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A B S T R A C T

Allergic diseases are increasing around the world with unprecedented complexity and severity. One of the
reasons is that genetically modified crops produce new potentially allergenic proteins. From this starting
point, many researchers have paid attention to the development of tools to predict the allergenicity of new
proteins. In this study, a novel approach is introduced for the prediction of food allergens based on Artificial
Intelligence techniques: a pairwise sequence alignment with the FASTA program for feature extraction and
the use of the Deep Learning technique known as Restricted Boltzmann Machines in combination with the
Decision Tree method for the prediction process. The developed tool, called ALLERDET (publicly available
at http://allerdet.frangam.com), overcomes the state-of-the-art methods. The performance of our method is:
98.46% sensitivity, 94.37% specificity and 97.26% accuracy), on a data set built from several publicly available
sources.
1. Introduction

Allergic diseases are increasing worldwide with unprecedented com-
plexity and severity. Allergic reactions affect more than 30% of the
world’s population. In particular, food allergies affect 6% of the pe-
diatric population and 4% of adults [1–3]. Parallel to this increase, the
umber of new proteins has grown rapidly in recent years. They are
sed in therapeutics, food, household products, and pharmaceuticals.
hese modified proteins are a source of potential allergenicity for
umans, and the development of accurate methods capable of detecting
rue allergens is crucial to ensure safety. The usual way to test for
otential risk is by comparing the potential allergen with a database of
abeled proteins. Predicting allergenicity is a hard task, since similarity
oes not always take into account cross-reactivity in protein folds [4].

The current joint recommendation by the World Health Organi-
ation (WHO) and the Food and Agriculture Organization (FAO) to
est allergenicity is based on a Decision Tree schema [5]. This schema
ompares the similarity of a protein with a set of proteins of known
llergenicity, and if they are 35% identical over a linear window of
0 residues, then this protein is declared potentially allergen [6]. In
he literature, different Machine Learning techniques can be found to
lassify new proteins that are not based on Decision Tree schemata.
hese techniques involve the k-Nearest Neighbor classifier [7], Fourier
ransform [8], linear / quasi-Gaussian classifier [9], SVM methods [10],

allergen-representative peptides [11], global protein descriptors [12],
and a combination of several methods known as hybrid techniques [13].

∗ Corresponding author.

Researchers are interested in using tools to predict allergenicity
in different domains, such as the discovery of the allergenicity pat-
tern of vaccine and drug development [14–17]. Several applications
have been developed to deal with the prediction of allergenicity. For
example, AllerCatPro 2.0 [18] is a web server that predicts protein
allergenicity with 84% accuracy, based on amino acid sequences and
the similarity of the 3D protein structure. Other tools do not exceed
90% accuracy, such as AllergenFP [19], which reaches 88% accuracy
and AllerTOP [20] with 94% sensitivity, but none of the accuracy is
mentioned. However, existing tools are imprecise in terms of sensitiv-
ity, specificity and accuracy. Some of them are high in sensitivity but
low in specificity, resulting in inconsistent and unbalanced approaches
to accuracy. Except AlgPred 2.0 [21], the current approaches have
balanced metrics and all of them are below 90%.

In this paper, a novel Machine Learning approach is presented
to discriminate between proteins that are capable or not of causing
allergic reactions. Our proposal combines classical Decision Tree meth-
ods with a Deep Learning technique known as Restricted Boltzmann
Machines (RBM). RBM have been successfully applied to other research
areas such as collaborative filtering [22], modeling documents [23],
modeling natural images [23], or even modeling human motion [24].
They have also been applied in the health domain, namely, to model
electronic medical records (EMRs) [25]. However, to the best of our
knowledge, this is the first time that RBM has been applied to the study
of allergenicity. The intuition behind the use of RBM is that this deep
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learning model is capable of producing a compact representation of
the relevant information, which is provided as input to the Decision
Tree method. Our model to detect the potential allergenicity of protein
sequences was trained and validated using 2000 well-known aller-
gens and 2000 non-allergens, overcoming the state-of-the-art (SOTA)
methods, maintaining balanced metrics performances of sensitivity,
specificity and accuracy, and is publicly available at http://allerdet.
frangam.com.

To resume, the main contributions of this paper can be summarized
as follows:

• A new sequence database for training models of supervised learn-
ing methods has been constructed by integrating many other
publicly available databases. To our knowledge, it is currently
the most comprehensive database for this purpose and is publicly
available to the scientific community.

• We empirically demonstrate that the use of Restricted Boltzmann
Machines, a Deep Learning technique, is a useful tool for prepro-
cessing information before using Decision Tree methods, as they
provide a more compact (and more efficient) way of encoding
information.

• A new machine learning method based on the combination of
RBM and decision tree has been implemented and trained on the
newly constructed database. The results obtained outperform the
scores of state-of-the-art methods and can be publicly accessed via
web.

• Our tool has balanced metrics in terms of sensitivity, specificity
and accuracy, all of which are greater than 98%.

. Materials and methods

.1. Datasets

The dataset was built by combining data from several publicly avail-
ble sources: UniProt database [26], AllerHunter Training Dataset [10,
7], AllerTop Training Dataset [20,28], COMPARE [29] and
llergenOnline [30].

On the one hand, the allergens collected from UnitProt [26] were
btained following Zorzet et al. [7], allergenic sequences were collected
rom UniProt database searching for matches with allergen terms (see
Appendix. An amount of 2952 sequences were collected from SwissProt
ecords (sequences are manually annotated by experts), and 1125
ifferent allergen sequences were collected from AllerHunter (from
ts train/test/independent sets) and 2427 from AllerTop, 2463 from
OMPARE, 2233 from AllergenOnline and 8060 from AlgPred 2.0.
bviously, since among these sets there are duplications, we avoided

hese repetitions and obtained a final result of 4670 sequences of aller-
ens in total. Furthermore, for comparing state-of-the-art methods, we
pply the validation hold-out set of AlgPred 2.0 (2015 sequences) used
n benchmarks [21,18]. Although, we found it had some duplications
nd the final holdout-set had 763 allergens, which were never seen in
raining dataset. All of these sequences are in FASTA format [31].

On the other hand, the dataset of non-allergen sequences was
btained from the UniProt database, including the exclusion filters pro-
osed in [7,9]. Two exclusion filters were used. Some technical details
an be found in Appendix. These searches reported 1227 non-allergen
equences from SwissProt records, and a total of 3977 sequences from
llerHunter, 2427 from AllerTop and 8060 from AlgPred 2.0 non-
llergen. However, although the total amount of sequences resulted
n 15,369, we selected the same value as allergens to get balanced
he dataset (4670). Again, we used the validation hold-out set of
lgPred 2.0 (763 non-allergens, get classes balanced), avoiding also
uplications with our training dataset.

The training dataset is available to the research community for
llergens and non-allergens at [32] and [33], respectively.
2

2.2. Pairwise sequence alignment

Pairwise Sequence Alignment (PSA) is a widely used technique in
bioinformatics to extract useful information on structural, functional
and evolutionary relationships between two biological sequences, based
on the identification of similarity regions between amino acids [34]. In
this article, PSA was performed with the FASTA 3.6 tool [31,35]. The
parameters used were the BLOSUM50 substitution matrix, gap opening
penalty with a value of −12 and the extension gap penalty value set
to −2. All sequences were aligned with the allergen training data set.
The allergen training set was aligned against itself (ATD) and the non-
allergen training set was aligned against the allergen training set (NTD).
The rationale for this alignment is to obtain a measure of similarity,
since similar sequences in proteins are commonly accepted that imply
a similar function and structure [36].

From these alignments, four features returned by the FASTA pro-
gram were selected to evaluate them: alignment score (Smith-Waterman
score), alignment length, identity and similarity percentages over 35%
(following FAO/WHO criteria [5]), init1 (the highest scoring align-
ment without gaps), initn (the score which combines consistent non-
overlapping runs without gaps, z-score and bits scores [31,35]. Fur-
thermore, the best 𝑚 alignments reported by FASTA were considered.

ext, all alignments were put into a feature matrix to feed Machine
earning models, and each row was labeled as an allergen or non-
llergen, depending on whether these features correspond to ATD or
TD, respectively (Fig. 1).

.3. Restricted Boltzmann machines

One of the key points in our study is the use of RBM. Next, we
rovide a short introduction to this Deep Learning model.

Boltzmann Machines (BM) are bidirectionally connected networks
f stochastic processing units. Such devices can be considered as arti-
icial neural network models [37]. They are Machine Learning tools
hat can learn an unknown probability distribution from samples of
his distribution [38]. RBM are BM in which neurons are placed on the
odes of a bipartite graph. These neurons are distributed in two layers.
wo nodes from the same layer are not connected, and each of the two
odes from different layers is connected by a symmetric edge [39]. In
his way, an RBM can be seen as an artificial neural network with a
ingle-layer architecture for unsupervised feature learning.

One of the layers is called the visible variable layer 𝑣𝑖, 𝑖 ∈ {1,… , 𝑚},
orresponding to the input data, and the second one is called the hidden
ariable layer ℎ𝑗 , 𝑗 ∈ {1,… , 𝑔}, corresponding to feature detectors.
ach edge between neurons in the visible and hidden layers has a
eight associated with it. Let 𝐖 = (𝑊𝑖𝑗 )𝑚×𝑔 be a matrix representing

he weight parameter settings, where 𝑊𝑖𝑗 represents the connection
etween the variables 𝑣𝑖 and ℎ𝑗 .

Let 𝐚 = (𝑎1,… , 𝑎𝑚) and 𝐛 = (𝑏1,… , 𝑏𝑔) be the bias vectors, where 𝑎𝑖
nd 𝑏𝑗 are the biases associated with variables 𝑣𝑖 and ℎ𝑗 , respectively.
et 𝐯 = (𝑣1,… , 𝑣𝑚) and 𝐡 = (ℎ1,… , ℎ𝑔) be two vectors representing the

state of variables in visible and hidden layers and denote by (𝐯,𝐡) the
configuration of the entire RBM. Given this configuration, the energy
function of the model is defined as follows.

𝐸(𝑣, ℎ; 𝜃) = 𝐚𝑇 𝐯 + 𝐛𝑇 𝐡 + 𝑣𝑇𝐖𝐡 (1)

where 𝜃 = (𝐚,𝐛;𝐖) is the setting of the model parameters. Since there
are no links between hidden variables, the marginal distribution of
visible variables can easily be computed.

𝑝(𝑣) = 1
𝑍

∑

ℎ
𝑝(𝑣, ℎ) = 1

𝑍
∑

ℎ
𝑒−𝐸(𝑣,ℎ;𝜃) (2)

where 𝑍 is the normalization constant. The learning process in RBM
tries to maximize the product of probabilities in a training set 𝑉 [40].
The usual training algorithm is the contrastive divergence
algorithm [31], which tries to maximize the probability of visible

http://allerdet.frangam.com
http://allerdet.frangam.com
http://allerdet.frangam.com
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Fig. 1. Features matrix and classes vector.
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variables using. Its objective is to approximate the probability den-
sity function of the data set using an unsupervised approach, that
is, without any kind of labeled information. Once the parameters
of the model have been fixed after the learning process, the model
is ready to obtain the likely samples. The method is used inside a
gradient descent technique, computing weight update and performing
the Gibbs sampling. Although the most common RBM has binary-valued
hidden/visible units [41], in this paper, we use real-valued units.

2.4. Evaluation metrics

The performance of the classifiers is evaluated using the following
measures:

• Accuracy (ACC): total number of true classifications divided by
the size of the test set.

• Sensitivity (SE): the ability to identify allergen proteins correctly.
• Specificity (SP): the ability to identify non-allergen proteins cor-

rectly.

The cross-validation method [42] was used to evaluate the tool.

2.5. Stratified k-fold cross-validation

The cross-validation method [42] was used to evaluate the tool in
order to ensure the same proportion of two classes in every fold. It is
also well known. The database 𝐷 is divided into mutually exclusive
subsets of random samples, also known as folds (𝐷1, 𝐷2,… , 𝐷𝑘). Ap-
proximately, such a fold has equal size. The classifier is then trained
in 𝑘 iterations, each of them using the set (𝐷∖𝐷𝑖) for training and 𝐷𝑖
for testing 𝑖 ∈ {1,… , 𝑘}. Cross-validation accuracy is the total number
of true predictions divided by the total instances. The cross-validation
estimate k is calculated as follows:

𝑎𝑐𝑐𝑐𝑣 = 1
𝑛

∑

𝛿(𝐼(𝐷∖𝐷(𝑖),𝑣𝑖 ), 𝑦𝑖) (3)
3

(𝑣𝑖 ,𝑦𝑖)∈𝐷
here (𝐼(𝐷∖𝐷(𝑖), 𝑣𝑖), 𝑦𝑖) corresponds to the label assigned by 𝐼 to an
instance 𝑣𝑖 with the dataset 𝐷∖𝐷(𝑖); 𝑦𝑖 is the classification of the
instance ; 𝑛 is the size of 𝐷; and 𝛿(𝑖, 𝑗) is the Kronecker delta. In
this paper, a stratified k-fold validation was used. Approximately, this
means that the folds contain the same proportion of classes as in the
full dataset.

2.6. Webserver implementation

The software architecture of ALLERDET is presented in Fig. 2. The
nput of this application consists of one or several protein sequences
n FASTA format (Fig. 3). Then, when the user click on ‘‘Predict’’
utton, the back-end launches FASTA program in order to perform
he pair-wise alignment between the input sequences and our curate
ist of allergens. Following, we get a file with the alignments and
ur method performs a feature extraction process and, then the final
llergen prediction.

Finally, the output is an interactive table (Fig. 4) with the results of
allergenicity prediction, which presents links for each protein to view
more details in the corresponding database.

3. Results

Fig. 5 (left) shows the pairwise sequence alignments of the nonal-
lergenic sequences against the allergens dataset (NTD). The result of
aligning the allergenic sequences against themselves (ATD) is presented
in Fig. 5 (right). On the one hand, the nonallergen alignment presents a
low alignment score and a relatively short alignment length, in general.
On the other hand, an important point is that allergen alignment shows
a high alignment score on average.

Three-fold cross-validation with stratification was applied to vali-
date the quality of each model. In this way, a search was performed
for the best classification accuracy, considering several permutations
of different values of the best 𝑚 alignments and the four different
alignment features selected.
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Fig. 2. ALLERDET software architecture.
Fig. 3. Interface of ALLERDET for submitting one or several protein sequences in FASTA format.
Fig. 4. Interface of ALLERDET showing the results of allergenicity detection in an interactive table, with links to protein databases for each entry.
In such a way, training of an RBM was performed, and then the
outputs were used as inputs of the Decision Tree model, which we
4

called RBM + DT and deployed in ALLERDET. Therefore, the best
performing method was RBM + DT with relatively higher performance
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Fig. 5. Non-allergen alignment (left) and allergen alignment (right).
Table 1
Comparison of ALLERDET with existing tools as reported in the literature.

Tool Sensitivity Specificity Accuracy Alive Web

ALLERDET (3-fold) 99.62% 99.74% 99.48%
ALLERDET (AlgPred 2.0 test) 98.46% 94.37% 97.26% Yes
AlgPred 2.0 93.1% 95.36% 94.23% Yes
AlgPred (2003) 88.87% 81.86% 85.02% Yes
AllerCatPro 2.0 (AlgPred 2.0 test) 93.2% 98.8% 96.0% Yes
AllerCatPro 1.7 (AlgPred 2.0 test) 91.1% 94.8% 93.0% Yes
AllerHunter 83.7% 96.4% 95.3% No
AllerTOP v.2 (kNN, k = 1) 86.7% 90.7% 88.7% Yes
AllerTOP v.1 87.6% 78% 82.8% No
Zorzet et al. (kNN, k = 9) 81% 98% 89.5% –
AllergenFP (SVM) 86.8% 89.1% 87.9%
FAO/WHO 97.8% 27.8% 20.9% –

correctly recognizes 99.66% allergens, 98.89% of non-allergens (accu-
racy=99.3%, 𝑚 = 1 best alignments considered and all four alignment
features extracted).

In addition, using the independent hold-out test dataset (AlgPred
2.0 validation test of 2015 allergens), our model was evaluated re-
sulting in a recognition of 98.46% allergens, 94.37% of non-allergens.
Furthermore, we also tested successfully some known allergens from
different plant species, such as oleosins from Arachis hypogea or Prunus
dulcis [43].

The performance of ALLERDET was compared with five tools for
allergenicity prediction as shown in Table 1. All of the results have
been performed on a computer with an Intel Core i7 processor with
2.4 GHz and 16 GB of RAM.

With respect to sensitivity (allergen detection rate), our model
reaches 98.46%. It is the best score, followed by AlgPred 2.0, which
reaches 93.1%.

Finally, the accuracy column of Table 1 shows a comparison of
the accuracy of several methods. In this case, our ALLERDET method
clearly obtains the best score.

4. Ablation study

The proposed classification method is a combination of RBM with
the Decision Tree method. The use of RBM in order to obtain a compact
representation of the relevant information is one of the main novelty
of this paper, and the use of Decision Tree methods is justified because
it is the current technology currently used by WHO and FAO.

Nevertheless, in order to complete our study, we have also consid-
ered other machine learning methods to compare the results. In this
way, the application of RBM was performed with a pipeline based on
the Scikit-Learn [44] library: first, a pre-training of an RBM model
was made, second, the output of RBM model was used as the input
of several classification tools. To achieve all that, a variety of scripts
were written in Python version 3 [45]. All of them were included in a
5

Table 2
Evaluation of the performance of four methods before RBM.

Method Sensibility Specificity Accuracy

Decision tree 99.53% 98.59% 99.06%
Naïve Bayes 99.36% 98.33% 98.80%
kNN (k = 3) 99.22% 97.37% 98.34%
Multilayer perceptron 98.21% 98.39% 98.30%

webserver application called ALLERDET and were developed using the
Flask library for web development in Python.

Firstly, in order to get the best classifier, we performed different
Machine Learning methods without RBM pre-training: Decision Tree, k-
Nearest Neighbors (kNN), Naive Bayes (NB), and Multilayer Perceptron
(MLP). They were evaluated to obtain one of them with the best
accuracy performance. Simultaneously, the GridSearch method from
the Scikit-Learn library was used to establish the best parameter setup
of each model. Table 1 shows the percentages of sensitivity, specificity,
and accuracy for each model obtained for the best setup. Based on
the results presented in Table 1, the four models considered achieve
an accuracy greater than 98% and the best model evaluated was the
Decision Tree with an accuracy of 99.06%.

Second, taking this result into account, we then applied an RBM
model as the input of Decision Tree. The result was an increase in
the final accuracy (Table 2): 99.3% accuracy, 99.66% sensitivity and
98.89% specificity. In addition, the best 𝑚 alignments resulted in 𝑚 = 1
and the relevant features of the model were: alignment score (Smith-
Waterman score), alignment length, identity, and similarity percentages
over 35% (following FAO/WHO criteria [5]).

5. Conclusions

In this work, we have presented a novel approach to food allergen
prediction based on pairwise sequence alignments performed with
FASTA, which uses a combination of two well-known Machine Learning
models, namely RBM and Decision Trees. Our proposed method is
developed as a webserver tool called ALLERDET and is publicly avail-
able. ALLERDET performance has the highest performance (98.46%
sensitivity, 94.37% specificity and 97.26% accuracy) compared to the
state-of-the-art tools/methods evaluated. Our tool can be a useful tool
for researchers and can contribute to improve the prediction of food
allergens.
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Appendix

To build allergen dataset from UnitProt, all searches include the
following allergen search:

• (keyword:KW-0020) OR allergen OR allergome OR allergy OR
atopy OR atopic OR allergenic OR allergens OR allergies OR
allergen*

The exclusion filters used to build a set of nonallergen sequences
ere the following:

All searches include these two filters of exclusion:

• NOT: sequence length between 1 and 50.
• NOT all: the previous allergen search (to exclude allergenic se-

quences).

First, to collect nonallergenic vegetable proteins, the following
earch criteria were added:

• Organism: Daucuscarota, Lycopersicon, Malus, Prunus, Spinacia
oleracea.

• NOT all (text): bet v 1, chitinase, germin, Kunitz, legumin, lipid
transfer protein, lipid-transfer protein, papain-like cysteine pro-
tease, profilin, thau-matin OR vicilin. They are widespread in food
allergies.

Second, to add nonallergenic cow milk proteins, the following
earch criteria are performed:

• Organism: Bos Taurus.
• AND all (text): casein, lactalbumin, lactoferrin, lactoperoxidase,

milk, proteose–peptone OR xanthine dehydrogenase.

Third, the following search criteria were added to get nonallergenic
hicken egg proteins:

• Organism: Gallus gallus.
• AND all (text): egg.

Lastly, for nonallergenic salmon proteins, this search criterion was
ntroduced:

• Organism: Salmo salar.
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