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At the beginning of 2005, Gheorghe Paun formulated a conjecture stating that in the framework of rec-
ognizer P systems with active membranes (evolution rules, communication rules, dissolution rules and
division rules for elementary membranes), polarizations cannot be avoided in order to solve computa-
tionally hard problems efficiently (assuming tlatz NP). At the middle of 2005, a partial positive
answer was given, proving that the conjecture holds if dissolution rules are forbidden. In this paper we
give a detailed and complete proof of this result modifying slightly the notion of dependency graph
associated with recognizer P systems.
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1. Preliminaries

The present work is developed within the framework of polarizationless P systems with
active membranes where division rules can only be applied to elementary membranes.
In order to make this paper selfcontained, let us introduce next the required concepts.

1.1. Notations

Let us recall that an alphabEtis a nonempty set and a string bris a finite sequence of
elements of". The set of symbols ocurring in a stringis denoted by./ph(w). We denote
by I'* the set of all strings ovdr. A language over' is a subset of*.
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A multiset over an alphabétis a map fronl" into the set of natural numbens, The
support of a multisef overT is supp(f) = {a € T : f(a) > 0}. If f, g are multisets
overT’, then we define the union or sum ffandg as follows: the multisef + ¢ defined
by (f + ¢g)(a) = f(a) + g(a), for eacha € T.

A decision problemX, is a pair(Ix,fx) such that/x is a language over a finite
alphabet (whose elements are callestanceyandfx is a total boolean function (that is, a
predicate) overl y . Given a decision problenlY = (Ix,0x) we can associate a language
to it as follows: Ly = {w € Ix : Ox(w) = 1}. Conversely, given a languade over an
alphabel’, we can associate a decision problem to it as follo¥is:= (Ix, ,0x, ), where
Ix, =T* andfx, = {(z,1): v € L} U{(x,0): = ¢ L}.

In this paper we work only with finite alphabets.

1.2. The graph reachability problem and the circuit value problem

Thegraph reachability(or accessibility)problemis the following: given a directed graph,
G = (V, E), with two specified vertices andt, determine whether or not there is a path
from s to t. We denote this decision problem REACHABILITY.

There are algorithms solving this problem, for instanceyde algorithms based on
breadth first search or depth-first search. These algorittatgsmine whether two vertices
are connected i@ (max(|V |, |E|)) time. Moreover, they basically need to store at most
|V| items, so these algoritms ug¥|V|) space. But this quantity of space can be reduced
to O(log?|V'|) by using an algorithm that could be called middle-first sedeee[2] for
details, pp. 149-150). In particul®EACHABILITY € P.

The circuit value problemis the following: given a circuit with no variable gates and
where each input gate has an associated boolean valuendetavhether or not the circuit
evaluates tdrue It is well known that the circuit value problem iffa-complete problem
(see theorem 8.1 if2] for details).

1.3. Polarizationless P system with active membranes

Definition 1. Apolarizationless P system with active membraofetegree; > 1is atuple
= (T, H,uMai,...,Mg R, houtput), Where:

(1) ' is a working alphabet of objects, aridl is a finite set of labels for membranes;

(2) nis amembrane structure (a rooted tree) consisting wiembranes injectively labeled
with elements of7, the label of membraneis denoted by(i);

(3) My,..., M, are strings oved describing the multisets of objects placed in the
initial regions of;

(4) Ris afinite set of developmental rules, of the following farms

(@) [a— u]p, forh € H,a € T, u € T'* (object evolution rules)

(b) a[ ]n = [b]n, forh € H,a,b € T (send—in communication rules)
©) [a]n = []n b, forh € H, a,b € T' (send—out communication rules)
(d) [a]n — b, forh € H,a,b € T (dissolution rules)
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) [a]n = [b]n [¢]n, fOr h € H, a,b,c € T (division rules for elementary mem-
branes

(5) houtpur € H OF houpue = env (enwv is the label of the environment) indicates the
output region.

These rules are applied according to usual principles @rfrationless P systems (see
[4] for details). Notice that in this polarizationless framelthere is no cooperation, nor
priority, nor changes of the labels of membranes. In thispa do not consider division
rules for non-elementary membranes.

A membrane structure is a rooted tree. Thus, we can definedtiennof thefather
f(h) orachild ch(h) of a region labeled by in a natural manner. THengthof a rule is
the number of symbols ocurring in it. For instance, commatidn and dissolution rules
have length 2, but division rules have length 3.

In order to solve decision problems in the so-calletiform way we will work
with P systems with input membrane. These systems have am ahphabet: strictly
contained in the working alphabét, the initial multisets are ovel \ %, and they
also have a distinguished membrane (the input membranehiohwthe instances of
a problem are encoded by multisets over the input alphabe$pecifically, if I =
(T, H, p, M1, ..., My, R, houtputs Rinput), aNdI M € T* then the initial configuration
of IT with inputIM is (M, ..., Minpue + IM, ..., M,). Usually, we writell + I M.

Let us recall that irecognizer P systemshe working alphabet contains two distin-
guished elementgesandno, the output of the system is collected in the environmeht, al
computations halt, and {f is a computation of the system, then either obyestor object
no (but not both) must have been sent to the output region ofythei®, and only at the
last step of the computation.

Without loss of generality, we can suppose that in a recagri®zsystem with active
membranedl, for each labeh € H the number of rules associated with membrarie
lower than or equal t@ - |T'| (the non-determinism among all the rules associated with a
given membrane, except those of send-in type, can be aJoitleds, we can suppose that
|Rr| < 2¢ - |T'|, whereg is the degree off.

The class of recognizer polarizationless P systems witheactembranes (resp., which
do not make use of division rules) is denoted ap1° (resp.. N AM"). If we consider
three electrical charges the corresponding classes aceatkny.AM and N AM, respec-
tively. We also denote byl M°(—d) the class of all recognizer P systems with polariza-
tionless active membranes such that dissolution rulesoabadiden.

Definition 2. A decision problenX = (Ix, 0x) is solvable in polynomial timéy a family
of recognizer P systems with input membrdiie= {II(n) : n € N}, denoted byX €
PMCyg, if the following holds:

e There exists a deterministic Turing machine (DTM) workimgolynomial time which
constructs the systehii(n) fromn € N.

e There exists a paifcod, s) of polynomial time computable functions over (a poly-
nomial encoding ofX in II) such that for each instance € Ix, s(w) is a natural
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number (obtained by means of a reasonable encoding scherde)@& w) is an input
multiset of the systeii(s(w)).

e There existsc € N such that for each instance € Iy, every computation of the
systendI(s(w)) with inputcod(w) performs at mosfw|* steps.

e For each instancey € Ix: (a) if there existan accepting computation &f(w), then
Ox(w) = 1; and (b) if x (w) = 1, theneverycomputation oflI(w) is an accepting
computation.

The familyII is said to provide a (polynomial-timahiform solutionto the problemX .

As a direct consequence of working with recognizer membsysems, these com-
plexity classes are closed under complement. Moreoveyr areeclosed under polynomial
time reductiong7].

The proof of the Milano theorerd] (each deterministic P system with active membranes
but without membrane division can be simulated by a detestigriTuring machine with a
polynomial slowdownand a proof given by A.E. Porre¢8 (each tractable problem can
be solved in polynomial time by families of recognizer Pesyst with active membranes
and without inputcan be adapted in order to show the following result:

Corollary 3. PMC g0 = P.

This result suggests the following question: whether infthmework of polarization-
less P systems with active membranes, division rules (ammyefementary membranes)
provide a borderline between tractability and intraciab{Bssuming thaP # NP).

Let us recall thaP € PMC+, whereT is the class of albasic transitionP systems
(that is, transition P systems with only evolution, comnuation, and dissolution rules).
In this kind of P systems the size of the membrane structues dot increase. The proof
of this result can also be adapted to pr@®®IC x4 = P. It is well known that com-
putationally hard problems can be solved in a uniform wayayifies of P systems from
AM. Therefore, in the framework of P systems with active memésaand three electri-
cal charges, division rules (only for elementary membrapesvide a borderline between
tractability and intractability (assuming that~ NP).

2. A Conjecture of Paun
At the beginning of 2005, Gh. Paun (problénfrom [5]) wrote:

My favorite question (related to complexity aspects in Resyis with active mem-
branes and with electrical charges) is that about the nundfguolarizations. Can
the polarizations be completely avoided? The feeling i$ tihia is not possible
— and such a result would be rather sound: passing from norjzaton to two
polarizations amounts to passing from non—efficiency toieffcy.

This so—called Paun’s conjecture can be formally fornedah terms of membrane
computing complexity classes as follovid:= PMC 4\, o.

An affirmative answer to the conjecture would indicate tie &bility to create an
exponential amount of workspace (expressed in terms of uiheber of membranes and
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objects) in polynomial time, is not enough in order to soleemputationally hard problems
efficiently.

Conversely, a negative answer to the conjecture would geoaiborderline between
tractability and intractability (assuming thtA NP): division rules for elementary mem-
branes.

In this paper we provide a partial affirmative answer of tlif’S conjecture in the
case that dissolution rules are forbidden. The proof ofrissilt is based on the concept of
dependency graph, improving and formalizing the resuls@méed in1].

Let IT be a recognizer polarizationless P system with active mandgs which do not
make use of dissolution rules. A directed graph can be assacivithII verifying the
following property: every accepting computationldfis characterized by the existence of
a path in the graph between two specific nodes.

Definition 4. LetIl = (I, H, u, M., ..., My, Ru, env), be a recognizer P system with
active membranes without polarizations and without dissoh. The dependency graph
associated witI is the directed grapld:;; = (Vi1, Err) defined as follows:

VH:VLHUVRHU{SH},SH¢FUH,
Vig={(a,h) el x H: FueT* (la — ulp € Rn) V

el ([a]h — th S RH) \Y
Jbel'3n € Ch(h) (a[]h/ — [b]h/ S RH) V

b, c € T ([a]p, — [blnlc]n € Rn))},
VRn ={(b,h) eT' x H: 3a €' 3ueT* (ja — ulp € RuAb € alph(u)) v

Ja € T3 € ch(h) ([a]w — [|wb € Ru) v
Ja €T (al]n — [b]n € Ru) V

Ja,c €T ([a]lp — [b]nlc]n € R V [a]n — [¢]n[bln € Ru)},
En = EY U EZ,
E} = {(sm, (a,h)) : the objectu is in membrané at the initial configuration of1},

EZ = {((a,h), (b,n')) : Ju e T* ([a — u]p, € Ru A b € alph(u) A h=h')V
(laln = [Jnb € R A B/ = f(h))V
(a[ ] — [D)w € Ru Ah = f(B'))V

3c €T (([aln — Blaleln € Ru V [aln — [cnlbln € Ru) A b = h')}.
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This definition modifies the Definition 10 frofi] slightly.
Bearing in mind that in recognizer P systems all computations halt, we deduce that each
path in the dependency graph associated with it must be simple.

Proposition 5. There exists a deterministic Turing machine working in polynomial time
that construct the dependency graph associated with each recognizer P system with active
membranes without polarizations and without dissolution.

Proof. A deterministic algorithm that given a recognizer P system constructs the associated
dependency graph, is the following:

[nput: II=(T,H puMi,...,My Ri,env) € AMO(—d)

Vi {81‘[}, Er @

for i< 1to ¢ do
for each a € supp(M;) do

Vi VaU{(a,1(4))}; En  EunU{(sm, (a,1(2)))}
for each rule re Ry do

if r=la—ulpAal ph(u) ={a1,...,as} then
Vi Vmnu U{(a,h),(aj,h)}; En  Enu U{((avh)a(%h))}

i f r:[a]h%[ ]hb t hen
VH VHU{(CL’ h)v(baf(h))}1
En < EqU{((a,h), (b, f(h)))}

if r= CL[ ]h — [b]h t hen
VH VHU{(a7f(h))7(b7 h)};
En«+ Eng U {((a7 f(h))7 (b, h))}

if r= [a]h — [b]h[c]h t hen
Vi VHU{(av h))v(bv h)?(cv h)}1
En+— En U {((a7 h))v (b7 h))v ((a7 h)7 (C7 h))}

The running time of this algorithm is of the ord@(q - |Rr1| + m - |Rnr|), whereg is the

degree of the P systeiii, andm is the value mafdength(r) : r € Rn}. As|Rn| <
2¢ - ||, the total cost time of the algorithm@((q + m) - ¢ - |T). O

Next, let us prove that the dependency graph associated Witbyatem fromA M (—d)
can be used to characterize the behavior of the system (accepting or rejecting inputs),
through the analysis of simple paths.

Theorem 6. LetII = (T, H, u, My,..., M, R, env) be a recognizer P system from
AMP(—d). The following assertions are equivalent:

(1) There exists an accepting computatiorlof
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(2) There exists a simple path in the dependency gdphfrom sy to (yes, env) with
length greater or equal to 2.

Proof. In order to prove thatl) = (2) we will see that for eachh > 1 and for each
computatiorC = (Cy, C4, ..., C,) of I1, if C is an accepting computation, then there exists
a simple path in the dependency graph from sy to (yes, env).

By induction oni. If C = (Cy, C7) is an accepting computation &, then at the only
step of that computation, the objegts has been sent to in the environment by a rule
of the form|a],, — yes [ |n., Whereh, is the label of the skin membrane. Of course,
in order to apply the rule, objeet must occur in the skin in the initial configuration.
Thus((sm, (a, hs), ((a, hs), (yes, env)) is a simple path iz from spp to (yes, env) with
length greater or equal than 2. That is, the result holds fer1.

Let n > 1 and let us suppose that the result holds for Let C =
(Co,C4,...,Cn,Chy1) be an accepting computation@f Let us consider the recognizer
P systeml’ = (T, H, u, M4, ..., My, R, env) where for eachi, 1 < i < ¢, M; is the
contents of regionin the configuratio;. ThenC’ = (C4, ..., C,, C,+1) is an accepting
computation oflI’ of lengthn. By the induction hypothesis, there exists a simple path
in the dependency gragh: from siv to (yes, env) with length greater or equal than 2.
Let (a1, h1) the next vertex ofyr in that path. Then, the objeat belongs to the region
labeled byh; in the configuratior; . We consider two cases:

— The object; is in region labeled by, in the configuratiorC),.
In this case, substituting the vertey. by si; in v/ we obtain a simple path in the
dependency grapfiy; from sy to (yes, env) with length greater or equal than 2.
— The object; is notin region labeled b¥; in the configuratior.
In this case, the pailz1, k1) has been produced at the first step of the computation
C, that is, there existag, ho) € ' x H and a ruler € Ry; such that by applying the
pair (ag, ho) producegas, hy). Hence,

((s11, (a0, ho)); ((ao, ho), (a1, h1)),y" = {(s1r, (a1, h1))})

is a simple path in the dependency gra&ph from sy to (yes, env) with length greater
or equal than 2.

In order to prove thaf2) = (1) we will see that for each > 2 and for each simple
path~ in the dependency graghi;; from sy to (yes, env) with lengthn, there exists an
accepting computation af.

Let us reason again by induction @nin the base case, letbe a simple path it
from sy1 to (yes, env) with length 2. Then, there exists an objegtin a region labeled
by K¢ in the initial configuration such that= ((sr1, (ao, ho)), ((ao, ho), (yes, env))). Let
(1 a configuration obtained frorf, by applying a rule ofI that yields(yes, env) from
(a0, ho) (of course, many other rules could be applied at the sameirstapmaximally
parallel way). Then¢ = (Cy, C4) is an accepting computation b

Letn > 2 and let us suppose that the result holdsfoket

Y= ((5H7 (a07 h())), ((a(), ho), (a17 hl))7 LR ((anflv hn,1)7 (yesa env)))
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be a simple path id/;; from sy to (yes, env) with lengthn + 1.

Foreachj, j =0,1,...,n — 1, we denote by, a rule ofII transforming(a;, /;) into
(aj+1,hj+1), wherea,, = yes andh,, = env. Let Cy a configuration obtained from the
initial configurationCy, from IT by applying a multiset of rules containimg. LetII’ be the
recognizer P system:

' = (T, H,p, M4, ..., M, R, env)
where for each, 1 < i < ¢, M/ is the contents of regionin the configuratiorC;. Then,

’Y/ = ((SH’7 (ah hl))7 ((a17 h1)7 (a27 h2))7 BREE) ((an_lv hn—1)7 (yes7 env)))

is a simple path if7yy from sy to (yes, env) with lengthn. From the induction hypoth-
esis we deduce that there exists an accepting comput@tien (Cy,Cs, ..., C) of II'.
ThereforeC = (Cy, C1, Cs, ..., Cy) is an accepting computation Gff. O

Corollary 7. Let X = (Ix,0x) be a decision problem. LAl = {II(n) : n € N}
be a family of recognizer P systems frooM°(—d) solving X in a uniform way and in
polynomial time. Lefcod, s) be a polynomial encoding associated with that solutionriThe
for each instancev € I'x the following assertions are equivalent:

(1) Ox(w) =1.
(2) There exists a simple path in the dependency graph asdawithIl’ = I1(s(w)) +
cod(w), from sy to (yes, env).

Proof. Itis enough to take into account the previous theorem andtioathat) x (w) = 1
if and only if there exists an accepting computation in thstemII(s(w)) with input
multisetcod(w). O

Theorem 8. PMC 4 0(—q) = P.

Proof. Letus notice thaP C PMC 40 (_qy because the clad8MC 4 v (_q) is closed

under polynomial-time reduction and contains Br&omplete problemIRCUIT VALUE.
Letus see the converse inclusion. Detc PMC 40 (_q). LetIT = {II(n) : n € N}

be a family of recognizer P systems fraf\”(—d) solving X in a uniform way and in

polynomial time. Let(cod, s) be a polynomial encoding associated with that solution. Let

us see thak’ <P REACHABILITY.

Let w be an instance oK. Let us consider the systehfi(s(w)) with input multiset
cod(w). Then we define:
F(w) = (Gri(s(w))+cod(w)s STI(s(w))+cod(w), (Y€S, €NV))

From Propositions we deduce that” is a polynomial-time computable function.
Moreover, we have:

Cor.T
w € Lx <= Ox(w) =1 <= F(w) € LpgacuasrLiry
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Finally, we deduce thak € P because of the clas3is closed under polynomial-time
reductions X <P REACHABILITY andREACHABILITY € P. |

Therefore, the feeeling expressed by Gh. Paun on his domngecould be reformulated
as follows: in the framework on polarizationless P systetitis active membranes, passing
from allowing dissolution rules to forbidding them amoutatpassing from non-efficiency
to efficiency (assuming th&t # NP).

3. Conclusions

Dissolution rules can be avoided when we sdll-complete problems in an uniform way
and in polynomial time by families of P systems with activenfiganes and three electrical
charged6].

This paper is partially answering a conjecture formulatgd3heorghe Paun at the
beginning of 2005 related with the role played by the pokgians in the framework of P
systems with active membranes from a computational contplesint if view. We present
a detailed proof of a partial affirmative answer that hightggthe relevance (iMM") of
an apparently innocent ingredient: dissolution rules.
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