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Abstract
Membrane computing is a well-known research area in computer science inspired by the organization and behavior of live 
cells and tissues. Their computational devices, called P systems, work in parallel and distributed mode and the information 
is encoded by multisets in a localized manner. All these features make P systems appropriate for dealing with digital images. 
In this paper, some of the open research lines in the area are presented, focusing on segmentation problems, skeletonization 
and algebraic-topological aspects of the images. An extensive bibliography about the application of membrane computing 
to the study of digital images is also provided.
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1  Introduction

Computer vision [153] is one of the most promising chal-
lenges for computer scientists in the coming years.1 This 
research area is placed in the interplay of many disciplines 
such as artificial intelligence, pattern recognition, signal 
processing, neurobiology, psychology or image process-
ing, among others. It concerns the automated processing of 
images from the real world to extract and interpret informa-
tion on a real-time basis.

Roughly speaking, a digital image is a two-dimensional 
surface where each point is associated with a set of features 
as brightness or color. It is natural to consider only a dis-
crete version of the definition, since only a finite amount of 
pixels placed in a lattice of integer coordinates is usually 
taken. The set of features can also have a finite amount of 

values (e.g., values in a range {0,… , 255} for colors). Such 
discrete amount of data makes digital images appropriate 
for dealing with membrane computing techniques, but other 
features can be also considered. One of them is that the treat-
ment of the image can be parallelized and locally solved. 
Regardless of how large the picture is, many of the processes 
can be performed in parallel in different local areas of the 
image. Another interesting feature is that the local informa-
tion needed for an image transformation can also be easily 
encapsulated in a membrane and represented as a multiset of 
objects (for example, the new color of a pixel only depends, 
in some cases, on the color of the surrounding pixels and 
such discrete information can be encoded with membrane 
computing techniques). Such features, together with the 
maximal parallelism, have encouraged many researchers to 
explore the links between membrane computing and digital 
image processing.

Formally, a 2D digital image  with size n × m ( n,m ∈ ℕ ) 
is a rectangular net of objects (i, j) called pixels (voxels 
in 3D images), with 1 ≤ i ≤ n and 1 ≤ j ≤ m (in general, 
any subset of the integer plane ℤ × ℤ can be chosen). 
Let  , the alphabet of colors of  , be the ordered set of 
all colors in  . We define the size of  , || , as the num-
ber of colors of this alphabet. Moreover, we will assume 
that each pixel of  is associated with a color of  . So, we 
encode the pixel (i, j) with the associated color a ∈  as 
the object aij . Therefore, the image I can be codified as the 
set {aij ∶ a ∈  ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} . Another basic 
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concept associated with pixels is the adjacency. In such case, 
a distance is defined and two pixels are adjacent if the dis-
tance between them is one. Depending on the chosen dis-
tance, we can talk about 4-adjacency or 8-adjacency relation. 
The different treatments of such mappings (digital images) 
provide a big amount of current applications in biometrics 
[1], surveillance [35], medical imaging [6], human finger-
print classification [84], cartography [98], data compression 
and data storage [71], automated inspection of printed circuit 
boards [180] or optical character recognition (OCR) [156] 
among many others.

In the last years, the development of new hardware, 
mainly graphics processing units (GPU), has made possible 
the effective implementation of the paralellization intrinsic 
to P systems. Such GPU are especially well suited to address 
problems that can be expressed as data-parallel computa-
tions and, therefore, they are appropriate for the simulation 
of membrane computing devices. In fact, we can nowadays 
find many effective solutions to real-life problems inspired 
by membrane computing principles2 (e.g., applications in 
computational economics [166], engineering [99], self-
configurable robots [9] or fault diagnosis of power systems 
[120]).

In the literature, one can find many examples of the use 
of bio-inspired techniques for dealing with problems associ-
ated with the treatment of digital images. One of the classic 
examples is the use of cellular automata [145, 151]. Other 
efforts are related to artificial neural networks as in [53, 187] 
or, more recently, deep learning (see, e.g., [75, 103, 130]). In 
this paper, we present some of the main research lines bridg-
ing membrane computing and digital images. In Sect. 2, we 
recall the first attempts of linking both disciplines, mainly 
based on array grammars and on a graphical interpretation of 
the information encoded in a P system configuration, which 
allows to associate a picture to it. Section 3 is devoted to one 
of the main applications of membrane computing to image 
processing, namely the segmentation of images. Segmen-
tation is the process of splitting a digital image into sets 
of pixels to make it simpler and easier to analyze. One of 
its main uses is the localization of objects and boundaries. 
Technically, the process consists of assigning a label to each 
pixel, in such a way that pixels with the same label form a 
meaningful region. Among the applications of segmentation 
of digital images, we can find the face recognition [186] 
or location of objects in satellite images (roads, forests, 
etc.) [61], but probably its main application area is medi-
cal imaging [13]. Section 4 is devoted to the skeletoniza-
tion of images. Skeletonization is one of the approaches for 
representing a shape with a small amount of information 
by converting an image into a more compact representation 

and keeping the meaningful features. The conversion should 
remove redundant information, but it should also keep the 
basic structure. Other of the most promising applications 
focuses on algebraic-topological aspects of the images 
(Sect. 5) as those related to homology theory or discrete 
Morse theory (see, e.g., [31, 137]). The paper ends with an 
example of application (Sect. 6) and some final conclusions 
and comments on further research.

2 � First steps

One of the first steps by bridging membrane computing and 
digital images was to consider two-dimensional objects. The 
objects placed in a membrane are usually zero-dimensional 
or one-dimensional (in the case of string objects [57, 127]). 
The first step for considering images in membrane comput-
ing is the use of two-dimensional objects, called arrays.3 
Array grammars have been widely studied in the literature. 
They can be considered as a straightforward extension of 
string grammars to two-dimensional pictures. Such pictures 
are sets of symbols placed in the points with integer coordi-
nates of the plane (see, e.g., [36, 59, 144, 171]).

In [22], the model of array-rewriting P systems was pre-
sented on the basis of the transition P systems [125]: rules 
are of type  → (tar), where  is the array to be rewrit-
ten,  is the new one and tar ∈ {here, in, out} indicates the 
emplacement of the picture where the substitution has been 
made. Different approaches can be found in [128, 160]. In 
a natural way, transition P systems were extended to other 
P systems models, as in [27], where tissue P systems with 
arrays are used for dealing with the segmentation of images 
(see Sect. 3).

For example,4 let us consider a P system with three nested 
membranes [ [ [ ]3 ]2 ]1 , an alphabet with two symbols a and 
# (the blank), an initial configuration with membranes 2 and 
3 empty and the array a

a
 placed in the membrane 1. Let us 

consider the sets of rules

This P system generates all the L-shaped angles with 
equal arms, each arm being of length at least three. In the 

R1 =

{
#

# a
→

a

# a
(in)

}
,

R2 =

{
a #

#
→

a a

#
(out),

a # #

#
→

a a a

#
(in)

}
,

R3 =�.

2  Some of these applications were collected in the volume [34].

3  An overview of 2D picture array generating models based on mem-
brane computing can be found in [164].
4  Adapted from the Example 1 in [22].
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literature, there are many approaches setting bridges between 
array grammars and membrane computing (see, e.g., [5, 
20–22, 39, 40, 56, 97, 128, 160, 162, 163]).

Among the recent contributions in this research line, 
we can cite the so-called array P systems with permitting 
features [162]. The authors use the technique of regulating 
rewriting [37], associating permitting symbols with rules 
in the regions of an array P system [22], so that an array 
is rewritten by a rule only when the permitting symbols of 
the used rule are present in the array rewritten. This model 
incorporates the feature of permitting symbols in the rules. 
The advantage of this approach is that there is a reduction 
in the number of membranes in comparison to other array P 
system models. This idea of permitting features is also used 
in [86], where the authors bridge these concepts with array P 
system that uses basic puzzle grammar [159, 161]. Another 
variant of array P system, called tabled parallel array P sys-
tem, was introduced in [87] by employing a well-known 
technique, called tables of rules, of grouping rules, espe-
cially used in Lindenmayer systems [146]. This enables a 
specific collection of rules being used at a time and enhances 
the generative power.

Another of the first links between P systems and digital 
images was the generation of graphical representation of 
branching structures able to simulate the growing of higher 
plants. The growth of plants, considered as a function of 
time, has attracted the attention of the scientific community 
for a very long time. Features such as the bilateral symmetry 
of leaves and the central symmetry of flowers have been 
a subject of study for computer scientists, mathematicians 
and life scientists among others. In 1968, Aristid Linden-
mayer presented a theoretical framework for studying the 
development of simple multicellular organisms. The devices 
introduced in this framework are known as parallel rewriting 
systems or L-systems. L-systems were introduced for mode-
ling multicellular organisms in terms of division, growth and 
death of individual cells [101, 102]. Several years later, the 
range of applications of L-systems were extended to higher 
plants and complex branching structures [60].

In [64, 65], a first approach for using P systems to simu-
late the growth and development of living plants was pre-
sented. This approach mixes L-systems and P systems, being 
in fact an L-system factorized into several units, which are 
them computed in the compartments delimited by the mem-
branes of the P system.

Later, a new approach [140, 142, 143] was presented. It 
used the model of P systems with membrane creation [110, 
124] where an object can produce a whole membrane via 
the application of a rule. This kind of rule allows to control 
the development of the membrane structure of a cell-like 
P system, which has a natural graphical interpretation as a 
tree-like graph. The multiset placed inside the membranes 
can be graphically interpreted in terms of color, length or

thickness of the corresponding segment in the branching 
structure, allowing to provide a more and more realistic 
appearance. Figure 1, borrowed from [143], shows the 
graphical representation of four configurations of a P sys-
tem with membrane creation. The drawn trees reproduce 
the tree-like structure of the membrane structure of the P 
systems and the length and thickness of the branches and 
the corresponding angles are fixed by the multiset of objects 
placed in the membranes in the corresponding configura-
tion. These ideas of representing branching structures were 
also considered in [139], where a specific software for this 
graphical representation was developed. Some examples of 
polygons, spirals, friezes and plants can be found in this 
paper. Figure 2 shows some of them.

A close interpretation of the growing of higher plants was 
made for linking membrane computing and fractals [79]. A 
fractal [106] is a shape made of parts similar to the whole in 
some way. This self-similarity occurs over an infinite range 
of scales in pure mathematical structures, but over a finite 
range in many natural objects such as clouds, coastlines, 
surface of tumors or snowflakes. An appropriate use of the 
creation rules together with the non-determinism intrinsic to 
P systems and the interpretation of the multisets of objects 
could be useful in the study of the smooth surface of solid 
tumors, as pointed out in [80].

3 � Segmentation

The study of array grammars or the graphical interpreta-
tion of a P system configuration was the first attempt to link 
membrane computing techniques to the study of images, but 
they cannot be considered as image processing. In such a 
way, one of the most studied image processing techniques 
studied in membrane computing is segmentation.5

Fig. 1   Graphical interpretation of four configurations of a P system 
simulating the growing of a plant. Image borrowed from [143]

5  A recent literature survey devoted exclusively to image segmenta-
tion by using membrane computing can be found in [174].
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Segmentation is the process of assigning a label to every 
pixel in an image such that pixels with the same label share 
certain visual characteristics. The goal of segmentation is to 
simplify and/or change the representation of an image into 
something that is more meaningful and easier to analyze. 
Image segmentation is typically used to locate objects and 
boundaries (lines, curves, etc.) in images. More precisely, 
image segmentation is the process of assigning a label to 
every pixel in an image in such a way those pixels with the 
same label share certain visual characteristics. These regions 
are mutually disjoint, well defined and have the same prop-
erties. The purpose of segmenting an image is to identify 
regions that are then utilized to recognize and understand 
the image. In the past decades, a large number of image seg-
mentation algorithms have been developed [25, 104, 115]. 
These algorithms can be roughly classified into three cat-
egories: threshold-based segmentation methods, edge-based 
segmentation methods and region-based segmentation meth-
ods. Segmentation has shown its utility in bordering tumors 
and other pathologies, computer-guided surgery or the study 
of anatomical structure, but also in techniques which are not 
thought to produce images, it produces positional informa-
tion such as electroencephalography (EEG) or electrocardi-
ography (EKG).

In the literature, there exist different techniques to seg-
ment an image. Some of them are clustering methods [100, 
169], histogram-based methods [168], watershed transfor-
mation methods [167, 179] or graph partitioning methods 
[181]. Some of the practical applications of image segmen-
tation are medical imaging [169], the study of anatomical 
structure, location of objects in satellite images (roads, for-
ests, etc.) [154] or face recognition [96] among others.

In the literature, one can find many approaches from 
membrane computing to the problem of segmenting images. 
Some of these approaches are summarized in Table 1.

3.1 � Threshold‑based segmentation methods

Thresholding is widely used as a popular technique in 
image segmentation [148]. The goal of thresholding is 
to separate objects from background image or discrimi-
nate objects from objects that have distinct gray levels. 
Its underlying assumption is that an image consists of 

different regions corresponding to the gray-level ranges. It 
has been used widely as a tool to segment the gray images, 
but only a few works on color image segmentation have 
been reported. The main advantage of this technique lies in 
its simple computation approach. However, the threshold-
based segmentation method ignores the spatial relation-
ship information.

In recent years, P systems have been used to deal with 
threshold-based segmentation problems. Díaz-Pernil 
et al. [45] developed an image segmentation method on 
2D images using P systems, which was applied to medi-
cal image segmentation. Christinal et al. [28] presented 
an image segmentation method based on tissue-like P 
systems by using the 4-neighborhood relation of pixels 
in the 2D image. However, they only addressed the seg-
mentation results of artificial images rather than real-life 
images. Reina-Molina et al. [134] proposed a threshold-
ing method based on tissue-like P systems with multiple 
auxiliary cells. Peña-Cantillana et al. [118] presented a 
method based on thresholding using also 4-adjacency with 
tissue-like P systems. Christinal et al. [33] have proposed 
a variant of the P system (tissue-like P system) using 
the rules to perform a parallel color segmentation of 2D 
images based on a threshold method. Wang et al. [170] 
proposed an optimal single-level thresholding method 
based on P systems. Peng et al. [119] presented a three-
level thresholding method based on cell-like P systems 
for image segmentation. Zhang et al. [185] developed an 
infrared object segmentation method with membrane com-
puting, which was used to obtain the optimal parameters 
quickly. Peng et al. [122] proposed a thresholding method 
based on tissue-like P systems and fuzzy entropy. In [121], 

Fig. 2   Graphical representation 
of four configurations of a P 
system. Images borrowed from 
[139]

Table 1   The studies of P systems-based segmentation

# Methods References

1 Threshold-based segmentation [28, 33, 45, 118, 119, 121]
[122, 134, 170, 185]

2 Region-based segmentation [32, 88, 123, 172, 178]
3 Edge-based segmentation [15, 26, 29, 42, 48, 173]
4 Software and hardware implemen-

tation
[15, 16, 42, 45, 117, 155]
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Peng et al. developed an optimal multi-level thresholding 
method based on cell-like P system.

3.2 � Region‑based segmentation methods

There are two key approaches regarding the region-based 
segmentation method: region growing and splitting–merg-
ing. Region growing polymerizes images, pixels or sub-
regions that are considered as seeds into larger regions 
according to some criteria [23]. The characteristics of pixels 
and the adjacency of spatial distribution are fully considered 
in region growing. However, because of its iterative compu-
tational process, region growing has a high computing cost. 
In recent years, P systems have been used to realize several 
region-based segmentation methods.

Christinal et al. [32] proposed a region-based segmenta-
tion method for 2D and 3D images with tissue-like P sys-
tems, which was later improved by Carnero et al. [14]. Yang 
et al. [178] developed a region-based segmentation method 
with membrane computing, which effectively segmented 
gray images. However, the method cannot be extended to 
color images. Thus, Peng et al. [123] presented a region-
based method to deal with color image segmentation. Isa-
wasan et al. [88] proposed a region-based segmentation 
method based on tissue P systems for hexagonal digital 
images. Yahya et al. [172] proposed in 2015 a region-based 
method based on tissue P systems for 2D image segmenta-
tion. More recently, Yahya et al. have also presented a model 
for 3D image segmentation by using tissue-like P systems 
[176] and have used the Jaccard index method [89, 90] to
measure the accuracy of the 2D segmentation in [175].

3.3 � Edge‑based segmentation methods

The edge-based segmentation method is extensively uti-
lized for gray-level image segmentation, which is based 
on the detection of discontinuity in the gray level. An 
edge or boundary is a place where there is a more or less 
abrupt change in the gray level. Among the most used edge 
detection operators are Roberts operator, Sobel operator, 
Gauss–Laplace operator and Canny operator. Inspired from 
the mechanism of P systems, a number of edge-based seg-
mentation methods have been addressed in recent years.

Christinal et al. [29] presented an edge-based segmen-
tation method using tissue-like P systems for 2D and 3D 
images. Díaz-Pernil et al. [48] proposed an edge-based seg-
mentation method based on tissue-like P systems to obtain 
homology groups. Díaz-Pernil et al. [42] proposed a parallel 
implementation of a new algorithm for segmenting images 
with gradient-based edge detection by using techniques from 
membrane computing. Carnero et al. [15] used tissue-like 
P systems to design an edge-based segmentation method. 
Christinal et al. [26] developed a method to search partially 

bounded regions with P systems. As a final reference, Yahya 
et al. presented in [173] a tissue-like P system-based edge-
based segmentation method for 2D hexagonal images.

3.4 � Software and hardware implementation

Carnero et al. [15, 16] have proposed a new hardware tool 
including a field-programmable gate array unit (FPGA) to 
perform segmentation of digital images for solving edge-
based detection and noise removal problem. Their system 
uses membrane computing as well as a hardware program-
ming (VHDL) language to propose an ad hoc processor. In 
another work, Díaz-Pernil et al. [45] have proposed a new 
software tool for segmenting 2D digital images on the basis 
of tissue-like P system, wherein the object oriented C++ 
programming language has been used in the implementa-
tion part. However, they did not provide a clear explanation 
regarding the technical aspects of developing the proposed 
tool.

A bio-inspired membrane computing software has been 
proposed by Peña-Cantillana et al. [117] to solve the thresh-
old problem and it has been implemented in Compute Uni-
fied Device Architecture ( CUDATM ), an innovative device 
architecture (see Sect. 7). Sheeba et al. [155] have proposed 
tissue-like P system to segment medical image, nuclei of 
the white blood cells (WBCs) of the peripheral blood smear 
images in morphology segmentation technique. Their algo-
rithm has been implemented using MATLAB software.

In the work of Díaz-Pernil et al. [42], a CUDATM has 
been presented to implement tissue-like P system rules for 
segmenting images by the use of gradient-based edge detec-
tion to enhance the traditional methods of segmenting digi-
tal images. In [172], Yahya et al. used the tissue P systems 
simulator presented in [12] to check the validity of their 
design. A different approach can be also found in [46].

4 � Skeletonization

Skeletonization in image processing is an approach for rep-
resenting a shape with a small amount of information by 
converting an image into a more compact representation 
and keeping the meaningful features. The conversion should 
remove redundant information, but it should also keep the 
basic structure. The concept of skeleton was introduced 
by Blum [10, 11], under the name of medial axis transfor-
mation. The skeleton of an image is useful to characterize 
objects by a compact representation while preserving the 
connectivity and topological properties of any image. The 
most important features concerning a shape are its topology 
(represented by connected components, holes, etc.) and its 
geometry (elongated parts, ramifications, etc.), and thus they 
must be preserved.
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Roughly speaking, we can say that the image B is a skel-
eton of the black and white image A, if the former has fewer 
black pixels than the latter, preserves its topological proper-
ties and, in some sense, keeps its meaning. Figure 3 illus-
trates this idea. The skeletonized image keeps the meaning 
of the original one and it uses fewer black pixels. It keeps the 
basic geometry of the original image and also its topology. 
Let us remark that the white regions inside the hand-made 
words are also white regions in the skeletonized one and the 
connectedness is preserved.

Skeletonization has been found useful for data compres-
sion and pattern recognition in a wide range of applications 
in the industrial and scientific fields. It is usually considered 
as a pre-processing step in pattern recognition algorithms, 
but its study is also interesting by itself for the analysis of 
line-based images such as coronary arteries [52], human fin-
gerprint classification [84], cartography [98], data compres-
sion and data storage [71], automated inspection of printed 
circuit boards [180] or optical character recognition (OCR) 
[156] among others. In many cases, the transformation of all
the pixels can be done in parallel, since the state of a pixel
at the step i only depends on the states of a set of pixels at
the step i − 1 . Such parallelism in skeletonizing algorithms
has been broadly studied (see, e.g., [77, 105, 165, 184]).
The development of new hardware architectures has also
contributed to new parallel implementations of these algo-
rithms [67, 82, 83].

In [49, 50], Díaz-Pernil et al. presented an implementa-
tion of the Guo and Hall algorithm [77, 78] for skeletonizing 
images by using spiking neural P systems. In this algorithm, 
the pixels are examined for deletion in an iterative process. 
First of all, given an p × q image, it is divided into two sub-
sections. One of the sections is composed of the pixels aij 
such that i + j is even. Alternatively, the second sub-section 
corresponds to the pixels aij such that i + j is odd. The algo-
rithm consists of two sub-iterations where the removal of 
redundant pixels from both sub-sections is alternated, i.e., 
in each step only the pixels of one of the sub-sections are 
evaluated for its deletion.

The decision is based on a 3 × 3 neighborhood. Given a 
pixel P0, a clockwise enumeration P1,… ,P8 of its eight 
neighbor pixels is considered, as shown in Fig.  4a. As 
usual, for each i ∈ {1,… , 8} , Pi is considered as a Boolean 
variable, with the truth value 1 if Pi is black and 0 if Pi 
is white. In each iteration, an evaluated black pixel P0 is 
deleted (changed to white) if and only if a set of conditions 
are satisfied. The key point in [50] is the use of a compact 
representation of the neighborhood of a pixel (also used in 
[147]) and the use of weights associated with the synapses 
of the SN P system.

A different approach to the skeletonization of images 
with P systems was presented by Nicolescu [111] where 
an approach to the problem was presented by using com-
plex objects and actors in the framework of membrane 
computing.

5 � Algebraic‑topological aspects

A different approach to computer vision can also be obtained 
from topology. Topology in computer vision is referred to 
as connectivity, in a general way. For example, we look for 
connected components, holes in these connected compo-
nents, etc., where the compulsory idea is the connection. 
In particular, algebraic topology [58] provides techniques 
and algorithms for dealing digital images from a topological 
point of view.

Fig. 3   A hand-written word and its skeletonization. Image borrowed 
from [49]

P1 P2 P3

P8 P0 P4

P7 P6 P5
1/26 1/27

1/20

1/211/221/23

1/24

1/25

Fig. 4   (Left) enumeration of the pixels in a 3 × 3 neighborhood. (Center) 3 × 3 neighborhood with encoding [0, 0, 0, 0, 1, 1, 1, 1, 1], or, shortly, 
24 + 25 + 26 + 27 + 28 = 496 . (Right) scheme of the weights of the synapses. Figure borrowed from [49]
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The relationship between algebraic topology and natural 
computing is not new. In 1996, Chao and Nakayama [24] 
connected both areas using neural networks by extended 
Kohonen maps. Some years after, Giavitto et al. studied in 
[66] the topological structure of the membrane computing
and Ceterchi et al. published two works where the digital
image was introduced in the framework of the membrane
computing [21, 22].

5.1 � Effective homology

Recently, the links between algebraic topology and mem-
brane computing have started to be explored via homology 
theory [30, 31, 48]. In such cases, black and white images 
are taken and using labeling techniques the number of black 
connected components and the number of holes6 of these 
connected components are calculated. This information is 
known as the Betti numbers from a 2D picture.

Effective homology [131, 141, 152] is a algebraic-topo-
logical theory mainly based on the computational notion of 
chain homotopy equivalence, a concept which algebraically 
connects a cell complex or subdivided object with its homol-
ogy groups. Roughly speaking, a chain homotopy equiva-
lence can be specified by an operator, called chain homotopy 
operator, working at the level of linear combinations of cells 
which represents an efficient and non-redundant way of con-
necting cells. For instance, a chain homotopy operator at 
the level of cells of dimension 0 of a cell complex K can be 
completely described by a directed spanning forest (as many 
trees as connected components the object has) of the graph 
subcomplex formed by all the cells of K of dimension 0 and 
1. Effective homology uses chain homotopy operators for
capturing homology information and for representing the
object in an algebraic-topological way. In fact, this idea is
underlying the Eilenberg–MacLane work [54, 55] for com-
puting the homology of prime spaces in homotopy theory,
and it has been recently used in discrete image context. In
[74], a method for computing homology aspects (with coef-
ficients in the finite field ℤ∕2ℤ = {0, 1} ) of a three-dimen-
sional digital binary-valued volume V considered over a
body-centered-cubic grid is described. The representation
used in that paper for a digital image is an algebraic-topo-
logical model (AT-model) consisting of two parts:

• Geometric modeling level A cell complex K(V) topologi-
cally equivalent to the original volume is constructed.
A 3D cell complex consists of vertices (0-cells), edges
(1-cells), faces (2-cells) and polyhedra (3-cells). In
particular, each edge connects two vertices, each face

is enclosed by a loop of edges, and each three-cell is 
enclosed by an envelope of faces.

• Homology analysis level Homology information about
K(V) is exclusively codified in terms of a chain homotopy
operator [72, 73].

This method has recently evolved to a technique for generat-
ing ℤ∕2ℤ-coefficients. It takes an AT model for a 26-adja-
cency voxel-based digital binary volume V using a polyhe-
dral cell complex at geometric modeling level [92, 93, 108] 
and a chain homotopy operator described by a combinatorial 
vector field (a set of semidirected forests or a discrete dif-
ferential form) at homology analysis level [132, 133]. For 
instance, a chain homotopy operator at the level of cells of 
dimension 0 (vertices) of a cell complex K(V) can be com-
pletely described by a semidirected spanning forest of the 
graph subcomplex formed by all the cells of K(V) of dimen-
sion 0 and 1.

In Fig. 5, a pixel-based digital object O (first picture 
from the left) is analyzed as a cell complex in which the 
square pixels are the 0-cells. The 1-cells are edges joining 
8-neighbor pixels and these 2-cells are triangles or squares
formed by three or four mutually (and in a maximal way)
8-adjacent pixels. Picture (b) describes this cell complex
(in dark gray) in which the barycenters of the different
cells are drawn (solid circles for the 0-cells, crosses for the
1-cells and solid squares for the 2-cells). The subcomplex
formed by the 0- and 1-cells can be seen as a subgraph of
the 8-adjacency graph of O. In (c), a spanning tree cov-
ering all the vertices of the cell complex is specified (in

Fig. 5   Example. Pictures a left up, b right up, c left down and d right 
down

6  White connected components surrounded by black connected com-
ponents.
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blue). In fact, we consider a subdivision of this tree, hav-
ing as 0-cells the vertices of the cell complex and the bar-
ycenters of the 1-cells belonging to the tree. An arrow in 
the tree determines the pairing of the source (0-cell) and 
sink (1-cell) cells and, consequently, indicating in this way 
that both are killed in homology group computation. Let 
us emphasize that only the top left 0-cell of the complex is 
not paired. It is a representative cycle (critical 0-cell of the 
homological process determined by the tree) of the unique 
connected component that the object has. Finally, in (d) we 
also draw the trees (in yellow) covering the rest of cells. 
They are semidirected, with arrows from the barycenters 
of 1-cells to the barycenter of the 2-cells. In terms of a 
process for computing homology groups, an arrow also 
means here that its source and sink cells are both killed. 
There is a edge marked in yellow which is not paired with 
an arrow. This 1-cell is a representative critical cell of the 
one-dimensional homology generator that the object has.

Using effective homology theory as the main tool for 
designing algorithms for computing complexes topologi-
cal invariants (cohomology ring, (co)homology operations, 
homotopy groups,...), the problem of decomposing the 
objects into combinatorial graph-like pieces appears in a 
natural way. A possible solution to solve the high complexity 
costs of these processes is provided here by membrane com-
puting. Alsalibi et al. present in [4] a membrane computing 
software for automatically computing homology groups of 
2D digital images in a logarithmic number of steps.

Díaz-Pernil et al. use in [41, 43] a well-known tool from 
membrane computing, promoters. They are used to speed 
up the membrane algorithms. In that way, a bigger amount 
of information is handled. Within the digital imagery set-
ting, we determine here a membrane computing strategy for 
partially specifying a chain homotopy operator at the level 
of pixels for a pixel-based digital 2D binary object O. This 
fundamental data structure in effective homology is obtained 
in terms of a forest spanning every vertex of its associated 
adjacency graph. Every tree of this forest determines and 
localizes the corresponding connected component. In [41], 
the authors obtain something more than the Betti numbers, 
they obtain the representative objects of each connected 
component and the borders of the holes. In ths way, they get 
the homology groups.

Until here, the efficiency of the membrane models with 
these kinds of problems is tested. But, we have to think of 
a bigger problem: what will happen when we want to work 
with bigger dimensions? We can follow two different ways. 
We could carry on as before, where the simplicity (from 
algebraic point of view) enables high efficiency. Or, we can 
introduce new algebraic-topological concepts where the 
amount of information to deal with would be increased.

Reina-Molina et al. decided to take this second option in 
2012 in [135–137]. They present a simulation of the Morse 

theory algorithms in a parallel way, getting the homology 
groups of n-D objects.

We have introduced two different theoretical ways to 
solve problems from algebraic topology, but software based 
on these theories has been also developed. On one hand, 
Peña-Cantillana et al. [41] generate a parallel software using 
GPUs by CUDA to get the homology groups of 2D shapes 
based on techniques of spanning trees generated with mem-
brane models where the promoters are compulsory. On the 
other hand, Reina-Molina et al. use PyCUDA (Python plus 
CUDA) to solve homological problems in a practical way in 
[138]. But, the complexity to adapt the Morse theory to par-
allel algorithms is high. So, this last software works almost 
completely parallel.

Many open questions arise in the relation of membrane 
computing and topology. From algebraic topology, we won-
der if the membrane computing techniques can help in a 
better understanding of the problems and the design of more 
effective solutions. From membrane computing, a deeper 
study is necessary to explore how specific techniques of the 
different models can be applied. In particular, the use of pri-
ority in the application of rules is a strong requirement. It is 
worth to study if it can be avoided. From an implementation 
point of view, the exploration of the different parallel hard-
ware architectures (clusters, grids, FPGA, ...) for the efficient 
implementation of the algorithms theoretically developed is 
an open research line.

6 � A case study: the parallel segmentation 
of the optic disc

Image analysis and processing have great significance in 
the field of medicine, especially in non-invasive treatment 
and clinical study. However, with the development of new 
technologies, larger quantity of data, especially high-qual-
ity images, is available. Therefore, there is a new necessity 
of efficient and fast algorithms capable of processing and 
extracting meaningful features from images in a reasonable 
time. This is the case of mass screening programs for the 
early detection of retinal diseases such as glaucoma or dia-
betic retinopathy. Visual inspection of the large number of 
images so obtained is a time-consuming task for the medical 
experts. Moreover, computer-aided diagnosis (CAD) tools 
based on retinal image processing developed in the past are 
limited by the balance between accuracy and complexity due 
to their sequential programming.

In [44], a fully automatized algorithm based on mem-
brane computing techniques for the parallel segmentation 
of the optic disc in retinal fundus images was presented (see 
Fig. 6). The optic disc is seen on fundus color photographs 
as a bright yellowish disc in human retina from where the 
blood vessels and optic nerves emerge. Its relevance resides 
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in the fact that it is a key point for the diagnosis of a wide 
variety of diseases such as glaucoma or diabetic retinopathy. 
Moreover, it is usually taken as a base for detecting other 
anatomical structures (macula, blood vessels) and retinal 
abnormalities (microaneurysms, hard exudates, drusens, 
etc.). Most of the methods found in the literature are semi-
automatized. This means that the computer treatment is cru-
cial in the localization and detection of the optic disc, but 
it is the human expert who takes the final decision. In this 
paper, a fully automatized method is presented where no 
human expert is necessary for the detection of the optic disc.

Changes in the optic disc can indicate the current state 
and progression of a certain disease, while its diameter is 
usually used as a reference for measuring retinal distances 
and sizes [150]. Therefore, accurate optic disc localization 
and detection of its boundary is a principal and basic step 
for automated diagnosis systems [113].

In [44], a new method has been implemented with the 
GPU technology. Image edges are extracted using a new 
operator called AGP-color segmentator based on the mem-
brane computing approach presented in [42]. It is a mem-
brane computing implementation on CUDATM of the 3 × 3 
and 5 × 5 versions of the Sobel algorithm [157] for edge 
detection. To choose an appropriate threshold to the binari-
zation, a P system implementation [117] of the Hamadani 
algorithm [81] is applied. To avoid erroneous results, the 
obtained image is processed by eliminating the eye border. 
This is performed by applying a threshold on each color 
plane of the original image with the algorithm presented in 
[117]. The circular Hough transform is applied in parallel to 
the image in an interval of radius wide enough to consider 
all the possible optic discs.

The Hough transform is a well-known feature extraction 
technique used in image analysis. The classical Hough trans-
form was concerned with the identification of lines in the 
image, but later the Hough transform has been extended to 
identifying positions of arbitrary shapes, most commonly 
circles or ellipses [7, 51, 85]. The basic idea behind the 
Hough transform is to convert the image into a parameter 
space that is constructed specifically to describe the desired 
shape analytically.

The reliability of the tool was tested with 129 images 
from the public databases DRIVE [158] and DIARETDB1 
[91] obtaining an average accuracy of 99.6% and a mean
consumed time per image of 7.6 and 16.3 s, respectively. A
comparison with several state-of-the-art algorithms shows
that the algorithm represents a significant improvement in
terms of accuracy and efficiency.

7 � Final conclusions

Parallelizing classical digital image algorithms is a big 
challenge in the coming years [38, 116]. Such paralleling is 
much more complex than the merely simultaneous applica-
tion of the sequential algorithm to different pieces of the 
image. The coordination of different simultaneous processes 
in a whole algorithm is so hard a task that commonly the 
parallel algorithm needs to be re-designed with only slight 
references to the classical one. Usually, the design of a new 
parallel implementation not inspired by the sequential one 
allows an open-mind vision of the problem and the proposal 
of new creative solutions. This opens an interesting research 
line not only for membrane computing researchers, but also 
for all of them interested in bio-inspired solutions, since the 
mathematical expression of the classical algorithms may 
change if we introduce the intrinsic parallelism of natural 
computing designs. Such new parallel solutions need a 
strong theoretical support that allows to control, to formal-
ize, to check and to formally verify new algorithms.

As pointed out above, many of the problems in digital 
images share features very interesting for using these tech-
niques: the information can be split into little pieces and 
expressed as (multi)sets of objects; the computation steps 
can be processed by rewriting rules; and the same sequential 
algorithm must be applied in different regions of the image 
which are independent and they can be treated locally by 
a set of processors. All these features lead us to consider 
membrane computing to deal with digital images.

The key point of paralleling classical sequential algo-
rithms is the search of the efficiency and such efficiency is 
strongly linked to the development of new parallel hardware 
architectures which allow a realistic implementation of the 
theoretical advantages of the parallel processes. Different 
hardware architectures (clusters, grids, FPGA,...) propose 

Fig. 6   Retinal image taken from the Standard Diabetic Retinopathy 
Database (DIARETDB1). The optic disc can be located as a yellow 
disc inside the image
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different solutions [94, 95, 112, 149]. One of the most used 
architectures in the papers presented above has been the 
Compute Unified Device Architecture, CUDATM . This is a 
general-purpose parallel computing architecture that allows 
the parallel NVIDIA GPUs to solve many complex compu-
tational problems in a more efficient way than on a CPU.

GPUs have emerged as general-purpose coprocessors in 
recent years. Traditionally designed for gaming applications, 
GPUs offer many computing threads arranged in a single-
program multiple-data (SPMD) model. The chosen hardware 
architecture for our parallel implementation has been the 
Compute Unified Device Architecture, ( CUDATM ), which 
allows the parallel NVIDIA GPUs [189] to solve many com-
plex computational problems in a more efficient way than on 
a sequential central processing unit (CPU).7 This architec-
ture has been widely used in membrane computing also for 
dealing with images [18, 19].

The choice of this parallel architecture is supported by 
several reasons. The first one is that the computing language 
CUDA

TM allows programmers a friendly model for imple-
menting easily parallel programs, but the main reason comes 
from the practical side. In the last few years, there exists an 
increasing interest in the specialized industry for the devel-
opment of more and more powerful graphic processing units 
which can be used for general purposes. This interest leads, 
on the one hand, to a more economically accessible (and 
hence, more extended) hardware and, on the other, to the 
development of more powerful computational units. The use 
of this new parallel architecture is currently explored as a 
tool for paralleling the treatment of digital images [17, 109].

With respect to the analysis on the performance of image 
processing with membrane computing techniques, a deep 
study is necessary. The authors usually only present a theo-
retical solution of the problem, some examples or a brief 
description of the software implementation.8 Two new 
research lines are open in the analysis of performance: on 
the one hand, to study the theoretical properties of the new 
parallel algorithms from the point of view of the complexity 
theory and, on the other, to study different implementations 
in several parallel hardware to extract properties which help 
to design more efficient algorithms in the future.

Many other problems related to digital images have been 
addressed with membrane computing techniques. We can 
cite smoothing [118], which shows how to enhance an image 
by removing regions that do not provide relevant informa-
tion, and the approach presented in [183], where membrane 
computing and quantum-inspired evolutionary algorithms 
are combined or the search of partially bounded regions 

[26]. This problem is also related to the HGB2I problem 
which consists of calculating the number of connected com-
ponents and the representative curves of the holes of these 
components.

Detection of more complex structures, as corners in the 
images, has been explored in [8]. Alsalibi et al. study dif-
ferent bio-inspired approaches for the problem of face rec-
ognition in [3] and consider bridging membrane computing 
and evolutionary computing [182]. The problem of face 
recognition is also considered in [2] where a bat algorithm 
[177] under the framework of membrane computing (MC) is 
employed. Image registration is a research area which aims 
to find a transformation between two or more images under 
different conditions [188]. In [62], the authors propose a 
multi-modal image registration algorithm based on mem-
brane computing. Gimel’farb et al. [68, 70] implemented the 
symmetric dynamic programming stereo (SDPS) algorithm 
[69] for stereo matching by using membrane computing 
techniques.

Many other approaches not cited in this paper have also 
been presented. The research area is active and provides 
open lines for future researchers. Among them, we can cite 
the use of different P system models. In the last years, many 
different P system models have been presented (mainly 
by adding or modifying syntactic or semantic features to 
previous models). It is an open problem to know if any of 
such new models are more appropriate to deal with prob-
lems from digital images. Another research line consists in 
exploring more problems beyond the ones presented in this 
paper. Many open questions about new real-life application 
will need deep studies in the next few years.

References

	 1.	 Adeoye OS. A survey of emerging biometric technologies. Int J 
Comput Appl. 2010;9(10):1–5.

	 2.	 Alsalibi B, Venkat I, Al-Betar MA. A membrane-inspired bat 
algorithm to recognize faces in unconstrained scenarios. Eng 
Appl Artif Intell. 2017;64:242–60.

	 3.	 Alsalibi B, Venkat I, Subramanian K, Lutfi SL, Wilde PD. The 
impact ofbio-inspired approaches toward the advancement of 
face recognition. ACM Comput Surv. 2015;48(1):1–33.

	 4.	 Alsalibi B, Venkat I, Subramanian KG, Christinal HA. A bio-
inspired software for homology groups of 2d digital images. 
Asian Conf Membr Comput ACMC. 2014;2014:1–4.

	 5.	 Annadurai S, Kalyani T, Dare VR, Thomas DG. P systems gen-
erating iso-picture languages. Prog Nat Sci. 2008;18(5):617–22.

	 6.	 Ayache N. Medical image analysis and simulation. In: Shy-
amasundar RK, Ueda K, editors. ASIAN. Lecture notes in com-
puter science, vol. 1345. Berlin: Springer; 1997. p. 4–17.

	 7.	 Ballard D. Generalizing the Hough transform to detect arbitrary 
shapes. Pattern Recognit. 1981;13(2):111–22.

	 8.	 Berciano A, Díaz-Pernil D, Christinal HA, Venkat I, Subrama-
nian KG. First steps for a corner detection using membrane com-
puting. Asian Conf Membr Comput ACMC. 2014;2014:1–6.8  A detailed description is out of the scope of this paper. An inter-

ested reader can consult the bibliography.

7  For a good overview, the reader can refer to [114].



68	 D. Díaz‑Pernil et al.

	 9.	 Bie D, Gutiérrez-Naranjo MA, Zhao J, Zhu, Y. A membrane 
computing framework for self-reconfigurable robots. Nat Com-
put. 2018. https://doi.org/10.1007/s11047-018-9702-1.

	 10.	 Blum H. An associative machine for dealing with the visual 
field and some of its biological implications. In: Bernard EE, 
Kare MR, editors. Proceedings of the 2nd annual bionics sym-
posium, held at Cornell University, 1961. Biological proto-
types and synthetic systems, vol. 1. New York: Plenum Press; 
1962. p. 244–60.

	 11.	 Blum H. An associative machine for dealing with the visual field 
and some of its biological implications. Computer and Math-
ematical Sciences Laboratory, Electronics Research Directorate, 
Air Force Cambridge Research Laboratories, Office of Aerospace 
Research, United States Air Force; 1962.

	 12.	 Borrego-Ropero R, Díaz-Pernil D, Pérez-Jiménez MJ. Tissue 
simulator: a graphical tool for tissue P systems. In: Vaszil G, 
editors. Proceedings of the International Workshop Automata 
for Cellular and Molecular Computing. MTA SZTAKI, Buda-
pest, Hungary. Satellite of the 16th International Symposium on 
Fundamentals of Computational Theory; 2007. p. 23–34.

	 13.	 Campadelli P, Casiraghi E, Esposito A. Liver segmentation from 
computed tomography scans: a survey and a new algorithm. Artif 
Intell Med. 2009;45(2–3):185–96.

	 14.	 Carnero J, Christinal HA, Díaz-Pernil D, Reina-Molina R, Sub-
athra MSP. Improved parallelization of an image segmentation 
bio-inspired algorithm. In: Babu BV, Nagar A, Deep K, Pant M, 
Bansal JC, Ray K, Gupta U, editors. Proceedings of the second 
international conference on soft computing for problem solving, 
vol. 236, SocProS 2012, December 28–30, 2012, JK Lakshmipat 
University (JKLU), Jaipur, India. Advances in intelligent systems 
and computing. Springer; 2012. p. 75–82.

	 15.	 Carnero J, Díaz-Pernil D, Gutiérrez-Naranjo MA. Designing 
tissue-like P systems for image segmentation on parallel archi-
tectures. In: Martínez-del-Amor MA, Păun G, Pérez-Hurtado I, 
Romero-Campero FJ, Valencia-Cabrera L, editors. Ninth brain-
storming week on membrane computing. Sevilla: Fénix Editora; 
2011. p. 43–62.

	 16.	 Carnero J, Díaz-Pernil D, Molina-Abril H, Real P. Image seg-
mentation inspired by cellular models using hardware program-
ming. Image A Appl Math Image Eng. 2010;1(3):143–50.

	 17.	 Carranza C, Murray V, Pattichis M, Barriga ES. Multiscale 
AM-FM decompositions with GPU acceleration for diabetic 
retinopathy screening. In: IEEE southwest symposium on image 
analysis and interpretation (SSIAI); 2012. p. 121–24.

	 18.	 Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor MA, 
Pérez-Hurtado I, Pérez-Jiménez MJ. Simulating a P system based 
efficient solution to SAT by using GPUs. J Log Algebraic Pro-
gram. 2010;79(6):317–25.

	 19.	 Cecilia JM, García JM, Guerrero GD, Martínez-del-Amor 
MA, Pérez-Hurtado I, Pérez-Jiménez MJ. Simulation of P 
systems with active membranes on CUDA. Brief Bioinform. 
2010;11(3):313–22.

	 20.	 Ceterchi R, Gramatovici R, Jonoska, N. Tiling rectangular 
pictures with P systems. In: Martín-Vide et al. [107]; 2004. p. 
88–103.

	 21.	 Ceterchi R, Gramatovici R, Jonoska N, Subramanian KG. Tissue-
like P systems with active membranes for picture generation. 
Fundamenta Informaticae. 2003;56(4):311–28.

	 22.	 Ceterchi R, Mutyam M, Păun G, Subramanian KG. Array-rewrit-
ing P systems. Nat Comput. 2003;2(3):229–49.

	 23.	 Chang Y, Li X. Adaptive image region-growing. IEEE Trans 
Image Process. 1994;3(6):868–72.

	 24.	 Chao J, Nakayama J. Cubical singular simplex model for 3D 
objects and fast computation of homology groups. In: 13th inter-
national conference on pattern recognition (ICPR’96), vol. IV. 

IEEE Computer Society, Los Alamitos, CA, USA; 1996. p. 
190–94.

	 25.	 Cheng H, Jiang X, Sun Y, Wang J. Color image segmentation: 
advances and prospects. Pattern Recognit. 2001;34(12):2259–81.

	 26.	 Christinal HA, Berciano A, Díaz-Pernil D, Gutiérrez-Naranjo 
MA. Searching partially bounded regions with P systems. In: 
Pant M, Deep K, Nagar A, Bansal JC, editors. Proceedings of 
the third international conference on soft computing for problem 
solving: SocProS 2013, vol. 1. New Delhi: Springer; 2014. p. 
45–54.

	 27.	 Christinal HA, Díaz-Pernil D, Gutiérrez-Naranjo MA, Pérez-
Jiménez MJ. Array tissue-like P systems. In: Martínez del Amor 
MA, Păun G, Pérez Hurtado I, Riscos-Núñez A, editors. Eighth 
brainstorming week on membrane computing. Sevilla: Fénix 
Editora; 2010. p. 37–51.

	 28.	 Christinal HA, Díaz-Pernil D, Gutiérrez-Naranjo MA, Pérez-
Jiménez MJ. Thresholding of 2D images with cell-like P systems. 
Rom J Inf Sci Technol (ROMJIST). 2010;13(2):131–40.

	 29.	 Christinal HA, Díaz-Pernil D, Real P. Segmentation in 2D and 
3D image using tissue-like P system. In: Bayro-Corrochano E, 
Eklundh JO, editors. Progress in Pattern Recognition, Image 
Analysis, Computer Vision, and Applications 14th Iberoameri-
can Conference on Pattern Recognition, CIARP 2009, Guada-
lajara, Jalisco, Mexico, November 15–18, 2009. Proceedings, 
lecture notes in computer science, vol. 5856. Berlin: Springer; 
2009. p. 169–76.

	 30.	 Christinal HA, Díaz-Pernil D, Real P. Using membrane comput-
ing for obtaining homology groups of binary 2D digital images. 
In: Wiederhold P, Barneva RP, editors. Combinatorial Image 
Analysis 13th International Workshop, IWCIA 2009, Playa del 
Carmen, Mexico, November 24–27, 2009. Proceedings, lecture 
notes in computer science, vol. 5852. Berlin: Springer; 2009. p. 
383–96.

	 31.	 Christinal HA, Díaz-Pernil D, Real P. P systems and computa-
tional algebraic topology. Mathematical and computer modelling, 
vol. 52, 1982–1996. The BIC-TA 2009 special issue, interna-
tional conference on bio-inspired computing: theory and applica-
tions; 2010. p. 11–12.

	 32.	 Christinal HA, Díaz-Pernil D, Real P. Region-based seg-
mentation of 2D and 3D images with tissue-like P systems. 
Advances in theory and applications of pattern recognition, 
image processing and computer vision. Pattern Recognit Lett. 
2012;32(16):2206–12.

	 33.	 Christinal HA, Díaz-Pernil D, Real JP, Selvan SE. Color seg-
mentation of 2D images with thresholding. In: Mathew J, Patra 
P, Pradhan DK, Kuttyamma AJ, editors. Proceedings of eco-
friendly computing and communication systems: international 
conference, ICECCS 2012, Kochi, India, August 9–11. Berlin: 
Springer; 2012. p. 162–69.

	 34.	 Ciobanu G, Pérez-Jiménez MJ, Păun G, editors. Applications 
of membrane computing. Natural computing series. Berlin: 
Springer; 2006.

	 35.	 Collins R, Lipton A, Kanade T. Introduction to the special sec-
tion on video surveillance. IEEE Trans Pattern Anal Mach Intell. 
2000;22(8):745–6.

	 36.	 Cook CR, Wang PSP. A Chomsky hierarchy of isotonic array 
grammars and languages. Comput Graph Image Process. 
1978;8(1):144–52.

	 37.	 Dassow J, Păun G. Regulated rewriting in formal language the-
ory. 1st ed. New York: Springer Publishing Company Incorpo-
rated; 2012.

	 38.	 Davies E. Computer and machine vision: theory, algorithms prac-
ticalities. Waltham: Elsevier Science; 2012.

	 39.	 Dersanambika KS, Krithivasan K. Contextual array P systems. 
Int J Comput Math. 2004;81(8):955–69.



69Membrane computing and image processing: a short survey﻿	

40. Dersanambika KS, Krithivasan K, Subramanian KG. P systems
generating hexagonal picture languages. In: Martín-Vide et al.
[107]; 2003. p. 168–80.

41. Díaz-Pernil D, Berciano A, Peña-Cantillana F, Gutiérrez-Naranjo
MA. Bio-inspired parallel computing of representative geometri-
cal objects of holes of binary 2D-images. Int J Bioinspired Com-
put. 2017;9(2):77–92.

42. Díaz-Pernil D, Berciano A, Peña-Cantillana F, Gutiérrez-
Naranjo MA. Segmenting images with gradient-based edge
detection using membrane computing. Pattern Recognit Lett.
2013;34(8):846–55.

43. Díaz-Pernil D, Christinal HA, Gutiérrez-Naranjo MA, Real P.
Using membrane computing for effective homology. Appl Alge-
bra Eng Commun Comput. 2012;23(5–6):233–49.

44. Díaz-Pernil D, Fondón I, Peña-Cantillana F, Gutiérrez-Naranjo
MA. Fully automatized parallel segmentation of the optic
disc in retinal fundus images. Geometric, topological and
harmonic trends to image processing. Pattern Recognit Lett.
2016;83(1):99–107.

45. Díaz-Pernil D, Gutiérrez-Naranjo MA, Molina-Abril H, Real P.
A bio-inspired software for segmenting digital images. In: Nagar 
AK, Thamburaj R, Li K, Tang Z, Li R, editors. Fifth international 
conference on bio-inspired computing: theories and applications, 
BIC-TA 2010, University of Hunan, Liverpool Hope University, 
Liverpool, United Kingdom/Changsha, China, September 8–10
and September 23–26, 2010, vol. 2. Beijing: IEEE Computer
Society; 2010. p. 1377–81.

46. Díaz-Pernil D, Gutiérrez-Naranjo MA, Molina-Abril H, Real P.
Designing a new software tool for digital imagery based on P
systems. Nat Comput. 2011;11(3):381–6.

47. Díaz-Pernil D, Gutiérrez-Naranjo MA, Peng H. Some notes on
membrane computing and image processing. Bull Int Membr
Comput Soc. 2016;2:103–28.

48. Díaz-Pernil D, Gutiérrez-Naranjo MA, Real P, Sánchez-Canales 
V. Computing homology groups in binary 2D imagery by tissue-
like P systems. Rom J Inf Sci Technol. 2010;13(2):141–52.

49. Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA. Skele-
tonizing images by using spiking neural P systems. In: Martínez-
del-Amor MA, Păun G, Pérez-Hurtado I, Romero-Campero FJ,
editors. Tenth brainstorming week on membrane computing, vol. 
I. Sevilla: Fénix Editora; 2012. p. 91–110.

50. Díaz-Pernil D, Peña-Cantillana F, Gutiérrez-Naranjo MA. A par-
allel algorithm for skeletonizing images by using spiking neural
P systems. Neurocomputing. 2013;115:81–91.

51. Duda RO, Hart PE. Use of the Hough transformation to detect
lines and curves in pictures. Commun ACM. 1972;15(1):11–5.

52. Dufresne TE, Sarwal A, Dhawan AP. A gray-level thinning
method for delineation and representation of arteries. Comput
Med Imaging Graph. 1994;18(5):343–55.

53. Egmont-Petersen M, de Ridder D, Handels H. Image pro-
cessing with neural networks—a review. Pattern Recognit.
2002;35(10):2279–301.

54. Eilenberg S, MacLane S. Relations between homology and
homotopy groups of spaces. Ann Math. 1945;46(3):480–509.

55. Eilenberg S, MacLane S. Relations between homology and
homotopy groups of spaces. II. Ann Math. 1950;51(3):514–33.

56. Fernau H, Freund R, Schmid ML, Subramanian KG, Wiederhold 
P. Contextual array grammars and array P systems. Ann Math
Artif Intell. 2015;75(1–2):5–26.

57. Ferretti C, Mauri G, Zandron C. P systems with string objects.
In: Păun et al. [129]; 2010. p. 168–97.

58. Freedman D, Chen C. Algebraic topology for computer vision.
In: Science and technology; 2009. p. 239–68.

59. Freund R. Array grammars. Tech. Rep. 15/00, Research Group on 
Mathematical Linguistics, Rovira i Virgili University, Tarragona;
2000.

60. Frijters D, Lindenmayer A. A model for the growth and flowering 
of aster novae-angliae on the basis of table< 1, 0> L-systems.
In: Rozenberg G, Salomaa A, editors. L systems, most of the
papers were presented at a conference in Aarhus, Denmark,
January 14–25, 1974, lecture notes in computer science, vol. 15. 
Springer; 1974. p. 24–52.

61. Gamanya R, Maeyer PD, Dapper MD. An automated satellite
image classification design using object-oriented segmentation
algorithms: a move towards standardization. Expert Syst Appl.
2007;32(2):616–24.

62. Gao Z, Zhang C. MCIR: a multi-modal image registration algo-
rithm based on membrane computing. In: 2017 international
conference on computing intelligence and information system
(CIIS); 2017. p. 263–69.

63. García-Quismondo M, Macías-Ramos LF, Păun G, Valencia-
Cabrera L, editors. Tenth brainstorming week on membrane
computing, vol. II. Sevilla: Fénix Editora; 2012.

64. Georgiou A, Gheorghe M. Generative devices used in graphics.
In: Alhazov A, Martín-Vide C, Păun G, editors. Preproceedings
of the workshop on membrane computing. Technical Report;
28/03, . Research Group on Mathematical Linguistics, Universi-
tat Rovira i Virgili, Tarragona, Spain; 2003. p. 266–72.

65. Georgiou A, Gheorghe M, Bernardini F. Membrane-based
devices used in computer graphics. In: Ciobanu G, Păun G,
Pérez-Jiménez MJ, editors. Applications of membrane com-
puting, natural computing series. Berlin: Springer; 2006. p.
253–81.

66. Giavitto JL, Michel O. The topological structures of membrane
computing. Fundamenta Informaticae. 2002;49(1–3):123–45.

67. Gil Montoya M, Garcia I. Implementation of parallel thinning
algorithms on multicomputers: analysis of the work load balance. 
In: Proceedings of the sixth Euromicro workshop on parallel and 
distributed processing, PDP ’98; 1998. p. 257–63.

68. Gimel’farb G, Nicolescu R, Ragavan S. P systems in stereo
matching. In: Real P, Díaz-Pernil D, Molina-Abril H, Berciano
A, Kropatsch W, editors. Computer analysis of images and pat-
terns. Lecture notes in computer science, vol. 6855. Berlin:
Springer; 2011. p. 285–92.

69. Gimel’farb GL. Probabilistic regularisation and symmetry in
binocular dynamic programming stereo. Pattern Recognit Lett.
2002;23(4):431–42.

70. Gimel’farb GL, Nicolescu R, Ragavan S. P system implemen-
tation of dynamic programming stereo. J Math Imaging Vis.
2013;47(1–2):13–26.

71. González RC, Woods RE. Digital image processing. Upper Sad-
dle River: Pearson/Prentice Hall; 2008.

72. González-Díaz R, Jiménez MJ, Medrano B, Molina-Abril H,
Real P. Integral operators for computing homology generators
at any dimension. In: Ruiz-Shulcloper J, Kropatsch WG, editors. 
CIARP. Lecture notes in computer science, vol. 5197. Berlin
Heidelberg: Springer; 2008. p. 356–63.

73. González-Díaz R, Jiménez MJ, Medrano B, Real P. Chain homo-
topies for object topological representations. Discret Appl Math. 
2009;157(3):490–9.

74. González-Díaz R, Real P. On the cohomology of 3D digital
images. Discret Appl Math. 2005;147(2–3):245–63.

75. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: 
MIT Press; 2016.

76. Graciani C, Păun G, Romero-Jiménez A, Sancho-Caparrini F,
editors. Fourth brainstorming week on membrane computing,
vol. II. Sevilla: Fénix Editora; 2006.



70	 D. Díaz‑Pernil et al.

	 77.	 Guo Z, Hall RW. Parallel thinning with two-subiteration algo-
rithms. Commun ACM. 1989;32:359–73.

	 78.	 Guo Z, Hall RW. Fast fully parallel thinning algorithms. CVGIP 
Image Underst. 1992;55:317–28.

	 79.	 Gutiérrez-Naranjo MA, Pérez-Jiménez, MJ. Fractals and P sys-
tems. In: Graciani et al. [76]; 2006. p. 65–86.

	 80.	 Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Núñez A, 
Romero-Campero FJ. How to express tumours using membrane 
systems. Prog Nat Sci. 2007;17(4):449–57.

	 81.	 Hamadani, N. Automatic target cueing in IR imagery. Master’s 
thesis, Air Force Institute of Technology, WAFP; 1981.

	 82.	 Heydorn S, Weidner P. Optimization and performance analysis 
of thinning algorithms on parallel computers. Parallel Comput. 
1991;17(1):17–27.

	 83.	 Holt C, Stewart A. A parallel thinning algorithm with fine grain 
subtasking. Parallel Comput. 1989;10(3):329–34.

	 84.	 Hongbin P, Junali C, Yashe Z. Fingerprint thinning algorithm 
based on mathematical morphology. In: 8th international confer-
ence on electronic measurement and instruments. ICEMI ’07; 
2007. p. 618–21.

	 85.	 Hough PVC. Machine analysis of bubble chamber pictures. In: 
International conference on high energy accelerators and instru-
mentation. CERN; 1959. p. 554–58.

	 86.	 Isawasan P, Muniyandi RC, Venkat I, Subramanian KG. Array-
rewriting P systems with basic puzzle grammar rules and per-
mitting features. In: Leporati A, Rozenberg G, Salomaa A, 
Zandron C, editors. Membrane computing—17th international 
conference, CMC 2016, Milan, Italy, July 25–29, 2016, revised 
selected papers. Lecture notes in computer science, vol. 10105. 
Springer; 2016. p. 272–85.

	 87.	 Isawasan P, Venkat I, Muniyandi RC, Subramanian, KG. A 
membrane computing model for generation of picture arrays. 
In: Zaman HB, Robinson P, Smeaton AF, Shih TK, Velastin SA, 
Jaafar A, Ali NM, editors. Proceedings of advances in visual 
informatics—4th international visual informatics conference, 
IVIC 2015, Bangi, Malaysia, November 17–19. Lecture notes in 
computer science, vol. 9429. Springer; 2015. p. 155–65.

	 88.	 Isawasan P, Venkat I, Subramanian KG, Khader AT, Osman O, 
Christinal HA. Region-based segmentation of hexagonal digital 
images using membrane computing. In: IEEE 2014 Asian confer-
ence on membrane computing (ACMC); 2014. p. 1–4.

	 89.	 Ivchenko GI, Honov SA. On the Jaccard similarity test. J Math 
Sci. 1998;88(6):789–94.

	 90.	 Jaccard P. Nouvelles recherches sur la distribution florale. 
Bulletin de la Sociète Vaudense des Sciences Naturelles. 
1908;44:223–70.

	 91.	 Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, 
Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J. 
The diaretdb1 diabetic retinopathy database and evaluation pro-
tocol. In: Proceedings of the British machine vision conference 
2007, University of Warwick, UK, September 10–13. British 
Machine Vision Association; 2007. p. 252–61.

	 92.	 Kenmochi Y, Imiya A, Ichikawa A. Discrete combinatorial geom-
etry. Pattern Recognit. 1997;30(10):1719–28.

	 93.	 Kenmochi Y, Imiya A, Ichikawa A. Boundary extraction of dis-
crete objects. Comput Vis Image Underst. 1998;71(3):281–93.

	 94.	 Khalid NEA, Ahmad SA, Noor NM, Fadzil AFA, Taib MN. Anal-
ysis of parallel multicore performance on Sobel edge detector. 
In: Proceedings of the 15th WSEAS international conference on 
computers. World Scientific and Engineering Academy and Soci-
ety (WSEAS), Stevens Point, Wisconsin, USA; 2011. p. 313–18.

	 95.	 Khalid NEA, Ahmad SA, Noor NM, Fadzil AFA, Taib MN. Par-
allel approach of Sobel edge detector on multicore platform. Int 
J Comput Commun. 2011;5:236–44.

	 96.	 Kim SH, Kim HG, Tchah KH. Object oriented face detection 
using colour transformation and range segmentation. IEEE Elec-
tron Lett. 1998;34:979–80.

	 97.	 Krishna SN, Rama R, Krithivasan K. P systems with picture 
objects. Acta Cybernetica. 2001;15(1):53–74.

	 98.	 Lee KH, Cho SB, Choy YC. Automated vectorization of car-
tographic maps by a knowledge-based system. Eng Appl Artif 
Intell. 2000;13(2):165–78.

	 99.	 Lefticaru R, Bakir ME, Konur S, Stannett M, Ipate F. Modelling 
and validating an engineering application in kernel P systems. 
In: Gheorghe M, Rozenberg G, Salomaa A, Zandron C, editors. 
Membrane computing—18th international conference, CMC 
2017, Bradford, UK, July 25–28, 2017, revised selected papers. 
Lecture notes in computer science, vol. 10725. Springer; 2017. 
p. 183–95.

	100.	 Li X, Zhang T, Qu Z. Image segmentation using fuzzy clustering 
with spatial constraints based on Markov random field via bayes-
ian theory. IEICE Trans Fundam Electron Commun Comput Sci. 
2008;91–A(3):723–9.

	101.	 Lindenmayer A. Mathematical models for cellular interaction in 
development: parts I and II. J Theor Biol. 1968;18:280–315.

	102.	 Lindenmayer A. Developmental systems without cellular 
interactions, their languages and grammars. J Theor Biol. 
1971;30(3):455–84.

	103.	 Litjens GJS, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Gha-
foorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A 
survey on deep learning in medical image analysis. Med Image 
Anal. 2017;42:60–88.

	104.	 Liu D, Jiang Z, Feng H. A novel fuzzy classification entropy 
approach to image thresholding. Pattern Recognit Lett. 
2006;27(16):1968–75.

	105.	 Lü HE, Wang PSP. A comment on a fast parallel algorithm for 
thinning digital patterns. Commun ACM. 1986;29(3):239–42.

	106.	 Mandelbrot BB. The fractal geometry of nature. New York: W. 
H. Freedman and Co.; 1983.

	107.	 Martín-Vide C, Mauri G, Păun G, Rozenberg G, Salomaa A, 
editors. Membrane computing, international workshop, WMC 
2003, Tarragona, Spain, July 17–22, 2003, revised papers. Lec-
ture notes in computer science, vol. 2933. Berlin: Springer; 2004.

	108.	 Molina-Abril H, Real P. Advanced homology computation of 
digital volumes via cell complexes. In: da Vitoria Lobo N, Kas-
paris T, Roli F, Kwok JTY, Georgiopoulos M, Anagnostopoulos 
GC, Loog M, editors. SSPR/SPR. Lecture notes in computer 
science, vol. 5342. Berlin: Springer; 2008. p. 361–71.

	109.	 Moulik S, Boonn WW. The role of GPU computing in medical 
image analysis and visualization. In: Boonn WW, Liu BJ, editors. 
Medical imaging 2011: advanced PACS-based imaging informat-
ics and therapeutic applications, vol. 7967. Proceedings of the 
SPIE; 2011. p. 79670L.

	110.	 Mutyam M, Krithivasan K. P systems with membrane crea-
tion: universality and efficiency. In: Margenstern M, Rogozhin 
Y, editors. MCU, lecture notes in computer science, vol. 2055. 
Springer; 2001. p. 276–87.

	111.	 Nicolescu, R.: Parallel thinning with complex objects and actors. 
In: Gheorghe M, Rozenberg G, Salomaa A, Sosík P, Zandron 
C, editors. Membrane computing—15th international confer-
ence, CMC 2014, Prague, Czech Republic, August 20–22, 2014, 
revised selected papers, lecture notes in computer science, vol. 
8961. Springer; 2014. p. 330–54.

	112.	 Ogawa K, Ito Y, Nakano K. Efficient canny edge detection using 
a GPU. In: Proceedings of the 2010 first international confer-
ence on networking and computing, ICNC ’10. IEEE Computer 
Society, Washington, DC, USA; 2010. p. 279–80.

	113.	 Osareh A, Mirmehdi M, Thomas B, Markham R. Automated 
identification of diabetic retinal exudates in digital colour 
images. Br J Ophthalmol. 2003;87(10):1220–3.



71Membrane computing and image processing: a short survey﻿	

	114.	 Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips 
JC. GPU computing. Proc IEEE. 2008;96(5):879–99.

	115.	 Pal NR, Pal SK. A review on image segmentation techniques. 
Pattern Recognit. 1993;26(9):1277–94.

	116.	 Parker J. Algorithms for image processing and computer vision. 
New York: Wiley; 2010.

	117.	 Peña-Cantillana F, Díaz-Pernil D, Berciano A, Gutiérrez-Naranjo 
MA. A parallel implementation of the thresholding problem by 
using tissue-like P systems. In: Real P, Díaz-Pernil D, Molina-
Abril H, Berciano A, Kropatsch WG, editors. Computer analysis 
of images and patterns—14th international conference, CAIP 
2011, Seville, Spain, August 29–31, 2011, proceedings, part II. 
Lecture notes in computer science, vol. 6855. Springer; 2011. p. 
277–84.

	118.	 Peña-Cantillana F, Díaz-Pernil D, Christinal HA, Gutiérrez-
Naranjo MA. Implementation on CUDA of the smoothing 
problem with tissue-like P systems. Int J Nat Comput Res. 
2011;2(3):25–34.

	119.	 Peng H, Shao J, Li B, Wang J, Pérez-Jiménez MJ, Jiang Y, Yang 
Y. Image thresholding with cell-like P systems. In: García-Quis-
mondo et al. [63]; 2012. p. 75–88.

	120.	 Peng H, Wang J, Ming J, Shi P, Pérez-Jiménez MJ, Yu W, 
Tao C. Fault diagnosis of power systems using intuitionis-
tic fuzzy spiking neural P systems. IEEE Trans Smart Grid. 
2018;9(5):4777–84.

	121.	 Peng H, Wang J, Pérez-Jiménez MJ. Optimal multi-level 
thresholding with membrane computing. Digit Signal Process. 
2015;37:53–64.

	122.	 Peng H, Wang J, Pérez-Jiménez MJ, Shi P. A novel image thresh-
olding method based on membrane computing and fuzzy entropy. 
J Intell Fuzzy Syst. 2013;24(2):229–37.

	123.	 Peng H, Yang Y, Zhang J, Huang X, Wang J. A region-based 
color image segmentation method based on P systems. Rom J 
Inf Sci Technol. 2014;17(1):63–75.

	124.	 Pérez-Jiménez M.J, Riscos-Núñez A, Romero-Jiménez A, Woods 
D. Complexity—membrane division, membrane creation. In: 
Păun et al. [129]; 2010. p. 302–36.

	125.	 Păun G. Membrane computing: an introduction. Berlin: Springer; 
2002.

	126.	 Păun G. Computing with membranes. Tech. Rep. 208, Turku 
Centre for Computer Science, Turku, Finland; 1998.

	127.	 Păun G. Computing with membranes. J Comput Syst Sci. 
2000;61(1):108–43 (See also [126]).

	128.	 Păun G. Grammar systems vs. membrane computing: a prelimi-
nary approach. In: Pre-proceedings of the workshop on grammar 
systems, MTA SZTAKI Budapest; 2004. p. 225–45.

	129.	 Păun G, Rozenberg G, Salomaa A, editors. The Oxford handbook 
of membrane computing. Oxford: Oxford University Press; 2010.

	130.	 Rawat W, Wang Z. Deep convolutional neural networks for 
image classification: a comprehensive review. Neural Comput. 
2017;29(9):2352–449.

	131.	 Real P. Homological perturbation theory and associativity. 
Homol Homotopy Appl. 2000;2(5):51–88.

	132.	 Real P, Molina-Abril H. Cell at-models for digital volumes. In: 
Torsello A, Escolano F, Brun L, editors. GbRPR, vol. 5534., Lec-
ture notes in computer scienceBerlin: Springer; 2009. p. 314–23.

	133.	 Real P, Molina-Abril H, Kropatsch WG. Homological tree-
based strategies for image analysis. In: Jiang X, Petkov N, edi-
tors. CAIP, vol. 5702., Lecture notes in computer scienceBerlin: 
Springer; 2009. p. 326–33.

	134.	 Reina-Molina R, Carnero Iglesias J, Díaz-Pernil D. Image seg-
mentation using tissue-like P systems with multiple auxiliary 
cells. Image A Appl Math Image Eng. 2011;2(4):25–8.

	135.	 Reina-Molina R, Díaz-Pernil D. Bioinspired parallel 2D or 3D 
skeletonization. Image A Appl Math Image Eng. 2013;3(6):41–4.

	136.	 Reina-Molina R, Díaz-Pernil D, Gutiérrez-Naranjo MA. Cell 
complexes and membrane computing for thinning 2D and 3D 
images. In: García-Quismondo et al. [63]. p. 167–86.

	137.	 Reina-Molina R, Díaz-Pernil D, Real P, Berciano A. Membrane 
parallelism for discrete Morse theory applied to digital images. 
Appl Algebra Eng Commun Comput. 2015;26(1–2):49–71.

	138.	 Reina-Molina R, Díaz-Pernil D, Real P, Berciano A. Effective 
homology of k-d digital objects (partially) calculated in parallel. 
Pattern Recognit Lett. 2016;83:59–66.

	139.	 Rivero-Gil E, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ. Graph-
ics and P systems: experiments with JPLANT. In: Díaz-Pernil 
D, Graciani C, Gutiérrez-Naranjo MA, Păun G, Pérez-Hurtado 
I, Riscos-Núñez A, editors. Sixth brainstorming week on mem-
brane computing. Sevilla: Fénix Editora; 2008. p. 241–53.

	140.	 Rivero-Gil E, Gutiérrez-Naranjo MA, Romero Jiménez Á, 
Riscos-Núñez A. A software tool for generating graphics by 
means of P systems. Nat Comput. 2011;10(2):879–90.

	141.	 Romero A, Rubio J, Sergeraert F. Effective homology of fil-
tered digital images. Pattern Recognit Lett. 2016;83:23–31.

	142.	 Romero-Jiménez Á, Gutiérrez-Naranjo MA, Pérez-Jiménez 
MJ. Graphical modeling of higher plants using P systems. In: 
Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A, editors. 
Workshop on membrane computing. Lecture notes in computer 
science, vol. 4361. Berlin: Springer; 2006. p. 496–506.

	143.	 Romero-Jiménez A, Gutiérrez-Naranjo MA, Pérez-Jiménez 
MJ. The growth of branching structures with P systems. In: 
Graciani et al. [76]. p. 253–65.

	144.	 Rosenfeld A. Picture languages. Reading: Academic Press; 
1979.

	145.	 Rosin PL. Training cellular automata for image processing. IEEE 
Trans Image Process. 2006;15(7):2076–87.

	146.	 Rozenberg G, Salomaa A. The mathematical theory of L sys-
tems. Pure and applied mathematics. New York: Elsevier Sci-
ence; 1980.

	147.	 Saeed K, Tabedzki M, Rybnik M, Adamski M. K3M: a universal 
algorithm for image skeletonization and a review of thinning 
techniques. Appl Math Comput Sci. 2010;20(2):317–35.

	148.	 Sahoo P, Soltani S, Wong A. A survey of thresholding tech-
niques. Comput Vis Graph Image Process. 1988;41(2):233–60.

	149.	 Sanduja V, Patial R. Sobel edge detection using parallel archi-
tecture based on FPGA. Int J Appl Inf Syst. 2012;3(4):20–4.

	150.	 Sekhar S, Al-Nuaimy W, Nandi A.K. Automated localisation of 
retinal optic disk using Hough transform. In: IEEE 5th interna-
tional symposium on biomedical imaging: from nano to macro. 
ISBI; 2008, pp 1577–80.

	151.	 Selvapeter PJ, Hordijk W. Cellular automata for image noise 
filtering. In: IEEE world congress on nature and biologically 
inspired computing. NaBIC 2009IEEE; 2009. p. 193–7.

	152.	 Sergeraert F. The computability problem in algebraic topology. 
Adv Math. 1994;104:1–29.

	153.	 Shapiro LG, Stockman GC. Computer vision. Upper Saddle 
River: Prentice Hall PTR; 2001.

	154.	 Sharma O, Mioc D, Anton F. Polygon feature extraction from 
satellite imagery based on color image segmentation and medial 
axis. The international archives of the photogrammetry, remote 
sensing and spatial information sciences, XXXVII, Part B3a, 
Commission III; 2008. p. 235–40.

	155.	 Sheeba F, Thamburaj R, Nagar AK, Mammen JJ. Segmentation 
of peripheral blood smear images using tissue-like P systems. In: 
2011 sixth international conference on bio-inspired computing: 
theories and applications (BIC-TA); 2011. p. 257–61.

	156.	 Smith SJ, Bourgoin MO, Sims K, Voorhees HL. Handwritten 
character classification using nearest neighbor in large databases. 
IEEE Trans Pattern Anal Mach Intell. 1994;16(9):915–9.



72	 D. Díaz‑Pernil et al.

	157.	 Sobel IE. Camera models and machine perception. Ph.D. thesis, 
Dept. of Computer Sciences, Stanford, CA, USA. AAI7102831; 
1970.

	158.	 Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Gin-
neken B. Ridge-based vessel segmentation in color images of the 
retina. IEEE Trans Med Imaging. 2004;23(4):501–9.

	159.	 Subramanian K, Saravanan R, Geethalakshmi M, Chandra PH, 
Margenstern M. P systems with array objects and array rewriting 
rules. In: Pan L, Păun G, editors. Proceedings of bio-inspired 
computing—theory and applications conference, BIC-TA 2006, 
Wuhan, China, September 2006, membrane computing section; 
2006. p. 160–67.

	160.	 Subramanian KG. P systems and picture languages. In: Durand-
Lose JO, Margenstern M, editors. MCU, vol. 4664., Lecture 
notes in computer scienceBerlin: Springer; 2007. p. 99–109.

	161.	 Subramanian KG, Ali RM, Nagar AK, Margenstern M. Array 
P systems and t-communication. Fundamenta Informaticae. 
2009;91(1):145–59.

	162.	 Subramanian KG, Isawasan P, Venkat I, Pan L, Nagar A. 
Array P systems with permitting features. J Comput Sci. 
2014;5(2):243–50.

	163.	 Subramanian KG, Pan L, Lee SK, Nagar AK. A P system model 
with pure context-free rules for picture array generation. Math 
Comput Model. 2010;52(11–12):1901–9.

	164.	 Subramanian KG, Sriram S, Song B, Pan L. An overview of 2d 
picture array generating models based on membrane computing. 
In: Adamatzky A, editor. Reversibility and Universality, Essays 
Presented to Kenichi Morita on the Occasion of his 70th Birth-
day. Emergence, complexity and computation, vol. 30. Springer; 
2018. p. 333–56.

	165.	 Suzuki S, Abe K. Binary picture thinning by an iterative parallel 
two-subcycle operation. Pattern Recognit. 1987;20(3):297–307.

	166.	 Snchez-Karhunen E, Valencia-Cabrera L. Membrane computing 
applications in computational economics. In: Graciani C, Păun 
G, Riscos-Núñez A, Valencia-Cabrera L, editors. Fifteenth brain-
storming week on membrane computing. Sevilla: Fénix Editora; 
2017. p. 189–214.

	167.	 Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and 
classification of hyperspectral images using Watershed transfor-
mation. Pattern Recognit. 2010;43(7):2367–79.

	168.	 Tobias OJ, Seara R. Image segmentation by histogram 
thresholding using fuzzy sets. IEEE Trans Image Process. 
2002;11(12):1457–65.

	169.	 Wang D, Lu H, Zhang J, Liang JZ. A knowledge-based fuzzy 
clustering method with adaptation penalty for bone segmentation 
of CT images. In: Proceedings of the 2005 IEEE engineering in 
medicine and biology 27th annual conference, vol. 6. 2005. p. 
6488–91.

	170.	 Wang H, Peng H, Shao J, Wang T. A thresholding method 
based on P systems for image segmentation. ICIC Express Lett. 
2012;6(1):221–7.

	171.	 Wang PSP. Some new results on isotonic array grammars. Inf 
Process Lett. 1980;10(3):129–31.

	172.	 Yahya RI, Hasan S, George LE, Alsalibi B. Membrane comput-
ing for 2D image segmentation. Int J Adv Soft Comput Appl. 
2015;7(1):35–50.

	173.	 Yahya RI, Shamsuddin SM, Hasan S, Yahya SI. Tissue-like P 
system for segmentation of 2D hexagonal images. ARO Sci J 
Koya Univ. 2016;IV(1):35–42.

	174.	 Yahya RI, Shamsuddin SM, Yahya SI, Hasan S, Al-Salibi B, 
Al-Khafaji G. Image segmentation using membrane computing: 
A literature survey. In: Gong M, Pan L, Song T, Zhang G, edi-
tors. Bio-inspired computing: theories and applications—11th 
international conference, BIC-TA 2016, Xi’an, China, October 
28–30, 2016, revised selected papers, part I, communications in 
computer and information science. Springer; 2016. p. 314–35.

	175.	 Yahya RI, Shamsuddin SM, Yahya SI, Hasan S, Alsalibi B. Auto-
matic 2d image segmentation using tissue-like P system. Int J 
Adv Soft Comput Appl. 2018;10(1):36–54.

	176.	 Yahya SI, Yahya RI III, Al-Salibi B, Al-Khafaji GK, Shamsuddin 
SM. Three-dimensional image segmentation using tissue-like P 
system. ARO Sci J Koya Univ. 2017;2:67–74.

	177.	 Yang X. A new metaheuristic bat-inspired algorithm. In: 
González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, edi-
tors. Nature inspired cooperative strategies for optimization, 
NICSO 2010, May 12–14, 2010, Granada, Spain, studies in 
computational intelligence, vol. 4. Springer; 2010. p. 65–74.

	178.	 Yang Y, Peng H, Jiang Y, Huang X, Zhang J. A region-based 
image segmentation method under P systems. J Inf Comput Sci. 
2013;10(10):2943–50.

	179.	 Yazid H, Arof H. Image segmentation using watershed transfor-
mation for facial expression recognition. In: IFMBE proceed-
ings, 4th Kuala Lumpur international conference on biomedical 
engineering; 2008. p. 575–78.

	180.	 Ye QZ, Danielsson PE. Inspection of printed circuit boards by 
connectivity preserving shrinking. IEEE Trans Pattern Anal 
Mach Intell. 1988;10(5):737–42.

	181.	 Yuan X, Situ N, Zouridakis G. A narrow band graph partition-
ing method for skin lesion segmentation. Pattern Recognit. 
2009;42(6):1017–28.

	182.	 Zhang G, Gheorghe M, Pan L, Pérez-Jiménez MJ. Evolutionary 
membrane computing: a comprehensive survey and new results. 
Inf Sci. 2014;279:528–51.

	183.	 Zhang GX, Gheorghe M, Li Y. A membrane algorithm with 
quantum-inspired subalgorithms and its application to image 
processing. Nat Comput. 2012;11(4):701–17.

	184.	 Zhang TY, Suen CY. A fast parallel algorithm for thinning digital 
patterns. Commun ACM. 1984;27(3):236–9.

	185.	 Zhang Z, Peng H. Object segmentation with membrane comput-
ing. J Inf Comput Sci. 2012;9(17):5417–24.

	186.	 Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: 
a literature survey. ACM Comput Surv. 2003;35(4):399–458.

	187.	 Zhou Y, Chellappa R. Artificial neural networks for computer 
vision. Research notes in neural computing. Berlin: Springer; 
1992.

	188.	 Zitová B, Flusser J. Image registration methods: a survey. Image 
Vis Comput. 2003;21(11):977–1000.

	189.	 NVIDIA Corporation. NVIDIA CUDA Programming Guide. 
http://www.nvidi​a.com/ (2012).

Dr. Daniel Díaz‑Pernil  obtained 
his Ph.D at the University of 
Sevile. He has been member of 
the topological pattern analysis 
and recognition resarch group. 
Author of more than 20 papers in 
prestigious international journal 
and reviewer of several interna-
tional journal. His most impor-
tant researching lines are related 
with membrane computing, digi-
tal image, pattern recognition 
and algebraic topology.

http://www.nvidia.com/


73Membrane computing and image processing: a short survey﻿	

M i g u e l  A .  G u t i é r r e z ‑ 
Naranjo  obtained his Ph.D. in 
Mathematics at the University of 
Seville. Currently, he is associate 
professor in the Department of 
Computer Science and Artificial 
Intelligence at the University of 
Seville, Spain. His research 
interest includes topics related to 
Artificial Intelligence and Natu-
ral Computing, both from a theo-
retical and practical point of 
view. He has co-authored more 
than 40 scientific papers in these 
areas.

Hong Peng  received the BSc 
degree and the ME degree in 
Mathematics from Sichuan Nor-
mal University, Chengdu, China 
in 1987 and 1990, and the PhD 
degree in Signal and Information 
Processing from University of 
Electronic Science and Technol-
ogy of China, Chengdu, China in 
2010. He was a lecturer in the 
Sichuan College of Science and 
Technology, China (1990–1999) 
and an associate professor in 
Xihua University, China (2000–
2004). He was a visiting scholar 
in Research Group of Natural 

Computing, University of Seville, Spain (2011.09–2012.08). He is cur-
rently a professor in the School of Mathematics and Computer 

Engineering, Xihua University, China since 2005. His research interests 
include membrane computing, machine learning and image processing. 
He has published over 100 scientific papers in international journals 
and conferences.


	Membrane computing and image processing: a short survey
	Abstract
	1 Introduction
	2 First steps
	3 Segmentation
	3.1 Threshold-based segmentation methods
	3.2 Region-based segmentation methods
	3.3 Edge-based segmentation methods
	3.4 Software and hardware implementation

	4 Skeletonization
	5 Algebraic-topological aspects
	5.1 Effective homology

	6 A case study: the parallel segmentation of the optic disc
	7 Final conclusions
	References




