
Embedded Temporal Feature Selection
for Time Series Forecasting Using Deep

Learning

M. J. Jiménez-Navarro1(B) , M. Martínez-Ballesteros1 ,
F. Martínez-Álvarez2 , and G. Asencio-Cortés2

1 Department of Computer Science, University of Seville, 41012 Seville, Spain
{mjimenez3,mariamartinez}@us.es

2 Data Science and Big Data Lab, Pablo de Olavide University, 41013 Seville, Spain
{fmaralv,guaasecor}@upo.es

Abstract. Traditional time series forecasting models often use all avail-
able variables, including potentially irrelevant or noisy features, which
can lead to overfitting and poor performance. Feature selection can help
address this issue by selecting the most informative variables in the tem-
poral and feature dimensions. However, selecting the right features can
be challenging for time series models. Embedded feature selection has
been a popular approach, but many techniques do not include it in their
design, including deep learning methods, which can lead to less efficient
and effective feature selection. This paper presents a deep learning-based
method for time series forecasting that incorporates feature selection to
improve model efficacy and interpretability. The proposed method uses a
multidimensional layer to remove irrelevant features along the temporal
dimension. The resulting model is compared to several feature selection
methods and experimental results demonstrate that the proposed app-
roach can improve forecasting accuracy while reducing model complexity.

Keywords: feature selection · embedded · neural network · time
series · forecasting

1 Introduction

Embedded feature selection has become the preferred approach for feature selec-
tion due to its combination of simplicity, efficiency, and remarkable results. How-
ever, just some techniques include feature selection in its design, which force to 
rely on less efficient or effective methods. Deep learning is one example of tech-
nique which does not embed an effective feature selection, which is one of the 
causes for obtaining poor results for tabular data in spite of the remarkable 
results in areas like artificial vision and natural language processing.

Time series forecasting [7] is one of the most common tabular data in the 
industry and a critical area of research that aims to predict future values of a 
variable based on its past information. While traditional time series forecasting c© 
T.
https://doi.org/10.1007/978-3-031-43078-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43078-7_2&domain=pdf
http://orcid.org/0000-0001-8514-4182
http://orcid.org/0000-0003-3160-7414
http://orcid.org/0000-0002-6309-1785
http://orcid.org/0000-0003-0874-1826
https://doi.org/10.1007/978-3-031-43078-7_2


16 M. J. Jiménez-Navarro et al.

models often use all available variables, including potentially irrelevant or noisy
features, this can lead to overfitting and poor performance. Feature selection
can help address this issue by selecting the most informative variables in the
temporal and feature dimensions. However, selecting the right features and the
right moments from the past information can be challenging for time series
models.

In this paper, we introduce a novel method for time series forecasting called
Time Selection Layer (TSL)1, which extends the FADL framework proposed
by Jimenez Navarro et al. [6]. A deep learning-based method is proposed for
time series forecasting that incorporates feature selection to improve the efficacy
and interpretability of the model. The proposed method includes an additional
layer at the top of the model which selects the relevant features and time steps.
This layer is trained during the backpropagation process, which, once the train-
ing process has finished, removes irrelevant features without additional training
steps nor complex mechanisms. The previous methodology selected the features
and all the past moments, which was incompatible with time series forecasting
scenarios where a univariate time series or all the input features were used in
the prediction.

The resulting model is compared to a baseline model that uses all avail-
able features and three filter-based methods because they do not require extra
computation, and experimental results demonstrate that the proposed approach
can improve forecast accuracy while reducing model complexity in all scenarios.
Additionally, the selected features provide insight into the underlying patterns
and drivers of the time series, aiding in the interpretation of the forecast results.

The main contributions of this paper are as follows:

– Simple and effective solution for feature selection in time series with mini-
mal/no parametrization.

– General-purpose approach, which may be applied to almost any type of time
series independently of its nature or task.

– Efficient interpretability approach which requires no extra computation.
– Comparison between 9 different time series forecasting datasets and 4 baseline

approaches with a remarkable improvement in efficacy.

The rest of the article is organized as follows. In Sect. 2, we provide a
brief overview of related work on time series forecasting and feature selection.
In Sect. 3, we describe the proposed method in detail. Section 4 presents the
experimental setting used to compare the different datasets and feature selec-
tion approximations. In Sect. 5, the experimental results and an analysis of the
selected features of the proposed method between all datasets and feature selec-
tion methods are reported. Finally, Sect. 6 discusses the main conclusions of this
work.

1 Python implementation and experimentation have been included in the following
repository https://github.com/manjimnav/TSSLayer.

https://github.com/manjimnav/TSSLayer


Embedded Temporal Feature Selection for Time Series Forecasting Using DL 17

2 Related Works

This section conducts a literature review of embedded feature selection methods
applied to neural networks. We will review the advantages and limitations of
each technique and discuss its applicability to different types of datasets and
problems.

Yuan et al. [10] propose an embedded feature selection method for neural
networks using the point-centered convolutional neural network. The study is
applied to moldy peanuts identification problem using hyperspectral images. The
authors propose using the weights in the first convolutional layer as an estimator
of the relevance of the neural network for each band. The method provided
competitive accuracy compared to conventional approaches. In our work, the
goal is to filter irrelevant features by removing or keeping the input with the
same value. In the work proposed by the authors, it is possible to assign a
weight with a continuous value, which may difficult to determine if a feature is
relevant.

Zhang et al. [11] propose to use the Group Lasso penalty to embed the
feature selection in a neural network. The authors apply their method to a set
of well-known baseline datasets compared with other regularization approaches.
The groups in the Group Lasso penalty represent all the weights in the first
layer connected to a layer. Each group has a regularization using a smoothing
approximation to the Lasso penalty to make it fully differentiable. However, the
proposal described may be only applied to feed-forward layers, which limits the
applicability to other models. In our work, we propose a general purpose method
for any type of neural networks.

Cancelan et al. [2] propose the E2E-FS method to embed feature selec-
tion in neural networks. The authors apply this method to different microarray
challenges and artificially modified datasets for feature selection. The E2E-FS
includes an additional loss function method in order to filter a fixed number
of features and remove the influence of irrelevant features. In our work, the
method automatically selects the amount of features, which usually is a subset
of the total features. In addition, no change to the loss function is needed to
filter the features as in our approach, as we approximate the Heaviside function
to make it differentiable.

Borisov et al. [1] propose a general-purpose layer called CancelOut to filter
irrelevant features. The method is applied to three baseline datasets compared to
other embedded and not embedded feature selection methods. The methodology
proposed by the authors consists of the use of an element-wise multiplication
between the inputs and a set of filters. The filters are built by applying a sigmoid
function to a set of weights, and the goal is to remove the influence of the
irrelevant input features. However, for feature selection, a threshold is needed,
which may have a great influence in the results. In our work, no threshold must
be parameterized, which makes our method more generalizable.



18 M. J. Jiménez-Navarro et al.

3 Methodology

This section is divided into three subsections to describe the main methodology.
In Sect. 3.1, the nomenclature used during the figures, formulas, and explanations
is provided. In Sect. 3.2, the methodology is described in detail, focusing on the
changes from the previous work and its implications. In Sect. 3.3 the weight
initialization and regularization strategies for the TSL are described.

3.1 Nomenclature

In this section, the main elements used in the description of the TSL are reported.

– D represents the number of features used for the neural network. Note that
in univariate time series D = 1.

– M represents the number of past moments used in the input, also called the
window.

– X represents the input matrix with size MxD.
– WL represents the TSL weights with size MxD.
– Ĥ represents the Heaviside function approximation.
– ◦ represents the Hadamard product.
– H represents the Heaviside function.
– σ represents the hard sigmoid function.
– δ represents the “detach” function which ignores the propagation of the gra-

dient in the backpropagation algorithm.

3.2 Description

Figure 1 summarizes the suggested approach which involves the introduction
of a new layer, referred to as the TSL, just after the input layer. Specifically,
this layer operates on a per-element basis by linking each input to a distinct
neuron within the TSL. These neurons act as a filter for the input, enabling
to remove the irrelevant features from the network when required. Initially, all
inputs are selected. Then, the TSL weights and the rest of the weights in the
network are optimized together via backpropagation, with positive and negative
weights assigned to each feature. Positive weights preserve the influence of the
feature, while negative weights nullify the influence by setting it to zero. Due to
the weights in TSL are optimized during the backpropagation process, the filter
must collaborate to minimize the loss function embedding the feature selection
process into the neural network design.

The filter in TSL is implemented by applying a Heaviside approximation to
the matrix WL setting the weights to zero or one. The resulting binarized weights
are defined as the mask, which is multiplied by the input X using the Hadamard
product, which removes the influence of the filtered inputs.

Therefore, the operation performed by the TSL is defined as follows:

TSL(XMxD) = Ĥ(W 1xD
L ) ◦ XMxD . (1)



Embedded Temporal Feature Selection for Time Series Forecasting Using DL 19

00

0 0

0

0

Fig. 1. TSL layer applied to an input matrix X with M past moments for D features.
Note that the output X̂ has the same dimensions, but some moments were set to zero.
Finally, the output is used as input for a neural network.

where the function H applies the following operation to the weight W i,j
L , i ∈

M, j ∈ D:

H(W i,j
L ) =

{
1, if W i,j

L >= 0,

0, if W i,j
L < 0,

(2)

(3)

Note that if a feature mask contains a zero weight for a feature at a spe-
cific moment, it will affect all the remaining layers and reduce the influence of
the removed features. This fact may lead to a higher variance in training time
compared to a neural network without TSL.

As the Heaviside function is not differentiable, an approximation was imple-
mented for this function with a differentiable version. The operation was per-
formed for each weight W i,j

L in WL as follows:

Ĥ(W i,j
L ) = σ(W i,j

L ) − δ(W i,j
L − H(W i,j

L )) . (4)

Using this approximation, the gradients can propagate through the TSL using
the Heaviside function without requiring extra parameterization or regulariza-
tion.

3.3 Weight Initialization and Regularization

The weight initialization and regularization are essential to achieve a good selec-
tion. Note that this initialization and regularization are applied to the TSL
independently of the rest of the neural network.

As mentioned in the previous section, initially all features and moments are
selected, and during the training the features are selected. In this work, we may
consider that selection uses a backward approximation for feature selection. For
this reason, the weights are initialized as a positive value. However, a large pos-
itive value would introduce a bias to keep the features, as reducing the weights
would require more iterations than near-zero values. Thus, the weights are ini-
tialized as a near-zero positive value of 0.01.



20 M. J. Jiménez-Navarro et al.

Regularization is responsible for penalizing the amount of selected inputs. In
this case, we considered the same penalization independently of the feature or
moment to avoid any inductive bias, which will introduce a penalization of 0.01
for every selected feature and moment.

4 Experimental Setting

This section aims to provide a comprehensive understanding of the experimen-
tal design and implementation, allowing for reproducibility and evaluation of the
results divided into five subsections. Section 4.1 outlines the datasets used in the
study, including their sources, sizes, and characteristics. Section 4.2 describes the
various transformations applied to the datasets, such as normalization and divi-
sion. Section 4.3 provides a detailed explanation of the hyperparameters used in
the study, including their values and how they were chosen. Section 4.4 outlines
the different feature selection methods used in the study, including any modifica-
tions or adaptations made. Finally, Sect. 4.5 describes the performance metrics
used to evaluate the results of the study.

4.1 Datasets

The experiments were performed by selecting eight data sets consisting of differ-
ent time series from various sources and fields, such as maintenance of the power
transformer, consumption of electricity, pollution, etc. In Table 1, each dataset
will be described in detail, including the number of features, sample frequency,
and forecasting strategy. The forecasting strategy can be either many-to-many or
many-to-one. Many-to-many strategy uses multiple features as input and outputs
multiple features that may be the same as the input or a subset. Many-to-one
strategy uses multiple features as input and only one feature as output, usually
one of the input features.

Table 1. Summary of datasets used in the experiment

Dataset Instances Time Span Features Frequency Strategy

ETT 17420 2016–2018 7 1 h Many-to-one
Electricity 26304 2011–2014 320 15 min Many-to-many
ExchangeRate 7588 1990–2016 8 1 day Many-to-many
TorneoCO 96409 2005–2015 4 10 min Many-to-one
TorneoNO2 96409 2005–2015 4 10 min Many-to-one
TorneoO3 96409 2005–2015 4 10 min Many-to-one
TorneoPM10 96409 2005–2015 4 10 min Many-to-one
Traffic 7544 2015–2016 862 1 h Many-to-many

The Electricity Transformer Temperature (ETT) [12] datasets consist of insu-
lating oil temperature samples obtained from two power transformer in China.



Embedded Temporal Feature Selection for Time Series Forecasting Using DL 21

The dataset has 17,420 records collected from 2016 to 2018, with data sampled
every minute and hour. In this work, the hourly version from both transform-
ers was used, called ETTh1 and ETTh2. The datasets consist of a multivariate
time series containing five features: High UseFul Load (HUFL), High UseLess
Load (HULL), Middle UseFul Load (MUFL), Middle UseLess Load (MULL),
Low UseFul Load (LUFL), Low UseLess Load (LULL), and Oil Temperature
(OT), which is the target. Therefore, the forecasting strategy used is the many-
to-one approach, where the seven features are used as input, and only the oil
temperature is the output. In this work, single-horizon forecasting is used for all
datasets.

The Electricity [4] dataset contains electricity consumption measurements
obtained from 370 clients in Portugal. In this work, the grouped version [8]
is used, containing 320 time series collected from 2011 to 2014, with 26,304
records for each time series sampled every 15min. The dataset consists of 320
consumption time series as features. The target is to predict all the time series;
therefore, the forecasting strategy used is the many-to-many approach.

The ExchangeRate [4] dataset contains exchange rate measurements obtained
from eight countries. The dataset has 7,488 records sampled every day from 1990
to 2016. The features of the data set consist of daily exchange rates from the
eight countries. Australia, United Kingdom, Canada, Switzerland, China, Japan,
New Zealand, and Singapore. The forecasting strategy used in this case is the
many-to-many approach, which means that the eight features will be used as
output.

The Torneo [5] dataset contains pollution and meteorological measurements
obtained in Seville, Spain. The dataset has 96,409 records sampled every 10min
from 2005 to 2015. The features in the dataset consist of four pollutants (CO,
NO2, O3, and PM10) and three meteorological variables (Temperature, Wind
direction, and Wind speed). The dataset was divided into four different datasets,
each using a many-to-one forecasting strategy for each pollutant: TorneoCO,
TorneoNO2, TorneoO3, and TorneoPM10. As the number of target features is
considerably small, this division was made to study the relevant features based
on just one pollutant.

The Traffic [3] dataset contains the road occupancy rate of the California
Department of Transportation. The dataset has 17,544 records collected from
862 sensors placed in California during 2015 and 2016, sampled every hour. The
features consist of 862 sensors, using the many-to-many forecasting strategy.

4.2 Preprocessing

The data must be processed before using it in the experiment. First, the data
are standardized to ensure that each feature has a mean of zero and a standard
deviation of one. Then, a windowing process is applied to the time series, which
divides the time series into fixed size windows with contain the information
and is fed into the neural network. The size of the window is an important
parameter that needs to be optimized based on the specific problem and data
characteristics. The dataset is then divided into training, validation, and testing



22 M. J. Jiménez-Navarro et al.

sets using the 70%, 10%, and 20% of the data, respectively. Each split preserves
the temporality between the instances and between themselves.

4.3 Hyperparameters Definitions

The hyperparemeters configure the training process and have a great impact on
its behavior. The hyperparameters have been divided into three groups: data,
model, and feature selection hyperparameters.

The primary hyperparameter of the data is the window size. In this study,
we used a different sequence size for each dataset. For ETT and Torneo datasets
the window size is 12 or 24, in Electricity is 4 or 8, in ExchangeRate is 2 or 7 and
Traffic 3 or 6. Furthermore, during the windowing process, we subsampled the
datasets by building a window for all X records, as defined by the shift which is
24 h for ETT, Electricity and Torneo datasets while a shift of 3 instances where
selected for ExchangeRate and Traffic. For the forecast step, only one value was
selected.

Regarding the model, the hyperparameters were consistent across all datasets
and methods. A simple neural network with two hidden layers was selected,
where the number of neurons in the first hidden layer was equal to half of the
input features, while a quarter of the input features was employed in the second
hidden layer. During training, we utilized the Adam optimizer for 100 epochs.
In addition, we used the early stop technique to stop the training process once
the training loss did not decrease for at least 10 epochs.

For feature selection hyperparameters, two types exist depending on the app-
roach. For filter methods, a threshold is employed as a hyperparameter, which
can contain values ranging from 50% to 100% of total relevance, in increments
of 5%. For the TSL, the single hyperparameter employed is the regularization
term, which can be set to 1e−3, 1e−4, or 1e−5.

A grid search is used for all possible combinations of hyperparameters in
order to find the best set of hyperparameters for each feature selection method
and model. The search uses the training data to optimize the model with the set
of hyperparameters and the metrics calculated over the validation set are used
as the quality measure.

4.4 Methods

In this section, the main methods used for the comparison are detailed. First,
the neural network is evaluated without feature selection as the baseline method.
Then, three filter-based feature selections are employed: Linear, Correlation
(Corr) and Mutual Information (MI). For the filter methods, a threshold must be
optimized, as mentioned in Sect. 4.3. This threshold will determine the amount
of features which represents the thr total relevance, being thr ∈ [50, 100] the
threshold percentage.

Linear selection uses the weights of a linear model with L1 regularization to
determine the importance of features. Corr selection uses the Pearson correlation



Embedded Temporal Feature Selection for Time Series Forecasting Using DL 23

with the target variable to determine the importance of the characteristic. MI
selection uses the Mutual Information [9] between the inputs and the target
variable for determining the feature importance.

4.5 Metrics

To evaluate the performance of the model, three different metrics will be used.
To evaluate the efficacy of the different methods, the mean squared error (MSE)
will be employed. The number of selected features will be used to relate the
method with the best efficacy with the number of relevant features needed. The
formula is as follows: MSE(Y n

pred, Y
n
true) = 1

N

∑N
n=1(Y

n
pred − Y n

true)
2. Finally,

the total time used for each method including the hyperparameter optimization
process will be detailed.

5 Results and Discussion

In this section, the results obtained for each selection method and dataset are
reported. The discussion is divided into three sections. First, the best efficacy
results are analyzed for each dataset and method. Then the best hyperparameters
obtained based on the best configuration are commented. Finally, the number
of features of the best methods in each dataset.

5.1 Efficacy

Table 2 presents the MSE obtained for each selection method and dataset, as
well as the corresponding improvement in MSE compared to the NS case (no
selection), which is reported in parentheses.

Table 2. Mean squared error obtained for each selection method and dataset. Note
that the improvement (between 0 and 1) with respect to the nonselection is reported
in parentheses.

Dataset NS Corr Linear MI TSL

ETTh1 0,399 0,157 (0,61) 0,058 (0,85) 0,073 (0,82) 0,053 (0,87)
ETTh2 0,590 0,135 (0,77) 0,060 (0,9) 0,166 (0,72) 0,111 (0,81)
Electricity 2,366 2,366 (0,00) 1,963 (0,17) 2,366 (0,00) 0,869 (0,63)
ExchangeRate 0,645 0,645 (0,00) 0,408 (0,37) 0,645 (0,00) 0,387 (0,40)
TorneoCO 0,512 0,253 (0,51) 0,228 (0,55) 0,243 (0,53) 0,188 (0,63)
TorneoNO2 0,802 0,422 (0,47) 0,415 (0,48) 0,494 (0,38) 0,276 (0,66)
TorneoO3 0,919 0,420 (0,54) 0,251 (0,73) 0,373 (0,59) 0,278 (0,70)
TorneoPM10 0,715 0,507 (0,29) 0,440 (0,38) 0,538 (0,25) 0,415 (0,42)
Traffic 0,299 0,213 (0,29) 0,220 (0,26) 0,227 (0,24) 0,186 (0,38)



24 M. J. Jiménez-Navarro et al.

For the NS method, the MSE is consistently higher or equal to that of the
other methods, indicating that feature selection generally enhances prediction
performance in the context of time series forecasting.

The Corr and MI methods demonstrate a significant improvement in MSE
compared to NS, except for the Electricity and ExchangeRate datasets, where
they perform similarly to NS. This suggests that Corr and MI are not always
reliable indicators of feature relevance.

The TSL method produces the best results in seven out of nine datasets,
followed by Linear, which yields the best results in the remaining two datasets.
It seems that there are datasets with a linear relationship between the target
and the features, which justifies the remarkable results.

In conclusion, TSL appears to exhibit the most consistent and optimal per-
formance overall, which seems to indicate that our method is more generalizable
to other problems without losing efficacy.

5.2 Best Hyperparameters

This section reports the hyperparameters found for the selection methods with
the best efficacy. The goal is to identify general patterns for the different selection
methods.

Table 3. Best hyperparameters found for each selection algorithm and dataset based
on the efficacy.

Window size Threshold Regularization
Dataset NS Corr Linear MI TSL Corr Linear MI TSL

ETTh1 24 12 24 12 12 0.60 0.60 0.60 5e−3
ETTh2 12 12 24 12 12 0.80 0.55 0.65 5e−4
Electricity 8 8 8 8 8 0.60 0.60 0.50 1e−2
ExchangeRate 3 3 7 3 3 0.50 0.85 0.50 5e−5
TorneoCO 24 24 24 24 24 0.50 0.50 0.70 1e−2
TorneoNO2 12 24 12 24 24 0.75 0.50 0.70 1e−2
TorneoO3 12 12 12 12 24 0.55 0.55 0.90 1e−2
TorneoPM10 12 24 12 24 24 0.95 0.60 0.85 5e−3
Traffic 6 6 6 6 6 0.60 0.75 0.85 5e−4

Table 3 displays the best hyperparameters identified for each dataset and
selection method, including the window size for the input time series, the thresh-
old for the feature selection methods, and the regularization term used in our
proposed approach.

Regarding window size, no consistent pattern emerges between methods. In
some cases, the optimal window size is the maximum allowed, while in others, a
smaller size is preferred.



Embedded Temporal Feature Selection for Time Series Forecasting Using DL 25

For the threshold, no consistent pattern is observed for each feature selection
method. The values range from 50% to 95%, making it challenging to optimize
this parameter as no universally applicable value can be identified.

Concerning regularization in TSL, the optimal values typically fall within the
range of 5e−3 to 1e−2. Thus, a regularization term between these two values
may be a suitable initial value.

5.3 Selected Features

In this section, the number of features selected for each feature selection method
with optimal hyperparameters is analyzed.

Fig. 2. Features obtained for each method using the best hyperparameters. Note the
logaritmic scale.

Figure 2 displays the number of features obtained by each selection method.
It is important to note that the number of features selected is not related to
efficacy.

Overall, we observe that TSL tends to select fewer features than other meth-
ods. We hypothesize that the excellent efficacy results are a consequence of this
selection strategy. Methods such as Corr or MI may not effectively filter out irrel-
evant features due to the high degree of interdependence among the features and
moments. Linear appears to filter adequately when the feature space is small,
but it may encounter difficulties when the number of original features is large.

6 Conclusions and Future Works

In this study, we have introduced a simple embedded feature selection approach
for deep learning by adding a new layer. This layer acts as a filter that eliminates
the impact of features with a temporal dimension. Our findings demonstrate, our
proposed TSL outperforms other methods in most of the tested datasets with a
straightforward parametrization and less information.

As future work, we intend to enhance the layer to consider the locality prin-
ciple of selected moments. This involves increasing the likelihood of selecting
moments around the chosen moments.



26 M. J. Jiménez-Navarro et al.

Acknowledgements. The authors would like to thank the Spanish Ministry of Sci-
ence and Innovation for the support under the projects PID2020-117954RB and
TED2021-131311B, and the European Regional Development Fund and Junta de
Andalucía for projects PY20-00870, PYC20 RE 078 USE and UPO-138516.

References

1. Borisov, V., Haug, J., Kasneci, G.: CancelOut: a layer for feature selection in deep
neural networks. In: Proceedings of 28th International Conference on Artificial
Neural Networks. Artificial Neural Networks and Machine Learning - ICANN 2019:
Deep Learning, pp. 72–83 (2019)

2. Cancela, B., Bolón-Canedo, V., Alonso-Betanzos, A.: E2E-FS: an end-to-end fea-
ture selection method for neural networks. IEEE Trans. Pattern Anal. Mach. Intell.
pp. 1–12 (2020)

3. CDT: California department of transportation (2015). https://pems.dot.ca.gov/
4. Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., Montero-Manso, P.: Elec-

tricity hourly dataset (2020)
5. Gómez-Losada, A., Asencio-Cortés, G., Martínez-Álvarez, F., Riquelme, J.C.: A

novel approach to forecast urban surface-level ozone considering heterogeneous
locations and limited information. Environ. Model. Softw. 110, 52–61 (2018)

6. Jiménez-Navarro, M.J., Martínez-Ballesteros, M., Sousa, I.S., Martínez-Álvarez,
F., Asencio-Cortés, G.: Feature-aware drop layer (FADL): a nonparametric neural
network layer for feature selection. In: Proceedings of 17th International Conference
on Soft Computing Models in Industrial and Environmental Applications (SOCO
2022), pp. 557–566 (2023)

7. Jiménez-Navarro, M.J., Martínez-Ballesteros, M., Martínez-Álvarez, F., Asencio-
Cortés, G.: PHILNet: a novel efficient approach for time series forecasting using
deep learning. Inf. Sci. 632, 815–832 (2023)

8. Lai, G., Chang, W., Yang, Y., Liu, H.: Modeling long- and short-term temporal
patterns with deep neural networks. ACM, pp. 95–104 (2018)

9. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE
Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

10. Yuan, D., Jiang, J., Gong, Z., Nie, C., Sun, Y.: Moldy peanuts identification based
on hyperspectral images and point-centered convolutional neural network combined
with embedded feature selection. Comput. Electron. Agric. 197, 106963 (2022)

11. Zhang, H., Wang, J., Sun, Z., Zurada, J.M., Pal, N.R.: Feature selection for neural
networks using group lasso regularization. IEEE Trans. Knowl. Data Eng. 32(4),
659–673 (2020)

12. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 11106–11115 (2021)

https://pems.dot.ca.gov/

	Embedded Temporal Feature Selection for Time Series Forecasting Using Deep Learning
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Nomenclature
	3.2 Description
	3.3 Weight Initialization and Regularization

	4 Experimental Setting
	4.1 Datasets
	4.2 Preprocessing
	4.3 Hyperparameters Definitions
	4.4 Methods
	4.5 Metrics

	5 Results and Discussion
	5.1 Efficacy
	5.2 Best Hyperparameters
	5.3 Selected Features

	6 Conclusions and Future Works
	References




