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Abstract. This paper explores the use of deep learning techniques for
detecting sleep apnea. Sleep apnea is a common sleep disorder char-
acterized by abnormal breathing pauses or infrequent breathing during
sleep. The current standard for diagnosing sleep apnea involves overnight
polysomnography, which is expensive and requires specialized equipment
and personnel. The proposed method utilizes a neural network to analyze
physiological signals, such as heart rate and respiratory patterns, that are
recorded during sleep to authomatic sleep apnea detection. The neural
network is trained on a dataset of polysomnography recordings to iden-
tify patterns that are indicative of sleep apnea. The results compare the
use of different physiological signals to detect sleep apnea. Nasal airflow
seems to have the most accurate results and higher specificity, whereas
EEG and ECG have higher levels of sensitivity. The best model con-
cerning accuracy is compared to bias models previously applied to sleep
apnea detection in literature, achieving greater results. This approach
has the potential to provide automatic sleep apnea detection, being an
accessible solution for diagnosing sleep apnea.

Keywords: Sleep apnea · Time series · Deep learning · classification ·
forecasting

1 Introduction

Sleep apnea is a sleep disorder that causes repeated pauses in breathing or shal-
low breathing during sleep. These pauses could last from a few seconds to several 
minutes and could occur many times throughout the night. These interruptions 
in breathing can cause a significant reduction in sleep quality and can lead to 
a variety of significant health consequences [12]. Obstructive sleep apnea (OSA) 
is the most common form of sleep apnea. Patients with OSA usually experi-
ence loud snoring, gasping, or choking during sleep, and fatigue during the day. 
Hypoapnea is a related term used to describe a partial reduction in airflow to the c
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lungs during sleep. Causes breathing to become shallower or slow for a period
of time, typically lasting at least 10 s. Hypoapnea is often associated with OSA.
Other symptoms of sleep apnea could include headaches in the morning, diffi-
culty in concentrating, mood changes, and irritability. These symptoms directly
affect the patient’s daily life: sleep apnea contributes to motor vehicle accidents
and reduced productivity, creating problems at work or school. Sleep apnea is
closely related to obesity, smoking, alcohol consumption, and family history. Men
are more likely to develop sleep apnea than women, which is more common in
older adults. Sleep apnea also plays an increasing role in cardiovascular disease,
particularly hypertension and congestive heart failure [12]. Treatment for sleep
apnea can include lifestyle changes such as weight loss, exercise, and the elim-
ination of alcohol and sedatives. There are also medical interventions, such as
continuous positive airway pressure therapy [4]. Effective treatment can improve
sleep quality, reduce symptoms, and improve overall health and well-being.

Polysomnography (PSG) is a widely used clinical test to diagnose sleep apnea
and other sleep disorders. During a PSG test, a person is monitored while sleep-
ing to measure various physiological parameters, such as heart rate or breathing
rhythm. PSG is considered the standard for diagnosing sleep apnea because it
provides a comprehensive assessment of the severity and frequency of breathing
disturbances during sleep [1]. However, the PSG test has several disadvantages.
PSG involves spending a night in a hospital or a sleep laboratory. The patient
must be connected to various sensors, which is uncomfortable. In addition, PSG
could be expensive. The costs may be high for public health systems and could
be inaccessible for some patients. The test are also not accurate in certain situ-
ations. For example, the PSG test only provides information about the patient’s
sleep patterns during the stay in the hospital. It may not capture typical sleep
patterns or account for the variability in sleep over time. PSG may also disrupt
the patient’s natural sleep patterns, as they are sleeping in an unfamiliar envi-
ronment and connected to various sensors. Finally, the interpretation of PSG
results requires specialized training and knowledge of relevant experts [8].

PSG records are considered as time series data because they involve the
recording of physiological signals over time. During a PSG recording, various
physiological signals such as brain waves (EEG), eye movements (EOG), mus-
cle activity (EMG), heart rate (ECG), and breathing patterns are continuously
monitored and recorded. These signals change over time and are typically sam-
pled at a fixed frequency, resulting in a sequence of data points that can be
analyzed as a time series. Analyzing PSG data as a time series reveals patterns
and trends in physiological signals and provides insights into sleep disorders and
other conditions that affect sleep. In this work, time series analysis techniques
are used to study and interpret PSG data and extract relevant features for the
diagnosis and treatment of sleep apnea. Artificial intelligence and deep learn-
ing (DL) techniques in particular are applied to detect sleep apnea. DL models
analyze large amounts of data quickly and accurately. They represent a tool for
doctors to help make decisions, leading to more reliable diagnoses and personal-
ized treatment plans for patients. In addition, technology is applied to provide a
noninvasive and cost-effective way to detect sleep apnea. Portable devices, such
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as wearable sensors and smartphone apps, could also be used at home, making
sleep monitoring easy for patients. This paper proposes a DL approach to detect
sleep apnea events. A neural network is applied to PSG data including ECG,
EEG, blood pressure (BP), and nasal respiration. Sleep apnea detection meth-
ods using the four signals are compared. Then, the best method is compared to
bias models using the same input data.

The remainder of the paper is structured as follows. First, in Sect. 2, the
latest developments in deep learning regarding the detection of sleep apnea are
discussed. Then, in Sect. 3, the experiments conducted are explained in detail,
while Sect. 4 presents the results obtained. Lastly, the paper is concluded in
Sect. 5.

2 Related Work

As previously introduced, computer-based sleep apnea detection is useful to help
physicians diagnose the disease. Several examples of neural networks applied to
the diagnosis of sleep apnea are found in the literature. The paper [5] revised
existing algorithms that have been applied to the detection of obstructive sleep
apnea using various sensors and the combination of different approaches. The
paper presented 84 original research articles published between 2003 and 2017.
The articles were selected to provide valuable information to researchers who
want to implement potential signal-processing algorithms on hardware. The con-
tributions of the article in [6] regarding automatic sleep apnea scoring processes
are also discussed. Another review is found in [7]. The goal of the paper is to
analyze the research published in the last decade, examining how different deep
networks are implemented, what preprocessing or feature extraction is necessary,
and the advantages and disadvantages of different types of networks. In the field
of classifiers, neural networks are the most used models for the detection of sleep
apnea. Namely, these models are deep vanilla neural network (DVNN), convolu-
tion neural network (CNN), and recurrent neural network (RNN).

The paper [9] discussed the usefulness of ML and DL models as a diagnosis-
decision-support tool for the detection of sleep apnea. The article then focused on
obstructive sleep apnea. ML models were applied to the analysis of the respira-
tory signal waveform to aid in its diagnosis. Local Interpretable Model-Agnostic
(LIME) library was used to explain the results obtained from a PSG study for
automatic detection of sleep apnea. The results obtained help humans to under-
stand the importance of each feature. The study carried out in [2] proposed a
CNN model to detect sleep apnea. The input data are four different types of
sleep study that focus on portability and signal reduction. The CNN model used
the level of oxygen saturation (SpO2) as input. The results showed that it is a
valid and cost-effective alternative to PSG. The study used 190000 samples from
SPO2 sensors from 50 patients, and the overall accuracy of sleep apnea detection
was 91.3%, with a loss rate of 2.3 using the cross-entropy cost function using the
deep convolutional neural network.

The study in [10] presented a new approach for automatically detecting sleep-
disordered breathing events, such as sleep apnea. RNN was used to analyze noc-
turnal electrocardiogram (ECG) recordings. The proposed RNN model included
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recurrent layers with LSTM and a gated-recurrent unit (GRU). The model was
trained and tested on ECG recordings from 92 patients, resulting in a F1-score
of 98.0% for LSTM and 99.0% for GRU. These results showed that the proposed
method outperformed conventional methods and could be used as a screening
and diagnostic tool for patients with sleep breathing disorders. Furthermore, the
study in [11] proposed an algorithm based on DL models to automatically detect
sleep apnea events in respiratory signals. The algorithm improved the scoring
per patient when assigned to the apnea-hypopnea index. The proposed algo-
rithm was proved to be a useful tool for trained staff to quickly diagnose sleep
apnea. Finally, the study in [13] explored an alternative to PSG for detecting
sleep apnea and hypopnea syndrome using ECG and SpO2 signals. The paper
proposed a combination of classifiers to improve classification performance by
using complementary information from individual classifiers.

3 Methodology

This paper proposes the application of a neural network to time series classifi-
cation in the problem of detecting sleep apnea. Figure 1 shows the methodology
carried out in this article. As introduced, several signals are used to charac-
terize sleep apnea in the clinical scope. Here, the focus is on comparing nasal
respiration, BP, EEG, and ECG signals to see which time series is better for
the detection task of sleep apnea. A grid search is carried out to optimize the
hyperparameters of the neural network model. Then, the signal obtaining best
results is selected, and this model is compared to bias models using the same
input data.

Fig. 1. Purposed methodology.

3.1 Data Preprocessing

The PSG data are in a standardized format that is commonly used in sleep
studies. PSG data includes a variety of signals, such as EEG, ECG, respiration,
and body movement, among others. The data also include annotations that
provide information on sleep stages, arousal, and other events that occur during
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the sleep study. These annotations are created by experienced physicians who
visually inspect signals and label them according to established guidelines. The
Waveform Database (WFDB) is an open source software package developed by
Physionet that provides tools for reading, writing, and processing physiological
signals. WFDB allows users to easily access and manipulate large databases
of physiological signals, including PSG data. The WFDB Python package is a
Python interface to the WFDB software, providing a convenient way to access
and analyze PSG data using Python [3]. In this paper, WFDB has been used
to covert waveform and signal data to time series data. The signals have been
processed and filtered to detect errors and outliers. PSG data is divided into
four different dataset, each of them containing one physiological signal such as
EEG or ECG.

3.2 Bias Models

The results of the purposed DL methodology are compared to the benchamark
algorithms. Bias models have been used with default configuration and have been
applied to the same input data. The bias models are presented in a previous
work for the International Conference KES 2022 [9]. The models are detailed as
follows:

1. Logistic Regression (LR) is a basic model used for binary classification that
predicts targets using a linear approximation.

2. K Nearest Neighbors (KNN) classifier. The model uses a k-nearest neighbor
vote for classification. The parameter k is set to 5 in this case.

3. Decision Tree (DT) classifier. The model is a nonparametric supervised learn-
ing method that creates a model by learning simple decision rules from the
data features to predict the target variable.

4. Gradient Boosting Classifier (GBC). GBC builds an additive model in a for-
ward stage-wise manner and optimizes differentiating loss functions. In each
stage, regression trees are fitted on the negative gradient of the binomial or
multinomial deviance loss function. For binary classification, only a single
regression tree is induced.

3.3 Deep Learning Model

The neural network used in this study is a dense neural network with several
layers with a certain number of neurons. To avoid overfitting, a dropout layer has
been added to the network. Dropout is a regularization technique that randomly
removes some of the neurons in a layer during training, helping to prevent the
network from relying too heavily on any one neuron or feature.

The neural network architecture has been implemented using grid search. In
particular, the following hyperparameters have been tuned: number of layers,
number of neurons per layer, and dropout. The range of the hyperparameters
is presented in Table 1. Dropout with a value equal to 0 means that there is no
dropout layer.
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Table 1. Hyperparameters range.

Hyperparameter Range Optimal value

Number of layers 2, 3, 4, 5 4
Neurons 100, 200, 300, 400, 500 [100, 200, 300, 400]
Dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.2

The best model obtained includes four dense layers and a dropout layer
after each of them. Other hyperparameters such as batch size, learning rate,
or training epochs have not been tuned. The batch size determines how many
samples are processed at once during each training iteration, and the learning
rate controls how much the network weights are updated during each training
iteration. The network was trained with a batch size of 64, a learning rate of 0.1
and during 10 epochs. In general, the architecture of the neural network and the
training parameters have been carefully selected to optimize the performance of
the model for the specific task of detecting apnea events using PSG data.

4 Results

The results of sleep apnea detection using the neural network model are presented
in this section. First, the input data is characterized. Then, the performance of
the model is evaluated using several quality measures, such as accuracy, sensitiv-
ity, specificity, and F1 score. Finally, the best model is compared to bias model
previously used in sleep apnea detection.

4.1 Input Data

This study uses data from the MIT-BIH Polysomnographic Database [3], which
contains recordings from 16 patients. Different physiological signals are pre-
sented, including ECG, invasive BP, EEG, and nasal respiration airflow. Health
professionals carefully study the signals and annotate them based on the exis-
tence of apnea events and the stage of sleep. The PSG data are processed to cre-
ate a dataset for classification tasks, where each instance is a 30-second window
of the four datasets of pyhsiological signal labeled as either an apnea or hypoap-
nea event (1), or normal breathing (0). The final dataset has 7500 attributes per
instance due to the 250Hz sampling rate. Therefore, the dataset is treated as
a time series where each instance represents a 30-second interval measurement.
Figure 2 illustrates an example of a complete PSG record with four signals and
their measure unit. Namely, the signals are: ECG (mV), blood pressure (BP
mmHg), EEG (mV) and nasal respiration (l). Data must be normalized because
of the different scales in the four signals.

The classification task is performed using this dataset. The four different
signals recorded during 30 s are every single instance of the input data. The clas-
sification model achieves a binary classification task. One of the biggest problems
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Fig. 2. PSG example record.

when performing sleep apnea detection is that the data is clearly unbalanced.
Figure 3 shows the distribution of apnea events: normal (meaning that there
is no apnea event, normal breathing) and anomalous. Anomalous events mean
hypoapnea (partial breathing interruption), obstructive apnea (total obstruc-
tion), and central apnea. In this paper, the target value has been summarized
as “apnea” (1) and “no apnea” (0).

4.2 Quality Measures

Classification refers to the task of automatically assigning input data to one of
several predefined categories or classes based on a set of characteristics. In this
paper we work in the field of binary classification, meaning that there are two
classes: “No apnea” (0) and “Apnea” (1). The LSTM algorithm learns to identify
patterns in the input data that are characteristic of each class and then uses
these patterns to classify new unlabeled data. Classification aims to create a
model that can accurately predict the class of new data based on the features
provided.

The quality measures used to evaluate the proposed methodology are pre-
sented as follows.

– Accuracy. It measures the percentage of correct predictions made by the
model out of all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Fig. 3. Types of apnea distribution.

– Precision. It is the fraction of true positive predictions (correctly classified
as positive instances) out of all positive predictions (instances classified as
positive). It is calculated as the ratio of the number of true positives (TP) to
the sum of true positives and false positives (FP).

Precision =
TP

TP + FP
(2)

– Sensitivity. This measure refers to the fraction of true positive predictions
out of all actual positive instances. Calculated as the ratio of the number of
true positives to the sum of true positives and false negatives. It could also
be called recall.

Sensitivity = Recall =
TP

TP + FN
(3)

– Specificity. It is a metric that measures the ability of a classification model to
correctly identify negative instances as negative. Specifically, it is the fraction
of TN predictions (correctly classified as negative instances) out of all negative
predictions (instances classified as negative). It is calculated as the ratio of
the number of true negatives to the sum of true negatives and false positives.
High specificity indicates that the model is good at avoiding false positives.

Specificity =
TN

FP + TN
(4)

– F1 Score. This metric is known as the harmonic mean of precision and recall.
It is a weighted average of precision and recall, where the weights are equal
and ranges from 0 to 1, with 1 being the best possible score. The F1 score is
calculated as 2 times the product of precision and recall, divided by the sum
of precision and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision+Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(5)
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In the clinical scope, priority is often given to metrics related to the detection
of TP cases. The consequences of FN, such as missing a positive case, could be
severe and potentially life-threatening. In this way, sensitivity can be a more
important metric than precision or accuracy, as it measures the proportion of
actual positive cases that were correctly identified by the model. For example,
recall can be crucial in medical diagnosis or disease screening to ensure that
all positive cases are identified, even if that means sacrificing some precision or
accuracy.

4.3 Sleep Apnea Classification

The LSTM model is used to analyze time series of sleep apnea using different
signals as input. Signals include BP, ECG, EEG, and respiration (Resp). The
quality measures have been evaluated for models using each signal as input
data including accuracy, sensitivity, specificity, and F1 score that have been
introduced in the previous Sect. 4.2. Table 2 presents the quality measures for
the four physiological signals.

Table 2. Quality measures of the LSTM model using different signals as input.

Signal Accuracy Sensitivity Specificity F1

BP 0.583 0.438 0.641 0.238
ECG 0.593 0.688 0.576 0.334
EEG 0.574 0.625 0.565 0.303
Resp 0.712 0.125 0.913 0.370

Table 2 shows that the model achieved the highest accuracy (0.712) when
using respiration as input. However, the sensitivity values was lower than the
other signals, indicating that the model tended to classify more instances as neg-
ative. On the contrary, the model that used EEG as input achieved higher sensi-
tivity values to detect apnea events (positive class). Similar results are obtained
with ECG. Regarding specificity, the best results are again obtained with Resp
signal, with greater differences with the others. Finally, concerning F1 score the
four signals have similar values although Resp has a little better result.

The confusion matrix for each experiment is presented in Fig. 4d. The confu-
sion matrix compares the predicted values with the actual values. It summarizes
the number of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) predictions made by the model.

In this case, positive means the presence of an apnea event, whereas negative
means that there is not apnea. The rows of the matrix represent the actual class
labels, while the columns represent the predicted class labels. The diagonal of the
matrix shows the number of correct predictions, while the off-diagonal elements
represent the incorrect predictions. On the one hand, concerning the predictions
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Fig. 4. Confusion matrix of the four experiments.

obtained using nasal respiration, the highest accuracy is reached. However, this
results are not ideal, as the model tends to classify every instance as a ’no
apnea’ (0) event, as shown in Fig. 4d. This can be attributed to the imbalanced
classes. On the other hand, the models that use ECG and EEG perform better
in detecting apnea events (1) with a sensitivity of 0.688 and 0.625, respectively.
However, these models also tend to classify several cases as positive (1) that are
not apnea events. This is shown in the lower levels of specificity. The results of the
experiments highlight the importance of choosing the appropriate input signal
for the model to achieve the best performance. It also shows that while accuracy
is important, other measures, such as sensitivity, should also be considered when
evaluating the performance of the model, specially in clinical scope.

4.4 Comparation with Bias Model

The better model which is trained with nasal respiration signal which obtains
the best results, is compared to the bias algorithms previously detailed in Sect. 3.
Quality measures, namely accuracy, ROC-AUC score and F1 score for both bias
models and the purposed model are presented in Table 3. The neural network
outcomes clearly LR and DT models. Concerning GBC, results are quite similar.
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Table 3. Performance of bias ML models.

Model Accuracy ROC-AUC F1

NN - Resp 0.712 0.675 0.370
LR 0.698 0.514 0.363
DT 0.750 0.567 0.292
GBC 0.758 0.686 0.333

5 Conclusions and Future Work

In summary, the LSTM model was evaluated for the classification of time series
of sleep apnea using different physiological signals as input, including blood
pressure, electrocardiogram, electroencephalogram, and nasal airflow from res-
piration. The results showed that the best accuracy and specificity were obtained
when respiration was used as input. However, the models that used ECG and
EEG achieved higher sensitivity values to detect apnea events. In clinical scope
is essential identifying the positive instances, meaning the patients with a certain
disease. In general, the four models tended to classify more instances as negative
(no apnea) than positive (apnea). The fact that the classes are imbalanced may
have contributed to this bias. Nasal respiration has been proved as the most
useful signal to detect sleep apnea.

Therefore, the results in the paper are useful in choosing the appropriate
input signal to evaluate the model performance, particularly in clinical appli-
cations. An accurate automatic detection system is capable of improving sleep
apnea management by providing a more objective measure of treatment efficacy
and an objective feedback on treatment efficacy. The existence of these sys-
tems could help both patients and clinicians. Automatic detection systems are
used as a diagnostic support tool for doctors. These systems could also monitor
treatment progress and adjust therapy as needed, moving towards personalized
medicine.

Future works could investigate the performance of ensemble DL models.
These models could be applied to improve the accuracy and reliability of clas-
sification results. Another approach is to combine multiple physiological signals
to improve the robustness of the classification model.
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