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A B S T R A C T   

The paper addresses the impact of manufacturing and remanufacturing capacity in a multi-product closed-loop 
supply chain. In the problem under investigation, the manufacturing system of the factory node is characterized 
by a failure-prone production line that is not able to manufacture both types of product simultaneously. 
Therefore, changeover operations are needed to switch from one product type to another. Since failure events 
and changeover times may involve unforeseen problems, the production control policy of the factory assumes a 
key role to enhance both the internal and external performance of the closed-loop supply chain. For that reason, 
this research compares four production control policies in terms of bullwhip effect, fill rate, and average in-
ventory levels. We consider the well-established Hedging Corridor Policy and Improved Modified Hedging 
Corridor Policy, and two different versions, named Closed-Loop Hedging Corridor Policy and Closed-Loop 
Improved Modified Hedging Corridor Policy, which adapt the original policies to the features of the closed- 
loop supply chain. Through an extensive experimental analysis, the results can guide managers in assessing 
the effects of multi-product manufacturing and remanufacturing operations on the performance of closed-loop 
supply chains and in comparing the effectiveness of the production control policies.   

1. Introduction 

1.1. Context 

The Circular Economy is an economic system that is based on busi-
ness models which replace the end-of-life concept with reducing, alter-
natively reusing, recycling, and recovering materials in production/ 
distribution and consumption processes (Mhatre, Panchal, Singh, & 
Bibyan, 2021). The final work program for Horizon 2020 highlights 
“Connecting economic and environmental gains – the Circular Econ-
omy” as one of the four strategic priorities for Europe (Völker, Kovacic, 
& Strand, 2020). The overall budget for this topic (€941 million) illus-
trates that the transition from linear to circular economy models has 
become a fundamental need for modern societies (see e.g. European 
Commission, 2021); while the name of this pillar underlines that 
uncovering the economic opportunities of such circular models is a key 
catalyst for accelerating the transition. As a result, remanufacturing has 
become one of the key ones, as it retains the whole value of the product 
(in contrast to repairing or reusing) by delivering a product whose 
performance is at least to its original specifications (Reimann, Xiong, & 

Zhou, 2019). Analogously, novel sustainable business structures are 
converting into essential strategies towards the circular economy, such 
as the closed-loop supply chain (CLSCs), by incorporating the processes 
of collecting used products (cores) from customers and restoring them 
up to an operational state (Genovese, Acquaye, Figueroa, & Koh, 2017). 
Also, CLSCs were recently recognized as a valuable SC configuration to 
reduce carbon emissions due to their recycling and remanufacturing 
practices (Yang, Goodarzi, Bozorgi, & Fahimnia, 2021). For this reason, 
research on CLSCs is gaining momentum in a bid to encourage organi-
zations to move towards this sustainable business model (e.g. Shekarian, 
2020). As an example, Ellen MacArthur Foundation and McKinsey 
Center for Business and Environment estimate that pursuing profitable 
CLSC opportunities would reduce annual net European resource 
spending by up to 32 % by 2030 (Aguilar-Hernandez, Rodrigues, & 
Tukker, 2021; Schulze, 2016). The same report highlighted that such 
resource reduction along with other economic benefits (e.g. a decrease in 
externality costs) would yield annual savings of €1.8 trillion by that 
year. 

Thus, in the last decade, CLSCs have increasingly attracted the in-
terest of many researchers, who explore their environmental and 
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economic opportunities and challenges from different perspectives 
(Bhatia, Jakhar, Mangla, & Gangwani, 2020; Govindan, Soleimani, & 
Kannan, 2015). However, a consolidated area of research in traditional 
production and distribution systems, often labelled as supply chain dy-
namics (Framinan, 2021; Yu & Yan, 2021), has still received relatively 
little attention in closed-loop settings (Braz, De Mello, de Vasconcelos 
Gomes, & de Souza Nascimento, 2018; Goltsos et al., 2019; Ponte, Naim, 
& Syntetos, 2019; Wang & Disney, 2016). This discipline analyses the 
time-varying behaviours that emerge from the interactions between the 
nodes of the supply chain, and their impact on internal (i.e., production 
efficiency) and external (i.e., customer service level) performance. 
Interestingly, supply chain dynamics studies capture simultaneously 
different perspectives that are often explored separately but are strongly 
interrelated, such as customer demand satisfaction, the transportation 
problem, and the bullwhip effect (BWE)—i.e., the operational dynamics 
of supply chains that amplify the variability of orders in the upstream 
direction (Chatfield & Pritchard, 2013; Fu, Ionescu, Aghezzaf, & De 
Keyser, 2014; Tai, Duc, & Buddhakulsomsiri, 2019; Framinan, 2021; 
Huang, Potter, & Eyers, 2021). As such, the BWE has strong economic 
consequences on production, transportation, and inventory costs (Braz 
et al., 2018; Ponte, Dominguez, Cannella, & Framinan, 2022). 

1.2. Background and motivation 

In supply chain dynamics, the paper of Tang and Naim (2004) is 
usually considered the seminal work that explores the dynamics of 
CLSCs. They observed that such systems can benefit from improved 
dynamics as compared to traditional, or open-loop, supply chains, 
especially if the information on the reverse flow of materials is used to 
manage the forward flow. They concluded that increasing the return rate 
generally reduces order variability, which was also noticed by later 
works in this area; e.g. Zhou and Disney (2006), Adenso-Díaz, Moreno, 
Gutiérrez, and Lozano (2012), Dev, Shankar, and Choudhary (2017), 
Zhou, Naim, and Disney (2017) and Dominguez, Cannella, Ponte, and 
Framinan (2020). However, Hosoda, Disney, and Gavirneni (2015) 
revealed that in certain scenarios CLSCs experience a higher order 
variability than traditional systems. The impact of closing the loop on 
inventories has also been investigated in prior works, leading to what 
may be interpreted as contradicting conclusions. For example, Zhou and 
Disney (2006) observed that increasing the return rate has a positive 
impact on inventory variability (thus helping to better manage the trade- 
off between service level and stock required). The impact of the return 
volume on inventory performance thus seems to be very sensitive to the 
modelling assumptions. On the other hand, Tombido, Louw, van Eeden, 
and Zailani (2022) recently highlighted the relevant impact of rema-
nufacturing capacity limitations on the BWE of CLSCs. 

Previous works have also focused on other endogenous and exoge-
nous key features of a CLSC. i.e., (1) the effect of manufacturing and 
remanufacturing lead times (Dominguez, Ponte, Cannella, & Framinan, 
2019; Hosoda & Disney, 2018), (2) the performance of complex CLSCs in 
terms of structures (Dominguez et al., 2020; Tombido, Louw, & van 
Eeden, 2020), (3) the impact of order batching (Ponte et al., 2022), (4) 
the benefit provided by the visibility of the information on remanu-
facturing processes (Hosoda et al., 2015; Papanagnou, 2021; Tang & 
Naim, 2004), (5) the dynamics of CLSCs with return flows at different 
stages of the multi-echelon system (Dominguez, Cannella, & Framinan, 
2021) and multiple returns (Zhou et al., 2017), (6) the effect of substi-
tution policy between new and remanufactured products (Tombido & 
Baihaqi, 2020), (7) the impact of pricing (Giri & Glock, 2021), among 
others. 

These prior works arguably shed light on the CLSC dynamics under a 
variety of operational and market conditions. However, exploring and 
understanding the dynamic of CLSCs continue to be an important 
challenge for both researchers and practitioners, particularly by 
considering the need of investigating unexplored real-life conditions of 
the production and distribution system, such as the effect of (1) 

Production Control Policies (PCPs) and (2) capacity constraints on the 
performance of CLSCs. In the following, we detail these two aspects:  

(1) We recognize that a common assumption in CLSC dynamics is to 
consider that all echelons adopt the same order policy, which is 
usually represented by periodic-review replenishment rules, such 
as the Proportional or Smoothing Order-Up-To (SOUT) policy 
(see e.g. Cannella, Ponte, Dominguez, & Framinan, 2021; Disney, 
Ponte, & Wang, 2021). In CLSC dynamics literature, some works 
have focused on the impact of adopting classical or ad-hoc 
replenishment policies at the factory stage. In their seminal 
work, Tang and Naim (2004) explore the effect of different SOUT 
policies, characterized by an increasing level of information 
transparency. Similar problems, under different operational and 
structural conditions of CLSCs, have been also investigated by 
Adenso-Díaz et al. (2012), Hosoda et al. (2015), Hosoda and 
Disney (2018), Framinan (2021) and Lin, Zhou, Spiegler, Naim, 
and Syntetos (2021). All mentioned works have been consider-
ably contributing to the understanding of the dynamics of a CLSC 
under different replenishment rules. However, even if assuming 
the OUT replenishment rules and their variants, such as the SOUT 
can well capture the dynamics of most echelons of the supply 
chain (e.g. Distributors, Wholesalers, Retailers), it can be argued 
that, at the factory level, it would be more appropriated to 
emulate operations by considering PCPs (e.g. the Hedging 
Corridor Policy) and better capture the dynamics of real-life SCs 
(Corsini, Costa, & Fichera, 2021; Corsini, Costa, Cannella, & 
Framinan, 2022; Costa, Cannella, Corsini, Framinan, & Fichera, 
2020). To the best of the authors’ knowledge, all works dealing 
with the dynamics of CLSCs always adopted a replenishment 
policy at the factory level, thus without focusing on how the key 
variables of manufacturing systems (e.g. the adoption and 
parametrization of specific PCPs, the changeover times, sto-
chastic failures in the production system) can influence the per-
formance of the whole CLSC.  

(2) A further common assumption in CLSC dynamics concerns the 
structure of the system. Usually, works have adopted the unca-
pacitated mono-product single production–distribution system. 
Even if this type of structure can easily and suitably emulate the 
dynamics of whole SCs (Dominguez et al., 2019), recent works 
have shown that by adopting novel assumptions, that better 
reflect real-life conditions of the supply chain, original and 
insightful findings may emerge, which are not always easily 
observable under simplified assumptions. Particularly, as the 
capacity constraints in supply chains can negatively impact the 
performance by producing high and variable production and 
distribution lead-times (Shukla & Naim, 2017) and stock-out 
phenomenon (Costa et al., 2020), this real-life condition of the 
production systems should be considered to enrich our knowl-
edge on the dynamics of CLSCs. However, most of the works as-
sume a CLSC with unlimited capacity. Only two studies consider 
the effect of capacity constraints, i.e., Dominguez et al. (2019) 
and Tombido et al. (2020). Both works observe that in some 
scenarios capacity limitations can reduce the BWE in the fabri-
cation of both new and remanufactured products while main-
taining a good inventory performance. Nonetheless, in both 
studies, the capacity constraint is implemented by a limitation on 
orders placed to suppliers or orders’ acceptance channels. This 
modelling approach is known in supply chain dynamics literature 
as Limiting Orders (Costa et al., 2020). Under this assumption, it 
has been shown that capacitated SCs may benefit from an 
improved dynamic performance in comparison to unconstrained 
systems, as a limitation in the order can smooth the amplification 
of the demand and thus overestimate the performance of a supply 
chain (Framinan, 2021). However, Costa et al. (2020) demon-
strated that the production capacity constraint can be generated 
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by a compendium of realistic endogenous characteristics of 
manufacturing systems, such as failures, multi-product environ-
ments, changeover times, etc. However, they merely focus on the 
dynamics of a forward SC, and thus, to the best of the authors’ 
knowledge, the dynamics of a CLSC operating in a multi-echelon, 
multi-product capacitated production control system has not 
been still explored 

1.3. Objective 

Motivated by the relevance of CLSCs for sustainable development 
and the lack of studies addressing how different PCPs influence CLSC 
dynamics under real-life operational conditions, such as the production 
capacity constraints, this work thoroughly investigates the performance 
of a multi-product, multi-echelon, capacitated CLSC. This paper focuses 
on a CLSC implementing the remanufacturing process on the used 
products collected from the market. This practice has been implemented 
in several industries, e.g. computers, cameras, medical equipment, 
automobile engines and aircrafts, among others (Maleki, Pasandideh, 
Niaki, & Cárdenas-Barrón, 2017). To do so, we model and emulate the 
dynamics of a CLSC composed of three nodes, i.e., factory, retailer, and 
remanufacturer. Specifically, we include a remanufacturer who collects 
and remanufacture two products coming from the customer. To emulate 
real-life CLSC behaviour and investigate unexplored effects, we consider 
(i) at the customer stage, a common real-life demand model (i.e., the 
independent and identical distribution), (ii) at the retailer stage, the 
order-up-to as an industrially popular replenishment policy, i.e, the 
SOUT policy (Disney et al., 2021), and, (iii) at the factory stage, four 
different PCPs. The PCPs considered in our paper are the Hedging 
Corridor Policy (HCP), the Improved Modified Hedging Corridor Policy 
(IMHCP), the Closed-Loop Hedging Corridor Policy (CLSC-HCP) and the 
Closed-Loop Improved Modified Hedging Corridor Policy (CLSC- 
IMHCP). HCP, introduced by Elhafsi and Bai (1996), was widely adopted 
by the literature to cope with the production control problem of two- 
product manufacturing systems with no-negligible changeover times. 
Inspired by HCP, IMHCP was proposed by Assid, Gharbi, and Hajji 
(2014) to reduce the total cost incurred by manufacturing systems. In 
this paper, we also consider two variants of these policies, namely CLSC- 
HCP and CLSC-IMHCP, with the aim of adapting them to the features of 
the CLSC dynamics. To rigorously explore the dynamics of the modelled 
CLSC, we adopt a full-factorial Design Of Experiments, composed of 8 
experimental factors: 3 factors related to the remanufacturer stage (i.e., 
mean of returns of products, the variance of returns of products, and the 
coefficient of remanufacturing capacity) and the other 5 related to the 
production system of the factory (i.e., the adopted PCPs, the ratio be-
tween the nominal production capacity and the mean customer demand, 
the changeover time, the failure rate of the production system and the 
inventory threshold factor). To assess the dynamics of the CLSC, in line 
with the supply chain dynamics discipline, we adopt a non-financial 
performance metric system based on two criteria, i.e., internal perfor-
mance efficiency and customer satisfaction. To assess the internal pro-
cess efficiency we adopt the order rate variance ratio (Chen, Drezner, 
Ryan, & Simchi-Levi, 2000) and the average inventory levels (Disney 
et al., 2021), while customer satisfaction is assessed with the well- 
recognized fill rate metric (Kleijnen & Smits, 2003). In brief, the re-
sults show relevant and novel insights into the field of CLSC dynamics. 
We note that PCPs and changeover time have a significant impact on the 
CLSC performance and managers need to adopt an adequate PCP in 
CLSCs to operate efficiently, i.e., achieving a high fill rate while keeping 
low inventory levels at the factory. 

The rest of the paper is organized as follows. Section 2 details the 
model of the CLSC, by presenting the mathematical formalization, the 
related modelling assumptions, the sequence of events and the adopted 
key performance indicators. Section 3 presents the four PCPs adopted for 
testing the dynamics of the CLSC. Section 4 reports the design of the 
simulation experiments and the statistical analysis of results. Section 5 

summarises the findings and managerial implications of our work. 
Finally, Section 6 concludes and reflects on the next directions for 
research. 

2. Problem statement 

The supply chain problem under study refers to the multi-product 
EXPO model developed by Costa et al. (2020). We extend the struc-
ture since the reverse flow of the two product types joins the forward 
flow of the SC. To do this, we include a remanufacturer that collects and 
restores the two product types coming from the customer. The reverse 
structure considered in this work refers to the model of Dominguez et al. 
(2019). It is assumed that these product types achieve the condition of 
as-good-as-new standard (Zhou, Naim, Tang, & Towill, 2006). After the 
remanufacturing operations, the units of products are delivered to the 
factory inventory with a remanufacturing delivery lead-time. The fac-
tory consists of a failure-prone manufacturing system with a production 
line that is not able to manufacture both types of product simulta-
neously. For that reason, the production line requires changeover op-
erations to switch from one product type to another. Based on the 
factory inventory level, a PCP is adopted to decide when a changeover 
operation is needed (Corsini et al., 2021; Corsini, Fichera, & Costa, 
2022). The units of products stored in the inventory level are used to 
satisfy the orders arising from the retailer, which are delivered with a 
no-negligible delivery lead-time. The retailer adopts the SOUT to decide 
the order quantity for each product type (Corsini, Fichera, & Costa, 
2022; Costantino, Di Gravio, Shaban, & Tronci, 2015; Disney & Lam-
brecht, 2008; Framinan, 2021; Lin, Naim, Purvis, & Gosling, 2017). The 
order quantity is subject to the non-negative condition, i.e., in case of 
overstock, returns of finished products to the factory are not allowed 
(Chatfield & Pritchard, 2013). The units of products stored in the retailer 
inventory are used to fulfill the customer demand. The delivery lead- 
time from the retailer to the customer is neglected. Fig. 1 depicts the 
forward and reverse flows of the units of products and the information 
flows that characterized the CLSC model at hand. 

The simulation model is based on discrete-time difference equations, 
which is a technique widely used by the relevant literature in supply 
chain dynamics (Framinan, 2021; Ponte, Wang, de la Fuente, & Disney, 
2017; Warburton & Disney, 2007). Considering the complexity, dy-
namics and interactions that permeate a SC, computational modeling 
and simulation can support managers in the decision-making process. 
Furthermore, the SC simulation can assist decision-makers in the anal-
ysis of various scenarios and the selection of appropriate solutions and 
can also be a useful tool for understanding interactions and improving 
SC performance (Oliveira, Lima, & Montevechi, 2016). To model the 
non-linear conditions of the CLSC (i.e., constrained capacities, lost sales, 
non-negative condition of the order quantity, etc.), we think that 
simulation can be considered as one of the most proper methodologies to 
address such non-linearities, which are often present in real-life supply 
chains. 

The related nomenclature is presented in Table 1. Each product type 
is represented by an index p. The position of each node in the CLSC is 
denoted by the index i (i.e., i = 1 factory; i = 2 retailer; i = 3 remanu-
facturer). The next sub-sections describe the dynamics equations used 
for the operations of each node of the CLSC and the key performance 
indicators considered in this research. 

2.1. Factory 

The factory is characterized by a manufacturing system with a pro-
duction line subject to failure and changeover operations to switch from 
one product type to another. The factory is composed of the inventory of 
raw materials, which are used as input for the production stage, and the 
inventory of finished products, which is filled by the output of the 
production stage. It is assumed that the factory always has raw materials 
available and, thus, it does not issue orders to any supplier. The time 
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needed by the manufacturing system to complete the production oper-
ations of the input quantity, INPINP(t), is represented by the flow time, F 
(Lee, Lee, Yang, & Ignisio, 2008; Scholl, 1999). INPINP(t) depends on the 
nominal production capacity, χp, of the manufacturing system. In fact, 
since the production line produces at the maximum production rate, 
INP1,p(t) equals χp. However, the input quantity can be reduced by 
changeovers or failure events. The changeover operations involve non- 
negligible setup or changeover time, CO1,p′p(t) to switch from a prod-
uct type p’ to p, which depends on the maximum changeover time, δ. The 
failures involve a time to repair, tr1(t), that depends on the failure rate, λ 
(Patriarca, Costantino, & Di Gravio, 2016). CO1,p′p(t) and tr1(t) are 
calculated as follows: 

CO1,p’p(t) =
{

δ if a decision on changeover is made
max

{
CO1,p’p(t ) ;

}
otherwise

(1)  

tr1(t) =
{

U ∈ (0, 1) if rand ≤ λ and no changeover event
0 otherwise (2) 

The input quantity, INPINP(t), is higher than 0 if the manufacturing 
system is producing the product type p and there is no changeover. 
Precisely, the conditions are the following:  

1. The production line processed product type p at the previous time t-1 
and no decision on product changeover is taken at time t 
(INP1,p(t − 1) > 0 and CO1,pp′(t) = 0);  

2. The product changeover to switch from p’ to p is nearly completed 
(CO1,p′p(t) ∈ ]0, 1[);  

3. The product changeover to switch from p’ to p is definitively 
completed (CO1,p′p(t − 1) ⩾ 1 and CO1,p′p(t) = 0). 

Therefore, INPINP(t) is calculated as follows: 

INP1,p (t) =
{

χp⋅
(
1CO1,p’p(t)

)
⋅(1tr1(t) ) if the system is producing p

0 otherwise (3) 

As stated above, the input quantity, INPINP(t), becomes output 
quantity, OUTINP(t), after the production flow time, F: 

OUT1,p(t) = INP1,p(t − F) (4) 

The output quantity, OUTINP(t), is stored in the inventory of the 
finished products, IINP(t), that is used to satisfy the retailer’s orders, 
O2,p(t-1), issued in the previous time t-1. The inventory level is also 
increased by the units of products coming from the remanufacturer, 
represented by rc3,p(t) (see Eq. (16)). The inventory of finished products 
can assume negative values so as to represent a backlog scenario in 
which the inventory level is not enough to fulfill the retailer’s orders. 
However, the backlogs are limited by a threshold of lost sales (Sajadi, 
Esfahani, & Sörensen, 2011), which is computed as − k⋅μdp

. The in-
ventory level, IINP(t), at time t is calculated as: 

I1,p(t) = max
{

I1,p(t − 1)+OUT1,p(t) − O2,p(t − 1)+ rc3,p(t); − k • μdp

}

(5) 

Finally, the units of products delivered by the factory to the retailer, 
CINP(t), are calculated as follows: 

C1,p(t) = max
{

min
{

I1,p(t − 1) + OUT1,p(t) + rc3,p(t);O2,p(t − 1)
}
, 0
}

(6)  

2.2. Retailer 

The retailer has to satisfy the customer demand, which is assumed to 
be normally distributed with mean μdp 

and variance σ2
dp

. The capacity of 
the retailer to fulfill the customer demand depends on the inventory 
level, I2,p(t), which is increased by the units of products delivered by the 
factory after the delivery lead time, CINP(t - LT), as follows: 

I2,p(t) = max
{

I2,p(t − 1)+C1,p(t − LT) − d2,p(t); − k • μdp

}
(7) 

As for the factory, the retailer’s inventory level is limited by the 
threshold of lost sales. The delivery work-in-progress, W2,p(t), is used to 
record the units of product coming from the factory: 

W2,p(t) = W2,p(t − 1)+C1,p(t) − C1,p(t − LT) (8) 

Based on the current inventory level and the customer demand at 
time t, the units of products delivered by the retailer, C2,p(t), are calcu-
lated as follows: 

C2,p(t) = max
{

min
{

I2,p(t − 1) + C1,p(t − LT); d2,p(t)
}
, 0
}

(9) 

Finally, the retailer adopts the SOUT policy to define the order 

Fig. 1. The scheme of the CLSC model.  
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quantity, O2,p(t), at each time unit t: 

O2,p(t) = max
{

d̂2,p(t)+ β •
(
TW2,p(t) − W2,p(t) + TI2,p(t) − I2,p(t)

)
; 0
}

(10) 

The order quantity is composed of the forecasted demand, d̂2,p(t), the 
delivery work-in-progress gap, TW2,p(t) − W2,p(t), and the inventory gap, 
TI2,p(t) − I2,p(t). The forecasted demand is calculated using the expo-
nential smoothing method: 

d̂2,p(t) = αret • d2,p(t) + (1 − αret)d̂2,p • (t − 1) (11) 

The work-in-progress gap and the inventory gap depend on the target 
work-in-progress, TW2,p(t), and target inventory, TI2,p(t), respectively, 
which are calculated as follows: 

TW2,p(t) = LT • d̂2,p(t) (12)  

TI2,p(t) = ε • d̂2,p(t) (13)  

2.3. Remanufacturer 

At each time unit t, the remanufacturer receives units of products as 
returns, r3,p(t), from the customer. r3,p(t) represents a percentage, y3,p(t), 
of the customer demand, d2,p(t). y3,p(t) assumes values in the range of [0, 
1] and it is assumed to be normally distributed with mean μa% and 
variance σ2

a%. These returns are shipped to the remanufacturer after a 
consumption lead-time, LTc, and are calculated as follows: 

r3,p(t) = y3,p(t) • d2,p(t − LTc) (14) 

These units of returns are subject to a remanufacturing process that is 
characterized by a remanufacturing capacity constraint, ψp. ψp is a 
parameter that depends on the coefficient of remanufacturing capacity, 
CoCr, as follows: 

ψp = CoCr • μa% • μdp
(15) 

Therefore, at each time unit t, it can be calculated the number of 
units of products remanufactured, rc3,p(t), which depends on the rema-
nufacturing lead time LTr and the remanufacturing capacity constraint, 
ψp, as follows: 

rc3,p(t) = min
{

r3,p(t − LTr − 1)+ rb3,p(t − 1);ψp
}

(16)  

where rb3,p(t-1) is the remanufacturing backlog calculated as: 

rb3,p(t) = max
{

r3,p(t − LTr − 1)+ rb3,p(t − 1) − ψp; 0
}

(17)  

2.4. Key performance indicators 

The performance of the CLSC model at hand are evaluated based on 
three response variables: i) fill rate, FRp; ii) average factory inventory 
level, μI1,p; iii) order rate variance ratio, OrVrp. The fill rate measures the 
customer service level of the CLSC by considering the ratio between the 
units of products delivered by the retailer and the customer demand 
(Chinello, Herbert-Hansen, & Khalid, 2020): 

FRp =

(
1

T − Twarm
•

∑T

t=T − Twarm − 1

C2,p(t)
dp(t)

)

% (18) 

Table 1 
The nomenclature of the model.  

Symbol Description Domain 

Indices 
I Set of echelons I ∈ N 

i Echelon i = 1, …, I; I ∈ N 

P Set of product types P ∈ N 

p Product type in-process p = 1, …, P; P ∈ N 

p’ Product type in-waiting p’ = 1, …, P; P 
∈ N 

T Time horizon T ∈ N 

t Time unit t = 1, …, T; T ∈ N  

Parameters 
α Forecasting smoothing factor α ∈ [0, 1] ∩R 

β Proportional controller β ∈ [0, 1] ∩R 

ε Safety stock factor ε ∈ R+

z Threshold of inventory factor z ∈ R+

Zp Maximum inventory threshold of product type p Zp ∈ R+

ap Minimum inventory threshold of product type p ap ∈ [0, Zp] ∩R 

bp Safety inventory threshold of product type p bp ∈ R+

φ Factor of minimum inventory threshold φ ∈ [0, 1] ∩R 

CoCr Coefficient of remanufacturing capacity of 
product type p 

CoCr ∈ R+

δ Changeover time δ ∈ R+

F Flow time F ∈ N 

k Threshold of lost sales factor k ∈ R+

λ Failure rate λ ∈ [0, 1] ∩R 

LT Delivery lead-time LT ∈ N 

LTc Consumption lead-time LTc ∈ N 

LTr Remanufacturing lead-time LTr ∈ N 

Twarm Warm-up period Twarm ∈ [0, T ] 
∩N 

ψp Remanufacturing capacity of product type p ψp ∈ N 

χp Nominal production capacity of product type p χp∈ N 

μa% Mean of return rate Î¼a\% ∈ [0, 1] ∩R 

μdp Mean of customer demand of product type p μdp
∈ N 

σa% Standard deviation of return rate σ2
a% ∈ [0, 1] ∩R 

σdp Standard deviation of customer demand of 
product type p 

σdp ∈ R+

Variables 
Ci,p(t) Units of product type p delivered to echelon i at 

time t 
Ci,p(t) ∈ N 

CO1,p′p(t) Residual changeover time to switch from product 
type p’ to p in the factory at time t 

CO1,p′p(t) ∈ [0, δ] 
∩R 

di,p(t) Demand of product type p in echelon i at time t di,p(t) ∈ N 

d̂ip(t) Demand of product type p forecasted by echelon i 
at time t 

d̂ip(t) ∈ N 

Ii,p(t) Inventory level of product type p in echelon i at 
time t 

Ii,p(t) ∈ N 

Î1,p(t) Forecasted inventory level of product type p in the 
factory at time t 

Î1,p(t) ∈ N 

INP1,p(t) Input quantity of product type p in the factory at 
time t 

INP1,p(t) ∈ [0, χp] 
∩N 

O2,p(t) Order quantity of product type p issued by the 
retailer at time t 

O2,p(t) ∈ N 

OUT1,p(t) Output quantity of product type p in the factory at 
time t 

OUT1,p(t) ∈ [0, 
χp] ∩N 

r3,p(t) Return of product type p at time unit t r3,p(t) ∈ N 

rb3,p(t) Remanufacturing backlog of product type p at 
time unit t 

rb3,p(t) ∈ N 

rc3,p(t) Remanufacturing completion rate of product type 
p at time unit t 

rc3,p(t) ∈ N 

tr1(t) Repair time in the factory tr1(t) ∈ [0, 1] ∩R 

TI2,p(t) Target inventory of product type p in the retailer 
at time t 

TI2,p(t) ∈ N 

TW2, p(t) Target work in progress of product type p in the 
retailer at time t 

TW2, p(t) ∈ N 

W2,p(t) Delivery work in progress of product type p at 
time t 

W2,p(t) ∈ N 

y3,p(t) Percentage of the customer demand for the 
returns of product type p at time unit t 

y3,p(t) ∈ [0, 1] ∩R   

Table 1 (continued ) 

Symbol Description Domain 

Performance indicators 
FRp Fill Rate of product type p FRp ∈ [0, 1] ∩R 

μI1,p Average factory inventory level of product type p μI1,p ∈ R 

OrVrp Order rate variance ratio of product type p OrVrp ∈ R+
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The average factory inventory level is considered to estimate the 
holding costs of this node (Fu, Ionescu, Aghezzaf, & De Keyser, 2015) 
and it is calculated as: 

μI1,p =
1

T − Twarm
•

∑T

t=T − Twarm+1
I1,p(t) (19) 

Finally, the order rate variance ratio (OrVrp) is the widely adopted 
performance metric to measure the BWE of the supply chain (Fussone, 
Dominguez, Cannella, & Framinan, 2022; Vicente, Relvas, & Barbosa- 
Póvoa, 2018). In this work, we adopt a version of the OrVrp which is 
formulated as the ratio of the variabilities of demand between the two 
echelons of the CLSC, expressed in terms of standard deviation: 

OrVrp =
σO2,p

σdp

(20) 

It can be noticed that all the metrics are computed without consid-
ering the Twarm period to avoid the randomness effect in the performance 
evaluation. 

3. Production control policies 

The PCP is used by the factory to decide when a changeover opera-
tion is needed to switch from one product type to another. Considering 
that the manufacturing system of the factory is characterized by pro-
duction flow time F and the production work-in-progress, the forecasted 
inventory level Î INP(t) is used by each PCP to carry out the decision- 
making about changeovers (Corsini, Costa, Cannella, et al., 2022; 
Costa et al., 2020). The forecasted inventory level is calculated as 
follows: 

Î 1,p(t) = max
{

I1,p(t) +F •
(
χp − d̂1,p(t)

)
; − k • μdp

}
(21.a)  

In this work, we consider the well-established HCP (Elhafsi & Bai, 1996) 
and the IMHCP (Assid et al., 2014). Furthermore, we have slightly 
modified HCP and IMHCP to fit the specific CLSC requirements. As a 
result, we defined two additional PCPs named CLSC-HCP and CLSC- 
IMHCP, respectively. Briefly, these PCPs incorporate the mean return 
rate in the ̂IINP(t) calculation, as follows: 

Î 1,p(t) = max
{

I1,p(t) + F •
(
χp − d̂1,p(t) + μa% • d̂1,p(t)

)
; − k • μdp

}
(21.b)  

3.1. Hedging Corridor policy 

The aim of the PCPs is to cope with the inventory and capacity 
shortages arising from production stoppages due to changeovers and 
failures. To this end, HCP and CLSC-HCP protect the manufacturing 
system by building a positive target inventory level defined by a 
maximum inventory threshold Zp. It is calculated by considering the 
inventory threshold factor (z), and the mean value of the customer de-
mand (μdp

) as follows: 

Zp = z • μdp
(22) 

To make decisions about changeovers, the maximum inventory 
threshold is compared with the forecasted inventory level as in Fig. 2. 
Precisely, shows the variation of the current and forecasted inventory 
levels when HCP or CLSC-HCP are used as PCP by the factory. The 
continuous line is the current inventory level IINP(t), while the forecasted 
inventory level ̂IINP(t) is depicted with the dashed line. Looking at mark 
1 of Fig. 2, a changeover event occurs when the forecasted inventory 
level exceeds the maximum inventory threshold. In this case, the re-
sidual changeover time CO1,p′p(t) is set equal to the changeover time δ 
and, then, Eq. (1) can be expressed as follows: 

CO1,p’p(t) = δ if INP1,p’ (t − 1) > and Î 1,p’ (t)⩾Zp’ (1.a)  

3.2. Improved Modified Hedging Corridor policy 

The IMHCP, introduced by Assid et al. (2014), is a variant of the well- 
established HCP. Differently from HCP that looks only at the maximum 
inventory threshold Zp (see Eq. (22)), the aim of IMHCP is to anticipate 
product changeovers when a backlog scenario could occur. To this end, 
IMHCP is characterized by three different thresholds, that are the 
maximum inventory threshold Zp, the minimum inventory threshold ap 

and the safety threshold bp. The minimum inventory threshold depends 
on Zp and on a parameter φ that can assume values between 0 and 1. ap is 
calculated as follows: 

ap = φ • Zp (23) 

On the other hand, the safety threshold bp is used to alert when the 
inventory level is low and can become negative. Therefore, bp depends 
on δ and μdp 

as follows: 

bp = δ • μdp
(24) 

Fig. 3 shows that if IMHCP or CLSC-IMHCP are adopted as PCP, the 
decision about product changeover is made based on two different al-
ternatives. In the first condition (see mark 1 in Fig. 3), a changeover 
event occurs if the forecasted inventory level of the product p’ being 
manufactured is higher than the related minimum inventory threshold 
and, simultaneously, the current inventory level of the alternative 
product type p is lower than the related safety threshold. The second 
condition is the same of HCP or CLSC-HCP policies since it compares the 

Fig. 2. The current and forecasted inventory level when the HCP or CLSC-HCP 
are adopted. 

Fig. 3. The current and forecasted inventory level when the IMHCP or CLSC- 
IMHCP are adopted. 
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forecasted inventory level of the product p’ being manufactured with the 
related maximum inventory threshold. Therefore, Eq. (1) can be 
expressed as follows: 

CO1,p’p(t) = δ if INP1,p’ (t − 1) > and
{

Î 1,p’ (t)⩾ap’ and I1,p(t) < bp

Î 1,p’ (t)⩾Zp’

(1.b)  

4. Experimental analysis 

This section deals with the experimental campaign carried out to 
investigate the dynamics of the CLSC model at hand. For this purpose, a 
full-factorial Design Of Experiments (DOE) was built (see Table 2). As 
stated in Kleijnen (2005), “Because simulation - treated as a black box 
-implies experimentation with a model, DOE is essential.” In fact, the ma-
jority of works using a simulation approach for analysing SC dynamics 
adopt the DOE (see e.g. Chatfield, Kim, Harrison, & Hayya, 2004, Kim, 
Chatfield, Harrison, & Hayya, 2006, Ponte et al., 2022 or Fussone, 
Dominguez, Cannella, & Framinan, 2023). This approach allows sys-
tematically varying key inputs parameters and observing their effects on 
SC behavior. In fact, through the use of DOE in combination with sta-
tistical methods, it can be identified the influence (main effects and 
interactions) of key inputs on model outputs, leading to valuable in-
sights and recommendations for SC managers and decision-makers. 

The DOE is composed of 8 experimental factors: 3 factors related to 
the remanufacturer stage (i.e., μa%, σ2

a%, and CoCr) and the other 5 
related to the manufacturing system of the factory (i.e., PCP, χp/μdp

, δ, λ, 
z). Each experimental factor varies at three levels, with the exception of 
PCP that varies at four levels. Considering that 10 replicates were 
included in the experimental campaign, then, 37 • 4 • 10 = 87,480 runs 
were executed. These simulation runs were obtained through the 
simulation model based on discrete-time difference equations coded in 
Matlab r2021® on a workstation equipped with an INTEL i9-9900 3.6 
GHz 10 core CPU, 32 Gb DDR4 2,666 MHz RAM and Win 10 PRO OS. 
The values of the exogenous factors are consistent with relevant studies 
from the literature dealing with both forward and reverse multi-echelon 
SC dynamics problem (as for example Sterman, 1989; Chatfield et al., 

2004; Tang & Naim, 2004; Dejonckheere, Disney, Lambrecht, & Towill, 
2004; Towill, Zhou, & Disney, 2007; Zhou et al., 2017; Dominguez et al., 
2019, 2020; Cannella et al., 2021; Ponte et al., 2022, among others). The 
next sub-sections analyze the outcomes arising from the experimental 
campaign. 

4.1. ANOVA analysis 

The influences of the eight experimental factors were analyzed 
through a series of analyses of variance (ANOVA) at 95 % until the 
second-order interactions. To do this, Minitab® 17 commercial package 
was used. It can be noticed that only product type A is considered in the 
analyses as no significant difference came out from the outputs of the 
ANOVA analyses related to the two product types. Fig. 4 illustrates the 
ANOVA table of the three key performance indicators. The impact of 
each experimental factor is significant whether the p-value is lower than 
0.05. The significance of the experimental factors on the performance 
measures is further exacerbated by F-values. High F-values represent a 
relevant significance of the experimental factor under investigation. 
Furthermore, Yu, Semeraro, and Matta (2018) pointed out that the 
significant factors are usually identified by a F-value larger than 50. In 
light of the aforementioned consideration, each experimental factors 
have a significant impact on the performance measures, with the 
exception of the standard deviation of the return rate. This experimental 
factor presents an F-value lower than 50 in terms of both fill rate and 
order rate variance ratio. The experimental factors that mostly affect the 
fill rate and the order rate variance ratio are PCP, μa% and δ, while, in 
terms of average factory inventory level are μa%, δ and z. As for the 
interaction between the experimental factors, the most influencing in-
teractions for all the performance measures are PCP * μa%, PCP * δ, μa% * 
χp/μdp 

and μa% * δ. Finally, it is worth pointing out that, for each 
response variable, the impact of the replications, named “blocks”, can be 
considered not significant since they present F-values lower than 50. 

4.1.1. Fill rate 
This sub-section analyses the results in terms of the fill rate of the 

CLSC model under investigation with the main effect plots in Fig. 5. As 
for PCP, the well-established HCP and the CLSC-HCP assure the highest 
values of fill rate in comparison with the IMHCP and CLSCL-IMHCP 
policies. In fact, the CLSC-HCP achieves similar performance to HCP 
and assures a fill rate higher than 95 %. As expected, the mean return 
rate enables the CLSC to increase the fill rate. The main effect plots of the 
standard deviation of the return rate confirm the findings of the ANOVA 
table, i.e., the values of this experimental factor are almost equal to the 
mean fill rate and, then, it can be considered not significant. Similarly to 
the work of Dominguez et al. (2019), high values of remanufacturing 
capacity support the CLSC in increasing the fill rate, while the nominal 
production capacity, changeover, failure rate, and inventory threshold 
factors show the same trend of the SCs model with production capacity 
constraints (Corsini et al., 2021; Costa et al., 2020). Fig. 6 shows the 
most interesting interaction plot. Fig. 6-a reports the interaction PCP * 
μa%. The interaction reveals that low values of mean return rate increase 
the difference in terms of fill rate between the PCPs. When the mean 
return rate assumes high values (e.g. 0.75), the fill rate of the PCPs are 
similar and in the range of 95 % and 100 %. It can be noticed that there is 
a wide range of performance when the mean return rate assumes low 
values. In particular, IMHCP is strongly affected by passing from 0.50 to 
0.25 of the mean return rate since it revealed a reduction of almost 15 % 
of the fill rate. In fact, when the mean return rate is equal to 0.50, IMHCP 
presents a similar performance compared to HCP and CLSC-HCP, while 
when the return rate is lower, the performance is similar to CLSC- 
IMHCP. Fig. 6-b shows the interaction PCP * δ. From this interaction, 
it can be pointed out the strong influence of the changeover time on the 
performance of the CLSC. When the changeover time is equal to 1, the 
differences between the PCPs are not significant and the fill rate is 

Table 2 
Design of experiments.  

Parameters Symbol Value 

Mean customer demand of product type A μdA 
100 

Mean customer demand of product type B μdB 
50 

St. Dev. Demand / Mean Demand σdp /μdp 
0.10 

Forecasting factor α 0.30 
Proportional controller β 0.30 
Safety stock factor ε 1 
Delivery lead-time LT 2 
Flow time F 2 
Threshold of lost sales factor k 2 
Consumption lead-time Tc 32 
Remanufacturing lead-time Tr 4 
Time horizon T 2000 
Warm-up period Twarm 200  

Experimental factors Symbol Level 
I 

Level II Level 
III 

Level IV 

Production control policy PCP HCP CLSC- 
HCP 

IMHCP CLSC- 
IMHCP 

Mean of return rate μa% 0.25 0.50 0.75 – 
St. Dev. of return rate σa% 0.15 0.30 0.45 – 
Coefficient of 

remanufacturing 
capacity 

CoCr 0.75 1.00 1.25 – 

Nominal production 
capacity / mean demand 

χp/μdp 
2.50 3.00 3.50 – 

Changeover time δ 1.00 2.00 3.00 – 
Failure rate λ 0.05 0.10 0.15 – 
Inventory threshold factor z 8.00 9.00 10.00   
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Fig. 4. ANOVA table.  

Fig. 5. Main effect plots for the fill rate.  
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almost equal to 100 %. On the other hand, high changeover times 
negatively bias the fill rate of the CLSC, and the differences between the 
PCPs are relevant. Fig. 6-c illustrates the interaction μa% * χp/μdp

. It can 
be noticed that when the mean return rate is equal to or higher than 
0.50, there is no particular difference between the values of the nominal 
production capacity. Surprisingly, high values of nominal production 
capacity slightly reduce the fill rate, since a higher number of production 
stoppages occur in the system (see Fig. 7). On the other hand, when the 

mean return rate is equal to 0.25 an increment of nominal production 
capacity positively influences the fill rate indicator of the CLSC. Finally, 
Fig. 6-d shows the interaction μa% * δ. For low changeover times, the 
factory does not take benefit from the mean return rate. On the other 
hand, for high values of changeover times, the mean return rate repre-
sents strong support for achieving high performance in terms of fill rate. 

4.1.1.1. Average factory inventory level. This sub-section concerns the 
analysis of the results related to the average factory inventory level. 
Fig. 8 depicts the main effect plots. The first finding to point out is 
related to the influence of PCPs on the average inventory level. Indeed, it 
can be noted that the CLSC variants of the PCPs allow the factory to 
reduce the average inventory level, In particular, CLSC-IMHCP is the 
policy that achieves the best performance in terms of average factory 
inventory level. The remanufactured units of products directly increase 
the factory inventory level and, therefore, high values of mean return 
rate and remanufacturing capacity constraints involve an increment of 
the average inventory level, as expected. Interestingly, due to the 
number of production stoppages (see Fig. 7) high values of nominal 
production capacity and changeover time reduce the average inventory 
level. Finally, the impact of the failure rate and the inventory threshold 
is similar to the work of Costa et al. (2020). The inventory threshold is 
the most influencing factor and the difference between each experi-
mental level of average factory inventory level is relevant. Fig. 9 illus-
trates the most influencing interaction plots. In Fig. 9-a it can be seen the 
interaction between PCP and the mean return rate. The figure reveals 
that the mean return rate mainly affects the performance of IMHCP. In 
fact, for low values of mean return rate (e.g. 0.25), IMHCP assures good 
performance in terms of average inventory level, while, for high values 

Fig. 6. Most significant interaction plots for the fill rate.  

Fig. 7. Influence of the nominal production capacity in terms of number of 
production stoppages. 
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of mean return rate, the performance worsens and becomes similar to 
HCP. Fig. 9-b shows the interaction between the mean return rate and 
changeover time pointing out interesting findings. When the changeover 
time is low (e.g. 1 time unit), the difference between HCP and IMHCP is 
not significant. The same happens between the CLSC variants of the 
PCPs. On the other hand, high values of changeover times involve a 

relevant reduction of average inventory level when the factory adopts 
IMHCP or its CLSC variant. In particular, when the changeover time is 
set to high values, the impact of IMHCP and CLSC-HCP on the average 
factory inventory level is similar. Fig. 9-c shows the interaction between 
the mean return rate and the nominal production capacity. This inter-
action mainly reflects the individual impact of the nominal production 

Fig. 8. Main effect plots for the average factory inventory level.  

Fig. 9. Most significant interaction plots for the average factory inventory level.  
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capacity on the performance measure. In fact, high values of nominal 
production capacity involve a high number of production stoppages and, 
then, the average factory inventory level is reduced. However, when the 
nominal production capacity and the mean return rate are set to low 
values (e.g. 2.5 and 0.25, respectively), a reduction of the performance 
measure can occur due to frequent backlog scenarios. It is confirmed by 
the same interaction in Fig. 6-c that causes fill rate values lower than 80 
%. Finally, Fig. 9-d reveals that the effect of the changeover time is 
damped by high values of the mean return rate. 

4.1.1.2. Order rate variance ratio. This sub-section investigates the 
impact of the experimental factors on the order rate variance ratio by 
reporting the main effect plots in Fig. 10 and the interaction plots in 
Fig. 11. Looking at the main effect plots, the graph reveals that the HCP 
strategy and its CLSC variants allow the structure to reduce the order 
rate variance ratio, while IMHCP and CLSC-IMHCP involve high values 
of order rate variance ratio (i.e., higher than 1.5). As for the remanu-
facturing process, it can be noticed that the return flows of material 
support the CLSC to reduce the order rate variance ratio. In fact, high 
values of both the mean return rate and remanufacturing capacity 
constraint cause a reduction of this performance measure. As for the 
experimental factors related to the production capacity constraint of the 
factory, interestingly, the changeover time and factory inventory 
threshold have a relevant influence on the order rate variance ratio. 
Specifically, low values of changeover times and high values of factory 
inventory threshold reduce the order rate variance ratio of the whole 
CLSC. On the other hand, also high values of nominal production ca-
pacity and low values of failure rate allow the CLSC to reduce this 
performance indicator. However, their influence seems to be weak in 
comparison with the other experimental factors. Looking at the inter-
action plots, Fig. 11-a and Fig. 11-b reveal that IMHCP and CLSC-IMHCP 
are the PCPs that mostly suffer the lower values of mean return rate and 
the high values of changeover time. Fig. 11-c shows that the order rate 
variance ratio particularly worsens when the mean return rate and the 
nominal production capacity are set to lower values. Finally, Fig. 11- 
d reveals that the high values of mean return rate allow the CLSCL to 
reduce the negative impact of high values of changeover time in terms of 
order rate variance ratio. 

4.2. Bicriteria analysis for the production control policies 

The outcomes emerging from the numerical analyses reveal that 

enhancing the fill rate or mitigating the BWE (measured by the order 
rate variance ratio) often leads to an increase in the average factory 
inventory level and vice-versa. Consequently, a challenging task for the 
CLSC managers would consist of finding the optimal balance between 
these performance indicators. Motivated by these findings, a bicriteria 
analysis was conducted to go beyond the single-objective evaluations 
and to guide CLSC managers in evaluating and selecting the PCP that 
offers the most favourable trade-off between different performance in-
dicators. To this end, all possible pairs of performance indicators were 
assessed, i.e.: 1) fill rate – average factory inventory level, 2) order rate 
variance ratio – average factory inventory level, and 3) fill rate – order 
rate variance ratio. Then, performance indicators (PInorm) were 
normalized and the ’Bicriteria Index’ (BI) to be minimized was intro-
duced. The BI was calculated using the following formula: 

BI = ω • PI1
norm +(1 − ω)•PI2

norm (25)  

where ω is a weight ranging from 0 to 1. To normalize the performance 
indicators, we employed the following formulas: 

FRnorm = (FR − FRmax)/(FRmax − FRmin) (26)  

μI1norm = (μI1 − μI1min)/(μI1max − μI1min) (27)  

OrVrnorm = (OrVr − OrVrmin)/(OrVrmax − OrVrmin) (28) 

As the BI objective must be minimized, the FRnorm is calculated by the 
difference between FR - FRmax in the numerator (see Eq. (26) and must 
be minimized as well. The minimum and maximum values of the per-
formance indicators are: FRmax = 1, FRmin = 0, µI1max = 874.81, µI1min =

0, ORVRmax = 6.17 and ORVRmin = 1. Notably, upper and lower bounds 
mentioned above were set on the basis of the numerical outputs ob-
tained by the DOE. Whether fill rate and average factory inventory level 
are considered (i.e., PI1

norm = FRnorm and PI2
norm = μI1norm), Fig. 12 shows the 

average BI values obtained by each PCP at varying the weight w. It 
emerges that:  

• When ω is set to 1, then considering only the fill rate, the best policy 
is HCP, confirming the outcomes obtained from the ANOVA analysis;  

• When ω is set to 0.9, the best trade-off is achieved by HCP and CLSC- 
HCP.  

• When ω is between 0.6 and 0.8, CLSC-HCP is the most effective 
policy. 

Fig. 10. Main effect plots for the order rate variance ratio.  
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Fig. 11. Most interesting interaction plots for the order rate variance ratio.  

Fig. 12. Bicriteria analysis in terms of fill rate and average factory inventory level.  
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• When ω is set to 0.5, the best trade-off is reached by CLSC-HCP and 
CLSC-IMHCP.  

• When ω is lower than 0.5, the best balance of performance is assured 
by CLSC-IMHCP.  

• When ω is equal to 0, only the average factory inventory level is 
considered. In this case, the results reflect the ANOVA analysis, 
where the CLSC-IMHCP policy is the most-suitable policy to reduce 
the average factory inventory level. 

Fig. 13 shows the Bicriteria analysis for the order rate variance ratio 
and the average factory inventory level (i.e., PI1

norm = OrVrnorm and PI2
norm 

= μI1norm) and it can be noticed that:  

• When ω is set equal to 1, considering only the order rate variance 
ratio, the most-suitable policy is HCP, as showed by the ANOVA 
analysis;  

• When ω is between 0.8 and 0.9, the best trade-off is gained by HCP.  
• When ω is set between 0.4 and 0.7 for, CLSC-HCP is the most effective 

policy. 
• When ω is lower than 0.4, the best balance of performance is ob-

tained by CLSC-IMHCP. 
• When ω is equal to 0, then considering only the average factory in-

ventory level, CLSC-IMHCP is the most-suitable policy to reduce this 
metric, confirming the ANOVA results. 

Finally, Fig. 14 considers the balance between the fill rate and the 
order rate variance ratio (i.e., PI1

norm = FRnorm and PI2
norm = OrVrnorm). In 

this case, HCP stands out as the most suitable policy for CLSC dynamics 
to maximize the fill rate and minimize the order rate variance ratio. 

4.3. Sensitivity analysis on delivery lead-time 

In this section, the impact of delivery lead-time in terms of fill rate, 
average factory inventory level and order rate variance ratio of the CLSC 
is studied. Recently, global events such as the COVID-19 pandemic are 
considerably affecting the performance of supply chains. In particular, 
these disruptive events are causing a sudden increase in delivery lead- 
times (Corsini, Costa, Fichera, & Framinan, 2022). The scope of this 
analysis is to assess the impact of high values of delivery lead-time on the 

performance of the CLSC at hand. To this end, we selected the config-
uration of the previous DOE (see Table 2) that assures the highest value 
of the fill rate. In accordance with the ANOVA analysis in Section 4.1.1, 
the considered SC is characterized by the following values: PCP = HCP; 
μa% = 0.75; σa% = 0.3; CoCr = 1.25; χp/μdp 

= 3.5; δ = 1; λ = 0.05; z = 10. 
The delivery lead-time varies at three levels: 2, 10 and 20 time units. 10 
replicates were considered in this analysis to avoid the randomness ef-
fect on the results. Fig. 15 shows the impact of the delivery lead-time on 
the three KPIs. The results revealed that an increase in lead-time in-
volves a deterioration of the performance of the CLSC. As for the fill rate, 
it can be noticed that a significant reduction is caused by the highest 
values of delivery lead time (i.e., LT = 20). On the other hand, any 
increment in delivery lead-time involves a sudden deterioration of the 
average factory inventory level and order rate variance ratio. 

5. Findings and managerial implications 

Since there are numerous insights in this paper, we now summarize 
the main findings that contribute to the advancement of the CLSC 
literature by increasing our understanding of the impact of PCPs on fill 

Fig. 13. Bicriteria analysis in terms of order rate variance ratio and average factory inventory level.  

Fig. 14. Bicriteria analysis in terms of fill rate and order rate variance ratio.  
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rate, factory inventory level, and BWE in a multi-product environment. 
After that, we evaluate the main implications of these findings for 
managerial decision-making.  

1. Impact of PCPs. The analyses of results revealed that HCP is the most 
suitable policy for maximizing the fill rate and mitigating the bull-
whip effect in CLSCs. On the other hand, CLSC-IMHCP is the most 
effective PCP in minimizing the factory inventory level. According to 
the numerical results, an increase in the fill rate or the mitigation of 
the bullwhip effect leads to an increase in the factory inventory level 
and vice-versa. Therefore, a Bicriteria analysis was conducted to 
identify the PCP that gains the best trade-off between the perfor-
mance indicators. CLSC-HCP and CLSC-IMHCP emerged as the best 
PCPs when the aim is to balance the fill rate versus the factory in-
ventory level and the order variance ratio versus the factory in-
ventory level. Instead, if the goal is to maximize the fill rate and 
mitigate the bullwhip effect, HCP is the most suitable PCP.  

2. Impact of changeover time. The changeover time decreases the factory 
inventory level and the fill rate and increases the order rate variance 
ratio. These phenomena are more significant for IMHCPs, CLSC- 
PCPs, and CLSCs with low average return rates.  

3. Impact of the mean return rate. The mean return rate increases the 
factory inventory level and the fill rate (the increase is generally 
higher for IMHCPs). On the contrary, the order rate variance ratio 
decreases.  

4. Impact of the production capacity. Increasing the production capacity 
increases the fill rate and decreases the order rate variance ratio, 
while it has a low impact on the factory inventory level if the mean 
return rate is low. When the mean return rate is medium or high, on 
the contrary, increasing the production capacity decreases the fac-
tory inventory level and increases the order rate variance ratio, due 
to the high number of production stoppages. 

5. Impact of the remanufacturing capacity. Increasing the remanufactur-
ing capacity increases the factory inventory level and fill rate, and 
decreases the order rate variance ratio.  

6. Impact of the delivery lead-time. The results arising from the sensitivity 
analysis revealed that an increment in delivery lead-time causes a 
deterioration of all the three KPIs of the CLSC. 

Now we discuss the key implications of this set of findings for 
managerial practice, in particular by providing useful suggestions to 
implement the advocated principles of the circular economy in supply 
chains in several industries, e.g. computers, cameras, medical equip-
ment, automobile engines and aircrafts, among others. In our problem, 
the incorporation of capacity constraints in CLSC is a critical aspect that 
reflects the challenges faced by industries aiming to operate in a sus-
tainable and environmentally responsible manner. Our study aims to 
offer valuable insights for decision-makers in industries (such as auto-
motive, electronics, aerospace, industrial equipment sectors among 
others) where the closed-loop supply chain is a prevalent operational 
model. In these sectors, the presence of production capacity constraints 
can influence the planning of remanufacturing activities, in order to 
maintain a steady flow of remanufactured products in the market and 
meet demand and ensure operational continuity for customers. Then, we 

aim to provide CLSC professionals with helpful suggestions on how to 
appropriately manage multi-product closed-loop production and distri-
bution systems. First of all, CLSC managers should focus on return pol-
icies that assure a high return rate, and the reason is twofold. On one 
hand, this is the main goal of CLSCs, as these structures are meant to 
achieve a high level of circularity and save raw materials and energy. On 
the other hand, our findings show that medium to high return rates 
results in high fill rates. As a drawback, these high return rates may 
cause some inefficiencies in inventory management (due to the uncer-
tainty in the reverse flow), and thus the factory inventory level may be 
increased. On the other hand, the CLSC should be configure with 
adequate manufacturing and remanufacturing capacities, to be able to 
quickly respond to variations in the production of new products or to 
handle the inherent variability of the reverse flow of used and rema-
nufactured products. As a consequence, the CLSC will be more reactive 
to unforeseen events, and this results in lower inventories and a higher 
fill rate as well. However, managers of such CLSCs should invest care-
fully in increasing the production capacity, since the combination of 
high production capacity and mean return can involve production 
stoppages and, as a consequence, an increase of the BWE. 

In addition to these settings, the changeover time also has a relevant 
impact on the CLSC performance and should be considered by managers. 
Thus, it is recommended the CLSC managers undertake all possible ac-
tions to avoid the detrimental impact of high changeover times on the 
performance of CLSC, such as implementing the Single Minute Exchange 
of Die (SMED) methodology that can reduce the changeover time (Da 
Silva & Godinho Filho, 2019). Finally, the inventory threshold factor has 
a direct impact on performance, increasing the factory inventory level 
and fill rate, and decreasing the BWE. Therefore, it should be chosen ad- 
hoc according to the Retailer’s orders variability in the final CLSC 
setting, to minimize the factory inventory level while maintaining the 
desired fill rate. 

6. Conclusions and future directions 

The existing body of literature related to the dynamics of CLSCs often 
assumes unlimited capacity. Only a few studies have studied the im-
plications of capacity restrictions in the manufacturing and/or rema-
nufacturing processes, revealing the importance of considering capacity 
restrictions in the analysis of CLSCs. Nonetheless, these studies have 
considered the production of a single product and simple capacity re-
strictions, but factories in the real world often produce different prod-
ucts, and thus they need to allocate capacity for the production of such 
products, requiring the adoption of a proper PCP. 

This work contributes to the literature on CLSCs dynamics by 
addressing the impact of different PCPs on the dynamic performance of a 
multi-product, multi-echelon, capacitated CLSC. To do so, a CLSC with a 
factory, a retailer, and a remanufacturer has been modelled using 
discrete-time difference equations. The factory produces two different 
products and consists of a failure-prone manufacturing system with a 
production line that is not able to manufacture both types of product 
simultaneously. For that reason, the production line requires change-
over operations to switch from one product type to another. To address 
the impact of PCPs, four PCPs have been considered in the study, which 

Fig. 15. Sensitivy analysis of delivery lead-time in terms of a) fill rate, b) average factory inventory level and c) order rate variance ratio.  
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are the well-established HCP, IMHCP and two variants of these PCPs 
adapted to the CLSC, i.e., CLSC-HCP and CLSC-IMHCP. 

The simulation study consists of a full-factorial Design Of Experi-
ments, composed of 8 experimental factors: the mean of returns of 
products, the variance of returns of products, the coefficient of rema-
nufacturing capacity, the adopted PCP, the ratio between the nominal 
production capacity and the mean customer demand, the changeover 
time, the failure rate of the production system and the inventory 
threshold factor. The CLSC performance has been addressed by the fill 
rate, the factory inventory level, and the order rate variance ratio. 

We found that PCPs and changeover time have a significant impact 
on the CLSC performance. Specifically, HCP is the most effective PCP to 
maximize the fill rate and mitigate the BWE, while IMHCP allows 
minimizing the average factory inventory level. The changeover time 
decreases the factory inventory level and fill rate and increases the BWE. 
We also found numerous significant interactions between these and the 
other factors of the study. To provide insightful recommendations for 
professionals, a Bicriteria Analysis has been performed. The results 
suggest to adopt CLSC-HCP and CLSC-IMHCP to find an effective trade- 
off between fill rate versus average factory inventory level and order 
rate variance ratio versus average factory inventory level, while HCP is 
recommended when the aim is to maximize the fill rate and mitigate the 
BWE. The selection of the PCP should be accompanied by adequate 
manufacturing and remanufacturing capacities, to be able to quickly 
respond to variations in the production of new products or to handle the 
inherent variability of the reverse flow of used and remanufactured 
products. 

In the context of future research, our study is confined to the sce-
narios defined by the proposed DOE. An avenue for future research 
could involve exploring the effectiveness of various PCPs under different 
market conditions within CLSC systems. This could provide valuable 
insights into the robustness and adaptability of production control 
strategies across a broader spectrum of CLSC scenarios. Future research 
can focus on the impact of different PCPs not only in CLSCs but also in 
novel sustainable production–distribution structures (e.g. Symbiotic SCs, 
Turken & Geda, 2020). A further research avenue is represented by 
studying the impact of PCPs on different CLSC structures, such as 
divergent and convergent multi-echelon systems. In light of the recent 
pandemic emergency, it can be of benefit to investigate the efficiency of 
different PCPs in CLSCs under uncertainty in production and distribu-
tion lead-time, and when the system is characterized by destructions in 
forward and reverse material and information flow. 
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