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Abstract. This paper proposes a novel approach that combines an asso-
ciation rule algorithm with a deep learning model to enhance the inter-
pretability of prediction outcomes. The study aims to gain insights into
the patterns that were learned correctly or incorrectly by the model.
To identify these scenarios, an association rule algorithm is applied to
extract the patterns learned by the deep learning model. The rules are
then analyzed and classified based on specific metrics to draw conclu-
sions about the behavior of the model. We applied this approach to a
well-known dataset in various scenarios, such as underfitting and overfit-
ting. The results demonstrate that the combination of the two techniques
is highly effective in identifying the patterns learned by the model and
analyzing its performance in different scenarios, through error analysis.
We suggest that this methodology can enhance the transparency and
interpretability of black-box models, thus improving their reliability for
real-world applications.

Keywords: association rules · Apriori · deep learning ·
interpretability · explainable AI

1 Introduction

Deep learning has become a popular tool for solving complex problems in var-
ious domains, such as finance, healthcare, and engineering. However, their lack 
of interpretability and black-box nature pose significant challenges to trust and 
understanding their predictions. For example, a model that predicts a certain 
disease in medical diagnosis without providing a clear explanation for its pre-
diction may not be trusted by physicians or patients, even if the model has high 
accuracy.

To address this issue, explainability approaches have been developed, such as 
global/local model-agnostic methods [18] and example-based methods. However, 
these approaches can be challenging to understand for non-experts in the field
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[9] and may be too general or too specific to identify particular scenarios where
the model performed poorly or behaved like an outlier.

Association rules (AR) [2] are a powerful tool for enhancing interpretability
in machine learning by identifying meaningful relationships between variables
[16].

In this paper, we propose a model-agnostic approach that combines an AR
mining with a deep learning model to enhance the interpretability of its predic-
tions. By using the AR algorithm to extract the patterns learned by the deep
learning model, the behavior of the model can be better understood using an
intuitive cause-and-effect structure similar to a decision tree. Additionally, the
rules identify generalizable scenarios without relying on global explanations. This
approach can enhance trust and reliability in model predictions.

To demonstrate the effectiveness of our proposed methodology, we applied it
to various scenarios within a well-known dataset using the Apriori [2] algorithm
to discover AR. The results show that the AR algorithm is an effective and simple
approach to identifying the learned patterns and analyzing the performance of
the model. Thus, this approach has the potential to enhance the transparency
and interpretability of black-box models across various domains, making them
more reliable for real-world applications.

The main contributions of this paper can be summarized as follows:

– Development of a methodology to evaluate the behavior of black-box models.
– A simple and easy-to-understand methodology that can identify the strengths

and weaknesses of a model.
– Analysis of several models in various scenarios, including overfitting and

underfitting, on a well-known dataset.

The remainder of this paper is structured as follows. Section 2 discusses
related work that focuses on interpretability approaches. In Sect. 3, we provide a
detailed overview of the proposed methodology. Section 4.1 presents the experi-
mental setting for different scenarios. In Sect. 4, we present the results and anal-
ysis of the proposed methodology applied to a public dataset. Finally, Sect. 5
summarizes the main conclusions of this work.

2 Related Works

Numerous studies have been conducted to understand the behavior learned by
models, particularly in the context of deep learning due to its importance and
black-box nature.

Some studies use a heatmap approach [10,12,17] to explain the behavior
learned by the model in image classification by illustrating the areas where the
model focused to make its prediction. However, these methods require expert
knowledge to understand the learned behavior and are not applicable to tabular
data, which is the scope of this work.

Other approaches use feature attribution methodologies, such as SHAP [14],
to assign a numerical value that represents the importance of a feature [1,3,8].
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However, these methods rely on expert knowledge to analyze feature attribution
and provide overly general explanations.

Finally, rule-based methods have been proposed for various applications due
to their simplicity [15,19]. Bernardi et al. [5] use a non-parametric method to
determine the range for out-of-distribution samples, Ferreira et al. [7] apply a
generic algorithm to build a tree representation of the operations needed to
obtain the outputs for a local example, Lal et al. [13] develop a methodology
to extract rules from an ensemble of tree models, and Barbiero et al. [4] use an
entropy-based model to generate first-order logic explanations in a deep learning
model. Although these approaches are similar to our methodology, most of them
do not have the ability to adapt to local/global explanations or be applied to
any model.

3 Methodology

In this section, we present the model-agnostic method used to extract the pat-
terns learned by a model and the subsequent analysis.

In our methodology, we assume a traditional modeling approach in which
the dataset is split into at least a training and testing set. An arbitrary model
is then trained on the training set and evaluated on the testing set.

The input to our methodology is a dataset consisting of the features X, the
true target variable y, and the predictions made by the model ŷ. Note that the
dataset with the predictions corresponds to the training set as our goal is to
obtain the learned behavior during the training process using only the training
set.

Fig. 1. Workflow representation of the methodology. Note that dashed lines represent
optional steps. Note that Dtrain and Dtest represent the training and test datasets,
while D̂train and D̂test refer to the discretized version. In addition, Rreal

train and Rreal
test

represent the rules obtained for the training and test dataset from the real target values,
while Rpred

train and Rpred
test are the rules for the predictions made by the model.
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3.1 Preprocessing

This step includes dropping correlated features and discretizing the remaining
features shown in Fig. 1.

Optionally, the features X can be preprocessed to remove highly correlated
features. This is necessary because the Apriori algorithm may obtain similar
rules for two correlated features, using them interchangeably because of their
similarity in frequency.

Once the training dataset Dtrain contains its predictions, all continuous
columns are discretized because the Apriori algorithm cannot use continuous
values and the explanations would be more generalizable using ranges instead of
specific values. Discretization requires a number of bins, which is specified by the
user. A K-means [6] method is used to determine the bin ranges for each feature,
where the K-means algorithm uses the centroid of the cluster to determine the
range of the bins. To discretize the target, the predictions ŷ are used to determine
the bins, which are then applied to y. Note that the goal of the methodology is
to extract the patterns learned by the model, so the discretization must use the
predictions as a reference for the target discretization. Therefore, the result of
the discretization process is the discretized dataset D̂train.

3.2 Rules Mining

This step involves both the transactionalization and AR algorithm phases shown
in Fig. 1. Once the dataset has been properly discretized, the next step is to
apply the AR algorithm to obtain the rules, which has been the well-known
Apriori algorithm for this study. However, before that, the Apriori algorithm
needs to transform the discretized dataset D̂tr into a set of transactions. These
transactions contain information about the items presented in each instance. An
item refers to the bin in which the value of each feature and target value is
contained. With the transactions, the Apriori algorithm is used to obtain the
rules that satisfy the minimum confidence and support thresholds. Typically, we
are interested in rules with high confidence, which indicate the probability that
the pattern represented in the rule has been learned by the model. The support
represents the generality/specificity of the pattern. A low minimum support
allows specific patterns to be represented, while high support only represents
general rules with a high frequency. Therefore, the result of the Apriori algorithm
is a set of rules Rtrain.

We are only interested in the patterns that have an impact on the target. For
that reason, we select only those rules from the set Rtrain that contain one of the
target items/bins. Additionally, the Apriori algorithm may generate redundant
rules. A redundant rule is one in which a subset of the antecedents obtains a
greater confidence. These rules do not provide useful information, and for that
reason, they are removed, considering more general rules. Note that there are two
targets in our context: the real target y and the predicted target ŷ. Therefore,
we are interested in two sets of rules: Rtrue

train and Rpred
train.
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3.3 Calculate Metrics

To obtain meaningful insights from the analysis, it is necessary to calculate a
set of metrics for each rule obtained from the training set D̂train. Two types of
metrics are typically used: AR metrics and performance metrics. The most com-
monly used AR metrics are confidence and support, while performance metrics
can include any useful metric for analysis. In our case, we have chosen the mean
squared error (MSE) as the error increases greatly when there are great differ-
ences between true and predictions. It is important to note that we calculate AR
metrics for both Rtrue

train and Rpred
train, as this helps to identify whether a learned

pattern represents an actual pattern or not. Note that these metrics are detailed
in Sect. 4.2

Optionally, metrics can also be calculated for other datasets, such as the test
dataset Dtest. To calculate these metrics, the entire process is repeated starting
from the discretization step, but using the bins obtained from the train set
Dtrain. Specifically, we are interested in calculating the performance metrics of
the predicted rules Rpred

test , which can help to evaluate the generalization of the
potential rules learned by the model.

3.4 Classify

Finally, to facilitate their comprehension, the rules are classified into four cate-
gories based on whether they represent a real pattern or not, and whether they
were correctly learned (CL) by the model or not.

The rules that represent a real pattern (RP) are identified based on the con-
fidence difference between Rpred

train and Rtrue
train. A high difference between real and

predicted rules may indicate that the pattern learned by the model (assuming
high confidence) does not correspond to a real pattern (an Unreal Pattern or
UP) that should have been learned if the predictions were closer to the actual
values. On the contrary, a low difference may indicate that the model has learned
a real pattern that exists in reality. To determine rules with large or low differ-
ences, the z-score is used, with those above 3 considered unreal patterns and
those below 3 considered real patterns.

The rules that were incorrectly learned (IL) by the model represent those
with high errors calculated from y and ŷ for each rule in Rpred

train. Rules with high
errors are considered poorly learned patterns, whereas those with low errors are
considered correctly learned rules. Again, to determine rules with high or low
errors, the z-score is used, with rules above a z-score of 1 considered poorly
learned and those below a z-score of 1 considered correctly learned.

4 Results and Discussion

In this section, we present the results obtained for the studied dataset. In Sect. 4.1
the experimental setting is described. In Sect. 4.2 the metrics used for the eval-
uation and analysis are shown. In Sect. 4.3 the results obtained after applying
our methodology are presented.
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4.1 Experimental Setting

To carry out our experiment, we selected a well-known dataset to test our
methodology and analyze two different scenarios. In particular, the dataset used
in our experiment is the California Housing dataset [11]. It contains information
from the 1990 California census and includes eight real features, such as median
income (mi), longitude (l), total rooms (tr), and more. The target variable is
to predict the mean house value (mhv) using these features. The dataset also
includes categorical data that was removed to use only real data.

To test the proposed methodology, we used two different scenarios: underfit-
ting and overfitting the model over the data. To underfit the model, we selected
a fully connected model with only 1 neuron, 1 hidden layer, and trained for 5
epochs as it is not enough to fit the data. For overfitting, we selected a model
with 512 neurons in 10 hidden layers and trained for 100 epochs. We will identify
the patterns obtained after applying our methodology and evaluate the strengths
and weaknesses of the model.

4.2 Metrics

In this section, we describe the main metrics used in our methodology to evaluate
the both the AR obtained and the performance of the model.

The support for a rule (A =⇒ C), where A and C denote the antecedents
and consequents respectively, is the percentage of instances in the dataset that
satisfy both the antecedent and consequent conditions. frq(A,C) represents the
number of instances that satisfy both the antecedent and consequent conditions,
while N represents the total number of instances in the dataset. The support
values range from 0 to 1.

Support(A =⇒ C) =
frq(A,C)

N
(1)

The confidence, is the probability that instances containing A also contain
C, and it also ranges from 0 to 1.

Confidence(A =⇒ C) =
frq(A,C)
frq(A)

(2)

The MSE is a commonly used metric in regression problems, where it mea-
sures the squared difference between the predicted and true values.

4.3 Results

The main results are presented in tables, where the antecedents and consequents
follow the same structure: F [lower, upper], where F represents the feature abbre-
viation, and lower and upper represent the minimum and maximum bin values,
respectively. For the hyperparameters of the methodology, we set the number
of bins for each feature at five, the minimum support at 1%, and the minimum
confidence at 75%.
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Fig. 2. Histogram of the target variable (blue) in Dtrain and ranges covered by the
rules obtained by the model in the overfitting (red) and underfitting (green) scenarios.

Overfitting Scenario. Table 1 displays the top five rules obtained by the Apri-
ori algorithm, sorted by prediction confidence. It can be observed that the pat-
tern learned by the model with the highest confidence suggests that when longi-
tude (l) falls between −118.954 and −118.147 and the mean income (mi) ranges
between 4.749 and 5.798, the mean house value is between 3.27e5 and 3.84e5.
This indicates that houses in that area of the dataset are relatively expensive
since this range is above the mean value of 2.07e5.

Table 1. Top five association rules discovered by the Apriori algorithm sorted by
confidence in the overfitting scenario. Note that Spred, Strue, Cpred and Ctrue denote
the support (S) and confidence (C) for the predicted (pred) and true (true) values of
the target. In addition, MSEtrain and MSEtest denote the error in the training and
test dataset, respectively. Finally, the type column corresponds to the assigned rule
class.

Antecedents Consequent Spred Strue Cpred Ctrue MSEtrain MSEtest Type

l ∈ [−118.95,−118.15] ∧ mi ∈ [4.8, 5.8] ⇒ [3.27e5, 3.84e5] 0.02 0 0.85 0.16 1.06e5 1.03e5 IP CL

l ∈ [−118.95,−118.15] ∧ mi ∈ [5.8, 7.2] ⇒ [3.84e5, 4.55e5] 0.01 0 0.82 0.16 9.18e4 9.84e4 IP CL

l ∈ [−118.954,−118.147] ∧ tr ∈ [1406, 2396] ∧ mi ∈ [3.8, 4.8] ⇒ [2.78e5, 3.27e5] 0.01 0 0.80 0.11 9.49e4 8.47e4 IP CL

l ∈ [−117.55,−116.60] ∧ mi ∈ [4.749, 5.798] ⇒ [3.84e5, 4.55e5] 0.01 0 0.78 0.04 1.96e5 2.00e5 IP IL

l ∈ [−118.95,−118.15] ∧ mi ∈ [3.8, 4.8] ⇒ [2.78e5, 3.27e5] 0.03 0 0.76 0.13 9.52e4 9.01e4 IP CL

When analyzing the antecedents of the top five rules obtained in Table 1,
it becomes apparent that only three features were used: longitude (l), median
income (mi), and total rooms (tr). This suggests that these features provide
more information to the model compared to others, as the patterns obtained
using other features lacked sufficient confidence. Furthermore, the consequent of
the rules only shows patterns for house values above the mean (2.07e5) as shown
in Fig. 2, which implies that the model could not learn patterns for cheaper
houses with sufficient confidence.
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Looking at the AR metrics, we can see that the support of the rules using
the predictions is higher than when using the true target values. The confidence
of the predictions ranges from 0.76 to 0.85, while the true confidence obtained
from the target values ranges from 0.04 to 0.16. This suggests that the rules
obtained may not represent real patterns, which could be present if the model
performed better.

In terms of error, the model had an average error of 1.02e5 in both the
training and test sets. The model does not seem to have any generalization
problems for these specific patterns, even though it was configured to overfit the
data, except for the third rule. Additionally, the error of the patterns seems to
be around the average, except for the fourth rule, which represents a bar-learned
pattern.

In general, the methodology found four correctly learned patterns (CL) and
one rule with an incorrectly learned pattern (IL) whose error was above the
mean.

Underfitting Scenario. Table 2 presents the top five rules obtained using our
methodology and sorted by confidence. The first pattern indicates that if the
housing mean age falls within the range of 17 to 21 years and the median income
is between 0.5 and 2.1, then the median house value falls between the range of
1.92e3 and 1.24e5, which is a price range below the average.

Table 2. Top five association rules encountered by the Apriori algorithm sorted by
confidence in the underfitting scenario. Note that Spred, Strue, Cpred and Ctrue denote
the support (S) and confidence (C) for the predicted (pred) and true (true) values of
the target. In addition, MSEtrain and MSEtest denote the error on the training and
test dataset, respectively. Finally, the type column corresponds to the assigned rule
class.

Antecedents Consequent Spred Strue Cpred Ctrue MSEtrain MSEtest Type

hma ∈ [17, 21] ∧ mi ∈ [0.5, 2.1] ⇒ [1.92e3, 1.24e5] 0.02 0.01 0.99 0.73 4.71e4 3.93e5 WFR CL

hma ∈ [21, 27] ∧ mi ∈ [0.5, 2.1] ⇒ [1.92e3, 1.24e5] 0.01 0.01 0.97 0.76 4.89e4 5.28e4 WFR CL

hma ∈ [48, 52] ∧ mi ∈ [3.8, 4.8] ⇒ [2.45e5, 2.89e5] 0.01 0 0.95 0.17 9.27e4 7.96e4 BFR IL

hma ∈ [27, 32] ∧ mi ∈ [3.0, 3.8] ⇒ [1.66e5, 2.05e5] 0.03 0.01 0.92 0.22 6.41e4 6.60e4 BFR CL

hma ∈ [27, 32] ∧ mi ∈ [2.1, 3.0] ⇒ [1.24e5, 1.66e5] 0.03 0.01 0.92 0.21 5.43e4 5.07e4 BFR CL

As in the previous section, the relevant features for this model are housing
median age (hma) and median income (mi) as shown in the antecedents. How-
ever, in contrast to the overfitted model, the consequents mostly consider rules
above the mean (2.07e5) as shown in Fig. 2.

Analyzing the AR metrics, we observe that the support and confidence of
the predictions are mostly greater than the real ones. However, the difference in
the first two rules is not considerably greater compared to the other rules, and
we consider them well-formed rules.
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In terms of error metrics, the error is considerably better than the overfitted
model, with an average of 6.01e04 in train and 5.98e04 in test. Additionally,
generalization does not seem to be a problem in these patterns, as the training
error is similar to or lower than the test error.

In summary, the methodology obtained two patterns that represent real pat-
terns (WFR) with remarkable performance (CL), one rule that does not repre-
sent a real pattern (BFR) and has poor performance (IL), and two rules that do
not represent a real pattern (BFR) but have good performance (CL).

5 Conclusions

In this work, we have developed a novel model-agnostic explainability methodol-
ogy applied to a deep learning model. The method uses the well-known Apriori
algorithm internally to obtain the patterns learned by the model in a simple
format, which are then analyzed to draw conclusions about the learned behav-
ior of the model. The results obtained provide a taxonomy of rules that can be
classified based on the association and error metrics obtained.

In the future, there are several issues that need to be addressed. First, the
method does not consider the full coverage of the dataset in the rules. Secondly,
the discretization process is critical, and it could be improved by using a meta-
heuristic. Thirdly, rules with significant overlap should be removed. Finally, the
method should be studied with a large attribute space to evaluate its scalability.
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IQ: unified approximation of any-order Shapley interactions (2023)
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