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Abstract: This research looks into a systemic impact factor (SIF) as a complement to enhance the
prescriptive capabilities of electric substations with the objective of improving the reliability and
robustness of components. As electrical networks become increasingly complex, prescriptive analyt-
ical tools are needed to ensure sustained power delivery. The purpose is to develop a framework
for evaluating failure effects, including both direct and indirect effects on substation performance.
The study makes use of a multi-criteria method that incorporates safety, environment protection,
reliability, and network robustness among other factors like SAIDI and SAIFI to determine the actual
impact of failures to make better decisions. The methodology is illustrated using a criticality model,
and a case study, focusing on operational contexts of the failure. The SIF proposal provides a better
understanding of different aspects and their contribution, when a failure event occurs under a given
operational context. This factor improves maintenance management by identifying critical equipment
and projecting the effects of failure through a specific operation network. A case study in an electrical
substation estimates the SIF for each element used in daily operations to improve support services
and increase substation dependability. Therefore, SIF is an essential factor to consider in electrical
substations for their maintainability and reliability evaluation.

Keywords: asset management; criticality analysis; electrical substations; prescriptive maintenance;
network resilience; reliability engineering; risk assessment; systemic impact factor

1. Introduction

Reliability and resiliency of electrical substations are very important for the effective
operation of modern power systems. When the need for electric power increases and the
facilities become old, there is a higher likelihood in the chances of failures resulting in
large-scale blackouts and massive economic losses. It has encouraged research into failure
detection and preventative maintenance in order to anticipate any risk to the substation’s
components. The goal of this research is to inform about the consequences of failures in
electrical stations on the reliability and safety of the electric power system.

This study is intended to obtain a more effective analysis of potential failures in elec-
trical substations with a higher level of detail. It will allow actions to be focused on those
precise elements that generate a higher impact on the whole system. This requires an
understanding on how substation components contribute to the overall systemic impact.
For this reason, SIF is defined as a correlation vector, which reflects the system’s sensitivity
regarding its components in multiple dimensions (vulnerability, environment, safety, pro-
duction, etc.). This indicator recognizes the need to consider how such variables change
depending on the station’s operational configuration. Basically, the study is intended to
advance in risk assessment, improving the failure impact estimates and, consequently, the
system maintenance management.

In other words, this study aims at considering SIF as a vector, which improves pre-
scriptive capabilities, in terms of allowing a focus on those critical elements based on an
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assessment of failure impact on electrical substations. Therefore, by studying how certain
substation components interact with their operating mode, it is intended to come up with
an advanced method of risk assessment and failure prevention. The research questions to
answer are as follows: What is the systemic impact factor (SIF) and how does it contribute
to improving prescriptive analytics of electrical substations? How does the proposed
calculation procedure help in assessing the potential influence of component failures on
the overall performance of electrical substations?

The paper provides a new approach to asset criticality analysis proposing SIF, which
is focused on enhancing prescriptive capabilities in electrical substations. While previous
studies frequently center on individual parts or specific kinds of failures [1], this research
treats the substation as an integral system in which the breakdown of one part triggers
problems at a system level, impacting in a higher or lower way depending on the opera-
tional configuration of the system, which will be variable according to the energy demand
of the moment. The study begins with a literature review, identifying important contribu-
tions prior to the present study and addressing gaps or discussing viewpoints in relation
to the maintenance supervision of substations. After that, SIF is defined and illustrated
in a practical scenario. The results provide an essential resource to establish specialized
maintenance plans intended to reduce disruptions while increasing the electrical substa-
tion’s resilience and, consequently, the resilience of the power networks. Finally, essential
findings are summarized outlining some possibilities for further research on this topic. The
present work is designed in order to be useful for scientists and engineers dealing with the
field of electrical substation maintenance, thus contributing to the wider area of energy
systems operation.

2. Literature Review

Prescriptive maintenance in electrical substations is an important research field that
draws much interest as it affects the reliability of the power grid and the uninterrupted
power service delivery. This study has been informed by several studies, which all offer
different approaches as well as conclusions. The present paper is about SIF, which is a novel
factor for providing better component assessments considering the failure effect within
electrical substations. This study has been established as a part of the electrical engineer-
ing discipline with emphasis mostly on the criticality analysis of the energy conversion
networks. SIF assesses the impact of component failures on a system and considers the
dynamics of interactions within the substation.

Recent studies in the field of energy refer to prescriptive maintenance as a key tool
when it comes to providing capabilities to determine failure effects in advance, with the
purpose of recommending strategies and actions. Fox et al. [2] in a review of prescriptive
offshore wind farm operation and maintenance propose prescriptive strategies and provide
optimized maintenance actions, incorporating predictions into a wider maintenance plan
to address failure modes. Additionally, they establish that, in order to achieve prescriptive
maintenance, two components are required: the ability of a model to predict impending
failures; and the ability to suggest outcome-focused recommendations for O&M planning,
for example, an optimized O&M schedule. To achieve that, it is essential to have deep
knowledge about each component independently and its impact on the whole system. The
present research is focused on the determination of a factor to improve and adjust main-
tenance prescriptions, considering the dynamic operational conditions and the systemic
impact of each component on an electrical substation. In this context, it is essential and
at the same time necessary to benefit from digitization’s power for better maintenance
outcomes [3]. By developing a data-informed approach, the research aims to enhance
decision-making, optimize resource allocation, and ultimately heighten the reliability and
safety of energy systems.

Previous studies [4] have reviewed important issues relating to the failure effect.
These include, but are not limited to, criticality analysis, risk-based asset management,
and advanced analytics for maintenance optimization. However, it remains difficult to
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accurately connect the interactions between different substation components and operation
modes in order to predict the precise effects of a breakdown. This work closes this gap by a
mathematical model that takes these complex interactions into account.

In line with the foregoing discussions, Martínez-Gálán et al. [5] explore failure conse-
quences quantification in electrical network (E/N) systems establishing new concepts like
loss exposure (LE) and social importance (SI). The above criteria take into account social
factors like consumer satisfaction and the overall perception of the market in addition to
functional loss-based cost. The network utility may be very complex and the impact of
failures is also multi-dimensional, e.g., safety and network resilience (NR). These specifica-
tions, although generalized, cannot deal effectively with the interactions that occur within
or between various substation components and operational mode scenarios. Gao et al. [6]
note that network reliance is an adjustment factor. Such an approach acknowledges that
predictive models have to take into account the flexibility of electrical networks’ topology.
Nevertheless, the studies mainly deal with operational effects, including service delays
rather than deeply examine the systematic ramifications that might occur due to interaction
between components. Guo et al. [7] proposed a model of criticality that assesses the eco-
nomic impact of failure taking into account different variables and the relative significance
of diverse assets. The model is very detailed when it comes to the criticality level of assets,
but it cannot entirely reflect the system-wide consequences arising from failures within the
networking environment.

The present research is located in relation to those studies that revealed certain gaps
and addressed them by examining the SIF as a factor that explains correlations. A unique
aspect of the SIF is that it considers substation components such as breakers, power
transformers, and capacitors as a single unit, which affects not only their behavior but
also their topology within the system configuration. The current method is different from
other studies as it considers both the systemic effect of operations modes and topological
flexibility for more accurate results. In this sense, Lund et al. [8] describe the advantages
and disadvantages of a prescriptive analysis versus a simulation. Considering the above,
the SIF factor is proposed as a useful tool in both scenarios, rescuing the advantages of each,
either allowing optimizing an objective value in the context of maintenance or simulating
new scenarios for design purposes, keeping in mind that asset management deals with
the entire lifecycle increasing assets dependability over the life cycle while reducing the
frequency of scheduled maintenance [9].

The present research addresses the limitations of other contributions [10] that express
indirect cost underestimations and the lack of consideration of topological dynamics.
Incorporation of SIF increases awareness of failure impacts that assist in the development of
viable maintenance practices and network reliability [4]. Bell and Gill [11] indicate that in
order to address the challenges and dangers related to technical standard non-compliance
in substations and distribution lines, a comprehensive and effective plan of action must be
developed. But in addition to these issues, the current work provides a more sophisticated
and rational solution by suggesting a functional configuration that models how electrical
systems should operate effectively in the event of a failure, establishing a better preventive
maintenance environment.

Apart from the above-mentioned literature, other references have been published
specifically on enhancing prescriptive capabilities, incorporating a knowledge base about
system aging and degradation into maintenance strategies. In 2019, Liu et al. [12]. com-
pleted a dynamic prescriptive maintenance model to adjust degradation parameters or
optimize inspection time according to the condition of system health. It is therefore a sig-
nificant step forward in maintenance decision-making from the linear time-based strategies
that have been used previously. Bertsimas and Kallus [13] took the prospect to be even
more expansive, introducing readers to transitioning from predictive analytics toward what
they termed prescriptive—decision-making in an era of uncertainty. As a result, their work
illustrates the possibilities for prescriptive analytics to not only foresee future outcomes but
even suggest courses of action that can help improve system performance.
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Koops et al. [14] proposed prescriptive analytics to support maintenance–dedication
decisions, which incorporates probabilistic cost–benefit analysis. This is especially appro-
priate for the management of the uncertainty and inevitable difficulties in maintenance
work, offering a systematic approach to comparing the relative advantages or disadvan-
tages of various specialists’ maintenance. In addition to this, Karim et al. [15] argue that
data-driven maintenance is a new area of knowledge for maintenance, which they call
“maintenance analytics”—a term similar to business analytics. They indicate that through
the use of analytics, one can learn more about maintenance requirements and become faster
at handling them. Finally, Matyas et al. [16] have put forward a procedural approach to
the implementation of prescriptive maintenance planning in manufacturing enterprises.
Nevertheless, their focus is on prescriptive maintenance or implementation of a manual that
can take industries through the whole process of moving toward data-driven maintenance.

In any case, there are still areas where publications fall short; consider for example the
subject of electrical substations. Most of the current research looks at isolated segments
or single maintenance activities, while ignoring how failures in one area of a substation
network may affect others. The present research aims to fill this gap by taking systems into
account at the substations and addressing issues of component failure. The study has also
been able to expand the scope of failure impact analysis by incorporating an SIF approach.
This is further evidence that it might be possible in the future to develop more precise
prescriptive maintenance methods for electrical substations as well. The reviewed papers
have indeed their strong points in terms of methodology, such as new ways to perform
maintenance modeling and decision-making. On the other hand, their drawbacks are that
they do not address systemic effects and those of electrical substations.

Basically, although there is a vast amount of literature on the impacts of failures in
electrical substations, this research is intended to fill some gaps by taking into consideration
the systems’ perspective based on components and operational modes of substations.
This work addresses the weaknesses of previous studies on substation dependability
and takes a holistic approach that incorporates risk assessment, criticality analysis, and
advanced analytical methodologies. More precise failure impact estimation can result in
targeted maintenance strategies focused on enhancing the stability and effectiveness of the
electrical grid.

3. Calculation Procedure

A logical functional model of an electrical system in a substation is proposed to be
used as a model that illustrates a systemic model considering possible cases of failure. Once
the most likely component failure event(s) are formulated based on demand scenarios and
operating modes; the effect of each scenario on the asset criticality index is determined
for various operational modes, and an SIF vector is derived by scaling and normalizing
the former values. Some terminological explanations are given to aid in understanding
the following:

- SIF: A numerical vector that indicates the potential influence that a component’s
failure may have on the system’s overall performance and its consequences.

- Logical Functional Model: A diagram showing the system’s components that interact
and explain system behavior under different conditions. It allows the weighted impact
of each component on the system to be calculated.

- Digital Model Diagrams: Digital representation of a system that presents connections
and dependencies among components and that allows the construction of the func-
tional logical model.

- Operational Modes: Active and standby components of different configurations or
states, in which a substation may operate depending on the demand for energy.

The approach includes system evaluation of the electrical system of the substation,
with emphasis on data collection about peak demand, failure scenarios, and asset ranking.
Digital diagrams are used to develop a logical functional model, which contributes in a
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key way to the calculation of the SIF. The use of statistical and computational methods is
applied in the analysis of the data to develop the SIF.

For the calculation of the SIF vector, it is considered that:

SIFi ∝ (VFi , SASAi , SSAi , OMFi, TFOi) (1)

where VF, SASA, SSA, OMF, and TFO are explained in Sections 3.2–3.6. Next, Section 3.1
will briefly describe a study scenario. Sections 3.2–3.6 describe theoretically each parameter
and integrate examples applied to the mentioned scenario.

3.1. Study Scenario

The SIF approach is explained and calculated based on a practical example, which
refers to an electrical substation (ES). The ES under consideration is an important nodal
point between transmission and a distribution network, supplying more than 94,000 cus-
tomers, with an installed capacity of 75 MVA. The ES has 80 assets that need to be evaluated
and operates regularly, within 3 power transformers with different capacities. This modern
substation has different ways to operate that can be reduced to 21 different operating
modes, which facilitates its adaption according to varying demand scenarios and mainte-
nance events.

The possible impact of component failures in this substation has been evaluated using
SIF, taking into account the interdependence of its components and its specific operating
regime. In the example shown in Figure 1, an overview of substation electrical equipment
can be observed. After applying SIF, results are represented with a color scale referring
to the criticality from the highest (in red) to the lowest (in yellow or white). This real
application was obtained considering 20 operational modes, and the integration of all
results provides a heat map on the systemic impact of each component with respect to the
total equipment in the substation.
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Figure 1. Example of substation electrical equipment SIF application.
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3.2. Vulnerability Factor (VF)

Let us consider all the equipments of the electrical substation independently, where
each equipment is recognized as (i), and each of the dimensions that determine its level
of vulnerability is identified as Di, where wi is the weighting of each of the dimensions.
In this case, vulnerability refers to the susceptibility or weakness of a system, entity, or
individual to potential threats, risks, or attacks. The value of the vulnerability factor for
each element (i) will be determined by:

VFi =
n

∑
i=1

Di × wi (2)

Each dimension will acquire a value from 1 to 5 according to the table for each
condition, as shown in Table 1.

Table 1. Example of “n” dimensions to determine the value of vulnerability.

Dimensioni Failure Potential Value

Condition 1 Very unlikely 1
Condition n Almost certainly 5 1

1 The value and scale may vary on a case-by-case basis.

Previously to the assessment, technical experts formulate the conditions to be evalu-
ated and their respective scales to consider in the model, according to their own operational
reality. In the example, scales 1–5 are considered, but the possibility is left open for each
case to include its own operational context. In some cases, there may exist standardized
tables of vulnerability at the corporate level.

VF Application Example

For the VF application, various industry-specific criteria are used in conjunction with
the substation senior personnel’s judgment. The development process, in this example,
takes into account six dimensions: failure frequency, results of the last inspection, asset age,
exposure to external factors, proximity to segregated or marginal populations, and access to
the substation electrical equipment (maintenance). The evaluation employs a standardized
scale with assigned values to determine a rating between 1 and 5, where 1 indicates lower
vulnerability and 5 indicates higher vulnerability.

The outcome of this assessment allows for a qualitative evaluation of each asset
individually, as shown in Table 2.

Table 2. Example of vulnerability calculated for one specific equipment “a”.

Dimension Failure Potential Value Weight

Failure frequency Once a year 1-2-3-4-5 30%
Results of the last inspection Not Ok 1-2-3-4-5 20%

Asset age <4 (Moderate) 1-2-3-4-5 25%
Exposure to external factors High 1-2-3-4-5 5%
Dangerous neighborhoods Distant 1-2-3-4-5 5%
Maintenance accessibility Good 1-2-3-4-5 15%

The dark colors indicate the value that the attribute takes, the rest of the numbers only show the total of the scale.

Then, VFequipment a = 4× 0.3+ 5× 0.2+ 1× 0.25+ 4× 0.5+ 1× 0.5+ 3× 0.15 = 3.15.

3.3. SAIDI and SAIFI Factors (SASA)

An important element in the industry is the cost associated with penalties due to
service interruption. Where PSAIDI and PSAIDI are the penalties received as a result of the
loss of service caused by element (i).



Energies 2024, 17, 770 7 of 14

SASAi =
n

∑
j=1

δ·PSAIDIj + (1 − δ)PSAIFI j (3)

where δ represents a value between 0 and 1 to give a prorated specific value for each factor.

SASA Application Example

The SAIDI and SAIFI indicators are also standardized, allowing them to be worked
on a common scale ranging from 1 to 5. In any case, penalties will depend specifically on
the region and country where it is applied. In order to simplify its understanding, it is
proposed that the normalization of these indicators could be based directly on penalties
(see Table 3) or as follows:

• The number of affected customers, with a defined scale between 0 and 100 customers,
100 and 1000, 1001 and 10,000, 10,001 and 25,000, and more than 25,000. These values
are specific to the analyzed case, and the normalization of these factors should be
adjusted to the capacity and potential customers.

• Downtime is normalized considering intervals of 2 h. This includes less than 2 h,
between 2 and 4 h, between 4 and 8 h, then between 8 and 12 h, and finally, more than
12 h.

Table 3. Example of normalized penalties for SAIDI and SAIFI for one specific equipment “a”.

Index Penalties Normalized Weight

SAIDI €100.000 4 40%
SAIFI €20.000 2 60%

Then, SASAEquipment a = 4 × 0.4 + 2 × 0.6 =2.8.

3.4. Environment and Safety Factor (SSA)

The SSA factor is calculated according to the individual impact of the failure in each
of these dimensions; it will be weighted for each piece of equipment according to the value
of each dimension and its weighting.

SSAi = γEi + (1 − γ)Sei (4)

where Ei is the impact value associated with the environment, Sei is the impact value
associated with safety, and γ represents a value between 0 and 1 to give a prorated specific
value for each factor.

SSA Application Example

The environmental factor, being a relevant element based on new regulations that are
increasingly stringent, is considered on a scale from 1 to 5 (See example in Table 4). This
scale describes various types of environmental damage that may result from improper
operation or failure of the substation’s electrical equipment. The scale ranges from receiving
a warning from the local government to the closure of the electrical substation due to
irreparable damage.

Table 4. Example of SSA calculated for one specific equipment “a”.

Factor Failure Effect Value Weight

Safety Injury incident 3 55%
Environment Irreversible damage 5 45%

Then, SSAequipment a = 3 × 0.55 + 5 × 0.45 = 3.9.
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3.5. Operational Mode Factor (OMF)

Considering that the electrical substation will be able to operate in N different modes
according to the energy demand of the system and reliability level, the operational mode
factor determines the actual impact on the total capacity of the electrical substation.

OMFi =
∑N Eij

∑N Etj
(5)

where,
N = the totality of the operations modes (O);
Eij = circulating energy in the equipment i in the OMj;
Etj = total energy of OMj.

OMF Application Example

For the assessment of the operational mode factor, the various configurations of the
substation electrical equipment are considered. This involves taking into account the
different capabilities that each specific configuration can provide and the demand that is
affected. To achieve this factor, it is necessary to identify each case and inquire about what
would happen if an asset is not present and how the electrical substation is reorganized. In
the analyzed case, 21 modes of operation are identified, and for each, the degree of asset
participation is established.

The result of this analysis is typically obtained as a percentage. The outcome for each
asset must be weighted by the frequency of utilization of the operational mode to consider
the aspects of the potential use of each one (See example in Table 5).

Table 5. Example OMF calculated for 3 specific equipments “a,b,c” (MW).

Equent Et m1 Et m2 Et m3 Et mn Ei1 Ei2 Ei3 OMF OMF (Norm)

Equipment a 59.7 59.7 53.1 . . . 59.7 0 53.1 65% 5 *
Equipment b 59.7 59.7 53.1 . . . 21.7 21.7 26.5 40% 5 *
Equipment c 59.7 59.7 53.1 . . . 7.6 7.6 7.6 13% 2 *

* OMF(Norm): [0–0.05] = 1; ]0.05–0.15] = 2; ]0.15–0.20] = 3; ]0.20–0.35] = 4; ]0.35–1.00] = 5.

3.6. Topological Factor (TFO)

According to the incidence (I) provided by each piece of equipment i depending on a
given operational mode (j), the topological factor is defined as follows:

TFOi = Ii(OMj) =
∑N Iij

N
(6)

where,
I = percentage impact on the system that generates each failure, determined by its

logical configuration with respect to it, for example;
N = the totality of the operations modes (OM).
Then, if under that operational mode, there is only one transformer working, the

impact of a failure on it and its components will be 100% on the energy demand; however,
if the electrical substation is operating with three transformers at full load and one of them
fails, the impact on the system alone will be 33% of the operational mode demanded.

TFO Application Example

To evaluate the topological factor of the analyzed substation electrical equipment, it is
necessary to assess the dependence among the various equipment and how susceptible the
operation mode is to failure. This factor measures the resilience to failure of each section in
the way the electrical substation is operated. This entails digitally modeling the process
by depicting the logical dependency among various assets. To achieve this, the authors
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use a functional logical modeling technique with logical gates that facilitate the transition
between different operational modes. In Figure 2, see three different operational modes
and their respective logical functional configuration, which allow an estimate of the real
impact of each equipment in each operational mode (See example in Table 6).

Table 6. Example of OMF calculated for 3 specific equipments “a,b,c” (%) considering only 3 OM.
Then, with the value of incidence (I) calculated for each equipment, it is normalized.

Equipment I m1 I m2 I m3 TFO TFO (Norm)

Equipment a 100% 100% 50% 83% 4 *
Equipment b 50% 0% 30% 26% 2 *
Equipment c 20% 5% 35% 20% 2 *

* TFO(Norm): [0–0.10] = 1; [0.10–0.30] = 2; [0.30–0.70] = 3; [0.70–0.90] = 4; [0.90–1.00] = 5.
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4. SIF Application as a Prescriptive Factor

Fox et al. [2] describe prescriptive maintenance as a technique that involves not only
the ability to anticipate future failures but also the capacity to offer outcome-focused
recommendations for operations and maintenance (O&M) planning, as discussed in the
literature review (Section 2). As a result, a prescriptive factor will be an aspect that helps
formulate suggestions or particular tasks within a maintenance approach. Due to the
granularity that allows SIF, it refines the criticality assessment by taking into account
several criteria under different operational configurations; thus, the recommendations can
be better focused. In other words, the effect of each component on the whole system can
be assessed by the inclusion of more details. Although TFO and OFM are illustrated in
Sections 3.5 and 3.6 in a simplified way, further studies will be able to analyze them using
more sophisticated computational techniques.

The SIF method considers an assessment for each individual element, given the
substation’s topology and its operational mode (according to demand fluctuations). This
method allows estimating failure consequences (impact) in advance, as it allows each piece
of equipment to be characterized according to multiple attributes capable of estimating a
loss value according to the operational mode to which it is subjected. As commented before,
SIF is a vector that provides the basis for an integral method of addressing substations
‘component interactions and operational status. It is important to note that it requires
up-to-date data and, if it is integrated with the computerized maintenance management
system, its efficiency may improve, enabling, for instance, actions automatically and based
on a permanent evaluation. In this way, the maintenance framework can be tailored to aim
for higher system availability and lower failure rates while also controlling preventative
maintenance costs.

Traditional criticality assessment is usually represented by a matrix with two dimen-
sions: failure frequency and consequence, where the consequence is obtained from several
factors (e.g., operational impact, maintenance impact, environmental impact, availability,
and cost). Following this same philosophy, but with a higher level of depth and granularity,
the purpose behind SIF is the assessment considering multiple dynamic and systemic
variables represented in a n-dimension vector. From this vector, a single figure is also
possible to obtain in order to rank the different components. The risk value of each element
(i) is determined by a systemic risk number (SRN), which is defined as the product between
SIF and W, where W represents the vector of weights assigned to each SIF dimension. The
expression for each component (i) is as follows:
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SRNi = SIFi ∗ Wi (7)

Then, for the example in Table 7, SRN for “equipment a” would look like:

SRNa = [VF a, SASAa, SSAa, OMFa, TFOa] ∗
[
wv f , wsasa, wssa, wom f , wt f o

]
(8)

SRNa = (VFa × 0.40 + SASAa × 0.15 + SSAa × 0.25 + OMFa × 0.10 × TFOa × 0.20) (9)

Table 7. Example of SRN calculated for 3 specific equipment “a, b, c”.

Equipment VF Wvf SASA Wsasa SSA Wssa OMF Womf TFO Wtfo SRN

Equipment a 3.15 40% 2.8 15% 3.9 25% 5 10% 4 20% 3.64
Equipment b 2.15 40% 1.2 15% 2.7 25% 2 10% 2 20% 2.32
Equipment c 1.5 40% 1.9 15% 4.1 25% 1 10% 2 20% 2.41
Component n . . . 40% . . . 15% . . . 25% . . . 10% ... 20% . . .

In summary, the improvement in prescription capabilities is reflected in an increase
in the precision in identifying those critical elements, which really impact the whole
system. On the other hand, given the level of detail with which each piece of equipment is
characterized, for example, in its vulnerability factor, it is possible to adjust the model to
estimate more accurately which equipment will fail. Subsequent studies may incorporate
machine learning tools, capable of recognizing multiple operational scenarios and their
variations, where the SIF vector will be able to provide better results by managing numerous
attributes capable of refining the level of correlation.

5. Analysis and Results

A correlation vector SIF has been used for a better prescription of failure effects in an
electric substation. To make an analysis of the problem, a root cause analysis or bottom-
up approach was used. The approach provided a complete analysis of the substation’s
weaknesses and the possible impact of different types of failures.

This is demonstrated by the way it incorporates a number of factors, such as the
resilience and loss exposure criterion, into a more comprehensive assessment of systemic
impact. The approach is multi-dimensional and differs from conventional methods that
could focus on singular factors such as failure frequency or degree and consequences,
without taking into consideration the interactions among elements in a substation.

The SIF provides an improved perspective than other approaches when looking at
substations as a whole. The SIF considers a variety of elements, including economic loss,
network robustness, and reliability measurements, in contrast to other systems that focus
more on a single or small set of reliability indicators. When maintenance managers adopt a
holistic viewpoint, they may make informed decisions about the best maintenance practices
by using continuous data and successfully intervening.

The SIF was implemented in the use case as expected, producing a list of components
that were prioritized and potentially have an impact on the substation’s performance. It
is clear from the study’s results that the high SRN value components, in fact, directly
affected the substation’s dependability and service quality. These results provide confi-
dence to the notion that when determining how to best distribute resources and make
maintenance decisions, it is essential to take into account projected failure repercussions
from a systemic perspective.

The use case’s obtained experimental outcomes highlight SIF’s effectiveness in improv-
ing failure impact prescription. It can consider the operational mode of the substation that
it was initially designed for. Also, it can consider the relevance of the substation operation.
For example, it accounts for the degree to which customers may be dissatisfied with their
services being interrupted.
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All things considered, the SIF is a useful method for determining the impact of a
component failure from the perspective of the entire electrical substation. Since it may
consider several aspects and make adjustments based on current information, this technique
appears to be preferable to alternative options. The result is effective maintenance strategies
with improved operational resilience.

6. Discussion

The application of this approach to electrical substations is even more significant if
it utilizes advances in model analysis techniques. Further development may consider a
correlation vector that takes into account aspects, such as loss exposure, network strength,
and social importance. By considering such an approach, the SIF methodology can perform
multi-criteria and customized analysis of possible effects from component failures. It gives
a complete picture of performance, and stations that are weak or defective can be responded
to or attended to immediately. In this sense, it should be noted that SIF complements the
current methodologies of criticality analysis, not replaces them, since these have proven
to be very effective in obtaining a first strategic approximation. Without prejudice to this,
SIF provides a perspective that aims to become the next step, supported by digitalization
and the ability to obtain data on demand; the high degree of parameterization provides an
almost instantaneous ability to assess risk, much more dynamically and accurately than
traditional approaches.

Taking into account the two factors mentioned by Fox et al. [2], until now, the frequency
can be predicted by traditional statistical methods, which in future research may be replaced
by machine learning algorithms that learn the patterns of behavior. On the other hand, the
targeting of recommendations will no longer be at the level of the substation but can be
focused directly on the components with high criticality. Moreover, given the complexity
of some of the factors that depend on highly variable conditions, the attributes of the SIF
vector themselves can also be used to improve the estimation of the impact on the system,
leading to an improvement in prescriptive capacities.

The current study also made clear that, in order to better support SIF, future research
should attempt to develop even more comprehensive data collection and analysis strategies.
Further research could focus on how to combine SIF with predictive maintenance systems
in order to develop a comprehensive solution for managing substations. This work also
serves as an indication of future trends.

Compared with past research, this study confirms that a rational approach to the
reduction in risk can help in making decisions regarding both resource allocation and
safety. The study’s outcome is that SIF not only can be extended to other kinds of networks
but also to critical infrastructures that are connected. In the end, SIF is contributing
greatly to electric substation maintenance and reliability analysis. It could also serve as a
model of how engineering policy drives technological advancement in developing resilient,
sustainable energy systems.

7. Conclusions

The research into the SIF as a support tool for evaluating the grid impact of component
failure has provided solid groundwork in terms of understanding the significance of
components within systems. The motivation has been to enhance the reliability and safety
of electric power systems through a comprehensive knowledge of substation dynamics
and the development of customized maintenance plans. For that reason, the purpose of the
study is to raise the level of stability and reliability in our electrical network by improving
current maintenance and risk management. The study uses a multi-criteria framework
that considers various types of impacts of failure, mainly loss exposure level, safety factor,
network resilience, and social significance, defining the vector SIF. This methodology has
been applied to a real case study, considering the interdependencies of operational systems
at substations and revealing strengths in critical assets that can be prioritized.
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This research has real-world applications for the energy industry (especially for asset
management and maintenance efficiency). SIF methodology enables utility firms to better
anticipate failure effects, decide on repair priorities, and make more effective use of person-
nel and materials. This means that failure recovery is more effective, resulting in increased
customer satisfaction and low downtimes, as well as high service reliability. As part of
the larger field of analysis related to criticality in network utilities, this research offers a
model that attempts to reflect the dynamic nature at work among components within a
given system.

The study advances electrical engineering and energy conversion system diagnosis. In
addition to promoting engineering policy through experimentation and theoretical validity,
this proposal provides a step forward for technological innovation in the development of
robust and sustainable energy systems. Further research directions include making the SIF
approach even more fluid by improving data acquisition procedures. Moreover, the SIF can be
combined with analytic algorithms to continue raising maintenance management standards.
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