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ABSTRACT

Smoothing is often used in Digital Imagery for improving the quality of an image by reducing its level of noise.

This paper presents a parallel implementation of an algorithm for smoothing 2D images in the framework of
Membrane Computing. The chosen formal framework has been tissue-like P systems. The algorithm has been

implemented by using a novel device architecture called CUDA™ (Compute Unified Device Architecture)

which allows the parallel NVIDIA Graphics Processors Units (GPUs) to solve many complex computational
problems. Some examples are presented and compared, research lines for the future are also discussed.

Keywords:

Compute Unified Device Architecture (CUDA), Graphics Processors Units (GPU), Image

Processing, Membrane Computing, Smoothing, Tissue-Like P Systems

1. INTRODUCTION

The study of digital images (Shapiro & Stock-
man, 2001) has seen a large progress over the
last decades. The aim of dealing with an image
in its digital form is improving its quality, in
some sense, or simply achieving some artistic
effect. The physical properties of camera tech-
nology are inherently linked to different sources
of noise, so the application of a smoothing
algorithm is necessary for reducing such noise
within an image.
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In this paper we use Membrane Comput-
ing techniques for smoothing 2D images with
tissue-like P systems. We refer to Paun (2002)
for basic information in this area and to Paun,
Rozenberg, and Salomaa (2010) for a compre-
hensive presentation and the web site http://
ppage.psystems.eu for the up-to-date informa-
tion. The algorithm has been implemented by
using anovel device architecture called CUDA
(Compute Unified Device Architecture, http://
www.nvidia.com/object/cuda_home new.
html). CUDA™ is a general purpose parallel
computing architecture that allows the parallel
NVIDIA Graphics Processors Units (GPUs) to




solve many complex computational problems
(for a good overview, the reader can refer to
Owens et al., 2008) in a more efficient way
than on a CPU. This architecture has been
previously used in Membrane Computing
(Cecilia et al., 2010a, 2010b) but, to the best
of our knowledge, this is the first time that it is
used for implementing a smoothing algorithm.

Dealing with Digital Images has several
features which make it suitable for techniques
inspired by nature. One of them is that it can
be parallelized and locally solved. Regardless
how large the picture is, the smoothing pro-
cess can be performed in parallel in different
local areas. Another interesting feature is that
the basic necessary information can be easily
encoded by bio-inspired representations. In
the literature, one can find several attempts for
bridging problems from Digital Imagery with
Natural Computing as the works by Ceterchi
et al. (2003) and Ceterchi, Mutyam, Paun,
and Subramanian (2003) or the work by Chao
and Nakayama where Natural Computing
and Algebraic Topology are linked by using
Neural Networks (Chao & Nakayama, 1996).
Recently, new approaches have been presented
in the framework of Membrane Computing
(Christinal, Diaz-Pernil, Gutiérrez-Naranjo, &
Pérez-Jiménez, 2010; Diaz-Pernil, Gutiérrez-
Naranjo, Molina-Abril, & Real, 2010). Chris-
tinal, Diaz-Pernil, and Real (2009a, 2009b,
2010) started a new bio-inspired research line
where the power and efficiency of tissue-like P
systems were applied to topological processes
for 2D and 3D digital images.

The paper is organised as follows: Firstly,
we recall some basics of tissue-like P systems
and the foundations of Digital Imagery. Next
we present our P systems family and a simple
example showing different results by using dif-
ferent thresholds. In Section 3 we present the
implementation in CUDA™ of the algorithm
and show an illustrative example, including a
comparison of the times obtained in the differ-
ent variants. The paper finishes with some final
remarks and hints for future work.

2. PRELIMINARIES

In this section we provide some basics on the
used P system model, tissue-like P systems, and
on the foundation of Digital Imagery.

Tissue-like P systems (Martin-Vide, Paun,
Pazos, & Rodriguez-Paton, 2003) have two
biological inspirations: intercellular commu-
nication and cooperation between neurons.
The common mathematical model of these two
mechanisms is a network of processors dealing
with symbols and communicating these symbols
along channels specified in advance.

Formally, a tissue-like P system with input
of degree g>1 is a tuple

[T 2 E, wy,.. AW, R, o)
where

1. T'isa finite alphabet, whose symbols will
be called objects;

2. X(cT) is the input alphabet;

3. ECT is the alphabet of objects in the
environment;

4. w,...,w_are strings over I" representing
the multisets of objects associated with
the cells at the initial configuration;

5. Ris a finite set of communication rules of
the form (i,u/v,))
fori,j €{0,1,2,...,q}, i#, u,v € I'*;

6. i, €{l,2,..q} isthe input cell;

7. o0,€{0,1,2,...,q} is the output cell.

Atissue-like Psystem of degree g>1 can be
seen as a set of g cells (each one consisting of
an elementary membrane) labelled by 1,2....,q.
We will use 0 to refer to the label of the environ-
ment, i, denotes the input cell and o,, denotes
the output cell (which can be the region inside
acell orthe environment). The strings w ... W,
describe the multisets of objects placed in the
cells of the P system. We interpret that ECI is
the set of objects placed in the environment,
each one of them available in an arbitrary large
amount of copies.




The communication rule (i,u/v,j) can be
applied over two cells labelled by i and j such
that « is contained in cell / and v is contained
in cellj. The application of this rule means that
the objects of the multisets represented by  and
v are interchanged between the two cells. Note
that if either i=0 or /=0 then the objects are in-
terchanged between a cell and the environment.

Rules are used as usual in the framework
of membrane computing, thatis, inamaximally
parallel way (auniversal clock is considered). In
one step, each objectin amembrane can only be
used for one rule (non-deterministically chosen
when there are several possibilities), but any
object which can participate in a rule of any
form must do it, i.e., in each step we apply a
maximal set of rules.

A configurationis aninstantaneous descrip-
tion of the P system I1. Given a configuration,
we can perform a computation step and obtain
a new configuration by applying the rules in a
parallel manner as it is shown above. A compu-
tation is a sequence of computation steps such
that either it is infinite or it is finite and the last
step yields a halting configuration (i.e., norules
can be applied to it). Then, a computation halts
whenthe systemreaches a halting configuration.

Next we recall some basics on Digital
Imagery (we refer the interested reader to Rit-
ter, Wilson, & Davidson, 1990 for a detailed
introduction). A point set is simply a topological
space consisting ofa collection of objects called
points and a topology which provides notions
as nearness of two points, the connectivity of
a subset of the point set, the neighbourhood of
a point, boundary points, and curves and arcs.

For a point set XCZ, a neighbourhood

function from X in Z, is a function N: X—2%
For each point xeX, N(x)CZ. The set N(x) is
called a neighbourhood for x.

There are two neighbourhood function on
subsets of Z* which are of particular importance
in image processing, the von Neumann neigh-
bourhood and the Moore neighbourhood. The
first one N: X — 2% is defined by N(x)={y:
y=(x.x,) or y=(x,x +k), jk € {0,1}}, where

x=(x,x,) € XCZ’. While the Moore neigh-
bourhood M:X — 2% is defined by M(x)=
{ y=(x4.x k), j.k € {0,1} }, where x=(x,x,)
€XcZ?. The von Neumann and Moore neigh-
bourhood are also called the four neighbour-
hood (4-adjacency) and eight neighbourhood
(8-adjacency), respectively.

An Z-valued image on X is any element
of Z*. Given an Z-valued image I€Z*, i.e., I
X—Z, then Z is called the set of possible range
values of / and X the spatial domain of /. The
graph of an image is also referred to as the data
structurerepresentation of the image. Given the
data structure representation /={(x,/(x)): x€X},
then an element (x,/(x)) is called a picture ele-
ment or pixel. The first coordinate x of a pixel
is called the pixel location or image point, and
the second coordinate /(x) is called the pixel
value of I at location x. Usually, we consider
an ordered set C C Z called the set of colours.

A region could be defined by a subset of
the domain of / whose points are all mapped
to the same (or similar) pixel value by /. So,
we can consider the region R, as the set {x&X:
I(x)=i} but we prefer to consider a region r as
amaximal connected subset of a set like R.. We
say two regionsr ,r, are adjacent when at less a
pair of pixel x, €r, and x,€r, are adjacent. We
say x, and x, are border pixels. If I(x )<I(x,)
we say x, is an edge pixel. The set of connected
edge pixels with the same pixel value is called
a boundary between two regions.

The purpose of image enhancement is to
improve the visual appearance of an image, or
to transform an image into a form that is bet-
ter suited for human interpretation or machine
analysis. There exists a multitude of image
enhancement techniques, as are averaging of
multiple images, local averaging, Gaussian
smoothing, max-min sharpening transform, etc.

One of the forms to enhancement an im-
age could be eliminate non important regions
of an image, i.e., remove regions which do not
provide relevant information. This technique is
known as smoothing.




2.1. A Family of
Tissue-Like P Systems

Given an image with »* pixels (n€N) and r a
threshold (r€N) which represents the upper
bound of the distance between related colours,
we define a tissue-like P system whose input
is given by the pixels of the image encoded by
the objects a where 1<i,j<n and aeC. Next,
we shall give some outlines how to prove that
our smoothing problem can be solved in a
logarithmic number of steps using a family of
tissue-like P systems IT.

We define a family of tissue-like P systems
todoasmoothing ofa2D image. Foreachimage
of'size n* with n€N, we consider the tissue-like
P system with input of degree 1:

[Taen)=T, %, E, w,R i, o0,
where
e T=XUE,

* X={a;a€C I<ij<n),
* E=f{aga€( I<ijn),

° w :@
1
e R is the following set of communication
rules:

o (I, a, bkl/a.. a_0),

ij kI
. for 1<ij<n, a,peC, a<b and d(a,b) < r,

These rules are used to simplify the image.
If we have two colours whose distance in the
set of colours of the image is lower than a given
threshold r, then the colour with a higher value
is replaced by a lower one. Of this manner, we
change the regions structure.

- =0l

Each P system works as follows: We take
pairs of adjacent pixels and change the col or of
the pixel with lower col or. We do it in a parallel
way with all the possible pairs of pixels. In the
next step, we will repeat the previous process,

but the colours of the pixels may have been
changed. So, in the worst case, a linear number
of steps are necessary to do all the possible
changes to obtain a smoothing of our image.

2.2. A Simple Example

In this section, we show the results obtained
by the application of our method. Our input
image (of size 30x30) can be seen in Figure 1.
In this case, 0 represents the white colour and
30 represents the black colour.

Working with different thresholds provides
different results as we can observe in Figure 2.
If we take =5, then we get the first image, and
when the threshold is 7=10 the second image
is obtained. By using this method, it is clear
that the structure of regions is (more or less)
conserved with a threshold of 7=5 and we need
to a high number to obtain a more simplified
image. Moreover, we can observe in both
cases the col or of regions is similar to the re-
gions of input image in this method. Therefore,
we can use this technique for smoothing im-
ages, and clarify the structure of a region
without eliminate important information.

Bearing in mind the size of the input data
is O(n?), representing by 4 the number of the
elements of the set C and considering r as the
threshold used with both membrane solutions,
the amount of necessary resources for defining
the P systems of our family and the complex-
ity of our problem is determined in Table 1.

3. PARALLEL
IMPLEMENTATION

GPUs constitute nowadays a solid alterna-
tive for high performance computing, and
the advent of CUDA™ allows programmers a
friendly model to accelerate a broad range of
applications. GPUs are especially well-suited to
address problems that can be expressed as data-
parallel computations. GPUs can support several
thousand of concurrent threads providing a
massively parallel environment. This parallel




Figure 1. An example
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technology is suitable for parallel computational
paradigms by providing an efficient framework
for real parallel implementations.

Inthis paper, we presenta parallel software
tool which implements our membrane approach
for smoothing images. It has been developed
by using Microsoft Visual Studio 2008 Profes-
sional Edition (C++) with the plugging Parallel
Nsight (CUDA™) under Microsoft Windows 7
Professional with 32 bits.

To implement the P systems, CUDA™
C, an extension of C for implementations of
executable kernels in parallel with graphical
cards NVIDIA has been used. It has been nec-
essary the nvee compiler of CUDA™ Toolkit.
Moreover, we use libraries from openCV to the
treatment of inputand outputimages. Microsoft
Visual Studio 2008 is responsible for calling to
the compilers to build the objects, and to link
them with the final program. This allows us to




Table 1. Complexity and resources

Smoothing Problem
Complexity Dynamical
Number of steps of a computation O(n)
Necessary Resources
Size of the alphabet n*h
Initial number of cells 1
Initial number of objects 0
Number of rules O(n* h)
Upper bound for the length of the rules 4

deal with images stored in .BMP, .JPG, .PNG,
or .TIF formats among others.

The experiments have been performed on
a computer with a CPU Intel Pentium 4 650,
with support for HT technology which allows
to work like two CPUs of 32 bits to 3412 MHz.
It has 2 MB of L2 cache memory and 1 GB
DDR SDRAM of main memory with 64 bits
bus wide to 200 MHz. Moreover, it has a hard
disc of 160 GB SATA2 with a transfer rate
of 300 Mbps in a 8 MB buffer. The graphical
card (GPU) is an NVIDIA Geforce 8600 GT
composed by 4 Stream Processors with a total
of 32 cores to 1300 MHz and executes 512
threads per block as maximum. It has a 512
MB DDR2 main memory, but 499 MB could
be used by processing in a 128 bits bus to 700
MHz. So, the transfer rate obtained is by 22.4
Gbps. For constant memory used 64 KB and for
shared memory 16 KB. Its Compute Capabil-
ity is 1.1 (from 1.0 to 2.1), then we can obtain
a lot of improvements in the efficiency of the
algorithms.

We have developed two applications of
our P systems. In this case, we consider the
natural order in the gray-scale set of colours
C = {0,...,255}. In the first one, we have
considered a deterministic implementation,
where the Moore neighbourhood is considered.
The system checks if the rules can be applied
for eight adjacent pixels. In the second one,
we have considered a random selection of an
adjacent pixel to work. In this case, the system

checks only one possibility randomly chosen.
This way, we simulate the characteristic non
determinism of P systems using randomness.
Moreover, we have decided to stop the system
before the halting configuration, because more
than an appropriate number of parallel steps
of processing could make too much uniform
the output image. In fact, in the deterministic
version, the process could finish before the
pre-fixed number of steps. So, the system needs
some time to check this possibility. In the second
one, it is not necessary to look at this question.

We consider the image of size 640x400 in
Figure 3. When we take the deterministic ap-
plication of our software, we can check that if
we use an threshold 7=50, our software smooths
the original image (Figure 4) using 44 parallel
steps. Nonetheless, when we work with a higher
threshold, new important regions are changed,
and the output image is different (Figure 5).

When we consider the random version of
our software, we can check that if we use an
threshold =50 we need 300 steps, but the dif-
ferences with the resulting image with 150 or
200 steps are minimum, as we can see in Figure
6. When we take higher thresholds, as in the
Figure 7, we can check that new regions have
different colours.

Table 2 shows the running times of our
software for both cases with different thresholds,
shown in the examples. We can observe that
the deterministic version of our software needs
less time with respect to the random version.




Figure 3. Original image

In the first one, it applies eight rules for each
pixels while, in the second one, it applies only
one rule for each pixel. Moreover, we need an
additional running time to implement the ran-
dom in each step for each pixel.

Finally, we have done some experiments
with our software to know what happened if
we work with images of different size. We have

Figure 4. Deterministic version. Threshold 50

checked our software with images until size
512x512 in both versions. The deterministic
version needs much time with bigger images,
and the random version does not work with
those images. This is a physical problem with
our graphical card, because the shared memo-
ry is small.

20,5, 10, 20, 32 and 44 steps, respectively.

Figure 5. Deterministic version. Left image: Threshold 75, step 193. Right image: Threshold

125, step 193.




Figure 6. Random version. Threshold 50: 0, 50, 100, 150, 200 and 300 steps, respectively.

Figure 7. Random version. Left image: Threshold 75, step 1000. Right image: Threshold 125,

step 800.

Table 2. Running times of the experiments

Version \ Thresholds

Computation steps

Running Time

Determ. \ 50 44 536.522 ms

Determ. \ 75 193 1582.098 ms
Determ. \ 125 193 1563.660 ms
Random ~ 50 300 6823.683 ms
Random ~ 75 1000 21537.701 ms
Random \ 100 800 17332.891 ms

4. CONCLUSION AND
FUTURE WORK

In this paper, three emergent research fields are
put together. Firstly, as pointed in Christinal et
al. (2009a) and Christinal, Diaz-Pernil,and Real
(2010), Membrane Computing has features as
the encapsulation of the information, a simple
representation of the knowledge and parallel-
ism, which are appropriate with dealing with
digital images. Nonetheless, the use of the
intrinsic parallelism of Membrane Computing

techniques cannot be implemented in current
one-processor computers, so the potential
advantages of the theoretical design are lost.
In this paper we show that the drawback
of using one-processor computers for imple-
menting Membrane Computing designs can
be avoided by using the parallel architecture
CUDA™. This new technology provides the
hardware needed for a real parallel implemen-
tation of Membrane Computing algorithms.
Considering this paper as a starting point,
several research lines are open: From Digital




Imagery, new parallel algorithms can be pro-
posed or adapted to the new technology, from
the Membrane Computing side, new design or
different Psystem models can be explored. From
the hardware point of view, the advances in the
new technology CUDA™ open new possibilities
for going on with the research.
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