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At the beginning of 2005, Gheorghe Păun formulated a conjecture stating that in the framework of rec-
ognizer P systems with active membranes (evolution rules, communication rules, dissolution rules and
division rules for elementary membranes), polarizations cannot be avoided in order to solve computa-
tionally hard problems efficiently (assuming thatP 6= NP). At the middle of 2005, a partial positive
answer was given, proving that the conjecture holds if dissolution rules are forbidden. In this paper we
give a detailed and complete proof of this result modifying slightly the notion of dependency graph
associated with recognizer P systems.
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tractability.

1. Preliminaries

The present work is developed within the framework of polarizationless P systems with
active membranes where division rules can only be applied to elementary membranes.

In order to make this paper selfcontained, let us introduce next the required concepts.

1.1. Notations

Let us recall that an alphabetΓ is a nonempty set and a string onΓ is a finite sequence of
elements ofΓ. The set of symbols ocurring in a stringw is denoted byalph(w). We denote
by Γ∗ the set of all strings overΓ. A language overΓ is a subset ofΓ∗.
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A multiset over an alphabetΓ is a map fromΓ into the set of natural numbers,N. The
support of a multisetf overΓ is supp(f) = {a ∈ Γ : f(a) > 0}. If f, g are multisets
overΓ, then we define the union or sum off andg as follows: the multisetf + g defined
by (f + g)(a) = f(a) + g(a), for eacha ∈ Γ.

A decision problem, X , is a pair(IX , θX) such thatIX is a language over a finite
alphabet (whose elements are calledinstances) andθX is a total boolean function (that is, a
predicate) overIX . Given a decision problemX = (IX , θX) we can associate a language
to it as follows:LX = {w ∈ IX : θX(w) = 1}. Conversely, given a languageL, over an
alphabetΓ, we can associate a decision problem to it as follows:XL = (IXL

, θXL
), where

IXL
= Γ∗, andθXL

= {(x, 1) : x ∈ L} ∪ {(x, 0) : x /∈ L}.
In this paper we work only with finite alphabets.

1.2. The graph reachability problem and the circuit value problem

Thegraph reachability(or accessibility)problemis the following: given a directed graph,
G = (V,E), with two specified verticess andt, determine whether or not there is a path
from s to t. We denote this decision problem byREACHABILITY.

There are algorithms solving this problem, for instance, search algorithms based on
breadth first search or depth-first search. These algorithmsdetermine whether two vertices
are connected inO(max(|V |, |E|)) time. Moreover, they basically need to store at most
|V | items, so these algoritms useO(|V |) space. But this quantity of space can be reduced
to O(log2|V |) by using an algorithm that could be called middle-first search (see[2] for
details, pp. 149-150). In particular,REACHABILITY ∈ P.

Thecircuit value problemis the following: given a circuit with no variable gates and
where each input gate has an associated boolean value, determine whether or not the circuit
evaluates toTrue. It is well known that the circuit value problem is aP–complete problem
(see theorem 8.1 in[2] for details).

1.3. Polarizationless P system with active membranes

Definition 1. A polarizationless P system with active membranesof degreeq ≥ 1 is a tuple
Π = (Γ, H, µ,M1, . . . ,Mq, R, houtput), where:

(1) Γ is a working alphabet of objects, andH is a finite set of labels for membranes;
(2) µ is a membrane structure (a rooted tree) consisting ofq membranes injectively labeled

with elements ofH , the label of membranei is denoted byl(i);
(3) M1, . . . ,Mq are strings overΓ describing the multisets of objects placed in theq

initial regions ofµ;
(4) R is a finite set of developmental rules, of the following forms:

(a) [ a→ u ]h, for h ∈ H , a ∈ Γ, u ∈ Γ∗ (object evolution rules).
(b) a [ ]h → [ b ]h, for h ∈ H , a, b ∈ Γ (send–in communication rules).
(c) [ a ]h → [ ]h b, for h ∈ H , a, b ∈ Γ (send–out communication rules).
(d) [ a ]h → b, for h ∈ H , a, b ∈ Γ (dissolution rules).
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(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H , a, b, c ∈ Γ (division rules for elementary mem-
branes.

(5) houtput ∈ H or houtput = env (env is the label of the environment) indicates the
output region.

These rules are applied according to usual principles of polarizationless P systems (see
[4] for details). Notice that in this polarizationless framework there is no cooperation, nor
priority, nor changes of the labels of membranes. In this paper we do not consider division
rules for non-elementary membranes.

A membrane structure is a rooted tree. Thus, we can define the notion of thefather
f(h) or achild ch(h) of a region labeled byh in a natural manner. Thelengthof a rule is
the number of symbols ocurring in it. For instance, communication and dissolution rules
have length 2, but division rules have length 3.

In order to solve decision problems in the so-calleduniform way we will work
with P systems with input membrane. These systems have an input alphabetΣ strictly
contained in the working alphabetΓ, the initial multisets are overΓ \ Σ, and they
also have a distinguished membrane (the input membrane) in which the instances of
a problem are encoded by multisets over the input alphabetΣ. Specifically, if Π =

(Γ,Σ, H, µ,M1, . . . ,Mq, R, houtput, hinput), andIM ∈ Σ∗ then the initial configuration
of Π with inputIM is (M1, . . . ,Minput + IM, . . . ,Mq). Usually, we writeΠ+ IM .

Let us recall that inrecognizer P systems, the working alphabet contains two distin-
guished elementsyesandno, the output of the system is collected in the environment, all
computations halt, and ifC is a computation of the system, then either objectyesor object
no (but not both) must have been sent to the output region of the system, and only at the
last step of the computation.

Without loss of generality, we can suppose that in a recognizer P system with active
membranesΠ, for each labelh ∈ H the number of rules associated with membraneh is
lower than or equal to2 · |Γ| (the non-determinism among all the rules associated with a
given membrane, except those of send-in type, can be avoided). Thus, we can suppose that
|RΠ| ≤ 2q · |Γ|, whereq is the degree ofΠ.

The class of recognizer polarizationless P systems with active membranes (resp., which
do not make use of division rules) is denoted byAM0 (resp.,NAM0). If we consider
three electrical charges the corresponding classes are denoted byAM andNAM, respec-
tively. We also denote byAM0(−d) the class of all recognizer P systems with polariza-
tionless active membranes such that dissolution rules are forbidden.

Definition 2. A decision problemX = (IX , θX) is solvable in polynomial timeby a family
of recognizer P systems with input membraneΠ = {Π(n) : n ∈ N}, denoted byX ∈
PMCR, if the following holds:

• There exists a deterministic Turing machine (DTM) working in polynomial time which
constructs the systemΠ(n) fromn ∈ N.
• There exists a pair(cod, s) of polynomial time computable functions overIX (a poly-

nomial encoding ofX in Π) such that for each instancew ∈ IX , s(w) is a natural
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number (obtained by means of a reasonable encoding scheme) andcod(w) is an input
multiset of the systemΠ(s(w)).
• There existsk ∈ N such that for each instancew ∈ IX , every computation of the

systemΠ(s(w)) with inputcod(w) performs at most|w|k steps.
• For each instance,w ∈ IX : (a) if there existsan accepting computation ofΠ(w), then
θX(w) = 1; and (b) if θX(w) = 1, theneverycomputation ofΠ(w) is an accepting
computation.

The familyΠ is said to provide a (polynomial–time)uniform solutionto the problemX .
As a direct consequence of working with recognizer membranesystems, these com-

plexity classes are closed under complement. Moreover, they are closed under polynomial
time reductions[7].
The proof of the Milano theorem[9] (each deterministic P system with active membranes
but without membrane division can be simulated by a deterministic Turing machine with a
polynomial slowdown) and a proof given by A.E. Porreca[8] (each tractable problem can
be solved in polynomial time by families of recognizer P systems with active membranes
and without input) can be adapted in order to show the following result:

Corollary 3. PMCNAM0 = P.

This result suggests the following question: whether in theframework of polarization-
less P systems with active membranes, division rules (only for elementary membranes)
provide a borderline between tractability and intractability (assuming thatP 6= NP).

Let us recall thatP ⊆ PMCT , whereT is the class of allbasic transitionP systems
(that is, transition P systems with only evolution, communication, and dissolution rules).
In this kind of P systems the size of the membrane structure does not increase. The proof
of this result can also be adapted to provePMCNAM = P. It is well known that com-
putationally hard problems can be solved in a uniform way by families of P systems from
AM. Therefore, in the framework of P systems with active membranes and three electri-
cal charges, division rules (only for elementary membranes) provide a borderline between
tractability and intractability (assuming thatP 6= NP).

2. A Conjecture of Păun

At the beginning of 2005, Gh. Păun (problemF from [5]) wrote:

My favorite question (related to complexity aspects in P systems with active mem-
branes and with electrical charges) is that about the numberof polarizations. Can
the polarizations be completely avoided? The feeling is that this is not possible
– and such a result would be rather sound: passing from no polarization to two
polarizations amounts to passing from non–efficiency to efficiency.

This so–called Păun’s conjecture can be formally formulated in terms of membrane
computing complexity classes as follows:P = PMCAM0 .

An affirmative answer to the conjecture would indicate that the ability to create an
exponential amount of workspace (expressed in terms of the number of membranes and
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objects) in polynomial time, is not enough in order to solve computationally hard problems
efficiently.

Conversely, a negative answer to the conjecture would provide a borderline between
tractability and intractability (assuming thatP 6= NP): division rules for elementary mem-
branes.

In this paper we provide a partial affirmative answer of the P˘aun’s conjecture in the
case that dissolution rules are forbidden. The proof of thisresult is based on the concept of
dependency graph, improving and formalizing the result presented in[1].

Let Π be a recognizer polarizationless P system with active membranes which do not
make use of dissolution rules. A directed graph can be associated withΠ verifying the
following property: every accepting computation ofΠ is characterized by the existence of
a path in the graph between two specific nodes.

Definition 4. Let Π = (Γ, H, µ,M1, . . . ,Mq, RΠ, env), be a recognizer P system with
active membranes without polarizations and without dissolution. The dependency graph
associated withΠ is the directed graphGΠ = (VΠ, EΠ) defined as follows:

VΠ = V LΠ ∪ V RΠ ∪ {sΠ}, sΠ /∈ Γ ∪H ,

V LΠ = {(a, h) ∈ Γ×H : ∃u ∈ Γ∗ ([a→ u]h ∈ RΠ) ∨

∃b ∈ Γ ([a]h → [ ]hb ∈ RΠ) ∨

∃b ∈ Γ ∃h′ ∈ ch(h) (a[ ]h′ → [b]h′ ∈ RΠ) ∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ RΠ))},

V RΠ = {(b, h) ∈ Γ×H : ∃a ∈ Γ ∃u ∈ Γ∗ ([a→ u]h ∈ RΠ ∧ b ∈ alph(u)) ∨

∃a ∈ Γ ∃h′ ∈ ch(h) ([a]h′ → [ ]h′b ∈ RΠ) ∨

∃a ∈ Γ (a[ ]h → [b]h ∈ RΠ) ∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ RΠ ∨ [a]h → [c]h[b]h ∈ RΠ)},

EΠ = E1
Π ∪ E2

Π,

E1
Π = {(sΠ, (a, h)) : the objecta is in membraneh at the initial configuration ofΠ},

E2
Π = {((a, h), (b, h′)) : ∃u ∈ Γ∗ ([a→ u]h ∈ RΠ ∧ b ∈ alph(u) ∧ h = h′) ∨

([a]h → [ ]hb ∈ RΠ ∧ h′ = f(h)) ∨

(a[ ]h′ → [b]h′ ∈ RΠ ∧ h = f(h′)) ∨

∃c ∈ Γ (([a]h → [b]h[c]h ∈ RΠ ∨ [a]h → [c]h[b]h ∈ RΠ) ∧ h = h′)}.
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This definition modifies the Definition 10 from[1] slightly.
Bearing in mind that in recognizer P systems all computations halt, we deduce that each

path in the dependency graph associated with it must be simple.

Proposition 5. There exists a deterministic Turing machine working in polynomial time
that construct the dependency graph associated with each recognizer P system with active
membranes without polarizations and without dissolution.

Proof. A deterministic algorithm that given a recognizer P system constructs the associated
dependency graph, is the following:

Input: Π = (Γ, H, µ,M1, . . . ,Mq, RΠ, env) ∈ AM
0(−d)

VΠ ← {sΠ}; EΠ ← ∅

for i← 1 to q do
for each a ∈ supp(Mi) do

VΠ VΠ ∪ {(a, l(i))}; EΠ EΠ ∪ {(sΠ, (a, l(i)))}

for each rule r ∈ RΠ do

if r = [a→ u]h ∧ alph(u) = {a1, . . . , as} then

VΠ VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → [ ]hb then

VΠ VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[ ]h → [b]h then

VΠ VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}

if r = [a]h → [b]h[c]h then

VΠ VΠ ∪ {(a, h)), (b, h), (c, h)};

EΠ ← EΠ ∪ {((a, h)), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is of the orderO(q · |RΠ| +m · |RΠ|), whereq is the
degree of the P systemΠ, andm is the value max{length(r) : r ∈ RΠ}. As |RΠ| ≤

2q · |Γ|, the total cost time of the algorithm isO((q +m) · q · |Γ|).

Next, let us prove that the dependency graph associated with aP system fromAM0(−d)

can be used to characterize the behavior of the system (accepting or rejecting inputs),
through the analysis of simple paths.

Theorem 6. Let Π = (Γ, H, µ,M1, . . . ,Mq, RΠ, env) be a recognizer P system from
AM0(−d). The following assertions are equivalent:

(1) There exists an accepting computation ofΠ.
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(2) There exists a simple path in the dependency graphGΠ from sΠ to (yes, env) with
length greater or equal to 2.

Proof. In order to prove that(1) =⇒ (2) we will see that for eachn ≥ 1 and for each
computationC = (C0, C1, . . . , Cn) of Π, if C is an accepting computation, then there exists
a simple path in the dependency graphGΠ from sΠ to (yes, env).

By induction oni. If C = (C0, C1) is an accepting computation ofΠ, then at the only
step of that computation, the objectyes has been sent to in the environment by a rule
of the form [a]hs

→ yes [ ]hs
, wherehs is the label of the skin membrane. Of course,

in order to apply the rule, objecta must occur in the skin in the initial configuration.
Thus((sΠ, (a, hs), ((a, hs), (yes, env)) is a simple path inGΠ from sΠ to (yes, env) with
length greater or equal than 2. That is, the result holds forn = 1.

Let n ≥ 1 and let us suppose that the result holds forn. Let C =

(C0, C1, . . . , Cn, Cn+1) be an accepting computation ofΠ. Let us consider the recognizer
P systemΠ′ = (Γ, H, µ,M′

1, . . . ,M
′
q, RΠ, env) where for eachi, 1 ≤ i ≤ q,M′

i is the
contents of regioni in the configurationC1. ThenC′ = (C1, . . . , Cn, Cn+1) is an accepting
computation ofΠ′ of lengthn. By the induction hypothesis, there exists a simple pathγ′

in the dependency graphGΠ′ from sΠ′ to (yes, env) with length greater or equal than 2.
Let (a1, h1) the next vertex ofsΠ′ in that path. Then, the objecta1 belongs to the regioni
labeled byh1 in the configurationC1. We consider two cases:

– The objecta1 is in region labeled byh1 in the configurationC0.
In this case, substituting the vertexsΠ′ by sΠ in γ′ we obtain a simple path in the

dependency graphGΠ from sΠ to (yes, env) with length greater or equal than 2.
– The objecta1 is not in region labeled byh1 in the configurationC0.

In this case, the pair(a1, h1) has been produced at the first step of the computation
C, that is, there exist(a0, h0) ∈ Γ×H and a ruler ∈ RΠ such that by applyingr the
pair (a0, h0) produces(a1, h1). Hence,

((sΠ, (a0, h0)), ((a0, h0), (a1, h1)), γ
′ − {(sΠ′ , (a1, h1))})

is a simple path in the dependency graphGΠ from sΠ to (yes, env) with length greater
or equal than 2.

In order to prove that(2) =⇒ (1) we will see that for eachn ≥ 2 and for each simple
pathγ in the dependency graphGΠ from sΠ to (yes, env) with lengthn, there exists an
accepting computation ofΠ.

Let us reason again by induction oni. In the base case, letγ be a simple path inGΠ

from sΠ to (yes, env) with length 2. Then, there exists an objecta0 in a region labeled
byh0 in the initial configuration such thatγ = ((sΠ, (a0, h0)), ((a0, h0), (yes, env))). Let
C1 a configuration obtained fromC0 by applying a rule ofΠ that yields(yes, env) from
(a0, h0) (of course, many other rules could be applied at the same stepin a maximally
parallel way). Then,C = (C0, C1) is an accepting computation ofΠ.

Let n ≥ 2 and let us suppose that the result holds forn. Let

γ = ((sΠ, (a0, h0)), ((a0, h0), (a1, h1)), . . . , ((an−1, hn−1), (yes, env)))
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be a simple path inGΠ from sΠ to (yes, env) with lengthn+ 1.
For eachj, j = 0, 1, . . . , n− 1, we denote byrj a rule ofΠ transforming(aj , hj) into

(aj+1, hj+1), wherean = yes andhn = env. Let C1 a configuration obtained from the
initial configurationC0 fromΠ by applying a multiset of rules containingr0. LetΠ′ be the
recognizer P system:

Π′ = (Γ, H, µ,M′
1, . . . ,M

′
q, RΠ, env)

where for eachi, 1 ≤ i ≤ q,M′
i is the contents of regioni in the configurationC1. Then,

γ′ = ((sΠ′ , (a1, h1)), ((a1, h1), (a2, h2)), . . . , ((an−1, hn−1), (yes, env)))

is a simple path inGΠ′ from sΠ′ to (yes, env) with lengthn. From the induction hypoth-
esis we deduce that there exists an accepting computationC′ = (C1, C2, . . . , Ct) of Π′.
Therefore,C = (C0, C1, C2, . . . , Ct) is an accepting computation ofΠ.

Corollary 7. Let X = (IX , θX) be a decision problem. LetΠ = {Π(n) : n ∈ N}

be a family of recognizer P systems fromAM0(−d) solvingX in a uniform way and in
polynomial time. Let(cod, s) be a polynomial encoding associated with that solution. Then,
for each instancew ∈ IX the following assertions are equivalent:

(1) θX(w) = 1.
(2) There exists a simple path in the dependency graph associated withΠ′ = Π(s(w)) +

cod(w), fromsΠ′ to (yes, env).

Proof. It is enough to take into account the previous theorem and to notice thatθX(w) = 1

if and only if there exists an accepting computation in the systemΠ(s(w)) with input
multisetcod(w).

Theorem 8. PMCAM0(−d) = P.

Proof. Let us notice thatP ⊆ PMCAM0(−d) because the classPMCAM0(−d) is closed
under polynomial–time reduction and contains theP–complete problemCIRCUIT VALUE.

Let us see the converse inclusion. LetX ∈ PMCAM0(−d). LetΠ = {Π(n) : n ∈ N}

be a family of recognizer P systems fromAM0(−d) solvingX in a uniform way and in
polynomial time. Let(cod, s) be a polynomial encoding associated with that solution. Let
us see thatX ≤p

REACHABILITY.

Let w be an instance ofX . Let us consider the systemΠ(s(w)) with input multiset
cod(w). Then we define:

F (w) = (GΠ(s(w))+cod(w), sΠ(s(w))+cod(w), (yes, env))

From Proposition5 we deduce thatF is a polynomial–time computable function.
Moreover, we have:

w ∈ LX ⇐⇒ θX(w) = 1
Cor.7
⇐⇒ F (w) ∈ LREACHABILITY
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Finally, we deduce thatX ∈ P because of the classP is closed under polynomial–time
reductions,X ≤p

REACHABILITY andREACHABILITY ∈ P.

Therefore, the feeeling expressed by Gh. Păun on his conjecture could be reformulated
as follows: in the framework on polarizationless P systems with active membranes, passing
from allowing dissolution rules to forbidding them amountsto passing from non-efficiency
to efficiency (assuming thatP 6= NP).

3. Conclusions

Dissolution rules can be avoided when we solveNP–complete problems in an uniform way
and in polynomial time by families of P systems with active membranes and three electrical
charges[6].

This paper is partially answering a conjecture formulated by Gheorghe Păun at the
beginning of 2005 related with the role played by the polarizations in the framework of P
systems with active membranes from a computational complexity point if view. We present
a detailed proof of a partial affirmative answer that highlights the relevance (inAM0) of
an apparently innocent ingredient: dissolution rules.

Acknowledgments

The authors acknowledge the support of the project TIN2009–13192 of the Ministerio de
Educación y Ciencia of Spain, cofinanced by FEDER funds, andthe support of the Project
of Excellence withInvestigador de Reconocida Valı́a of the Junta de Andalucı́a, grant P08-
TIC-04200.

References
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[5] Gh. Păun. Further twenty six open problems in membrane computing. In M.A. Gutiérrez, A.

Riscos, F.J. Romero, D. Sburlan (eds.)Proceedings of the Third Brainstorming Week on Mem-
brane Computing, Report RGNC 01/04, Fénix Editora, Sevilla, 2005, pp. 249–262.
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