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The Rete algorithm is a well-known pattern matching algorithm
conceived to make rule-based production system implementa-
tions more efficient. It builds a directed acyclic graph, represent-
ing higher-level rule sets, that allows the implementation to avoid
checking each step the applicability of all the rules. Instead, only
those affected by a change in the collection of facts are checked.
In this paper we study how the underlying ideas of this algorithm
can be adapted to improve the design of computational simula-
tors within the framework of Membrane Computing.
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1 INTRODUCTION

When dealing with information, knowledge and reasoning in Computer Sci-
ence, rule-based representation is one of the most popular choices. Given two

? email: cgdiaz@us.es
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pieces of knowledge V andW , expressed in some language, the rule V →W

is usually considered as a causal relation between V and W . The interpreta-
tion of the rule can change according to the context, but roughly speaking, the
rule V → W claims that the statement W can be derived from the statement
V . The problem of knowing if a piece of information G can be obtained via
derivation from a set of current statements A and a set of rules R arises in a
natural way. This is usually called a reasoning problem and it will be denoted
by 〈A,R,G〉.

In order to solve such a reasoning problem, there are two basic methods,
both of them based on the inference rule known as Modus Ponens:

V V →W

W

which allows to obtainW from the rule V →W and the piece of information
V . The first method is data-driven and it is known as forward chaining, the
second one is query-driven and it is called backward chaining [1]. A study of
these methods within the framework of Membrane Computing can be found
in [20, 21].

The piece of information V (the left-hand side of the rule or LHS) is usu-
ally split into elementary pieces v1, v2, . . . , vn. The forward chaining deriva-
tion of W (the right hand side of the rule or RHS) according to the Modus
Ponens via the rule V → W needs to check if the statements v1, v2, . . . , vn
belong to the set of statements currently accepted. Figure 1 shows a pseu-
docode briefly describing the forward chaining method.

What this algorithm essentially does is to check for all rules if they produce
new knowledge from the information already present in the set Deduced. A
naive implementation of the loop from Figure 1 can be achieved performing a
sequential pattern matching between rules and elements in the set Deduced.
This latter set is dynamically increased with new knowledge, so the previ-
ously checked rules must be reconsidered by restarting the sequential pattern
matching. Such implementation provides an exhaustive checking, but it is
extremely inefficient.

Within the framework of Expert Systems [16], a better solution to this
problem was proposed by Charles L. Forgy in his Ph.D. dissertation at the
Carnegie-Mellon University in 1979 [12, 13]. The solution was called the
Rete? algorithm. The Rete algorithm places pieces of information in the
nodes of a graph and gets faster response time than the naive algorithm of
checking one by one the information units in the LHS of the rules.

? Rete means net in Latin.
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Forward chaining
INPUT: A reasoning problem 〈A,R,G〉
INITIALISE: Deduced = A

if G ∈ Deduced then
return true

end if
for all (v1v2 . . . vn →W ) ∈ R such that

{v1, v2, . . . , vn} ⊆ Deduced ∧W 6∈ Deduced do
Deduced← Deduced ∪ {W}
if W = G then

return true

end if
end for
return false

FIGURE 1
From a computational point of view, the reasoning problem 〈A,R,G〉, can be solved
with the forward chaining algorithm

In spite of the notable differences between the semantics of the rules within
Expert Systems and within Membrane Computing, the problem of checking
if the restrictions of the LHS of the rule hold is common for both paradigms.

In what follows we will use the following template for rules in Membrane
Computing

u [ v ]αi → u′ [ v′ ]α
′

i

which can be considered as a generalisation of many kinds of rules usually
present in different P systems models.

A rule following the mentioned scheme is applicable if, in the current
configuration, there exists a membrane labelled by i, with polarisation α,
such that it includes the multiset v, and its surrounding membrane includes the
multiset u. Although the application of the rule is different in both paradigms
(for the Membrane Computing case, the objects in the LHS are consumed and
the objects in the RHS are created; while for Expert Systems the information
in the LHS does not change, and the one in the RHS is considered true), in
both cases it is necessary a checking of the conditions in order to decide the
applicability of the rule.
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In this paper we explore if the successful ideas underlying the Rete algo-
rithm can be adapted to the current P systems simulators and contribute to
improve their efficiency so that they can face medium-size instances of real
life problems.

The paper is organised as follows: In Section 2 we provide a brief overview
of production systems and the Rete algorithm. Section 3 shows how this algo-
rithm can be adapted to P system simulators. In Section 4 some experimental
results are presented. Some final remarks and lines for future research are
provided in the last section.

2 PRODUCTION SYSTEMS

Next, we recall some preliminaries on production systems and the derivation
of pieces of knowledge by using rules.

2.1 Formal Logic Preliminaries
An atomic formula (also called an atom) is, informally speaking, a formula
with no inner structure. Atomic formulas are used to express facts in the
context of a given problem. The universal set of atoms is denoted with U . A
knowledge base is a constructKB = (A,R) whereA = {a1, a2, . . . , am} ⊆
U is the current set of atoms known (or believed) to be true, and R is the set
of production rules, of the form V →W with V,W ⊆ U .

In propositional logic, the derivation of a proposition is done via the infer-
ence rule known as Generalised Modus Ponens

P1, P2, . . . , Pn P1 ∧ P2 ∧ . . . ∧ Pn → Q

Q

The meaning of this rule is as follows: if P1 ∧ P2 ∧ . . . ∧ Pn → Q is a
production rule and P1, P2, . . . , Pn ∈ A, then Q can be derived from this
knowledge.

Given a knowledge base KB = (A,R) and an atomic formula G ∈ U ,
we say that G can be derived from KB, denoted by KB ` G, if there exists
a finite sequence of atomic formulas F1, . . . , Fk such that Fk = G and for
each i ∈ {1, . . . , k} one of the following claims holds:

• Fi ∈ A.

• Fi can be derived via Generalised Modus Ponens from R and the set of
atoms {F1, F2, . . . , Fi−1}.
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2.2 Rule-based Expert Systems

Instead of viewing computation as a sequence of operations specified by a
program, in production systems computation is seen as the process of apply-
ing transformation rules in a sequence determined by the data.

A classical production system has three major components: (1) a global
database (or working memory) that contains facts or assertions about the par-
ticular problem being solved, (2) a rule base that contains the general knowl-
edge about the problem domain, and (3) a rule interpreter that carries out the
problem solving process.

The facts in the global database can be represented in any convenient for-
malism. The rules have the form IF <condition> THEN <action>.

In general, the LHS or condition part of a rule can be any pattern that can
be matched against the database. It is usually allowed to contain variables that
might be bound in different ways, depending upon how the match is made.
Once a match is made, the right-hand-side (RHS) or action part of the rule can
be executed. In general, the action can be any arbitrary procedure employing
the bound variables. In particular, it can result in addition/elimination of facts
to the database, or modification of old facts in the database.

What follows is the basic operation for the rule interpreter (this operation
is repeated until no more rules are applicable):

The condition part of each rule (LHS) is tested against the current
state.
If it matches, then the rule is said to be applicable.
From the applicable rules, one of them is chosen to be applied.
The actions of the selected rule are performed.

Production systems may vary on the expressive power of conditions in
production rules. Accordingly, the pattern matching algorithm which collects
production rules with matched conditions may vary. Nevertheless, a common
feature for rule-based systems is that the process of finding applicable rules
is called repeatedly at each step.

2.3 The Rete Algorithm

The Rete algorithm is a well-known algorithm for efficiently checking the
many pattern/many object pattern match problem [12], and it has been widely
used mainly in production systems. This algorithm takes advantage of two
empirical observations:
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• Temporal redundancy: The application of the rules does not change all
the current knowledge. Only some pieces of information are changed,
while the rest (probably, most of them) remain unaltered.

• Structural similarity: Several rules can (partially) share the same con-
ditions in the LHS.

This algorithm provides a generalised logical description of an implemen-
tation of functionality responsible for matching data from the current state of
the system against LHS of productions rules in a pattern-matching. It reduces
or eliminates certain types of redundancy through the use of node sharing.
It stores partial matches when performing joins between different fact types.
This allows the rule-based systems to avoid complete re-evaluation of all facts
each step. Instead, the production system needs only to evaluate the changes
to working memory.

The Rete algorithm builds directed acyclic graphs that represent higher-
level rule sets. They are generally represented at run-time using a network
of in-memory objects. These networks match rule conditions (patterns) to
facts (relational data tuples) acting as a type of relational query processor,
performing projections, selections and joins conditionally on arbitrary num-
bers of data tuples. In other words, the set of rules is preprocessed yielding a
network in which each node comes from a condition of a rule. If two or more
rules share a condition then they usually share that node in the constructed
network. The path from the root node to a leaf node defines a complete LHS
of a rule.

Facts flow through the network, and they are filtered out when they fail a
condition. At any given point, the contents of the network captures all the
checked conditions for all the present facts.

This network has four kinds of nodes (see Figure 2):

• Alpha Root: (marked with ’Alpha’) acts as input gate to the network.
Receives the changes in the knowledge base and then those tokens pass
to the root successors.

• Alpha nodes: (rectangle nodes) perform conditions which depend on
just one pattern. If the test succeeds, then the received token passes to
the node successors. There are different alpha nodes depending on the
considered pattern.

• Beta Root: (marked with ’Beta’) For each rule present in the network
there is a path from beta root through beta nodes ending in a terminal
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Beta

H2 f3 f4

H1

H3

2nd el. = 3rd el.

Y(H1) = Y(H2)
f2 f3 f4

2nd el. > 3

Alpha

R1
f3, f2

Z(H2) = Z(H3)
f5 f6 f3 f4

R2
f3, f5
f4, f6

f1
f2

f3
f4

f5
f6

f2

f3
f4

f3
f4

f3
f4

f3,f2

f3,f5
f4,f6

FIGURE 2
Example of a Rete network and tokens flow

node. This path follows rule conditions and interrelate each condition
with the next one (as they appear in the rule). Beta nodes can be reused
for different rules if their first conditions are the same.

• Beta nodes: (double rectangle nodes) perform inter-patterns condi-
tions, for example, if two patterns have a common variable. Each one
receives tokens from two nodes and stores the tokens that arrive from
each parent in two different slots. When a token arrives through one
of the inputs, then the condition is checked against all the tokens in
the slot for the other input. For each successfully checked pair, a new
token, combining both of them, passes to the node successors. Beta
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nodes directly connected to the beta root are special ones; they only
have one slot and tokens always pass through them.

• Terminal nodes: (grey nodes) receive tokens which match all the pat-
terns of the LHS of a rule and produce the output of the network.

For example, if the following set of production rules and facts are consid-
ered, then the network displayed in Figure 2 will be created. Notice that the
first beta node is common for both rules. The figure also shows how tokens
corresponding to different facts flow through the network. The output is that
rule R1 can be fired be the pair of facts f3, f2 and rule R2 by any of the
pairs of facts f3, f5 and f4, f6.

Rule: R1 Fact: f1 H1(2, 1).

Exists H2(Y, Z, Z). Fact: f2 H1(2, 4).

Exists H1(X, Y > 3). Fact: f3 H2(4, 3, 3).

=> ... Fact: f4 H2(5, 9, 9).

Fact: f5 H3(3).

Rule: R2 Fact: f6 H3(9).

Exists H2(Y, Z, Z).

Exists H3(Z).

=> ...

The most important issue regarding performance is the order of the condi-
tions in the LHS of the rule. This lead us to consider the following strategies
in order to improve the efficiency:

• Most specific to most general. If the rule activation can be controlled
by a single data, then place it first.

• Data with the lowest number of occurrences in the working memory
should go near the top.

• Volatile data (ones that are added and eliminated continuously) should
go last, particularly if the rest of the conditions are mostly independent.

With these strategies we are trying to minimise (in general) the number of
beta nodes in the network and, therefore, the number of checks required until
a token arrives into a terminal node.
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3 MEMBRANE COMPUTING

In this section we explore how the Rete algorithm can be adapted to Mem-
brane Computing simulators. We assume that the reader is familiar with basic
concepts related to this area, for an extensive bibliography and documentation
please refer to the handbook [27] and the P systems webpage [32].

Since there is no implementation in vivo nor in vitro of P systems, the de-
velopment of in silico simulators has been one of the most active research
lines in the area [10, 19]. In [15], a specification language to define mem-
brane computing systems called P-Lingua has been presented. This language
aims to be a standard to define P systems. The P-Lingua framework also in-
cludes a Java library called pLinguaCore, which is able to handle input files
in P–Lingua format defining P systems from a number of different models
[8, 9, 24]. Moreover, the library includes several built–in simulators for each
supported model. It is an Open Source software tool available at [33].

In this software tool, the checking of the applicability of the rules is carried
out by a sequential process. When the P system is read and analysed from
the P-Lingua file, the set of rules is classified according to the label of the
associated membrane (if the model uses charges for membranes, then they
are also taken into account).

Figure 3 shows part of the “selecting rules” phase if the P system model
uses active membranes (the complete simulation algorithm can be found in
[30]). Such method only simulates one possible computation, so it is used for
confluent P systems (that is, systems for which all the computations with the
same input lead to the same result).

It is worth stressing the fact that the Rete-based algorithm that we intro-
duce in this paper is completely independent from the computation mode of
the considered model (sequential, maximal/minimal parallelism, etc). Indeed,
the Rete network contains information about which rules are “individually”
applicable. When calculating applicable multisets of rules, the computation
mode comes into play.

For a first approximation to the study of how to use Rete algorithm ideas
within Membrane Computing we have chosen to focus on rules handling po-
larisation. Remember the scheme introduced in Section 1 for such rules

un1
1 · · ·u

nk

k [vm1
1 · · · vml

l ]αi → u′[v′]α
′

i

A rule of this kind is associated with any membrane with label i. Note
that this general template covers, among others, rules used by P systems with
active membranes. For example, an evolution rule of the form [v → v′]αi can

9



Selecting rules
INPUT: Ct = Current configuration,

R = P system classified set of rules

INITIALISE: Rsel = ∅
for all m ∈ Ct do
h← label of m; α← charge of m; EvolutionOnly ← FALSE
for all r ∈ R with label h and charge α do

if r has the form [a→ b]αh and a appears in m then
N ← multiplicity of a in m; Rsel ← Rsel ∪ {(r,m,N)}
Remove all objects a from m

end if
if ¬EvolutionOnly then

if r has the form a[ ]αh → [b]βh and a appears in m′

(parent of m) in Ct then
Rsel ← Rsel ∪ {(r,m, 1)}; EvolutionOnly ← TRUE
Remove one object a from m′

end if
end if
. . . (rest of considered rule types)

end for
end for

FIGURE 3
Part of the “selecting rules” phase for the simulation algorithm of P systems with
active membranes

be expressed as [v]αi → [v′]αi .
From the previous rule scheme three kinds of conditions can be consid-

ered:

• Charge must be α: [ ]α

• Outside there must be at least n copies of element u: un

• Inside there must be at least m copies of element v: [vm]

P systems found in the literature often contain rule collections, defined
through objects with subscripts (for example [aj ]

α
i → . . . for j in a given set

10



J). Instead of considering each rule of such collections separately, subscripts
conditions have been added to deal directly with them.

Figure 4 shows different alpha nodes derived from the described rule con-
ditions.

[ ]α Charge α

un Outside u Copies n

[vmj ] : j ∈ J Inside vj Copies m j ∈ J

FIGURE 4
Examples of alpha nodes derived from different rule conditions

Following the proposed strategies for production systems, conditions should
be sorted in an appropriate order. For example, let us consider the following
rules associated with a certain label i:

• (R1) b3[ef ]+→ . . .

• (R2) b3[fe4]+ → . . . .

We can describe them as follows in order to put at the beginning common
conditions:

• (R1) [ ]+[f ]b3[e]→ . . .

• (R2) [ ]+[f ]b3[e4]→ . . . .

To complete the example, let us now consider a configuration where there
exists a membrane with the same label as the rules, with positive charge, ob-
jects {f3, e7, o4, x} inside it and objects {c, b8, g3} in the surrounding mem-
brane. Both rules are applicable to this membrane in this configuration.
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Charge: +

Beta

Alpha

Inside
f
e

∞

Copies: 1

Outside: b

Copies: 3

Copies
1
4

3 (0) ∞

2 (2) 3

2

R1

2

R2

3

8

∞

∞

3

3

8

22

FIGURE 5
A Rete network for (R1) and (R2): Before including e7

Figures 5 and 6 show the network associated with the rules of this example
and how objects of the considered configuration go through different nodes.
In the former (Figure 5), part of the configuration is included: membrane has
positive charge, objects {f3} are inside and objects {b8} are outside. Objects
o and x inside the membrane and objects c and g outside the membrane, have
no effects for this example. In the latter (Figure 6), objects e7 are included in-
side the membrane. In the network built for the P system, beta nodes contain
the following: in their left slot a pair n(m), indicating that, from its parent
condition Copies: k, there is at most n possible applications (namely, k
copies are needed for an application of that condition and m+ (n · k) objects
are available); in their right slot the maximum number r of possible appli-
cations derived from previous conditions. Each time the contents of a beta
node is updated, if the minimum between n and r changes, then that amount
is transmitted to the right slot of the successor beta node. The symbol∞ is
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used to denote that there is no limit of possible applications from previous
conditions. The output of the network in Figure 6 shows that rule (R1) is
applicable at most two times and rule (R2) at most one.

Charge: +

Beta

Alpha

Inside
f
e

∞

Copies: 1

Outside: b

Copies: 3

Copies
1
4

3 (0) ∞

2 (2) 3

7 (0) 2

R1

2

1 (3) 2

R2

1

7

7
7

21

FIGURE 6
A Rete network for (R1) and (R2): After including e7

Figure 7 shows a generic algorithm to simulate a P system using such net-
works. There exist several alternative halting conditions that can be used: a
prefixed number of repetitions is reached; there is no applicable rule; occur-
rence of specific objects, etc. Notice that the network reflects how changes in
a configuration affect to the usable rules. Once all the changes are considered
in the network, its output contains a multiset of rules, all of them applicable
for that configuration at most the number of times indicated by their multi-
plicity. According to the semantics of the model, rules from that multiset are
applied to change the configuration. In general there will be more than one
possible set of rules that can be selected to be applied.

13



Create the network associated with the rules of the system
Include in the network objects from the initial configuration
while not some halting condition do

while the output of the network is not empty do
Select a multiset of rules from the output of the network (ac-
cording to the semantics of the model)
Change the configuration applying the selected rules (include
and eliminate objects also in the network)

end while
end while

FIGURE 7
Generic pseudocode of a simulation algorithm

4 EXPERIMENTAL RESULTS

In order to check the rule selection based on the Rete algorithm, an exper-
iment has been performed using the well-known Subset Sum problem [14]:
Given a finite set A, a weight function, w : A → N and a constant k ∈ N,
determine whether or not there exists a subset B ⊆ A such that w(B) =∑
b∈B w(b) = k .
This problem has already been used as a case study within Membrane

Computing (see e.g., [11, 18, 23, 31]). As an illustrative experiment for this
paper we have chosen the simulation of the first family of recogniser P sys-
tems included in [18] to solve Subset Sum. More precisely, the instance to
be solved is a very simple one: A = {a1, a2}, w(a1) = 3, w(a2) = 2 and
k = 4.

First, the Rete network for the rules of the selected instance has been cre-
ated. After that, a simulation using the P-Lingua simulator has been per-
formed for the same selected instance obtaining all the configurations and
applied rules for each step. To finalise, each obtained configuration has been
used as input for the Rete network. The set of applicable rules obtained each
time coincides with the set of applied rules given by the P-Lingua simulator.
The only difference is in the sending out rules. Such rules, because of the
semantics of P systems with active membranes, can be applied only once.
For example, for rule9 : [a0]

−
e → [ ]0e#, if in a membrane with label e and

charge − there are N copies of object a0, then the Rete network will say that
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rule9 is applicable, at least, N times. Nevertheless, during the simulation, it
will be applied only once.

During this simulation process, in order to change from one configuration
to the following one, the Rete network does not receive as input the new con-
figuration. Instead the input solely consists on elements (charges and objects)
consumed/added by applied rules given by the P-Lingua simulator.

Figure 8 represents part of the Rete network built. Only nodes for some
rules with label e are represented, namely the following ones:

Alpha

C
ha

rg
e +

–

1 · · · 4 5 · · · 8
∞

1 · · · 3 4 5 · · · 8
∞

Beta

In
si

de

qi
xi
ai
ai

i ∈ {0, 2, 4, 6, 8}
1· · ·3 4

∞

rule11i

1 ≤ i ≤ 2

1 2

· · ·
5 · · · 8

i = 1 i = 2 i = 1 ∞
3 2 2

rule5i

i = 0

1· · ·3 4

∞ i = 0

2

rule9

i = 0

1· · ·3 4 6 7 8

∞ i = 0 i = 0 i = 0

2 3 5

rule7

FIGURE 8
Part of Rete network for Subset Sum

rule5i : [xi → xi−1]
+
e : 1 ≤ i ≤ 2

rule7 : [a0 → a0]
−
e

rule9 : [a0]
−
e → [ ]0e#

rule11i : [q2∗i → q2∗i+1]
−
e : 0 ≤ i ≤ 4

To perform this experiment beta nodes have been expanded in order to
contain a memory for each existing membrane with the same label.

Elements (charges and objects) present in Figures 8 and 9 correspond to
the simulation of the step 12. Before this step is performed, in the configu-
ration there are 8 membranes with label e (distinguished by an index from 1

to 8 in beta nodes). One of them (membrane with index 4) has charge 0 and
objects a20 a

2 q5. In such situation rules [a]0e → [ ]−e # and [q5 → q6]
0
e are
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applied for that membrane. So objects a and q5 are consumed, membrane 4

changes its charge, from 0 to −, and an object q6 is added. The differences
between Figures 8 and 9 capture the instant in which charge − and object q6
are included. The output of the network indicates that rules 9 and 11 are now
applicable in membrane with index 4.

Alpha

C
ha

rg
e +

–
4[ ]−

1 · · · 4 5 · · · 8
∞

1 · · · 3 4 5 · · · 8
∞ ∞

4[ ]−

Beta
In

si
de

qi
xi
ai
ai

4[q6]

i ∈ {0, 2, 4, 6, 8}

4[q6]

1· · ·3 4

∞ i = 6

1 ∞

4[q6]
rule11i

4

i = 6

1

4(i = 6 : 1)

1 ≤ i ≤ 2

1 2

· · ·
5 · · · 8

i = 1 i = 2 i = 1 ∞
3 2 2

rule5i

i = 0

1· · ·3 4

∞ i = 0

2 ∞

rule9

4

i = 0

2

4(i = 0 : 1)

i = 0

1· · ·3 4 6 7 8

∞ ∞ i = 0 i = 0 i = 0

2 3 5

rule7

4∞

4∞

4∞

FIGURE 9
Effects of the inclusion of object q6 and charge − in membrane 4

5 FINAL REMARKS

Let us notice some final considerations:

• As there exists a big number of different P systems models (both syn-
tactically and semantically different), it is not possible to melt together
all of them to have a single way to construct the network. So, the basic
lines shown in this paper should be adapted to each specific model in
order to improve the efficiency of the designed simulator.

• One of the key points of the efficiency of the algorithm is the proper
order in the conditions of the LHS of the rule and this is a final choice of
the designer of the P system. For example, electrical charge is usually
used as a controlling condition, but it is the user who decides its role.
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• Little syntactic or semantic changes in the model can have drastic in-
fluence on the efficiency of the algorithm. As an illustrative example,
we can consider two similar models such that in the first one the mem-
branes are injectively labelled and in the second, two different mem-
branes can share the same label. This apparently slight difference re-
quires a major change in the algorithm.

Recent applications of P system techniques to real-world problems (e.g.,
[2, 7]) require more and more efficient simulators. This requirement comes, in
a similar way as in other areas within Computer Science, from the availability
of huge amount of data, together with the iteration of probabilistic methods
in an attempt of simulating natural processes.

In this paper, we consider a successful algorithm from the Expert Systems
field and propose a first attempt to consider it in the Membrane Comput-
ing framework. The implementation is currently under development, and in
principle it will be inserted into a simulator within the P-Lingua framework.
However, upon completing the implementation, we are convinced that it will
be possible to export this technique into any other P system simulator. The
adaptation of the algorithm has been made by considering that the computer
where the software runs has only one processor and, in this way, the soft-
ware simulation of the P systems is made sequentially in a single-processor
machine. Nonetheless, new hardware architectures are being used for simu-
lating P systems [3, 4, 5, 6, 25, 28, 29], so the parallel versions of the Rete
algorithm [17, 22] and their relations with parallel simulators of P systems
should be considered in the future.
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parallelism by means of GPUs. In Păun et al. [26], pages 227–241.
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nacio Pérez-Hurtado, and Mario J. Pérez-Jiménez. (2010). Simulating a P system based
efficient solution to SAT by using GPUs. Journal of Logic and Algebraic Programming,
79(6):317–325.
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et al. [26], pages 264–288.

[16] Joseph C. Giarratano and Gary D. Riley. (2005). Expert systems: principles and program-
ming. Thomson Course Technology.

[17] Anoop Gupta, Charles L. Forgy, Allen Newell, and Robert Wedig. (1986). Parallel algo-
rithms and architectures for rule-based systems. ACM SIGARCH Computer Architecture
News, 14(2):28–37.

[18] Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, and Agustı́n Riscos-Núñez. (2004).
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simulator for spiking neural P systems. In Marian Gheorghe, Gheorghe Păun, Grzegorz
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