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ABSTRACT
Deep learning has become one of the most useful tools in the last
years to mine information from large datasets. Despite the success-
ful application to many research fields, deep learning is known as a
black box approach and most experts experience difficulties to ex-
plain and interpret deep learning results. In this context, explainable
artificial intelligence (XAI) is emerging with the aim of providing
black box models with sufficient interpretability so that models can
be easily understood by humans. The use of an evolutionary-based
association rules extraction algorithm to explain deep learning
models for multi-step time series forecasting is addressed in this
work. This evolutionary application is proposed to be used with
the predictions obtained by long-short term memory (LSTM) deep
learning network. Data from Spanish electricity energy consump-
tion has been used to assess the suitability of the proposal, showing
that almost 98% of the model can be explained.
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1 INTRODUCTION
Nowadays, deep learning (DL) is an essential tool used to make pre-
dictions or classify large and heterogeneous data in different fields.
DL is the technology behind artificial intelligence applications in
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a wide range of industries. One of its most serious disadvantages
is that DL models are considered black-box, meaning that it is im-
possible to know how the model obtains the output by applying
inner nonlinear operations to the input. Explainability could be
defined as a relation between the input data and the prediction of
a model, in such a way that it can be comprehended by humans
[1]. This concept is crucial because models are used today to make
high-stakes decisions in essential sectors, namely health, security,
or economy [4].

In this paper, the focus is onmodel-agnostic explainability.Model-
agnostic techniques are applied to the results or predictions that
have been obtained after training the model and are independent
of the model. A new approach to interpret deep learning models
applied to time series forecasting is presented. Predictions are ex-
plained through an evolutionary-based quantitative association
rules (QARs) algorithm, hereinafter referred to as MOQAR [9].
The method is tested by using a long-short-term memory (LSTM)
network for time series forecasting as a case study. The idea is ex-
plaining how LSTM generates the predicted values, with reference
to the input features (past samples from the historical data, in this
context). Predictions are used as input for the evolutionary MOQAR
model, and QARs are shown as a reliable way to understand the
internal behavior of the model.

The remainder of the article is structured as follows. In Section
2, recent advances in DL explainability are reviewed. Section 3
illustrates evolutionary algorithm MOQAR. Section 4 describes the
experiments carried out, and Section 5 presents the results. Section
6 concludes the paper.

2 RELATEDWORK
Nowadays, obtaining interpretable DLmodels is a hot topic research
field. There are several research projects in the literature exploring
the use of association rules for machine learning and deep learning
interpretability applied to essential areas, such as disease detection
in health care [16] or electric vehicle load demand [5].

The application of association rules (ARs) to achieve the goal
of interpretability is a major trend in the field of XAI [11]. First,
there are some examples creating interpretable models by using
ARs. In [6], a model based on ARs and Bayesian analysis is built
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and tested in personalized medicine and health. Furthermore, in
[14] a multi-objective optimization for multiple ARs is developed
for interpretable classification. Experiments showed that the model
obtains better performance and faster execution time than other
ARs mining models. Another example is found in Takagi-Sugeno-
Kang. Interpretability is added to an existing model by generating
ARs. Interpretable intervals are calculated by finding overlapping
values in common between antecedent and consequent data in ARs.

Then, the point is on increasing the interpretability of the preex-
isting ones. In [3], ARs are extracted using a model based on the
well-known Apriori algorithm for explainability in an omic-data
neural network. The rules are evaluated regarding a set of quantita-
tive quality measures such as Confidence, Support, Lift or Conviction.
Then, they are validated by human experts. Another example is
shown in [7], where ARs are extracted from a decision tree model
with high values of accuracy. Lastly, ARs explaining the predictions
produced for a tabular classification dataset are provided in [12].
A neighbourhood of similar instances is built, and predictions are
made for those perturbated instances. After that, the k-optimal ARs
are selected. The focus is on ARs that cover more instances rather
than the highest predictive rules.

3 EVOLUTIONARY MODEL FOR ASSOCIATION
RULES EXTRACTION

In the field of data mining, ARs are a popular and well-known
method to discover interesting relations among variables in large
databases [2]. ARs are known as one of the highest interpretable
techniques providing high-accuracy results [10]. An AR is known
as QAR when the domain is continuous. The multi-objective algo-
rithm based on the evolutionary NSGA-II called MOQAR has been
applied in this work due to the effectiveness presented in previous
researches. MOQAR mines QARs in datasets with continuous at-
tributes without discretizing the attributes of the dataset trying to
find the best trade-off among all the measures optimized. A detailed
description of MOQAR can be found in [9]. MOQAR is described
in a general way in this Section.

Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} be a set of features or attributes, with
values in R. Let 𝑆 and 𝑇 be two disjoint subsets of 𝐴, that is, 𝑆 ⊂ 𝐴,
𝑇 ⊂ 𝐴 and 𝑆 ∩𝑇 = ∅. A QAR is a rule 𝑋 ⇒ 𝑌 , in which features
in 𝑆 belong to the antecedent 𝑋 , and features in 𝑇 belong to the
consequent 𝑌 , such that 𝑋 and 𝑌 are formed by a conjunction of
multiple Boolean expressions of the form 𝑎𝑖 ∈ [𝑙, 𝑢], (with 𝑙 , 𝑢 ∈
R). Thus, in a QAR, the features or attributes of the antecedent are
related with the features of the consequent, establishing an interval
of membership values for each attribute involved in the rule [8].

Many measures could be found in the literature to assess the
quality of ARs. Definition and mathematical equation of the main
quality measures can be found in [9]. In particular, support (Equa-
tion 1), confidence (Equation 2), and gain (Equation 3) have been the
objective to be optimized by the evolutionary association rule ex-
traction model. The objective is assessing the generality, reliability
and information gain of the rules, respectively.

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 =⇒ 𝑌 ) = 𝑛(𝑋 ∩ 𝑌 )
𝑁

(1)

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 =⇒ 𝑌 ) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 =⇒ 𝑌 )
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ) (2)

Gain(𝑋 =⇒ 𝑌 ) = 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 =⇒ 𝑌 ) − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑌 ) (3)

4 METHODOLOGY
The main goal of this work is to explore the ability of QARs to
interpret the predictions of a time series made by DL models. Given
a time series with previous values up to time t, [𝑋1, . . . , 𝑋𝑡 ], the task
is to predict the h next values of the time series, from a window of w
past values. This multi-step forecasting problem can be formulated
as below, where 𝑓 is the model to be learnt by the deep learning
model in the training phase:

[𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑡+ℎ] = 𝑓

(
𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋𝑡−(𝑤−1)

)
(4)

First, we use the training set to train deep learning models ob-
taining the prediction model 𝑓 . The aim is learning how and why
the model 𝑓 makes a prediction. Consequently, we use the model 𝑓
to make predictions for the same data that have been used to train
it. That is:[

𝑋𝑡+1, . . . , 𝑋𝑡+ℎ
]
= 𝑓

(
𝑋𝑡 , . . . , 𝑋𝑡−(𝑤−1)

)
(5)

where [𝑋𝑡+1, . . . , 𝑋𝑡+ℎ] are the predicted values by the deep learn-
ing model 𝑓 .

Then, the input dataset 𝐷 for the MOQAR rule extraction algo-
rithm is constructed as follows:

𝐷 = {(𝑋 (𝑖 ) , 𝑌 (𝑖 ) ) : 𝑖 = 1, 2, ..., 𝑁 } (6)

where 𝑁 is the number of instances, 𝑋 (𝑖 ) and 𝑌 (𝑖 ) are the fea-
tures belonging to the antecedent and the consequent of the rule,
respectively. These features are defined as follows:

𝑋 (𝑖 ) = [𝑋𝑡−(𝑤−1) , ..., 𝑋𝑡−1, 𝑋𝑡 ] (7)

𝑌 (𝑖 ) = [𝑋𝑡+1, 𝑋𝑡+2, ..., 𝑋𝑡+ℎ] (8)

where 𝑡 = 𝑤 + (𝑖 − 1) ∗ ℎ.
In order to ensure that rules with all prediction horizons in the

consequent are obtained, the input dataset 𝐷 is divided into subsets
𝐷 𝑗 with 𝑗 = 1, ..., ℎ.

𝐷 𝑗 = {(𝑋 (𝑖 ) , 𝑌 (𝑖 )
𝑗

) : 𝑖 = 1, 2, ..., 𝑁 } (9)

where the attributes forming the consequent of the rule are made
up of a single attribute:

𝑌
(𝑖 )
𝑗

= 𝑋𝑡+𝑗 (10)

Then, we apply the evolutionary model MOQAR to all subsets𝐷 𝑗

separately for the extraction of QARs. The parameters are config-
ured for only retrieving the rules with a certain values of confidence,
accuracy and support, just to minimize the number of valid rules for
each iteration. As a result, we will obtain a comprehensible explana-
tion of how the model 𝑓 makes predictions using the output, which
means that we will be able to interpret the deep learning algorithm.
In this work, the interpretability of a recurrent neural network
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Table 1: A selection of QARs obtained by MOQAR and quality measures for each prediction horizon for LSTM predictions.

h Rule Support Confidence Gain
1 IF 𝑋𝑡−1 ∈ [25122, 32611] AND 𝑋𝑡 ∈ [25618, 33561] =⇒ 𝑋𝑡+1 ∈ [25230.04, 33063.40] 0.42 0.98 0.52
2 IF 𝑋𝑡−2 ∈ [29810, 39018 ] =⇒ 𝑋𝑡+2 ∈ [28149.37, 38952.71] 0.45 0.98 0.44
3 IF 𝑋𝑡 ∈ [26833, 32630 ] =⇒ 𝑋𝑡+3 ∈ [25947.24, 33570.65] 0.35 0.98 0.52
4 IF 𝑋𝑡−114 ∈ [23085, 39275] AND 𝑋𝑡 ∈ [26786, 36046] =⇒ 𝑋𝑡+4 ∈ [26556.69, 36436.02] 0.46 0.97 0.41
5 IF 𝑋𝑡 ∈ [29971, 38813 ] =⇒ 𝑋𝑡+5 ∈ [28089.77, 38531.58] 0.43 0.97 0.43
6 IF 𝑋𝑡−2 ∈ [22237, 29724] AND 𝑋𝑡−1 ∈ [22812, 29042] =⇒ 𝑋𝑡+6 ∈ [22059.42, 30741.35] 0.32 0.93 0.46
7 IF 𝑋𝑡 ∈ [23435, 29565 ] =⇒ 𝑋𝑡+7 ∈ [23286.75, 31999.55] 0.32 0.93 0.45
8 IF 𝑋𝑡−3 ∈ [19503, 29267 ] =⇒ 𝑋𝑡+8 ∈ [19866.40, 31687.74] 0.44 0.94 0.34
9 IF 𝑋𝑡−4 ∈ [21948, 33583 ] =⇒ 𝑋𝑡+9 ∈ [21678.36, 33638.91] 0.62 0.89 0.20
10 IF 𝑋𝑡−129 ∈ [29781, 40611] AND 𝑋𝑡−1 ∈ [28913, 42075] =⇒ 𝑋𝑡+10 ∈ [29408.60, 40850.50] 0.37 0.98 0.47
11 IF 𝑋𝑡−1 ∈ [17846, 26748 ] =⇒ 𝑋𝑡+11 ∈ [18447.88, 29838.03] 0.31 0.97 0.46
12 IF 𝑋𝑡−1 ∈ [20486, 28110 ] =⇒ 𝑋𝑡+12 ∈ [20873.39, 31424.08] 0.36 0.96 0.41
13 IF 𝑋𝑡−134 ∈ [29047, 35642] AND 𝑋𝑡−8 ∈ [19893, 35062] =⇒ 𝑋𝑡+13 ∈ [25787.62, 36114.02] 0.32 0.96 0.37
14 IF 𝑋𝑡−3 ∈ [19330, 29017 ] =⇒ 𝑋𝑡+14 ∈ [19459.90, 31157.35] 0.38 0.84 0.32
15 IF 𝑋𝑡−130 ∈ [19709, 28064 ] =⇒ 𝑋𝑡+15 ∈ [19733.12, 32743.51] 0.38 0.89 0.27
16 IF 𝑋𝑡−133 ∈ [19523, 28556] AND 𝑋𝑡−85 ∈ [25115, 41521] =⇒ 𝑋𝑡+16 ∈ [19602.96, 30048.36] 0.31 0.90 0.41
17 IF 𝑋𝑡−133 ∈ [29176, 39694] AND 𝑋𝑡−128 ∈ [28498, 37063] =⇒ 𝑋𝑡+17 ∈ [26667.44, 38203.40] 0.42 0.96 0.33
18 IF 𝑋𝑡−121 ∈ [26852, 36382] AND 𝑋𝑡−115 ∈ [24036, 36978] =⇒ 𝑋𝑡+18 ∈ [26940.19, 37320.54] 0.45 0.81 0.20
19 IF 𝑋𝑡 ∈ [31778, 41140 ] =⇒ 𝑋𝑡+19 ∈ [28402.35, 42863.99] 0.32 0.91 0.34
20 IF 𝑋𝑡−125 ∈ [29314, 38134] AND 𝑋𝑡−121 ∈ [30329, 37335] =⇒ 𝑋𝑡+20 ∈ [24542.16, 39102.50] 0.36 0.98 0.20
21 IF 𝑋𝑡−124 ∈ [28495, 35152 ] =⇒ 𝑋𝑡+21 ∈ [26016.44, 35727.54] 0.38 0.89 0.29
22 IF 𝑋𝑡−113 ∈ [18036, 26626] AND 𝑋𝑡−103 ∈ [18916, 30240] =⇒ 𝑋𝑡+22 ∈ [18987.06, 31309.65] 0.32 0.89 0.29
23 IF 𝑋𝑡−109 ∈ [18628, 27189 ] =⇒ 𝑋𝑡+23 ∈ [18326.44, 30991.96] 0.35 0.87 0.28
24 IF 𝑋𝑡−122 ∈ [31268, 41236 ] =⇒ 𝑋𝑡+24 ∈ [29353.53, 42480.26] 0.34 0.88 0.37

Figure 1: Example of a time series instance. Predictions made
with LSTM model.

model, LSTM and its ability to predict the electricity demand in
Spain is studied [15].

5 RESULTS
5.1 Input data
The input data used for this experiment is a time series of electrical
energy consumption in Spain [13]. Data have been collected with
10-minute frequency during nine years and six months, specifically

between January 1st 2007 and June 21st 2016. The time window
used to predict has been set to 168 (1 day and 4 hours) whereas the
value of the horizon of prediction ℎ is 24, that is, 4 hours, as done
and discussed in [15]. Figure 1 shows one instance of the dataset.

5.2 Quantitative association rules
The evolutionary MOQAR algorithm is used for obtaining a set of
rules for each of the 24 samples forming the prediction horizon. For
each one, between 12 and 20 rules are obtained, resulting in a total
of 400 rules across all horizons.

The most representative QAR with regard to metrics such as
confidence and support are presented in Table 1. In predictions of
the first two hours of the horizon (𝑋𝑡+1 and 𝑋𝑡+2) the LSTM model
gives a greater weight to the most recent values of the time series,
approximately the two or three hours before, while for the third
and fourth hour of the horizon (except for the horizons 𝑡 + 14 and
𝑡 + 19) it gives more weight to time series values farther away in
time, coinciding with hours close to the previous day.

Table 1 presents both an example of QAR of each of the prediction
horizons 𝑋𝑡+ℎ and the quality measures of the QARs prevously
mentioned. QARs show high confidence covering from 30% to 62%
of the records in the dataset.

5.3 Explaining LSTM model
QARs are used as a comprehensible and understandable tool to
explain how the predictions made by DL model LSTM. The amount
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of real data explained by the set of rules of each prediction hori-
zon 𝑋𝑡+ℎ is calculated concerning the data range that QARs are
covering.

Histograms for each prediction horizon are generated in order to
analyze graphically the distribution of the actual values of the time
series in different intervals. Hist. range is computed. Hist. range
means the range of values with more than 50% of the samples, in
other words, the range of values of time series 𝑋𝑡 with more than
50% of the frequency in the histogram. Then, the percentage of
range covered from histograms (Hist. range covered (%)) is about the
relation of this interval and the Range covered by the set of rules.
Overall, MOQAR explained more than 98% on average for all the
samples in the prediction horizon, for the dataset used in this work.

(a) Best result 𝑋𝑡+22, with 99.89% of values explained

(b) Worst result 𝑋𝑡+17, with 96.03% of values explained.

Figure 2:Histograms of percentage of real data values covered
of two different prediction horizons.

Examples of graphical representations are illustrated in Figure
2. Histograms represent the frequency of the real values of the
time series. The red lines show the interval covered by the rules,
while the yellow ones identify the interval with more than 50% of
the frequency. In (a), it is shown the best result obtained for the
prediction horizon𝑋𝑡+22 (99.89% covered), whereas in (b), the worst
one, for 𝑋𝑡+17 (96.03% covered).

6 CONCLUSIONS
In this work, QARs have been used to explain how a deep learning
model, namely the well-known recurrent network model LSTM,
makes predictions. For this purpose, the model obtained in the train-
ing of the LSTM network has been used first to obtain predictions.
Then, QARs have been obtained using an evolutionary algorithm.
QARs’ antecedent (IF statement) is formed by the network input,
that is, the past values of the time series. The consequent (THEN
statement) is formed by the network output, i.e. the predictions
obtained by the LSTM. Results have been reported using a real-
world time series consisting of electricity consumption in Spain

measured every 10 minutes. Overall, the results obtained show that
the rules are a useful tool for explaining DL predictions. Using
the QARs it is possible to get information about which time past
values (𝑋𝑡 (𝑤−1) ) and in which range are important to calculate the
prediction. Each prediction horizon 𝑋𝑡+ℎ (from 1 to 24) has enough
rules to cover the greater part of their data interval. Even the worst
set of rules, concerning 𝑋𝑡+17, is covering almost all the data in the
real data range. Future work will be focused on creating graphical
representations using information from QARs.
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