001	2,839
	$LBOP + \neq > LASP +$	4.109**	6,847	3,886	2,785
United Airlines	LBOP+ ≠ > LASP-	4.932**	7,149	4,033	2.68
	LASP-≠>LIR-	3.777*	7,131	4,027	2,728
	LIR+≠>LASP+	4.109**	6,847	3,886	2,785
	LIR+≠>LASP-	4.932**	7,149	4,033	2.68
	LASP+ \neq > LDER+	5.641**	6,505	3,846	26,330
	LASP- ≠ > LDER-	37.128***	9,482	6,016	4,679
	LDER+ ≠ > LASP-	13.245***	6,607	3,968	2.68
	LASP- ≠ > LBOP-	4.509**	4.51	3,842	2,753
Turkish Airlines	LASP+ ≠ > LIR+	15.025***	13,804	9,569	7,864
	LIR+≠>LASP+	13.368**	14,051	9,456	7,645
	LIR-≠>LASP-	19.144***	9,954	6,128	4,726
	LIR-≠>LASP+	7.235*	15,147	9,597	7,736
	LASP- ≠ > LDER-	22.330***	9,948	43,714	4,562
	LDER- ≠ > LASP-	13.059**	13,317	8,061	6,406
	LDER- ≠ > LASP+	3.539*	6,819	3,892	2,758
Singapore	$LASP+ \neq > LBOP+$	8.135***	6,914	3,957	2,765
Airlines	LASP- ≠ > LBOP-	2.931*	6.96	3.86	2,657
	LBOP- ≠ > LASP-	3.799**	7,161	3,804	2,596
	LIR-≠>LASP+	2.838*	8,253	3,594	2,339

Table 3. Hatemi-J (2012) Asymmetric Causality Test Results

Hatemi-J (2012) Asymmetric Causality Analysis					
Airlinee	Direction of Courselity	Malel Otat	Critical Bootstrap Value		
Airlines	Direction of Causality	vvalo Stat.	1%	5%	10%
	LASP- ≠ > LDER+	2.786*	8,417	3.56	2,393
	LASP+ ≠ > LBOP+	22.021***	9,002	5,961	4,582
	LASP- ≠ > LBOP-	24.621***	15,124	9,745	7,806
	LASP- ≠ > LBOP+	8.201***	7,055	3,784	2,762
Qantas Airways	LBOP- ≠ > LASP-	7.392*	14,828	9,466	7,269
, in the yes	LBOP+ ≠ > LASP-	5.937**	7,137	3,927	2,642
	LASP+ ≠ > LIR+	3.147*	6,976	35,125	2,728
	LIR- ≠ > LASP+	16.062***	14,578	9,797	7,717
	LASP- ≠ > LDER-	4.633**	6,702	4,042	2,771
	LASP- ≠ > LDER+	6.181**	6,565	3,785	2,687
	LASP+ ≠ > LDER-	4.215**	6,541	3,749	2,638
Lufthansa	LASP- ≠ > LBOP+	2.984*	6,337	3,736	2,682
Airlines	LBOP+ ≠ > LASP-	5.383**	6,944	24,532	2,655
	LASP- ≠ > LIR-	3.041*	6,871	4.00	2.80
	LIR- ≠ > LASP+	20.236***	11,527	7,776	6,163
	LDER+ ≠ > LASP+	2.749*	6,711	3,769	2,661
	LDER+ ≠ > LASP-	3.226*	6,776	3,821	2,704
	LASP- ≠ > LBOP-	4.318**	7,038	3,817	2,618
Air China	LBOP+ ≠ > LASP+	3.727*	6,765	3,953	2,762
	LBOP- ≠ > LASP-	4.155**	6,944	3,676	2,601
	LIR+≠>LASP+	7.707**	9,567	6,261	4,771
	LASP- ≠ > LDER-	5.869*	10,001	5,958	4,491
	LASP+ ≠ > LDER-	10.903***	9.72	6,256	4,563
	LDER- ≠ > LASP+	2.574*	6,997	3,945	2.53
	LASP- ≠ > LBOP+	4.612**	7,157	3,862	2,646
	LASP+ ≠ > LBOP-	4.530**	7,036	4,125	2,737
	LASP+ ≠ > LIR+	34.060***	26,365	16.97	13,778
Aeroflot	LASP- ≠ > LIR+	4.564**	7,634	3,792	2,572
	LASP+ ≠ > LIR-	7.258***	7,199	3,603	2,499
	LIR+ ≠ > LASP+	18.413**	23,567	16,782	13,796
	LIR- ≠ > LASP-	3.058*	7,162	3,804	2,623
	LIR- ≠ > LASP+	27.380***	21,663	16,031	13,538
	LIR+ ≠ > LASP-	41.742***	24,123	16,821	13,878

	Hatemi-J (2012) Asym	metric Causa	lity Analysis	i		
A lullus a s		W-1-1 04-4	Critica	Critical Bootstrap Value		
Airlines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP- ≠ > LBOP-	4.318**	6,623	3,955	2,736	
Air Canada	LBOP+ ≠ > LASP+	3.727*	6,765	3,953	2,762	
	LBOP- ≠ > LASP-	4.155**	6,944	3,676	2,601	
	LASP+ ≠ > LDER+	2.766*	6,892	3,821	2,688	
	LASP- ≠ > LDER-	13.416***	6,861	3.95	2,753	
	LDER- ≠ > LASP+	5.312**	6,662	3,938	2,747	
EasyJet	LASP- ≠ > LBOP-	2.773*	6,663	3,795	2,527	
	LBOP+ ≠ > LASP+	10.269***	6,715	3,622	2,556	
	LIR-≠>LASP+	2.480*	7,263	3,776	2.42	
	LASP- ≠ > LDER-	8.732***	6,882	3,828	2,641	
	LASP+ ≠ > LDER-	7.050***	6.91	3.90	2.66	
	LDER- ≠ > LASP+	6.053**	6,351	3,629	2,611	
Gol Linhas Aeras	LASP- ≠ > LBOP+	3.979**	6,681	3,915	2,675	
	LASP+ ≠ > LIR-	5.293**	7,185	4,083	2,803	
	LIR+≠>LASP+	3.738*	7.40	3.98	2.76	
	LASP- ≠ > LDER-	9.698***	6,923	3,875	2,713	
	LDER- ≠ > LASP-	2.736*	6,618	3,762	2,681	
	LDER- ≠ > LASP+	14.209***	6,321	3,773	2,701	
	LASP+ ≠ > LBOP+	2.974*	7,338	3,731	2,664	
	LASP- ≠ > LBOP+	6.998**	7,509	4,223	2,949	
lathlua	LBOP+ ≠ > LASP+	5.290**	7,198	3,893	2,765	
Jetblue	LBOP- ≠ > LASP+	4.757**	7,073	4,039	2,781	
	LASP- ≠ > LIR-	6.329**	7,401	4,053	2,717	
	LASP-≠>LIR+	13.986***	10,377	6,033	4.48	
	LASP+ ≠ > LIR-	8.513**	9,511	6,006	4.63	
	LIR-≠>LASP+	9.916***	6,642	3,941	2,702	
	LASP- ≠ > LDER-	12.904***	6,205	3,576	2,625	
Norwegian	LDER- ≠ > LASP+	5.777**	7,076	3,868	2.71	
itoi wegiaii	LBOP- ≠ > LASP+	5.598*	9.70	6,214	4,547	

Hatemi-J (2012) Asymmetric Causality Analysis					
Airlines	Direction of Causality	Wald Ctat	Critical Bootstrap Value		
		wald Stat.	1%	5%	10%
	LDER- ≠ > LASP-	10.894***	7,265	3,892	2.66
	LDER- ≠ > LASP+	7.986***	6,692	3,756	2,727
	LASP- ≠ > LBOP+	4.616**	7.01	3.77	2.65
Southwest	LBOP-≠>LASP-	4.335**	7,075	4,048	2,776
	LIR- ≠ > LASP+	47.711***	15,775	11,199	9,275
	LIR+≠>LASP-	12.711**	15.78	11,492	9,384
West lat	LASP+ ≠ > LDER+	2.521*	7,438	3,621	2,391
westJet	LBOP+ ≠ > LASP+	7.184***	68,616	3,957	2,807

Note: The ⇒ sign indicates the null hypothesis of no causality. *,** and *** values indicate that the test statistic is significant at 10%, 5% and 1% significance levels, respectively. The optimal lag length was decided according to the HJC information criterion. Bootstrap count is 10,000

Hatemi-J (2012) asymmetric causality test was applied to all airlines in order to investigate the causality relationship between stock price and macroeconomic (brent oil price, interest rate, dollar exchange rate) variables, and the findings are shown in Table 5.7. Analysis comments were made by evaluating all airlines together. A holistic causality interpretation was made in the context of the variable.

According to the test results on the dollar exchange rate, a causality relationship between negative shocks in the dollar rate and positive shocks in the stock price was determined for 8 Airlines (United Arlines, Singapore, Aeroflot, Easyjet, Gol Linhas Aeras, Jetblue, Norwegian and Southwest). It has been determined that there is a causality relationship from positive shocks in the dollar exchange rate to positive shocks in the stock price for Air China. It was concluded that there is a causality relationship from positive shocks in the dollar exchange rate to negative shocks in the stock price for 2 airlines (Turkish Airline, Air China), while there is a causality relationship from negative shocks in the dollar exchange rate to negative shocks in the stock price for 3 airlines (Singapore, Jetblue and Southwest). Based on the analysis results, there was a significant relationship between the dollar exchange rate and the stock price, regardless of the positive or negative shocks, for 10 airlines. Based on this, it can be said that there are significant relationships between the dollar exchange rate positively affect the stock price, especially negative changes in the dollar exchange rate positively affect the stock prices in airlines.

According to the findings on the Brent oil price variable, a causality relationship was determined from positive shocks in Brent oil prices to positive shocks in stock price for 6 Airlines (United Airlines, Air China, Air Canada, Easyjet, Jetblue, and Westjet). A causality relationship was found from negative shocks in Brent oil prices to negative shocks in stock prices for 5 Airlines (Singapore, Qantas, Air China, Air Canada, and Southwest). A causality relationship was determined from negative shocks in Brent oil prices to positive shocks in stock prices for 5 Airlines (Singapore, Qantas, Air China, Air Canada, and Southwest). A causality relationship was determined from negative shocks in Brent oil prices to positive shocks in stock prices for two airlines (Jetblue and Norwegien). A causality relationship was found from positive shocks in Brent oil prices to negative shocks in stock prices for 3 airlines (United Airlines, Lufthansa, and Qantas Airways). Based on the analysis results, there was a significant relationship between the oil price and the stock price, regardless of the positive or negative shocks, for 10 airlines.

Based on this, it can be said that there are significant relationships between the oil price and the stock price, especially positive changes in the oil price positively affect the stock prices in airlines. Similarly, decreasing oil prices negatively affects the share prices of airlines.

According to the findings on the interest rate variable, a causality relationship was determined from positive shocks in interest rate to positive shocks in stock price for 4 Airlines (United Airlines, Air China, Turkish Airlines, and Aeroflot). A causality relationship was found from negative shocks in interest rate to negative shocks in stock price for two airlines (Turkish Airlines and Aeroflot). A causality relationship was found from negative shocks in interest rate to negative relationship was found from negative shocks in interest rate to positive shocks in stock price for 8 airlines (Turkish Airlines, Singapore, Qantas Airways, Lufthansa, Jetblue, Qatar Airways, easyJet, and Southwest). A causality relationship was determined from positive shocks in interest rate to negative shocks in stock price for 3 airlines (United Airlines, Qatar Airways, and Southwest). Based on the analysis results, there was a significant relationship between the interest rate and the stock price, regardless of the positive or negative shocks, for 10 airlines. Based on this, it can be said that there are significant relationships between the exchange rate and the stock price, especially negative changes in the dollar exchange rate positively affect the stock prices in airlines.

According to the results of Toda and Yomamato (1995) causality test, it was found that there was a significant relationship between variables of the dollar exchange rate and oil price and stock prices of airlines. A significant relationship was not determined between interest rate and stock price, except for one airline.

According to the Hatemi-J (2012) asymmetric causality test results, significant relationships were determined between variables of the dollar rate, oil price, and interest rate and stock prices of airlines. According to the results of the asymmetric causality test, in particular, decreasing the dollar rate, increasing Brent oil prices, and decreasing interest rates positively affect the stock prices of airlines.

4. CONCLUSIONS AND RECOMMENDATIONS

The subject of this study is the mutual financial relations of airlines' stock prices and macroeconomic factors. In this context, the main purpose of the study is to determine the macroeconomic factors that affect the stock prices of airlines.

The change in stock prices and the development of the market vary depending on the decisions taken by investors. The decisions taken by the investors are determined according to the performance of the enterprises, the economic situation of the country, political developments and changes in macroeconomic factors. Determining what these factors are and revealing their power to influence stock prices is extremely important for the formation of prices and investment decisions. In this direction, three macroeconomic factors that may have a high impact on stock prices of airlines have been studied. These are the Brent oil price, dollar exchange rate and interest rate. In application, the relationship between the daily macroeconomic data of 14 airlines covering the years 2009-2018 and the stock prices of airlines was analyzed with the Toda Yomamato causality and Hatemi-J asymmetric causality tests, and significant relationships were determined regarding the macroeconomic factors determining the stock prices.

According to the results of Toda and Yomamato (1995) causality test, it was found that there was a significant relationship between variables of the dollar exchange rate

and oil price and stock prices of airlines. A significant relationship was not determined between interest rate and stock price, except for one airline. According to the results of Hatemi-J (2012) asymmetric causality test, it was found that there were significant relationships between variables of the dollar exchange rate, oil price, and interest rate, and airline stock prices.

According to the results of both causal analyses, it can be said that there are significant relationships between the DER variable and the stock price, especially negative changes in the dollar exchange rate positively affect the stock prices in airlines. It is understood that fluctuations in the exchange rates are reflected in the stock price of airlines. As a result of the analysis, it was found that falls in the dollar exchange rate in 8 airlines led to an increase in stock prices. The result confirms the theory of the inverse relationship between the exchange rate and the stock price. Given the impact of exchange rate changes on the stock price, hedging strategies can be used more effectively to optimize the costs caused by exchange rates. Countries with high import rates, especially those that import with foreign currency, are very affected by fluctuations in the exchange rate. In this context, most of the airlines buy jet fuels in dollar. The increase in the dollar exchange rate indirectly increases the cost of jet fuels. In the opposite case (a decrease in the dollar exchange rate), fuel costs decrease. Decreasing jet fuel costs will have a positive impact on financial performance. The result of the analysis confirms the thesis.

According to the results of both causal analyses, it was found that there were significant relationships between the BOP variable and the stock price. In line with the hypothesis, 5 airlines have been identified that the increase or decrease in oil prices is inversely related to stock prices. But contrary to this conclusion and inconsistent with the theory, 9 airlines have been identified that the increase or decrease in oil prices is directly related to stock prices. According to these two results, it was observed that changes in oil prices affect stock prices differently. According to the first result, 5 airlines can minimize the increase in fuel costs by implementing effective hedging strategies or operating fuel-efficient aircraft. According to the second result, the existence of a linear relationship between oil prices and stock price indicates that 9 airlines effectively implement hedging strategies and/or control fuel costs. Studies (Carter et al., 2006; Morrell and Swan, 2006; Treanor et al. 2014 and Hanninen, 2017) on the efficiency of fuel hedging strategy support this. Further studies may elaborate on the fuel hedging performance of these 9 airlines.

According to the results of the Hatemi-J asymmetric causality test, it was determined that the interest variable is the cause of stock prices. In line with the hypothesis, a causality relationship from negative shocks in interest rates to positive shocks in stock prices was found for 8 airlines. In summary, it can be said that the share price of airlines increases when interest rates fall. This result is also consistent with the theory. Reductions in interest rates can also increase liquidity, as well as reduce interest expenses of airlines. At the same time, with a decrease in interest rates, airline companies can benefit from cheap loans. The availability of cheap credit positively affects profitability and stock value. Financing aircraft purchase is the biggest financial burden for airlines. Airlines borrow heavily during the purchase or leasing of aircraft. As a result of decreasing interest rates, capital costs will also fall, and as a result, airlines' stock prices will increase.

As a result of the analysis, the result that negative changes in the dollar exchange rate positively affect the stock prices of airline companies supports the studies in the literature (Tsai, 2008 and Yashodha, 2016). The result that an increase or decrease in

oil prices has an inverse relationship with stock prices supports the studies in the literature (Loudon, 2004; Fernando, 2006 and Tsai, 2008). Finally, the finding that there is a causality relationship from negative shocks in interest rates to positive shocks in stock prices is similar to the study in the literature (Tsai, 2008).

In summary, this study; provides evidence of the volatility of oil prices, exchange rate and interest rate changes on global airlines, both at the firm level and collectively. There are several policy implications for airlines, practitioners, policy makers and investors to manage the relevant macroeconomic risks. First, as the importance of oil prices to the airline industry emerges, airline managers, private and institutional investors should pursue policy uncertainty, assuming oil price uncertainty is a driving force in stock returns. However, airlines should review their financial hedging strategies against fuel price risk. In addition, the innovation and adoption of alternative fuel technology by the aviation and airline industry can be a successful alternative to oil price risk. Exchange rate changes and interest rate mismatches always lead to variable earnings. The results on changes in exchange rate and interest rate indicate that airlines and related governments should focus on policies that will increase the growth of the aviation industry. In order to better manage these risks, financial managers need to more carefully examine the effects of macroeconomic risk increases and changes in related stock prices. Finally, it is thought that the findings obtained as a result of the study will contribute to the determination of the factors affecting the stock prices of the airline companies, to determine the variables that determine the investment decisions and stock prices. In addition, it is thought that it will provide positive contributions to the financial performance of airline companies by bringing new solutions to airline companies in the context of maximizing stock prices.

The study has some limitations that will affect the research results. The first of these is the limitation in the number of samples, although the sample of the research is the largest compared to other studies. Another limitation is the frequency and duration of the statistical data used in the research. Another limitation is the limited number of independent variables. It is thought that conducting more frequent and long-term studies with more samples (airline operators) and variables in future studies will yield more accurate results. In addition, the effectiveness of hedging methods related to changes in exchange rates and interest rates, especially oil prices, can be measured by quantitative and qualitative study methods.

Funding: This research received no external funding.

Acknowledgments: This study was produced from the PhD Thesis named "Analysis of Factors Affecting Stock Prices in Airline Businesses".

Conflicts of Interest: The author declares no conflict of interest.

REFERENCES

- Aggarwal, R., Akhigbe, A., & Mohanty, S. K., (2012). Oil price shocks and transportation firm asset prices. *Energy Economics*, *34*, 1370–1379. https://doi.org/10.1016/j. eneco.2012.05.001
- Albeni, M., and Demir, Y., (2005). Makro ekonomik göstergelerin mali sektör hisse senedi fiyatlarına etkisi (İMKB uygulamalı), *Muğla Üniversitesi SBE Dergisi Bahar (14)*, pp. 1-18.

- Atems, B. (2021) The response of the U.S. aviation industry to demand and supply shocks in the oil and jet fuel markets, *Transportation Research Interdisciplinary Perspectives*, 11. 1-12. https://doi.org/10.1016/j.trip.2021.100452
- Basher, S.A., and Sadorsky, P., (2006). Oil price risk and emerging stock markets, *Global Finance Journal*, Cilt 17 (2), pp. 224-251. https://doi.org/10.1016/j.gfj.2006.04.001
- Bood L. and Ison, S., (2017). Air Transport Management An International Perspective. Routledge. London and Newyork.
- Büberkökü, Ö. and Şahmaroğlu, S. T., (2016). Beta katsayılarındaki değişimin açıklanmasında işlem hacminin etkisinin incelenmesi: banka hisselerine dayalı bir analiz, *İşletme Bilimi Dergisi*, 4(1), pp. 1-28. https://doi.org/10.22139/ibd.73036
- Candan, D. (2015). Hisse senedi fiyatlarını etkileyen makroekonomik faktörler: BIST'de yer alan elektrik ve iletişim sektörleri üzerine bir uygulama, Yayımlanmamış Yüksek Lisans Tezi, Bahçeşehir Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
- Carter, D. A., Rogers, D. D. and Simkins, B. J., (2006). Does hedging affect firm value? Evidence from the us airline industry, *Financial Management, Vol 35,* No:1, pp. 53-86. https://doi.org/10.1111/j.1755-053x.2006.tb00131.x
- Contuk, F. Y. and Güngör, B., (2016). Asimetrik nedensellik testi ile finansal gelişme ekonomik büyüme ilişkisinin analizi, *Muhasebe ve Finansman Dergisi*, 171, 89-108. https:// doi.org/10.25095/mufad.396700
- Çil Yavuz, N., (2006). Türkiye'de turizm gelirlerinin ekonomik büyümeye etkisinin testi: Yapısal kırılma ve nedensellik analizi, *Doğuş Üniversitesi Dergisi*, 7(2), 162-171. https://doi.org/10.31671/dogus.2019.249
- Elyasiani, E., Mansur, I., & Odusami, B., (2011). Oil price shocks and industry stock returns. *Energy Economics*, 33, 966–974. https://doi.org/10.1016/j.eneco.2011.03.013
- Erbaykal, E. and Okuyan, H. A., (2007). Türkiye'de temel makroekonomik değişkenler ile hisse senedi fiyatları arasındaki nedensellik ilişkisi, *İktisat İşletme ve Finans, 22(260),* 66-79. https://doi.org/10.3848/iif.2007.260.0064
- Ercan, M.K., and Ban, Ü., (2008). Değere dayalı işletme finansı: Finansal yönetim, Ankara: Gazi Kitabevi.
- Felix, S. B., Tuyon, J., Matahir, H. and Ghazali, M. F., (2023) Hedging the Oil Price Risk Factor on Airline Stock Returns in the Asia-Pacific: A Test of Effective Hedging Instruments, *Australasian Accounting, Business and Finance Journal, 17(2),* 122-146. http://dx.doi.org/10.14453/aabfj.v17i2.09
- Fernando, S., (2006). Risk management practices in the airline industry. Master thesis, Simon Fraser University-Faculty of Business Administration, Canada.
- Gan, C., Lee, M., Yong, H.H.A., ve Zhang, J., (2006). Macroeconomic variables and stock market intractions: New Zealand evidence, *Investment Management and Financial Innovations, Volume 4* (3), pp. 89-11.
- Hammoudeh, S., & Li, H., (2005). Oil sensitivity and systematic risk in oil sensitive stock indices. *Journal of Economics and Business*, 57, 1–21. https://doi.org/10.1016/j. jeconbus.2004.08.002
- Hanninen, J., (2017). Jet fuel price risk management and exposure in small airlines Evidence from the Nordic Countries, Master's Thesis in Accounting Finance. Turun yliopisto Universiy of Turku. Finland.

- Hatemi-J, A., (2012). Asymmetric causality tests with an application, *Empirical Economics*, 43(1), pp. 447-456. https://doi.org/10.1007/s00181-011-0484-x
- Horobet, A., Zlatea, M. L. E., Belascu, L., & Dumitrescu, D. G. (2022). Oil price volatility and airlines' stock returns: evidence from the global aviation industry. *Journal* of Business Economics and Management, 23(2), 284–304. https://doi.org/10.3846/ jbem.2022.16094
- IATA, (2017). The future of the airline industry' (Report), (https://www.iata.org/policy/ Documents/aiata-future-airline-industry.pdf, (Date of Access: 14.05.2018).
- Kalmanbetova, M., (2010). Hisse senedi fiyatları ve makroekonomik değişkenler arasındaki nedensellik ve 2004-2009 yılları arasında Türkiye uygulaması, Yayımlanmamış yüksek lisans tezi, İstanbul Üniversitesi, İstanbul.
- Kang, W., Gracia, F. P. and Ratti, R. A. (2021) Economic uncertainty, oil prices, hedging and U.S. stock returns of the airline industry, *North American Journal of Economics and Finance*, 57. 1-15. https://doi.org/10.1016/j.najef.2021.101388
- Korkmaz, T. and Ceylan, A., (2018). İşletmelerde finansal yönetim, 14. Basım. Ekin Basım Yayın.
- Kristjanpoller, W. D., & Concha, D., (2016). Impact of fuel price fluctuations on airline stock returns. *Applied Energy*, 178, 496–504. https://doi.org/10.1016/j.apenergy.2016.06.089
- Loudon, G.F., (2004). Financial risk exposures in the airline industry: Evidence from Australia and New Zealand', *Australian Journal of Management, Volume 29 (2),* pp. 295-316. https://doi.org/10.1177/031289620402900208
- Morrell, P. and Swan, W., (2006). Airline jet fuel hedging: Theory and practice, *Transport Reviews, Vol.26/3,* pp. 719-730. https://doi.org/10.1080/01441640600679524
- Morrell, P. S., (2007). Airline Finance, Third Edition. Ashgate Publishing Limited. England.
- Nandha, M., & Brooks, R., (2009). Oil prices and transport sector returns: An international analysis. *Review of Quantitative Finance and Accounting*, 33, 393–409. https://doi. org/10.1007/s11156-009-0120-4
- Narayan, P. K., & Sharma, S. S., (2011). New evidence on oil price and firm returns. *Journal of Banking and Finance*, 35, 3253–3262. https://doi.org/10.1016/j.jbankfin.2011.05.010
- Puncreobutr, V. and Sowaros, T., (2016). Risk factors affecting the low cost carriers industry of ASEAN, Online available at: https://ssrn.com/abstract=2771515, (Date of Access: 10.05.2018). https://doi.org/10.2139/ssrn.2771515
- Pyke, D. and Sibdari, S., (2018). Risk Management in the Airline Industry, Stephen Gong and Kevin Cullinane (Editors). *Finance and Risk Management for International Logistics and the Supply Chain*. 293-315. Elsevier.
- Samunderu, E., Perret, J. K. and Geller, G., (2023) The economic value rationale of fuel hedging: An empirical perspective from the global airline industry, *Journal of Air Transport Management*, 106. 1-12. https://doi.org/10.1016/j.jairtraman.2022.102324
- Sayılgan, G. ve Süslü, C., (2011). Makroekonomik faktörlerin hisse senedi getirilerine etkisi: Türkiye ve gelişmekte olan piyasalar üzerine bir inceleme, *BDDK Bankacılık ve Finansal Piyasalar, 5(1),* 73-96.

- Tandoğan, D. ve Genç, M. C., (2016). Türkiye'de turizm ve ticari açıklık arasındaki ilişki: Toda ve Yamamoto nedensellik yaklaşımı, International *Journal of Economic & Social Research*, 12(1), 59-70. https://doi.org/10.17123/atad.656018
- Thorbecke, Willem. 2020. The Impact of the COVID-19 Pandemic on the U.S. Economy: Evidence from the Stock Market. *Journal of Risk and Financial Management 13*: 233. https://doi.org/10.3390/jrfm13100233
- Toda, H. Y. ve Yamamoto, T., (1995). Statistical inference in vector autoregressions with possibly integrated processes, *Journal of Econometrics*, 66(1), pp. 225-250. https:// doi.org/10.1016/0304-4076(94)01616-8
- Treanor, S. D., Simkins B. J., Rogers, D. A. and Carter, D. A., (2014). Does operational and financial hedging reduce exposure? Evidence from the U.S. airline industry, *The Financial Review, Vol 49*, pp. 149-172. https://doi.org/10.1111/fire.12029
- Tsai, B.MC., (2008). Financial risk exposures in the airline industry Case of South African Airlines, Master Thesis, University of Cape Town, Department of Accounting, South Africa.
- Vasigh B. Fleming K. ve Humphreys, B., (2015). Foundations of Airline Finance Methodology and practice. Second edition. Routledge. ABD.
- Vasigh B. Fleming, K. ve Tacker, T., (2013). Introduction to Air Transport EconomicsFrom Theory to Applications. Second Edition. Ashgate Publishing Limited. England.
- Wang, H. and Gao, X., (2020) Oil price dynamics and airline earnings predictability, *Journal of Air Transport Management*, 87. 1-15. https://doi.org/10.1016/j.jairtraman.2020.101854
- Yashodha, Y., Abdulhamid and B. Habibullah, M.S., (2016). Financial risk exposures of the airline industry: Evidence from Cathay Pacific Airways and China Airlines, *International Journal of Business and Society, Vol. 17 (2)*, pp. 221-244. https://doi.org/10.33736/ ijbs.522.2016
- Yılancı, V. ve Bozoklu, S., (2014). Türk sermaye piyasasında fiyat ve işlem hacmi ilişkisi: Zamanla değişen asimetrik nedensellik analizi, *Ege Akademik Bakış, 14(2)*, 2-11. https://doi.org/10.21121/eab.2014218052
- Yılmaz, Ö., Güngör, B. ve Kaya, V., (2006). Hisse Senedi Fiyatları ve Makroekonomik Değişkenler Arasındaki Eşbütünleşme ve Nedensellik, İMKB Dergisi, 9(34), 1-16.
- Zea, M., (2002). Is airline risk manageable?. *Airline Business*, April. https://www.flightglobal.com/is-airline-risk-manageable/42105.article

© 2024 por el autor. Licencia a ANDULI, Editorial Universidad de Sevilla. Es un artículo publicado en acceso abierto bajo los términos y condiciones de la licencia "Creative Commons Atribución-No Comercial-Sin Derivar 4.0 Internacional.

Annexes

Airlines Sample			
Turkish Airlines	Southwest Airlines		
United Airlines	Easyjet		
Air Canada	Norwegian		
Singapore Airlines	GOL Linhas Aeras		
Qantas Airlines	Westjet		
Lufthansa	Jetblue		
Air China	Aeroflot		

Annex 1: List of Airlines

Annex 2: The Relationship Between Macroeconomic Factors and Stocks (International Literature)

Study	Period / Country	Method	Findings
Aggarwal (1981)	USA (1974-1978)	Basic Regression Analysis	Exchange rate ⇒ Stock price
Solnik (1987)	(USA, Japan, Ger- many, UK, France Canada etc.)	Multiple linear regres- sion analysis	Exchange rate ⇒ (+) Stock price
Kwan and Shin (1999)	South Korea Stock Ex- change (1980-1992)	VEC Model-Cointegration	Exchange rate ⇒ Stock price
Sadorsky (1999)	USA (1974-1976)	VAR Model	Oil price ⇒ Stock price
Nasseh and Strauss (2000)	6 European Countires (1962-1995)	Regression Analysis-Johansen Cointegration	Interest rate ⇒ Stock price
Papapetrou (2001)	Yunanistan (1989-1996)	Multiple linear regres- sion analysis – VAR Model	Oil price
Wongbangpo and Sharma (2002)	5 Far Eastern Coun- tries (1985-1996)	VAR Model-Granger Cuasality (VECM)	Interest rate and Exchange rate ⇒ Stock price
Gan et al. (2006)	New Zeland	VAR Model –Coin- tegration- Impulse- Response	Interest rate and Exchange rate ⇒ Stock price
Humpe and Macmillan (2007)	Japon	VAR Model-Cointegration	Interest rate ⇒ (-) Stock price
Malik and Hammou- deh (2007)	USA, Bayrain, Kuwait and Saudi Arabia (1992-2001)	GARCH Model	Oil price <i>⇒</i> Stock price

Study	Period / Country	Method	Findings
Ratanapakorn and Sharma (2007)	USA (1975-1999)	VAR-Granger Causality	Interest rate ⇒ (-) Stock price Exchange rate ⇒ (+) Stock price
Brahmasrene and Jiranyakul (2008)	Thailand stock market (1992-2003)	VAR Model- Cointe- gration and Granger Causality	Oil price and Ex- change rate ∌ (-) Stock price
Rey (2008)	India	VAR Model-Granger Causality	Exchange rate ⇒ (+) Stock price
Park and Ratti (2008)	USA and13 European Countries (1986-2005)	VAR Model	Oil price <i>⇒</i> Stock price
Humpe and Macmillan (2009)	USA ve Japan Stock Markets (1968-2008)	Regression Analysis	Interest rate ⇒ (-) Stock price
Arfaoui et al. (2010)	13 developed and developing countries (1986-2008)	Regression ECM Model	Oil price and Ex- change rate ⇒ Stock price
Sohail (2010)	Pakistan (1991-2008)	VAR model	Interest rate ⇒ (-) Stock price Exchange rate ⇒ (+) Stock price
Rasiah and Rat- neswory (2010)	Malaysia (1980-2006)	Multivariate VAR Model	Exchange rate ⇒ (+) Stock price
Shubita and Al Sharkas (2010)	USA and Japan	VAR Model –VECM	Interest rate ⇒ (-) Stock price
Hsing (2011)	Czech stock market (2001-2009)	GARCH Model	Interest rate ⇒ Stock price
Kuwornu and Victor (2011)	Gana Stock market (1992-2008)	Box-Jenkins ve EKK Regression Model	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price Oil price ⇒ Stock price
Kavklar and Festic (2011)	27 European Coun- tries (2004-2010)	Model-based recursi- ve partitioning mod.	Interest rate ⇒ (-) Stock price Exchange rate ⇒ (+) Stock price
Aloui et al. (2012)	25 Developing Coun- tries (1997-2007)	Regression model	Oil price ⇒ Stock price
Khan and Amanullah (2012)	Pakistan Kara- chi Stock Market (34 Companies) (2000-2009)	Linear Multiple Regression	Interest rate ⇒ (+) Stock price
Araori et al. (2012)	European Stock Mrkets	VAR-GARCH	Oil price <i>⇒</i> Stock price
Scholtnes and Yurtse- ver (2012)	European Area (38 Industry)	Dynamic VAR and Linear Multiple Regression	Oil price ⇒ (-) Stock price
Li et al. (2012)	China (13 Industry Indexes) (2001-2010)	Panel Cointegration- Granger Causality	Oil price <i>⇒</i> (+) Stock price

Study	Period / Country	Method	Findings
Talla (2013)	Sweden	Linear Multiple Regression	Exchange rate ⇒ (-) Stock price
Degiannakis vd. (2013)	European industrial sector (1992-2010)	Correlation Method	Oil price ⇒ Stock price
Mollick and Assefe (2013)	USA (1999-2011)	GARCH – DCC-GARCH	Oil price ⇒ (-) Stock price (before 2008) Oil price ⇒ (+) Stock price (after 2008)
Abdelbaki (2013)	Bahrain (1990-2007)	Autoregressive Dis- trubed Lag Model	Interest rate ⇒ Stock price
Kabir et al. (2014)	Malaysia (1991-2010)	VAR- VECM Model	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price
Zhu et al. (2014)	Asya-Pacific(10 Ülke) (2010-2012)	Conditional and Unconditional Copula Model	Oil price <i>⇒</i> Stock price
Narayan and Sharma (2014)	NYSE USA (2000-2008)	GARCH	Oil price <i>⇒</i> (-) Stock price
Khalfaoi et al. (2015)	G-7 Countries (2003-2012)	BEKK -GARCH	Oil price ⇒ Stock price
Arshad et al. (2015)	Karaçi (Pakis- tan) Stock Market (2007-2013)	Linear regression analysis	Interest rate <i>⇒</i> (-) Stock price
Utami et al. (2015)	Indonesian cons- truction industry (2010-2014)	Panel Data Analysis	Interest rate <i>⇒</i> (-) Stock price
Bukulu (2016)	Uganda MKB (2007-2014)	Multiple regression analysis	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price
Linck and DEcourt (2016)	Brazil (2000-2010)	Stepwise multiple regression analysis	Interest rate ⇒ Stock price
Jareno and Negrut (2016)	USA (2008-2014)	Quantile Regression analysis	Interest rate ⇒ (-) Stock price
Subing (2017)	Indonesian-18 Com- panies (2008-2015)	Panel Data Analysis	Oil price ⇒ (+) Stock price
Malik vd. (2018)	Pakistan, India and Sri Lanka (1997-2014)	Panel GMM Approach	Exchange rate ⇒ (+) Stock price
Chandrosheker et al. (2018)	India and Brazil (2000-2016)	Panel Data Analysis	Exchange rate ⇒ (+) Stock price

Study	Period / Country	Method	Findings
Durukan (1999)	BIST100 (1986-1998)	Percentage change model and natural logaritma	Interest rate ⇒ Stock price
Albeni and Demir (2005)	ISE Financial Industry (1991-2000)	Multiple regression analysis	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price
Yılmaz et al. (2006)	ISE (1990-2003)	EKK, VEC Model	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price
Gençtürk (2009)	ISE (1992-1996)	Multiple linear regres- sion analysis	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price
Süslü (2010)	11 Developing Counti- res (1999-2006)	Panel data analysis	Interest rate ⇒ Stock price Exchange rate ⇒ Stock price Oil price ⇒ Stock price
İşçan (2010)	BIST100 (2001-2009)	VAR Model	Oil price Stock price
Sayılgan and Süslü (2010)	Developing Countires (1999-2006)	Balanced panel data analysis	Exchange rate ⇒ Stock price
Büyükşalvarcı and Abdioğlu (2010)	BIST100 (2001-2010)	VAR Model – Toda- Yomamato Causality	Exchange rate ⇒ Stock price
Karacaer and Kapusuzoğlu (2010)	BIST100 (2003-2010)	VAR – Causality, Cointegration	Exchange rate ⇒ Stock price
Soytaş and Oran (2011)	BIST100 Electric Industry	VAR - EGARCH	Oil price ⇒ Stock price
Ayaydın and Dağlı (2012)	22 Developing Countries	Panel data analysis	Exchange rate ⇒ (+) Stock price
Öztürk et al. (2013)	BIST100 (Manufac- turing, Chemistry and Petroleum)	VAR Model	Oil price ⇒ Stock price
Şener et al. (2013)	BIST100 (2002-2012)	VAR Model	Oil price ⇒ Stock price
Yıldırım et al. (2014)	BIST Industrial (1991-2013)	VAR Model	Oil price ⇒ (+) Stock price
Kılıç et al. (2014)	BIST Industrial (1994-2013)	Gregory Hansen Dynamic EKK	Oil price ⇒ (+) Stock price
Abdioğlu and Değirmenci (2014)	BIST100 (2005-2013)	VAR Model	Oil price ⇒ Stock price

Annex 3: The Relationship Between Macroeconomic Factors and Stocks (National Literature)

Study	Period / Country	Method	Findings
Doğru (2015)	European, MIST and BRICS (2002-2014)	VAR - EGARCH	Oil price ⇒ Stock price
Güngör and Kaygın (2015)	BIST Manufacturing (2005-2011)	Dynamic Panel Data Analysis	Exchange rate ⇒ (+) Stock price Oil price ⇒ (+) Stock price
Poyraz and Tepel (2015)	BIST100 (1995-2011)	Multiple linear regres- sion analysis	Exchange rate ⇒ (-) Stock price Interest rate ⇒ (-) Stock price
Altınbaş et al. (2015)	BIST100 (2003-2012)	VAR Model	Exchange rate ⇒ (-) Stock price
Coşkun and Ümit (2016)	BIST100 (2005-2015)	VAR Causality	Exchange rate ⇒ Stock price
Kendirli and Çankaya (2016)	BIST Bank (2009-2015)	VAR Model	Exchange rate ⇒ (-) Stock price
Sancar et al. (2017)	BIST100 (2000-2016)	DOLS and FMOLS Analysis	Exchange rate ⇒ (-) Stock price
Sadaghzadeh and Elmas (2018)	BIST Commercial (2000-2017)	Panel Data Analysis	Exchange rate ⇒ (-) Stock price Interest rate ⇒ (-) Stock price
Demir (2019)	BIST100 (2003-2017)	ARDL Approach	Exchange rate ⇒ (+) Stock price Oil price ⇒ (-) Stock price

Annex 4: Causality Analysis Unit Root Test Results

Airlines	Variables	ADF Statistic	-Test s(Level)	ADF-Test Statistics(1. difference)		
	Vallables	Constant	Constant and Trend	Constant	Constant and Trend	
United Airlines	LASP	-1.21397 (0,6706)	-2.50774 (0.3243)	-48.5567 (0.0001)	-48.5474 (0.0000)	
	LIR	-2.21632 (0.2006)	-2.30433 (0.4309)	-54.133 0.0001	-54.1228 0.0000	
	LDER	-1.68376 (0.4395)	-2.47218 (0.3421)	-51.9482 (0.0001)	-51.9384 (0.0000)	
	LBOP	-1.54241 (0.5120)	-2.34089 (0.4110)	-54.026 (0.0001)	-54.058 (0.0000)	

Airlings	Variables	ADF-Test Statistics(Level)		ADF-Test Statistics(1. difference)	
Ainines	variables	Constant	Constant and Trend	Constant	Constant and Trend
	LASP	-0.95011 (0.7725)	-1.79606 (0.7067)	-55.3598 (0.0001)	-55.3518 (0.0000)
Touchte In Adultance	LIR	-1.47155 (0.5482)	-0.98859 (0.9439)	-60.1277 (0.0001)	-60.1784 (0.0000)
Turkish Airlines	LDER	1.059713 (0.9972)	-2.2711 (0.4492)	-28.7112 (0.0000)	-28.7814 (0.0000)
	LBOP	-1.53399 (0.5164)	-1.95498 (0.625)	-59.9069 (0.0001)	-59.9124 (0.0000)
	LASP	-2.08937 (0.2491)	-2.99029 (0.1351)	-52.9474 (0.0001)	-52.9479 (0.0000)
	LIR	-2.70664 (0.073)	-2.71232 (0.2316)	-60.3848 (0.0001)	-60.3734 (0.0000)
Singapore Airlines	LDER	-1.91305 (0.3265)	-1.9671 (0.6184)	-53.1502 (0.0001)	-53.1664 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 (0.4110)	-54.026 (0.0001)	-54.058 (0.0000)
	LASP	-0.40951 (0.9052)	-1.61603 (0.7868)	-50.4062 (0.0001)	-50.4361 (0.0000)
Ocartes Alimana	LIR	-1.08131 (0.7253)	-3.28599 (0.0687)	-51.8308 (0.0001)	-51.8281 (0.0000)
Qantas Airways	LDER	-2.29739 (0.1729)	-2.64155 (0.2617)	-14.8604 (0.0000)	-14.865 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 (0.4110)	-54.026 (0.0001)	-54.026 (0.0001)
	LASP	-1.56446 (0.50079	-2.20526 (0.4859)	-49.5213 (0.0001)	-49.5132 (0.0000)
	LIR	-1.68779 (0.4374)	-3.25412 (0.0743)	-20.2008 (0.0000)	-20.1969 (0.0000)
Lutinansa Airines	LDER	-1.68343 (0.4396)	-2.47297 (0.3417)	-51.9482 (0.0001)	-51.9383 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 (0.411)	-54.026 (0.0001)	-54.058 (0.0000)
	LASP	-2.16457 (0.2196)	-2.13241 (0.5268)	-47.3102 (0.0001)	-47.3106 (0.0000)
Aix China	LIR	-2.49796 (0.116)	-2.5784 (0.2904)	-36.3309 (0.0001)	-36.36 (0.0000)
Air China	LDER	-0.88008 (0.795)	-0.7243 (0.9704)	-51.2119 (0.0001)	-51.2987 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 (0.4110)	-54.026 (0.0001)	-54.058 (0.0000)

Airlingo	Variables	ADF-Test Statistics(Level)		ADF-Test Statistics(1. difference)	
Airlines	variables	Constant	Constant and Trend	Constant	Constant and Trend
	LASP	-1.59872 (0.4831)	-1.58365 (0.7995)	-48.566 (0.0001)	-48.5646 (0.0000)
	LIR	-3.7175 (0.0039)	-3.67119 (0.0244)	-24.1436 (0.0000)	-24.1479 (0.0000)
Aeroflot	LDER	-0.43884 (0.9001)	-1.76154 (0.7232)	-51.7562 (0.0001)	-51.7512 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 (0.4110)	-54.026 (0.0001)	-54.058 (0.0000)
	LASP	-2.16457 (0.2196(-2.13241 (0.5268)	-47.3102 (0.0001)	-47.3106 (0.0000)
	LIR	-1.83955 (0.3615)	-2.15779 (0.5125)	-51.8502 (0.0001)	-51.8422 (0.0000)
Air Canada	LDER	-3.338 (0.0134)	-3.61609 80.0286)	-21.3296 (0.0000)	-21.327 (0.0000)
	LBOP	-1.54241 (0.5120)	-2.34089 80.4110)	-54.026 (0.0001)	-54.058 (0.0000)
	LASP	-1.65538 (0.454)	-1.01484 (0.9403)	-49.7491 (0.0001)	-49.7702 (0.0000)
	LIR	-1.57127 (0.4972)	-3.13876 (0.0975)	-52.5233 (0.0001)	-52.5135 (0.0000)
Easyjet	LDER	-1.68343 (0.4396)	-2.47297 (0.3417)	-51.9482 (0.0001)	-51.9383 (0.0000)
	LBOP	-1.68343 (0.4396)	-2.47297 (0.3417)	-51.9482 (0.0001)	-51.9383 (0.0000)
	LASP	-1.37094 (0.598)	-1.21986 (0.9054)	-49.8904 (0.0001)	-49.8891 (0.0000)
Col Linkos Asus	LIR	-0.69097 (0.8471)	-0.90032 (0.9544)	-34.939 (0.0000)	-34.9486 (0.0000)
Goi Linnas Aeras	LDER	-0.01738 (0.9559)	-2.96526 (0.1423)	-55.3418 (0.0001)	-55.3772 (0.0000)
	LBOP	-1.54238 (0.512)	-2.34086 (0.411)	-54.0266 (0.0001)	-54.0586 (0.0000)
	LASP	-1.00447 (0.7538)	-2.57575 (0.2916)	-50.6404 (0.0001)	-50.6315 (0.0000)
JetBlue	LIR	-2.21632 (0.2006)	-2.30433 (0.4309)	-54.133 (0.0001)	-54.1228 (0.0000)
	LDER	-1.68376 (0.4395)	-2.47218 (0.3421)	-51.9482 (0.0001)	-51.9384 (0.0000)
	LBOP	-1.68376 (0.4395)	-1.68376 (0.4395)	-51.9482 (0.0001)	-51.9384 (0.0000)

Airlingo	Variables	ADF Statistic	-Test cs(Level)	ADF-Test Statistics(1. difference)	
Airines	Variables	Constant	Constant and Trend	Constant	Constant and Trend
	LASP	-2.64129 (0.0848)	-2.17174 (0.5047)	-50.2849 (0.0001)	-50.3258 (0.0000)
Norwonian	LIR	-7.574 (0.0000)	-7.57427 (0.0000)	-19.3165 (0.0000)	-19.3129 (0.0000)
Norwegian	LDER	-0.72958 (0.8374)	-2.81907 (0.1904)	-52.5566 (0.0001)	-52.5745 (0.0000)
	LBOP	-1.54238 (0.512)	-2.34086 (0.411)	-54.0266 (0.0001)	-54.0586 (0.0000)
	LASP	-0.79693 (0.8193)	-1.66027 (0.7685)	-54.7848 (0.0001)	-54.7747 (0.0000)
Continuent	LIR	-2.21632 (0.2006)	-2.30433 (0.4309)	-54.133 (0.0001)	-54.1228 (0.0000)
Southwest	LDER	-1.68376 (0.4395)	-2.47218 (0.3421)	-51.9482 (0.0001)	-51.9384 (0.0000)
	LBOP	-1.54241 (0.512)	-2.34089 (0.411)	-54.026 (0.0001)	-54.058 (0.0000)
	LASP	-1.6517 (0.4559)	-1.57375 (0.8033)	-50.2391 (0.0001)	-50.2393 (0.0000)
14/2 - 41 - 4	LIR	-1.83955 (0.3615)	-2.15779 (0.5125)	-51.8502 (0.0001)	-51.8422 (0.0000)
Westjet	LDER	-3.338 (0.01349	-3.61609 (0.0286)	-21.3296 (0.0000)	-21.327 (0.0000)
	LBOP	-1.54238 (0.512)	-2.34086 (0.411)	-54.0266 (0.0001)	-54.0586 (0.0000)

Annex 5: Toda-Yomamato Causality Test (All)

Airlines	Direction of Causality		Var(p+d)	Prob.
	LASP ⇒ LDER*	5.454473	2+1	0.0654
United Airlines	LDER ⇒ LASP	1.614422	2+1	0.4461
	LASP ⇒ LBOP	2.769781	2+1	0.2504
	LBOP ⇒ LASP	1.598040	2+1	0.4498
	LASP ⇒ LIR	0.596795	2+1	0.7420
	LIR ⇒ LASP	0.744436	2+1	0.6892

Airlines	Direction of Causality		Var(p+d)	Prob.
	LASP ⇒ LDER	3.439227	5+1	0.6326
rlines	LDER ⇒ LASP	23.00338	5+1	0.0003
	LASP ⇒ LBOP	3.273417	5+1	0.6579
h Ai	LBOP ⇒ LASP	12.72166	5+1	0.0261
rkis	LASP ⇒ LIR	12.28137	5+1	0.0311
Ē	LIR ⇒ LASP	6.981030	5+1	0.2221
	LASP ⇒ LDER*	4.613838	2+1	0.0996
nes	LDER ⇒ LASP	14.28926	2+1	0.0008
Airli	LASP ⇒ LBOP	1.979957	2+1	0.3716
ore	LBOP ⇒ LASP	0.920073	2+1	0.6313
gapo	LASP ⇒ LIR	0.099344	2+1	0.9515
Sing	LIR ⇒ LASP	1.564555	2+1	0.4574
	LASP ⇒ LDER	9.586351	11+2	0.5679
S	LDER ⇒ LASP	19.15354	11+2	0.0584
T.V.a	LASP ⇒ LBOP	10.48858	11+2	0.4870
s Ai	LBOP ⇒ LASP	22.47271	11+2	0.0210
anta	LASP ⇒ LIR	9.957297	11+2	0.5342
ä	LIR ⇒ LASP	14.72919	11+2	0.1952
	LASP ⇒ LDER	3.839486	4+1	0.4282
nes	LDER ⇒ LASP	12.08459	4+1	0.0167
Airli	LASP ⇒ LBOP	9.412552	4+1	0.0516
Isa /	LBOP ⇒ LASP	14.71976	4+1	0.0053
thar	LASP ⇒ LIR	10.41648	4+1	0.0340
Luf	LIR ⇒ LASP	7.243989	4+1	0.1235
	LASP ⇒ LDER	0.713048	2+1	0.7001
	LDER ⇒ LASP	8.574296	2+1	0.0137
ina	LASP ⇒ LBOP	1.456549	2+1	0.4827
Chi	LBOP ⇒ LASP	11.20648	2+1	0.0037
Air	LASP ⇒ LIR	2.112953	2+1	0.3477
	LIR ⇒ LASP	0.233940	2+1	0.8896

Airlines	Direction of Causality		Var(p+d)	Prob.
	LASP ⇒ LDER	7.214308	10+2	0.7051
ot	LDER ⇒ LASP	22.90321	10+2	0.0111
	LASP ⇒ LBOP	12.07843	10+2	0.2798
erofi	LBOP ⇒ LASP	15.54836	10+2	0.1133
Aeı	LASP ⇒ LIR	12.57227	10+2	0.2486
	LIR ⇒ LASP	9.418824	10+2	0.4929
	LASP ⇒ LDER	0.475302	2+1	0.7885
	LDER ⇒ LASP	1.7763	2+1	0.4114
ada	LASP ⇒ LBOP	1.236906	2+1	0.5388
Can	LBOP ⇒ LASP	8.734665	2+1	0.0127
Air	LASP ⇒ LIR	0.400624	2+1	0.8185
	LIR ⇒ LASP	0.190176	2+1	0.9093
	LASP ⇒ LDER	4.017438	2+1	0.1342
	LDER ⇒ LASP	11.57768	2+1	0.0031
et	LASP ⇒ LBOP	0.523379	2+1	0.7698
įks	LBOP ⇒ LASP	2.419486	2+1	0.2983
ш	LASP ⇒ LIR	0.307617	2+1	0.8574
	LIR ⇒ LASP	7.755625	2+1	0.0207
	LASP ⇒ LDER	0.930101	2+1	0.6281
ras	LDER ⇒ LASP	9.666582	2+1	0.008
Ae	LASP ⇒ LBOP	1.90757	2+1	0.3853
lhas	LBOP ⇒ LASP	0.524288	2+1	0.7694
Li-	LASP ⇒ LIR	0.986156	2+1	0.6107
e	LIR ⇒ LASP	1.387106	2+1	0.4998
	LASP ⇒ LDER	4.138988	2+1	0.1262
	LDER ⇒ LASP	0.238096	2+1	0.295
e	LASP ⇒ LBOP	1.459149	2+1	0.4821
B I	LBOP ⇒ LASP	1.668923	2+1	0.8878
Je Je	LASP ⇒ LIR	2.402695	2+1	0.3008
	LIR ⇒ LASP	2.441567	2+1	0.295

Airlines	Direction of Causality		Var(p+d)	Prob.
	LASP ⇒ LDER*	4.622919	2+1	0.0991
	LDER ⇒ LASP	5.914692	2+1	0.052
Jian	LASP ⇒ LBOP	0.691067	2+1	0.7078
Åeç	LBOP ⇒ LASP	1.673395	2+1	0.4331
Nor	LASP ⇒ LIR	0.384805	2+1	0.825
	LIR ⇒ LASP	0.373598	2+1	0.8296
	LASP ⇒ LDER	3.047839	2+1	0.2179
	LDER ⇒ LASP	1.577901	2+1	0.4543
/est	LASP ⇒ LBOP	7.848946	2+1	0.0198
lthw	LBOP ⇒ LASP*	5.423005	2+1	0.0664
Sol	LASP ⇒ LIR	0.781822	2+1	0.6764
	LIR ⇒ LASP	2.90079	2+1	0.2345
			-	
	LASP ⇒ LDER	5.316777	8+1	0.7232
	LDER ⇒ LASP	5.195281	8+1	0.7365
et	LASP ⇒ LBOP	8.260785	8+1	0.4084
estj	LBOP ⇒ LASP*	13.0928	8+1	0.1087
3	LASP ⇒ LIR	6.810396	8+1	0.5572
	LIR ⇒ LASP	3.557818	8+1	0.8947

	Hatemi-J (2012) Asymmetric Causality Analysis					
Airlinee	Direction of Coupelity	Wold Stat	Critica	I Bootstrap V	/alue	
Airines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP+ ≠ > LDER+	1.504	6.73	3.921	2.736	
	LASP- ≠ > LDER-	3.777*	7.089	3.952	2.751	
	LASP- ≠ > LDER+	0.139	6.469	3.83	2.631	
	LASP+ ≠ > LDER-	0.020	6.585	3.854	2.699	
	LDER+ ≠ > LASP+	0.252	6.874	3.884	2.729	
	LDER- ≠ > LASP-	1.628	6.848	3.822	2.564	
	LDER- ≠ > LASP+	5.525**	6.934	3.88	2.754	
	LDER+ ≠ > LASP-	1.171	6.763	3.845	2.713	
	LASP+ ≠ > LBOP+	1.801	6.378	3.786	2.543	
	LASP- ≠ > LBOP-	1.191	6.323	4.112	2.738	
nes	LASP- ≠ > LBOP+	5.089**	6.805	4.001	2.839	
Airli	LASP+ ≠ > LBOP-	0.135	7.351	3.664	2.708	
ed /	LBOP+ ≠ > LASP+	4.109**	6.847	3.886	2.785	
Unit	LBOP- ≠ > LASP-	1.349	6.838	3.837	2.656	
	LBOP- ≠ > LASP+	1.196	6.958	3.868	2.745	
	LBOP+ ≠ > LASP-	4.932**	7.149	4.033	2.68	
	LASP+ ≠ > LIR+	1.504	6.969	3.894	2.707	
	LASP-≠>LIR-	3.777*	7.131	4.027	2.728	
	LASP- ≠ > LIR+	0.139	6.727	3.845	2.625	
	LASP+ ≠ > LIR-	1.000	6.73	4.007	2.647	
	LIR+ ≠ > LASP+	4.109**	6.847	3.886	2.785	
	LIR-≠>LASP-	1.349	6.838	3.837	2.656	
	LIR- ≠ > LASP+	1.196	6.958	3.868	2.745	
	LIR+ ≠ > LASP-	4.932**	7.149	4.033	2.68	

Annex 6: Hatemi-J (2012) Asymmetric Causality Analysis Results (All)

Hatemi-J (2012) Asymmetric Causality Analysis						
Airlinge	Direction of Coupolity	Wold Stat	Critica	I Bootstrap \	/alue	
Airines	Direction of Causality	Walu Stat.	1%	5%	10%	
	LASP+ ≠ > LDER+	5.641**	6.505	3.846	2.72	
	LASP-≠>LDER-	37.128***	9.482	6.016	4.679	
	LASP- ≠ > LDER+	0.772	6.371	3.765	2.677	
	LASP+ ≠ > LDER-	0.087	6.261	3.734	2.642	
	LDER+ ≠ > LASP+	1.796	6.131	3.843	2.609	
	LDER- ≠ > LASP-	0.002	9.725	6.053	4.61	
	LDER- ≠ > LASP+	0.135	6.518	3.814	2.794	
	LDER+ ≠ > LASP-	13.245***	6.607	3.968	2.68	
	LASP+ ≠ > LBOP+	1.289	6.719	3.803	2.655	
	LASP-≠>LBOP-	4.509**	6.92	3.842	2.753	
ines	LASP- ≠ > LBOP+	0.271	7.035	4.138	2.887	
Airl	LASP+ ≠ > LBOP-	1.235	6.83	3.902	2.776	
ish	LBOP+ ≠ > LASP+	0.158	6.762	3.927	2.818	
lurk	LBOP- ≠ > LASP-	0.495	6.577	3.827	2.657	
F	LBOP-≠>LASP+	0.054	6.811	3.932	2.719	
	LBOP+ ≠ > LASP-	0.547	6.253	3.758	2.738	
	LASP+ ≠ > LIR+	15.025***	13.804	9.569	7.864	
	LASP-≠>LIR-	1.159	10.819	5.98	4.494	
	LASP- ≠ > LIR+	1.278	7.474	3.821	2.76	
	LASP+ ≠ > LIR-	0.000	6.343	3.732	2.624	
	LIR+ ≠ > LASP+	13.368**	14.051	9.456	7.645	
	LIR-≠>LASP-	19.144***	9.954	6.128	4.726	
	LIR-≠>LASP+	7.235*	15.147	9.597	7.736	
	LIR+≠>LASP-	6.980	13.879	9.568	7.682	
			•			

	Hatemi-J (2012) Asymmetric Causality Analysis					
Aiulinee	Direction of Courselity	Mald Otat	Critica	al Bootstrap \	/alue	
Airlines	Direction of Causality	vvald Stat.	1%	5%	10%	
	LASP+ ≠ > LDER+	1.955	6.699	3.805	2.726	
	LASP-≠>LDER-	22.330***	9.948	6.09	4.562	
	LASP- ≠ > LDER+	0.558	6.906	3.748	2.665	
	LASP+ ≠ > LDER-	0.131	7.219	3.861	2.716	
	LDER+ ≠ > LASP+	0.000	6.755	3.824	2.813	
	LDER-≠>LASP-	13.059**	13.317	8.061	6.406	
	LDER-≠>LASP+	3.539*	6.819	3.892	2.758	
	LDER+ ≠ > LASP-	1.314	7.57	3.918	2.636	
	LASP+ ≠ > LBOP+	8.135***	6.914	3.957	2.765	
s	LASP-≠>LBOP-	2.931*	6.96	3.86	2.657	
rline	LASP- ≠ > LBOP+	0.736	6.666	3.891	2.741	
e Ai	LASP+ ≠ > LBOP-	0.825	6.85	3.835	2.705	
bor	LBOP+ ≠ > LASP+	1.830	6.595	3.797	2.657	
nga	LBOP- ≠ > LASP-	3.799**	7.161	3.804	2.596	
Si	LBOP- ≠ > LASP+	0.401	6.918	3.827	2.672	
	LBOP+ ≠ > LASP-	0.162	7.218	4.016	2.695	
	LASP+ ≠ > LIR+	0.952	9.153	3.733	2.47	
	LASP- ≠ > LIR-	0.815	8.329	3.594	2.336	
	LASP-≠>LIR+	1.669	8.891	3.751	2.533	
	LASP+ ≠ > LIR-	0.019	7.786	3.585	2.485	
	LIR+ ≠ > LASP+	0.974	8.595	3.869	2.47	
	LIR- ≠ > LASP-	1.903	8.222	3.49	2.294	
	LIR-≠>LASP+	2.838*	8.253	3.594	2.339	
	LIR+ ≠ > LASP-	0.234	8.43	3.397	2.275	

Hatemi-J (2012) Asymmetric Causality Analysis							
Airlinge	Direction of Coupolity	Wold Stat	Critical Bootstrap Value				
Airines	Direction of Causality	Walu Stat.	1%	5%	10%		
	LASP+ ≠ > LDER+	0.034	8.023	3.545	2.382		
	LASP- ≠ > LDER-	1.299	11.699	3.319	2.033		
	LASP-≠>LDER+	2.786*	8.417	3.56	2.393		
	LASP+ ≠ > LDER-	0.315	9.035	3.773	2.514		
	LDER+ ≠ > LASP+	0.059	8.769	3.605	2.532		
	LDER- ≠ > LASP-	0.027	11.871	3.225	2.116		
	LDER-≠>LASP+	0.185	12.695	3.257	2.08		
	LDER+ ≠ > LASP-	0.246	13.115	3.629	2.204		
	LASP+ ≠ > LBOP+	22.021***	9.002	5.961	4.582		
	LASP-≠>LBOP-	24.621***	15.124	9.745	7.806		
S	LASP-≠>LBOP+	8.201***	7.055	3.784	2.762		
rwa	LASP+ ≠ > LBOP-	2.008	6.892	3.868	2.698		
s Ai	LBOP+ ≠ > LASP+	1.935	9.505	6.034	4.632		
nta	LBOP-≠>LASP-	7.392*	14.828	9.466	7.269		
Qa	LBOP- ≠ > LASP+	0.033	7.368	3.871	2.743		
	LBOP+ ≠ > LASP-	5.937**	7.137	3.927	2.642		
	LASP+ ≠ > LIR+	3.147*	6.976	3.96	2.728		
	LASP- ≠ > LIR-	0.732	7.25	3.993	2.728		
	LASP- ≠ > LIR+	0.178	6.853	3.998	2.792		
	LASP+ ≠ > LIR-	0.007	6.652	3.895	2.756		
	LIR+ ≠ > LASP+	0.632	6.784	3.749	2.66		
	LIR-≠>LASP-	0.000	6.941	3.849	2.654		
	LIR-≠>LASP+	16.062***	14.578	9.797	7.717		
	LIR+≠>LASP-	4.388	14.178	9.79	7.783		
			-				

	Hatemi-J (2012) As	symmetric Cau	sality Analys	is	
Airlinee	Direction of Courselity	Wald Stat.	Critical Bootstrap Value		
Ammes	Direction of Causality		1%	5%	10%
	LASP+ ≠ > LDER+	0.322	6.779	3.731	2.607
	LASP- ≠ > LDER-	4.633**	6.702	4.042	2.771
	LASP- ≠ > LDER+	6.181**	6.565	3.785	2.687
	LASP+ ≠ > LDER-	4.215**	6.541	3.749	2.638
	LDER+ ≠ > LASP+	0.935	6.541	3.875	2.685
	LDER- ≠ > LASP-	0.181	6.864	3.92	2.778
	LDER- ≠ > LASP+	1.715	6.597	3.796	2.688
	LDER+ ≠ > LASP-	1.856	6.718	3.821	2.605
	LASP+ ≠ > LBOP+	0.151	6.755	3.901	2.704
	LASP- ≠ > LBOP-	0.930	6.923	3.946	2.766
nes	LASP- ≠ > LBOP+	2.984*	6.337	3.736	2.682
Airli	LASP+ ≠ > LBOP-	1.161	6.88	3.893	2.674
sa /	LBOP+ ≠ > LASP+	0.278	6.708	3.825	2.732
han	LBOP- ≠ > LASP-	1.472	6.622	3.913	2.688
Luft	LBOP- ≠ > LASP+	0.000	6.696	3.832	2.737
	LBOP+ ≠ > LASP-	5.383**	6.944	3.67	2.655
	LASP+ ≠ > LIR+	1.272	6.892	3.71	2.635
	LASP- ≠ > LIR-	3.041*	6.871	4	2.8
	LASP- ≠ > LIR+	0.361	6.548	3.871	2.726
	LASP+ ≠ > LIR-	1.210	6.517	3.811	2.717
	LIR+ ≠ > LASP+	0.244	6.844	3.854	2.723
	LIR- ≠ > LASP-	0.001	6.923	3.993	2.761
	LIR- ≠ > LASP+	20.236***	11.527	7.776	6.163
	LIR+ ≠ > LASP-	3.904	11.731	7.912	6.392
		·	•		•

Hatemi-J (2012) Asymmetric Causality Analysis							
Airlinee	Direction of Coupolity	Wold Stat	Critical Bootstrap Value				
Ainines	Direction of Causality	wald Stat.	1%	5%	10%		
	LASP+ ≠ > LDER+	0.310	6.937	3.906	2.708		
	LASP- ≠ > LDER-	0.200	6.857	3.775	2.665		
	LASP- ≠ > LDER+	0.347	7.238	3.786	2.696		
	LASP+ ≠ > LDER-	0.099	6.518	3.79	2.672		
	LDER+≠>LASP+	2.749*	6.711	3.769	2.661		
	LDER- ≠ > LASP-	1.316	7.076	3.856	2.732		
	LDER-≠>LASP+	0.833	6.741	3.946	2.699		
	LDER+ ≠ > LASP-	3.226*	6.776	3.821	2.704		
	LASP+ ≠ > LBOP+	0.065	6.356	3.721	2.543		
	LASP-≠>LBOP-	4.318**	7.038	3.817	2.618		
	LASP- ≠ > LBOP+	0.001	6.925	3.709	2.556		
ina	LASP+ ≠ > LBOP-	1.080	6.897	3.767	2.559		
Chi	LBOP+ ≠ > LASP+	3.727*	6.765	3.953	2.762		
Air	LBOP-≠>LASP-	4.155**	6.944	3.676	2.601		
	LBOP-≠>LASP+	1.401	6.604	3.75	2.538		
	LBOP+ ≠ > LASP-	0.774	6.558	3.801	2.633		
	LASP+ ≠ > LIR+	0.076	9.516	6.162	4.658		
	LASP- ≠ > LIR-	0.737	9.154	5.981	4.584		
	LASP- ≠ > LIR+	0.647	9.239	5.935	4.631		
	LASP+ ≠ > LIR-	0.365	9.536	5.82	4.412		
	LIR+ ≠ > LASP+	7.707**	9.567	6.261	4.771		
	LIR- ≠ > LASP-	1.011	9.833	6.323	4.635		
	LIR- ≠ > LASP+	2.384	11.152	7.817	6.115		
	LIR+≠>LASP-	2.559	11.05	7.816	6.356		
		•	•				

	Hatemi-J (2012) Asymmetric Causality Analysis					
Airlinee	Direction of Courselity	Mald Otat	Critical Bootstrap Value			
Airlines	Direction of Causality	waid Stat.	1%	5%	10%	
	LASP+ ≠ > LDER+	0.167	6.933	3.729	2.598	
	LASP- ≠ > LDER-	5.869*	10.001	5.958	4.491	
	LASP- ≠ > LDER+	2.727	10.641	6.116	4.634	
	LASP+ ≠ > LDER-	10.903***	9.72	6.256	4.563	
	LDER+ ≠ > LASP+	0.737	7.235	3.725	2.706	
	LDER- ≠ > LASP-	2.363	9.986	6.229	4.647	
	LDER-≠>LASP+	2.574*	6.997	3.945	2.53	
	LDER+ ≠ > LASP-	0.115	6.463	3.903	2.684	
	LASP+ ≠ > LBOP+	1.866	6.801	3.924	2.785	
	LASP- ≠ > LBOP-	3.331	9.752	5.997	4.58	
	LASP- ≠ > LBOP+	4.612**	7.157	3.862	2.646	
t	LASP+ ≠ > LBOP-	4.530**	7.036	4.125	2.737	
erofi	LBOP+ ≠ > LASP+	0.431	6.906	3.695	2.658	
Ae	LBOP- ≠ > LASP-	0.928	10.025	6.073	4.603	
	LBOP- ≠ > LASP+	0.865	9.255	6.047	4.662	
	LBOP+ ≠ > LASP-	0.091	9.285	6.07	4.548	
	LASP+ ≠ > LIR+	34.060***	26.365	16.97	13.778	
	LASP- ≠ > LIR-	0.039	7.115	3.692	2.591	
	LASP-≠>LIR+	4.564**	7.634	3.792	2.572	
	LASP+ ≠ > LIR-	7.258***	7.199	3.603	2.499	
	LIR+ ≠ > LASP+	18.413**	23.567	16.782	13.796	
	LIR- ≠ > LASP-	3.058*	7.162	3.804	2.623	
	LIR- ≠ > LASP+	27.380***	21.663	16.031	13.538	
	LIR+ ≠ > LASP-	41.742***	24.123	16.821	13.878	
			•		•	

Hatemi-J (2012) Asymmetric Causality Analysis						
Airlinee	Direction of Coupolity	Wold Stat	Critical Bootstrap Value			
Ainines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP+ ≠ > LDER+	0.127	8.021	4.016	2.825	
	LASP- ≠ > LDER-	0.055	8.023	3.45	2.423	
	LASP-≠>LDER+	1.234	8.658	3.9	2.6	
	LASP+ ≠ > LDER-	0.001	6.696	3.463	2.411	
	LDER+ ≠ > LASP+	0.032	7.443	3.666	2.5	
	LDER- ≠ > LASP-	0.973	7.338	3.604	2.497	
	LDER-≠>LASP+	0.166	7.97	3.697	2.548	
	LDER+ ≠ > LASP-	0.576	7.094	3.504	2.443	
	LASP+ ≠ > LBOP+	0.065	6.379	3.929	2.637	
	LASP-≠>LBOP-	4.318**	6.623	3.955	2.736	
	LASP- ≠ > LBOP+	0.001	6.746	3.742	2.7	
ada	LASP+ ≠ > LBOP-	1.080	6.472	3.576	2.631	
Can	LBOP+ ≠ > LASP+	3.727*	6.765	3.953	2.762	
Air	LBOP-≠>LASP-	4.155**	6.944	3.676	2.601	
-	LBOP- ≠ > LASP+	1.401	6.604	3.75	2.538	
	LBOP+ ≠ > LASP-	0.774	6.558	3.801	2.633	
	LASP+ ≠ > LIR+	0.240	6.09	3.71	2.748	
	LASP- ≠ > LIR-	1.360	6.236	4.021	2.597	
	LASP- ≠ > LIR+	0.919	5.978	3.869	2.558	
	LASP+ ≠ > LIR-	0.513	7.333	3.858	2.692	
	LIR+ ≠ > LASP+	1.127	6.996	3.813	2.639	
	LIR- ≠ > LASP-	0.067	6.284	3.771	2.701	
	LIR-≠>LASP+	0.418	7.126	4.021	2.812	
	LIR+ ≠ > LASP-	0.015	7.161	3.888	2.735	
	LASP+ ≠ > LDER+	2.766*	6.892	3.821	2.688	
	LASP- ≠ > LDER-	13.416***	6.861	3.95	2.753	

Hatemi-J (2012) Asymmetric Causality Analysis						
Aiulinee	Direction of Courselity	Mald Ctat	Critical Bootstrap Value			
Airlines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP- ≠ > LDER+	1.415	7.012	3.843	2.741	
	LASP+ ≠ > LDER-	0.384	6.993	3.787	2.685	
	LDER+ ≠ > LASP+	0.153	6.644	3.738	2.623	
	LDER- ≠ > LASP-	0.008	7.262	3.691	2.649	
	LDER-≠>LASP+	5.312**	6.662	3.938	2.747	
	LDER+ ≠ > LASP-	0.453	6.896	3.892	2.664	
	LASP+ ≠ > LBOP+	0.010	6.882	3.785	2.601	
	LASP-≠>LBOP-	2.773*	6.663	3.795	2.527	
	LASP- ≠ > LBOP+	0.243	6.725	3.742	2.603	
	LASP+ ≠ > LBOP-	0.765	6.646	3.789	2.536	
et	LBOP+ ≠ > LASP+	10.269***	6.715	3.622	2.556	
lsyJ	LBOP- ≠ > LASP-	2.224	7.467	3.802	2.652	
l n	LBOP- ≠ > LASP+	0.021	6.718	3.889	2.676	
	LBOP+ ≠ > LASP-	0.001	7.702	3.892	2.77	
	LASP+ ≠ > LIR+	0.230	6.892	3.69	2.628	
	LASP- ≠ > LIR-	1.191	6.555	3.681	2.624	
	LASP- ≠ > LIR+	1.869	6.693	3.813	2.703	
	LASP+ ≠ > LIR-	0.028	6.954	3.861	2.677	
	LIR+ ≠ > LASP+	1.725	6.295	3.788	2.639	
	LIR- ≠ > LASP-	1.292	6.591	3.859	2.677	
	LIR-≠>LASP+	2.480*	7.263	3.776	2.42	
	LIR+ ≠ > LASP-	0.026	6.67	3.819	2.682	
	LASP+ ≠ > LDER+	1.230	6.609	3.793	2.65	
	LASP- ≠ > LDER-	8.732***	6.882	3.828	2.641	

Hatemi-J (2012) Asymmetric Causality Analysis						
Airlinee	Direction of Coupelity	Wold Stat	Critica	Critical Bootstrap Value		
Airlines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP-≠>LDER+	0.264	6.886	3.757	2.617	
	LASP+ ≠ > LDER-	7.050***	6.91	3.9	2.66	
	LDER+ ≠ > LASP+	1.133	6.974	3.822	2.665	
	LDER- ≠ > LASP-	0.247	7.005	3.886	2.699	
	LDER-≠>LASP+	6.053**	6.351	3.629	2.611	
	LDER+ ≠ > LASP-	0.004	6.943	3.836	2.729	
	LASP+ ≠ > LBOP+	0.249	7.051	4.031	2.743	
	LASP- ≠ > LBOP-	1.025	6.508	3.683	2.633	
	LASP-≠>LBOP+	3.979**	6.681	3.915	2.675	
ras	LASP+ ≠ > LBOP-	0.050	6.769	3.795	2.746	
Ae	LBOP+ ≠ > LASP+	0.282	6.75	3.939	2.7	
has	LBOP- ≠ > LASP-	0.624	7.088	3.741	2.542	
Lin	LBOP-≠>LASP+	0.420	7.097	4.011	2.82	
Gol	LBOP+ ≠ > LASP-	0.573	7.126	4.015	2.672	
	LASP+ ≠ > LIR+	0.440	6.559	3.864	2.705	
	LASP- ≠ > LIR-	0.014	6.786	3.817	2.658	
	LASP- ≠ > LIR+	0.148	7.018	3.711	2.633	
	LASP+ ≠ > LIR-	5.293**	7.185	4.083	2.803	
	LIR+≠>LASP+	3.738*	7.4	3.98	2.761	
	LIR- ≠ > LASP-	0.323	7.103	3.673	2.592	
	LIR- ≠ > LASP+	2.047	6.885	3.746	2.643	
	LIR+ ≠ > LASP-	0.011	6.689	3.79	2.721	
	LASP+ ≠ > LDER+	1.058	7.034	3.974	2.745	
	LASP-≠>LDER-	9.698***	6.923	3.875	2.713	

Hatemi-J (2012) Asymmetric Causality Analysis						
Aiulinee	Direction of Courselity	Mald Otat	Critical Bootstrap Value			
Airlines	Direction of Causality	vvalo Stat.	1%	5%	10%	
	LASP- ≠ > LDER+	1.126	6.718	3.797	2.73	
	LASP+ ≠ > LDER-	0.394	6.468	3.979	2.857	
	LDER+ ≠ > LASP+	0.396	6.469	3.803	2.636	
	LDER-≠>LASP-	2.736*	6.618	3.762	2.681	
	LDER-≠>LASP+	14.209***	6.321	3.773	2.701	
	LDER+ ≠ > LASP-	0.998	6.408	3.791	2.627	
	LASP+ ≠ > LBOP+	2.974*	7.338	3.731	2.664	
	LASP- ≠ > LBOP-	1.353	6.889	3.897	2.774	
	LASP-≠>LBOP+	6.998**	7.509	4.223	2.949	
	LASP+ ≠ > LBOP-	0.184	6.872	3.903	2.746	
er	LBOP+ ≠ > LASP+	5.290**	7.198	3.893	2.765	
etblu	LBOP- ≠ > LASP-	0.885	6.877	3.757	2.523	
Ť	LBOP-≠>LASP+	4.757**	7.073	4.039	2.781	
	LBOP+ ≠ > LASP-	0.546	6.831	3.717	2.626	
	LASP+ ≠ > LIR+	2.241	6.956	3.866	2.735	
	LASP-≠>LIR-	6.329**	7.401	4.053	2.717	
	LASP-≠>LIR+	13.986***	10.377	6.033	4.48	
	LASP+ ≠ > LIR-	8.513**	9.511	6.006	4.63	
	LIR+ ≠ > LASP+	0.219	6.588	3.947	2.738	
	LIR- ≠ > LASP-	0.605	6.358	3.851	2.66	
	LIR-≠>LASP+	9.916***	6.642	3.941	2.702	
	LIR+ ≠ > LASP-	0.470	6.821	3.864	2.647	
	LASP+ ≠ > LDER+	0.678	6.803	4.035	2.79	
	LASP- ≠ > LDER-	12.904***	6.205	3.576	2.625	

Hatemi-J (2012) Asymmetric Causality Analysis						
Airlinee	Direction of Coupelity	Wold Stat	Critical Bootstrap Value			
Airines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP- ≠ > LDER+	0.078	6.95	3.862	2.713	
	LASP+ ≠ > LDER-	0.000	6.37	3.762	2.647	
	LDER+ ≠ > LASP+	0.265	7.092	3.889	2.737	
	LDER- ≠ > LASP-	0.653	6.599	3.92	2.668	
	LDER-≠>LASP+	5.777**	7.076	3.868	2.71	
	LDER+ ≠ > LASP-	1.102	7.022	3.87	2.76	
	LASP+ ≠ > LBOP+	1.880	9.348	5.934	4.65	
	LASP- ≠ > LBOP-	0.572	6.313	3.798	2.611	
	LASP-≠>LBOP+	1.229	6.546	3.982	2.765	
	LASP+ ≠ > LBOP-	0.791	7.043	3.896	2.739	
jian	LBOP+ ≠ > LASP+	2.573	9.575	6.015	4.566	
weg	LBOP- ≠ > LASP-	1.026	6.731	3.882	2.746	
Nor	LBOP-≠>LASP+	5.598*	9.7	6.214	4.547	
	LBOP+ ≠ > LASP-	2.480	9.616	6.06	4.627	
	LASP+ ≠ > LIR+	0.006	11.589	4.046	3.232	
	LASP- ≠ > LIR-	0.455	10.053	4.231	2.328	
	LASP- ≠ > LIR+	0.514	8.522	4.024	2.306	
	LASP+ ≠ > LIR-	0.200	11.562	4.437	2.412	
	LIR+ ≠ > LASP+	0.409	10.726	3.94	2.146	
	LIR- ≠ > LASP-	0.374	10.032	4.102	2.395	
	LIR-≠>LASP+	0.346	11.095	4.003	2.361	
	LIR+ ≠ > LASP-	0.421	11.647	4.162	2.412	
	LASP+ ≠ > LDER+	0.022	6.899	3.973	2.763	
	LASP- ≠ > LDER-	1.249	6.228	3.56	2.54	

Hatemi-J (2012) Asymmetric Causality Analysis						
Aiulinee	Direction of Courselity	Mald Otat	Critical Bootstrap Value			
Airlines	Direction of Causality	waid Stat.	1%	5%	10%	
	LASP- ≠ > LDER+	0.511	6.238	3.69	2.608	
	LASP+ ≠ > LDER-	1.899	7.371	3.83	2.659	
	LDER+ ≠ > LASP+	0.525	6.748	3.844	2.69	
	LDER- ≠ > LASP-	10.894***	7.265	3.892	2.66	
	LDER-≠>LASP+	7.986***	6.692	3.756	2.727	
	LDER+ ≠ > LASP-	0.332	6.697	3.827	2.704	
	LASP+ ≠ > LBOP+	0.241	6.826	3.714	2.623	
	LASP- ≠ > LBOP-	1.159	7.188	3.756	2.657	
	LASP-≠>LBOP+	4.616**	7.01	3.77	2.645	
	LASP+ ≠ > LBOP-	0.014	6.869	3.845	2.793	
lest	LBOP+ ≠ > LASP+	0.886	7.579	4.062	2.788	
Ithw	LBOP-≠>LASP-	4.335**	7.075	4.048	2.776	
Sou	LBOP- ≠ > LASP+	1.843	7.557	4.073	2.74	
	LBOP+ ≠ > LASP-	2.259	6.754	3.657	2.663	
	LASP+ ≠ > LIR+	1.342	7.045	3.925	2.714	
	LASP- ≠ > LIR-	1.334	6.904	3.659	2.645	
	LASP- ≠ > LIR+	0.143	6.712	3.807	2.652	
	LASP+ ≠ > LIR-	0.643	7.03	3.756	2.605	
	LIR+ ≠ > LASP+	0.031	7.05	3.948	2.716	
	LIR- ≠ > LASP-	0.096	6.843	3.658	2.567	
	LIR-≠>LASP+	47.711***	15.775	11.199	9.275	
	LIR+ ≠ > LASP-	12.711**	15.78	11.492	9.384	
	LASP+ ≠ > LDER+	2.521*	7.438	3.621	2.391	
	LASP- ≠ > LDER-	0.018	7.28	3.593	2.473	

Hatemi-J (2012) Asymmetric Causality Analysis						
Airlinee	Direction of Coupelity	Wold Stat	Critical Bootstrap Value			
Ainines	Direction of Causality	wald Stat.	1%	5%	10%	
	LASP-≠>LDER+	0.050	8.213	3.671	2.525	
	LASP+ ≠ > LDER-	0.017	8.411	3.61	2.552	
	LDER+ ≠ > LASP+	1.431	8.542	3.604	2.5	
	LDER- ≠ > LASP-	1.829	6.908	3.604	2.488	
	LDER-≠>LASP+	0.374	7.537	3.761	2.513	
	LDER+ ≠ > LASP-	0.067	7.946	3.606	2.457	
	LASP+ ≠ > LBOP+	0.011	6.656	4.043	2.717	
	LASP- ≠ > LBOP-	0.034	7.096	4.014	2.888	
	LASP-≠>LBOP+	0.311	6.566	3.736	2.62	
	LASP+ ≠ > LBOP-	0.019	6.87	3.819	2.725	
stjet	LBOP+ ≠ > LASP+	7.184***	6.8616	3.957	2.807	
Wes	LBOP- ≠ > LASP-	0.001	6.472	3.763	2.617	
-	LBOP-≠>LASP+	0.052	6.86	3.894	2.727	
	LBOP+ ≠ > LASP-	1.801	6.956	3.633	2.612	
	LASP+ ≠ > LIR+	0.536	7.116	3.911	2.749	
	LASP- ≠ > LIR-	0.283	6.845	4.021	2.753	
	LASP- ≠ > LIR+	0.368	6.849	3.896	2.748	
	LASP+ ≠ > LIR-	0.368	6.991	3.815	2.756	
	LIR+ ≠ > LASP+	2.352	6.89	3.809	2.653	
	LIR- ≠ > LASP-	1.277	6.52	3.745	2.56	
	LIR-≠>LASP+	0.491	6.672	3.74	2.595	
	LIR+ ≠ > LASP-	0.060	6.851	3.783	2.696	