Local Search with P Systems:
A Case Study

Miguel A. Gutiérrez-Naranjo, University of Sevilla, Spain

Mario J. Pérez-Jiménez, University of Sevilla, Spain

ABSTRACT

Local search is currently one of the most used methods for finding solutions in real-life problems. It is usually
considered when the research is interested in the final solution of the problem instead of the how the solution
is reached. In this paper, the authors present an implementation of local search with Membrane Computing
techniques applied to the N-queens problem as a case study. A CLIPS program inspired in the Membrane
Computing design has been implemented and several experiments have been performed. The obtained results
show better average times than those obtained with other Membrane Computing implementations that solve

the N-queens problem.

Keywords:

CLIPS, Local Search, Membrane Computing, N-Queens, P Systems, Problem

1. INTRODUCTION

Searching is the basis of many processes in Ar-
tificial Intelligence. The key point is that many
real-life problems can be stated as a space of
states: a state is the description of the world at
a given instant (expressed in some language)
and two states are linked by a transition if the
second state can be reached from the previous
one by applying one elementary operation. By
using these concepts, a searching tree where
the nodes are the states, the root is the starting
state and the edges are the actions considered.
Given an initial state, a sequence of transitions
to one of the final states is searched.

By using this abstraction, searching meth-
ods have been deeply studied by themselves,

DOI: 10.4018/jncr.2011040104

forgetting the real-world problem which they fit.
The studies consider aspects as the completeness
(if the searching method is capable of finding
a solution if it exists), complexity in time and
space, and optimality (if the found solution is
optimal in some sense). By considering the
searching tree, classical search has focused
on the order in which the nodes should be ex-
plored. In this classical search two approaches
are possible: the former is blind search, where
the search is guided only by the topology of
the tree and no information is available from
the states; the latter is called informed search
and some information about the features of the
nodes is used to define a heuristics to decide
the next node to explore.

Searching problems have been previously
studied in the framework of Membrane Comput-
ing. In Gutiérrez-Naranjo and Pérez-Jiménez

(2010), a first study on depth-first search in
the framework of Membrane Computing was
presented. In this paper we go further with the
study of searching methods in Membrane Com-
puting by exploring local search. We consider
the N-queens problem as a case study and we
present a family of P systems which solves it
by implementing local search ideas.

The paper is organized as follows: First
we recall some basic definitions related to lo-
cal search. Then, we recall the problem used
as a case study: the N-queens problem, previ-
ously studied in the framework of Membrane
Computing in Gutiérrez-Naranjo, Martinez-
del-Amor, Pérez-Hurtado, and Pérez-Jiménez
(2009). Next, we provide some guidelines of
the implementation of local search in our case
study and show some experimental results. The
paper finishes with some final remarks.

2. LOCAL SEARCH

Classical search algorithms explore the space of
states systematically. This exploration is made
by keeping one or more paths in memory and by
recording the alternatives in each choice point.
When a final state is found, the path, that is,
the sequence of transitions, is considered as the
solution of the problem. Nonetheless, in many
problems, we are only interested in the found
state, not properly in the path of transitions. For
example, in job-shop scheduling, vehicle rout-
ing or telecommunications network optimiza-
tion, we are only interested in the final state (a
concrete disposition of the objects in the world),
not in the way in which this state is achieved.

If the sequence of elementary transitions
is not important, a good alternative to classical
searching algorithms is local search. This type
of search operates using a single state and its
set of neighbors. It is not necessary to keep in
memory how the current state has been obtained.

Since these algorithms do not systemati-
cally explore the states, they do not guarantee
that a final state can be found, i.c., they are
not complete. Nonetheless, they have two ad-
vantages that make them interesting in many
situations:

* Only alittle piece of information is stored,
so very little memory (usually constant)
is used.

* These algorithms can often find a reason-
able solution in an extremely large space
of states where classical algorithms are
unsuitable.

The basic strategy in local search is con-
sidering a current state and, if it is not a final
one, then it moves to one of its neighbors. This
movement is not made randomly. In order to
decide where to move, a measure of good-
ness is introduced in local search. In this way,
the movement is performed towards the best
neighbor or, at least, a neighbor who improves
the current measure of goodness. It is usual to
visualize the goodness of a state as its height
in some geometrical space. In this way, we can
consider a landscape of states and the target of
the searching method is to arrive to the global
maximum. This metaphor is useful to under-
stand some of the drawbacks of this method:
flat regions, where the neighbors are as good
as the current state, or local maximum where
the neighbors are worse than the current state,
but it is not a global maximum. A deep study
of local search is out of the scope of this paper.
Further information can be found in Russell
and Norvig (2002).

In this paper we will only consider the
basic algorithm of local search: Given a set of
states, a movement operator and a measure to
compare states

0. We start with a state randomly chosen.

1. We check if the current state is a final one.

1.1. If so, we finish. The system outputs the
current state.

1.2. If not, we look for a movement which
reaches a better state.

1.2.1. If it exists, we randomly choose one of
the possible movements.
Thereached state becomes the current state
and we go back to 1.

1.2.2. If it does not exist, we go back to 0.

3. THE N-QUEENS PROBLEM

Through this paper we will consider the N-
queens problemas a case study. Itisa generaliza-
tion of a classic puzzle known as the 8-queens
puzzle. The original oneis attributed to the chess
player Max Bezzel and it consists of putting eight
queens on an 8x8 chessboard in such way that
none of them is able to capture any other using
the standard movement of the queens in chess,
i.e., only one queen can be placed on each row,
column and diagonal line (Hoffman, Loessi, &
Moore, 1969; Bernhardsson, 1991).

In Gutiérrez-Naranjo et al. (2009), a first
solution to the N-queens problem in the frame-
work of Membrane Computing was shown. For
that aim, a family of deterministic P systems
with active membranes was presented. In this
family, the N-th element of the family solves
the N-queens problem and the last configura-
tion encodes all the solutions of the problem.

In order to solve the problem, a truth as-
signment that satisfies a formula in conjunctive
normal form (CNF) is searched. This problem
is exactly SAT, so the solution presented in
Gutiérrez-Naranjo etal. (2009) uses amodified
solution for SAT from Pérez-Jiménez, Romero-
Jiménez, and Sancho-Caparrini (2003). Some
experiments were presented by running the P
systems with anupdated version ofthe P-lingua
simulator (Garcia-Quismondo, Gutiérrez-
Escudero, Pérez-Hurtado, Pérez-Jiménez, &
Riscos-Nuilez, 2009). The experiments were
performed on a system with an Intel Core2
Quad CPU (a single processor with 4 cores
at 2,83Ghz), 8GB of RAM and using a C++
simulator under the operating system Ubuntu
Server 8.04. According to the representation in
Gutiérrez-Naranjo et al. (2009), the 3-queens
problem is expressed by a formula in CNF with
9 variables and 31 clauses. The input multiset
has 65 elements and the Psystem has 3185 rules.
Along the computation, 2°=512 elementary
membranes need to be considered in paral-
lel. Since the simulation was carried out on a
uniprocessor system, these membranes were
evaluated sequentially. The 117-th configuration
was a halting one. It took 7 seconds to reach

it and it has an object No in the environment.
As expected, this means that three queens can-
not be placed on a 3x3 chessboard satisfying
the restrictions. In the 4-queens problem, four
non-attacking queens are searched on a 4x4
chessboard. According to the representation,
the problem can be expressed by a formula in
CNF with 16 variables and 80 clauses. Along the
computation, 2'=65536 elementary membranes
were considered in the same configuration and
the P system has 13622 rules. The simulation
takes 20583 seconds (> 5 hours) to reach the
halting configuration. It is the 256-th configu-
ration and in this configuration one object Yes
appears in the environment. This configuration
has two elementary membranes encoding the
two solutions of the problem (Gutiérrez-Naranjo
et al., 2009).

In Gutiérrez-Naranjo and Pérez-Jiménez
(2010), a study of depth-first search in the
framework of Membrane Computing was pre-
sented. The case study was also the N-queens
problem. An ad hoc CLIPS program was written
based ona Membrane Computing design. Some
experiments were performed on a system with
an Intel Pentium Dual CPU E2200 at 2,20 GHz,
3GB of RAM and using CLIPS V6.241 under
the operating system Windows Vista. Finding
one solution took 0,062 seconds for a4 x4 board
and 15,944 seconds for a 20x20 board.

4. AP SYSTEM FAMILY
FOR LOCAL SEARCH

In this section we give a sketch of the design of
a P system family which solves the N-queens
problem by using local search, [I={II(V)},_,.
Each P system I1(N) solves the N-queens prob-
lem in a non-deterministic way, according to
the searching method. The membrane structure
does not change along the computation and we
use electrical charges on the membranes as in
the model of active membranes'.

One state is represented by an NxN chess
board where N queens have been placed. In
order to limit the number of possible states, we
consider an important restriction: we consider

that there is only one queen in each column and
in each row. By using this restriction, we only
need to check the diagonals in order to know
whether a board is a solution to the problem
or not.

These boards can be easily represented
in Membrane Computing. For the P system
I1(N), we consider amembrane structure which
contains N elementary membranes labelled
with 1,...,N and N objects y, i€{l,...,N} in
the skin. By using rules of type y [g VA the
objects y,are non-deterministically sentinto the
membranes and the objecty, inside amembrane
with label j is interpreted as a queen placed on
the row i of the column ;. For example, the
partial configuration [[y], [v.], V.1, [v,1, V.l
is a membrane representation of the board in
Figure 1.

In order to know if one state is better than
another, we need to consider a measure. The
natural measure is to associate to any board the
number of collisions (Sosic & Gu, 1994): The
number of collisions on a diagonal line is one
less than the number of queens on the line, if
the line is not empty, and zero if the line is
empty. The sum of collisions on all diagonal
lines is the total number of collisions between
queens. For example, if we denote by d the
descendant diagonal for squares (i) where
i+j=p and by u, the ascendant diagonal for
squares (i,/) where i—j=¢, then the board shown
in Figure 1 has 3 collisions: 2 in u and 1 ind..
This basic definition of collisions of a state can
berefined ina Membrane Computing algorithm.

As we will see below, in order to compare two
boards, it is not important the exact amount of
collisions when they are greater than 3.

Other key definitions in the algorithm are
the concepts of neighbor and movement. In
this paper, a movement is the interchange of
columns of two queens by keeping the rows.
In other words, if we have one queen at (i,))
and another at (k,s), after the movement these
queens are placed at (i,s) and (k7). It is trivial to
check that, for each movement, if the original
board does not have two queens on the same
column and row, then the final one does not
have it. The definition of neighbor depends
on the definition of movement: the state s, is a
neighbor of state s, if it can be reached from s,
with one movement.

According to these definitions, the local
search algorithm for the N-queens problem can
be written as follows:

0. We start with a randomly chosen state;

1.- We check if the number of collisions of
the current state is zero;

1.1. If so, we finish. The halting configuration
codifies the solution board.

1.2. Ifnot, we look for movements which reach
a state with a lower number of collisions.

1.2.1. If they exist, we randomly choose one of
the possible movements.
The reached state becomes the current state
and we go back to 1.

1.2.2. If they do not exist, we go back to 0.

Figure 1. Five queens on a board. We consider the origin of coordinates at bottom left

7

\0

7

”

At this point, three basic questions arise
from the design of Membrane Computing:
(1) how the number of collisions of a board is
computed? (2) how a better state is searched?
and (3) how a movement is performed?

4.1. Computing Collisions

The representation of an NxN board is made
by using N elementary membranes where the
objectsy,,...,y, are placed. These N elementary
membranes, with labels 1,...,N, are not the
unique elementary membranes in the mem-
brane structure. There are 2N—1 ascendant and
2N—1 descendant diagonals in an NXN board.
As pointed above, we denote the ascendant
diagonals as u_, , ..., u, , where the index p
in u, denotes that the dlagonal corresponds to
the squares (i,y) with i—j=p. Analogously, the
descendantdiagonalsaredenotedbyd, ..., d,
where the index ¢ in dq denotes that the diagonal
corresponds to the squares (i,7) with i+j=g.

Besides the N elementary membranes
with labels 1,...,NV for encoding the board, we
also place 4N—2 elementary membranes in the
structure, with labelsu ..., u, . d, ..., d
These membranes will be used to compute the
collisions.

Bearing in mind the current board, encoded
by membranes with an object [v], we can use
rules of type [y] —d_ u, . These rules are
triggered in parallel and they produce as many
objects dq (resp. u,) as queens which are placed
on the diagonal dq (resp. u).

Objects d and u_are sequentially sent into
the elementary membranes labelledby d andu .
In a first approach, one can consider a counter
z, which evolves to z, | inside each elementary
membrane when an object dq oru, is sent in.
By using this strategy, the index i of z, denotes
how many objects have crossed the membrane,
or in other words, how many queens are placed
on the corresponding diagonal.

This strategy has an important drawback.
In the worst case, if all the queens are placed
on the same diagonal, at least N steps are nec-
essary in order to count them. In our design,
this is not necessary. As we will see, we only

need to know if the number of queens in each
diagonal is 0, 1, 2, or more than 2. Due to the
parallelism of the Psystems, this can be checked
in a constant number of steps regardless of the
number of queens.

Technically, after using a complex set of
rules where the electrical charges are used to
control the flow of objects, each membrane
d sends to the skin a complex object of type
d (DA DB ,DC DD) where DA, DB, DC,
DD e {0,1} codify the number ofq queens onthe
diagonal (for u, the development is analogous,
with the notation up(UA . UB . UCp, UD P)). We
consider four possibilities:

. dq(l,0,0, 0). The 1 in the first coordinate
denotes that there is no queen placed on
the diagonal and the diagonal is ready to
receive one queen after a movement.

. dq(0,1,0,0). The 1 in the second coordinate
denotes that there is one queen placed
on the diagonal. This diagonal does not
contain collisions but it should not receive
more queens.

. dq(O, 0,1,0). The 1 in the third coordinate
denotes that there are two queens placed
on the diagonal. This diagonal has one
collision which can be solved by a unique
appropriate movement.

. dq(O, 0,0,1). The 1 in the fourth diagonal
denotes that there are more than two queens
placed on the diagonal. This diagonal has
several collisions and it will have at least
one collision even if one movement is
performed.

Bearing in mind that a diagonal is ready to
receive queens (0 queens) or it needs to send
queens to another diagonal (2 or more queens),
we can prevent if a movement produces an
improvement in the whole number of collisions
before performing the movement. We do not
need to perform the movement and then to count
the number of collisions in order to know if the
movement decreases the number of collisions.
In order to do that, we distinguish if the pair
of queens to be moved are placed on the same
diagonal or not.

Firstly, let us consider two queens placed
in the squares (i,/) and (k,s) of the same ascen-
dant diagonal, i.e., i—j=k—s. We wonder if the
movement of interchanging the columns of two
queens by keeping the rows will improve the
total number of collisions. In other words, we
wonder if removing the queens from (7,7) and
(k,s) putting them at (i,s) and (k,/) improves
the board.

Inorderto answer this question we consider
the following objects:

* u(0,0,UC_UD,):Theascendantdiagonal
u, has at 1east 2 queens, so the first two co-
ordinates are 0. The parameters UC, , UD, .
can be 0 or 1, but exactly one of them is 1.

. d ,(0.DB, .DC, DD,) and

N (0 DB, DC DD) The descendent
diagonals and d have atleast 1 queen, so
the first coordinate is 0. The remaining ones
can be 0 or 1, but exactly one of them is 1.

It is easy to check that the reduction in
the whole amount of collisions produced by
the removal of the queens from the squares
(i,y) and (k,s) is

(2UC,)+(3UD,)+DB, +(2DC,)+
(3DD,)+ DB, +t@pCc)+(3DD,)-3

Analogously, in order to compute the
change in the number of collisions produced by
the placement of two queens in the squares (i,s),
(k,j) we considerd,, (DA, ,DB,, ,DC, ,DD,),
u, (U4, ,UB, ,Uc, UDH) and
u (UA,,UB_UC, _UD,).

By using this notation, it is easy to check
that the augmentation in the number of colli-
sions is 4 - (DA, + UA, +UA, .

The movementrepresents an improvement
inthe general situation of the board if the reduc-
tioninthe number of collisions is greater than the
augmentation. This can be easily expressed with
asimple formula depending on the parameters.

This is the key point in our Membrane
Computing algorithm, since we do not need
to perform the movement and then to check if

we have an improvement, but we can evaluate
it a priori, by exploring the objects placed in
the skin. Obviously, if the squares share a de-
scendant diagonal, the situation is symmetric.

If the queens do not share a diagonal, the
study is analogous, but the obtained formula by
considering that we get a feasible movement if
the reduction is greater than the augmentation
is slightly different.

Fromatechnical point of view, we consider
afinite set ofrules with the following interpreta-
tion: If the corresponding set of objects

u (UA,, ,UBI ,UC,.UD,)

d (DAﬁ, DCW DD,)
u (UA_, Uqu’UDk-s)
k+§(DAk+i’ k+§’DCk+q’DDk+s)
u (UA_U H,Ucl ,UD.)
d1+§(DA1+§’ DC1+§’DD1+§)
u, (UA,_.UB,_,UC,_.UD,)
k+_](DA DBk+ ’DCk+j’DDk+j)

isplaced inthe skin, then the movement of queen
from (i,j) and (k,s) to (i,s) and (k,j) improves
the number of collisions.

In the general case, there will be many
possible applications of rules of this type.
The P system chooses one of them in a non-
deterministic way. The application of the rule
introduces an object change, in the skin. After
a complex set of rules, this object produces a
new configuration and the cycle starts again.

The design of the P system depends on N,
the number of queens, and it is rather complex
from a technical point of view. It uses coopera-
tion, inhibitors and electrical charges in order
to control the flow of objects. In particular, a
set of rules halts the P system if a board with
zero collisions is reached and another set of
rules re-starts the P system (i.e., it produces a
configuration equivalent to the initial one) if
no more improvements can be achieved from
the current configuration.

Figure 2 shows a solution found with the
corresponding P system for the 5-queens prob-
lem. We start with a board with all the queens
inthe main ascendant diagonal (upper left). The

number of collisions in this diagonal (and in the
wholeboard) is4. By changing queens from the
columns 2 and 5, we obtain the board shown in
Figure 1 with 3 collisions (upper right in Figure
2). In the next step, the queens from columns
1 and 5 are changed, and we get a board with
2 collisions, produced because the two main
diagonals have two queens each (bottom left).
Finally, by changing queens is the columns 1
and 3, we get a board with no collisions that
represents a solution to the 5-queens problem
(bottom right).

5. EXPERIMENTAL RESULTS

Anadhoc CLIPS? program was written inspired
on this Membrane Computing design®. Some
experiments were performed on a system with

an Intel Pentium Dual CPU E2200 at 2,20 GHz,
3GB of RAM and using CLIPS V6.241 under
the operating system Windows Vista.

Due to the random choosing of the initial
configuration and the non-determinism of the P
system for choosing the movement, 20 experi-
ments have been performed for each number Nof
queens for Ne{10,20,...,200} in order to getan
informative parameter. We have considered the
average of these 20 experiments on the number
of P system steps and the number of seconds.
Table 1 shows the result of the experiments.

Notice, for example, that in the solution
presented in Gutiérrez-Naranjo and Pérez-Ji-
ménez (2010), the solution for 20 queens was
obtained after 15,944 seconds. The average
time obtained with this approach is 0.133275
seconds.

Figure 2. Starting from a configuration C, with 4 collisions (up-left) we can reach C, with 3
collisions (up-right); then C, with 2 collisions (bottom-left) and finally C, with 0 collisions
(bottom-right), which is a solution to the 5-queens problem

w| |\

Table 1. Experimental results

Number of queens Average number of steps Average number of secs.
10 141.35 0.0171549
20 166.25 0.133275
30 270.9 0.717275
40 272.7 1.71325
50 382.4 4.75144
60 453.85 9.65071
70 495.45 16.9358
80 637.6 33.1815
90 625 47.3944
100 757.6 80.6878
110 745.75 113.635
120 841.75 157.937
130 891.25 216.141
140 983.7 311.71
150 979.75 381.414
160 1093 541.022
170 1145.5 683.763
180 1206.25 872.504
190 1272.256 1089.13
200 1365.25 1423.89

6. CONCLUSION

Due to the high computational cost of classical
methods, local search has become an alternative
forsearching solution to real-life hard problems
(Hoos & Stiitzle, 2004; Bijarbooneh, Flener, &
Pearson, 2009).

In this paper we present a first approach
to the problem of local search by using Mem-
brane Computing and we have applied it to the
N-queens problem as a case study. As a future
work, several possibilities arise: One of them
is to improve the design from a P system point
of view, maybe considering new ingredients;
a second one is to consider new case studies
closer to real-life problems; a third one is to
implement the design in parallel architectures

and compare the results with the ones obtained
with a one-processor computer.

ACKNOWLEDGMENTS

The authors acknowledge the support of the
projects TIN-2009-13192 of the Ministerio de
Ciencia e Innovacion of Spain and the support
of the Project of Excellence of the Junta de
Andalucia, grant POS-TIC-04200.

REFERENCES

Bernhardsson, B. (1991). Explicit solutions to the
N-queens problem for all. ACM SIGART Bulletin,
2(2),7. doi:10.1145/122319.122322

Bijarbooneh, F. H., Flener, P., & Pearson, J. (2009).
Dynamic demand-capacity balancing for air traffic
management using constraint-based local search:
First results. In Proceedings of the 6th International
Workshop on Local Search Techniques in Constraint
Satisfaction (Vol. 5, pp. 27-40).

Garcia-Quismondo, M., Gutiérrez-Escudero, R.,
Pérez-Hurtado, 1., Pérez-Jiménez, M. J., & Riscos-
Nuiiez, A. (2009). An overview of P-lingua 2.0. In
G. Paun, M. J. Pérez-Jiménez, A. Riscos-Nuiiez,
G. Rozenberg, & A. Salomaa (Eds.), Proceedings
of the 10™ International Workshop on Membrane
Computing (LNCS 5957, pp. 264-288).

Gutiérrez-Naranjo, M. A., Martinez-del-Amor,
M. A., Pérez-Hurtado, 1., & Pérez-Jiménez, M. J.
(2009). Solving the N-queens puzzle with P systems.
In Proceedings of the Seventh Brainstorming Week
on Membrane Computing, Seville, Spain (Vol. 1,
pp. 199-210).

Gutiérrez-Naranjo, M. A., & Pérez-Jiménez, M. J.
(2010). Depth-first search with P systems. In M.
Gheorghe, T. Hinze, G. Paun, G. Rozenberg, &
A. Salomaa (Eds.), Proceedings of the Eleventh
International Conference on Membrane Computing
(LNCS 6501, pp. 257-264).

Hoffman, E., Loessi, J., & Moore, R. (1969). Con-
structions for the solution of the N queens problem.
National Mathematics Magazine, 42, 66-72.

Hoos, H. H., & Stiitzle, T. (2004). Stochastic local
search: Foundations & applications (1st ed.). San
Francisco, CA: Morgan Kaufmann.

Paun, G. (2002). Membrane computing: An introduc-
tion. Berlin, Germany: Springer-Verlag.

Paun, G., Rozenberg, G., & Salomaa, A. (Eds.).
(2010). The Oxford handbook of membrane comput-
ing. Oxford, UK: Oxford University Press.

Pérez-Jiménez, M. J., Romero-Jiménez, A.,
& Sancho-Caparrini, F. (2003). Complexity
classes in models of cellular computing with
membranes. Natural Computing, 2(3), 265-285.
doi:10.1023/A:1025449224520

Russell, S. J., & Norvig, P. (2002). Artificial intel-
ligence: Amodern approach (2nd ed.). Upper Saddle
River, NJ: Prentice Hall.

Sosic, R., & Gu, J. (1994). Efficient local search with
conflict minimization: A case study of the N-queens
problem. /[EEE Transactions on Knowledge and Data
Engineering, 6(5),661-668.doi:10.1109/69.317698

ENDNOTES

! We assume that the reader is familiar with the

concepts of Membrane Computing. We refer
to Paun (2002) for basic information in this
area and to Paun, Rozenberg, and Salomaa
(2010) for a comprehensive presentation and
the web site http://ppage.psystems.eu for up-
to-date information.

CLIPS is an expert system tool originally
developed by the Software Technology Branch
(STB), NASA/Lyndon B. Johnson Space
Center, see http://clipsrules.sourceforge.net/.
Available from the authors.

Miguel A. Gutiérrez-Naranjo obtained his PhD in Mathematics in 2002. Currently, he is a profes-
sor in the Computer Science and Artificial Intelligence Department at the University of Seville,

Spain. He is also a member of the Research Group on Natural Computing of the University of
Seville. His research interest includes topics related to Artificial Intelligence and Natural Com-

puting. He has coauthored more than 30 scientific papers in these areas.

