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We extend the notion of graph homomorphism to cellularly
embedded graphs (maps) by designing operations on vertices
and edges that respect the surface topology; we thus obtain
the first definition of map homomorphism that preserves both
the combinatorial structure (as a graph homomorphism) and
the topological structure of the surface (in particular, orientabil-
ity and genus). Notions such as the core of a graph and the
homomorphism order on cores are then extended to maps.
We also develop a purely combinatorial framework for various
topological features of a map such as the contractibility of closed
walks, which in particular allows us to characterize map cores.
We then show that the poset of map cores ordered by the
existence of a homomorphism is connected and, in contrast to
graph homomorphisms, does not contain any dense interval (so
it is not universal for countable posets). Finally, we give examples
of a pair of cores with an infinite number of cores between them,
an infinite chain of gaps, and arbitrarily large antichains with a
common homomorphic image.
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1. Introduction

Homomorphisms between sets with added structure are mappings that preserve this structure.
or example, homomorphisms between graphs are mappings between their vertex sets that pre-
erve adjacency. For multigraphs (loops and parallel edges allowed), a homomorphism is defined
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as a pair of mappings, one on vertices and the other on edges, which together preserve vertex-edge
incidences. For a sense of the richness of the theory of graph homomorphisms, the reader is referred
to [11].

Key to the structural understanding of graph homomorphisms is the notion of a core [10], and
n particular the poset of cores, known as the homomorphism order. The enumeration of graph
omomorphisms connects their theory to applications in statistical physics: the partition function
f the q-state Potts model on a graph, and more generally partition functions of vertex-colouring
odels, are instances of homomorphism functions [6] (given by a weighted enumeration of graph
omomorphisms from the given graph to a fixed edge-weighted graph). These partition functions
re in turn intimately related to the Tutte polynomial of a graph, whose evaluations include
numerations of colourings and flows. In fact, any evaluation of the Tutte polynomial of a graph
xpressible as a homomorphism function is the partition function of a Potts model on the graph [7].
or graphs cellularly embedded in a surface (maps), the analogous notions of colourings (or tensions,
ather) and flows (taking non-identity values in a finite group) are counted by evaluations of the
urface Tutte polynomial [8,9], and have been expressed as partition functions of edge-colouring
odels [15]. This leaves the question of whether these enumerations can be expressed in terms of
ap homomorphisms as partition functions of vertex-colouring models on the map. To even begin

o answer this question we need to formulate a definition of map homomorphism that extends
hat of graph homomorphism while respecting the topology of the graph embedding. We will then
e able to adapt the fruitful analysis of graph homomorphisms via the poset of cores to the case
f maps.
As we shall relate shortly, how to define homomorphisms between maps, however, is not so

lear, one difficulty consisting in the preservation of both the combinatorial structure of the graph
nd the topological structure of the embedding.
Maps have several representations, some emphasizing their topological structure (cellular em-

eddings of graphs, ribbon graphs), some emphasizing their combinatorial structure (vertex–edge–
ace flags, rotation systems, graph-encoded maps, Tutte’s permutation axiomatization). What counts
s a map homomorphism may thus depend on which representation is chosen: what structure is
o be preserved exactly? To start on firm ground, isomorphism of maps has just one candidate for
ts definition no matter what representation is chosen.

We use a version of Tutte’s permutation axiomatization of maps [19, Chapter X] in which three
nvolutions defined on a set of ‘‘crosses’’ (obtained by quartering edges of the map) describe how
o get from one vertex, edge or face to an adjacent one whilst respecting the topology of the
ap (a formal definition is given in Definition 1 below). An isomorphism between maps in this

epresentation is a bijection between their cross sets that commutes with the involutions defining
he maps. By dropping the bijective condition, we obtain the definition of map homomorphism
iven both by Malnič, Nedela, and Škoviera [16] (restricted to the case of orientable surfaces) and
y Litjens and Sevenster [15] (restricted to locally bijective mappings, the context being universal
overs of graphs). Map homomorphisms defined in this way preserve local combinatorial and
opological structure (such as vertex–edge–face incidences and vertex rotations) but, in general,
o not preserve global topological parameters such as orientability or genus.
We formulate a new definition of map homomorphism (Definition 22) that ensures that homo-

orphisms preserve the surface topology; our definition is mainly based on a vertex identification
peration that we call vertex gluing. Vertex gluing, defined in terms of cross permutations (Defi-
ition 8), has the following interpretation in the representation of a map as a cellular embedding
f a graph in a surface: two vertices can be identified under this operation if they can be moved
ontinuously towards each other until they coincide without crossing any edge, or if they lie in
ifferent connected components; vertex gluing can be realized as the insertion of an edge (joining
he vertices to be identified in a way that preserves genus and orientability) followed by its
ontraction. Any other rule of identifying vertices defined for maps generally is either a special
ase of vertex gluing or fails to preserve genus and orientability in some instances. We then define
map homomorphism as a sequence of such vertex gluings followed by a sequence of duplicate
dge gluings (the analogue of suppressing parallel edges in graphs). Map homomorphisms in our
ense preserve not only orientability and genus but also other key topological features (such as
2
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the contractibility of facial walks) and the combinatorial structure of the map (when forgetting
the embedding, a homomorphism between maps gives a homomorphism between their underlying
graphs).

Using our definition of map homomorphism, we define a core of a map (Definition 26) as
minimal submap that is a homomorphic image of the whole map, analogously to how the

ore of a graph is defined. We establish several properties of map cores shared with graph
ores, and characterize map cores in terms of a certain type of contractible closed walks, which,
oughly speaking, separate off a disc from the remainder of the map’s surface. This characterization
xploits the ‘‘locality’’ of map homomorphisms, in the sense that any map homomorphism can be
ecomposed into a sequence of map homomorphisms that fix all but a plane submap contained
ithin a contractible curve on the surface in which the map is embedded. After giving applications
f the characterization, we show that, unlike graph homomorphisms, the map homomorphism order
as no dense intervals, and is thus not universal. Finally, we produce examples of maps with an
nfinite number of cores between them, an example of an infinite chain of gaps, and arbitrarily
arge antichains of cores sharing a common homomorphic image.

We would also like to highlight that another contribution of our work is a purely combinatorial
ormulation for various topological features of a map in its representation as a cellular embedding
f a graph in a closed surface, such as the contractibility of closed walks. (A more general notion
f contractibility is needed than that given by Mohar and Thomassen [17], which does not include
losed walks that revisit edges within its scope, while Cabello and Mohar [2] give a topological
efinition of contractibility not straightforward to translate into combinatorial terms.)
The paper is organized as follows. In Section 2 we use a permutation axiomatization for maps

o develop the formalism required for later constructions and proofs. Section 2.1 focuses on
he operations of deletion and contraction of edges in maps. By considering the effect of these
perations on the various map parameters such as connectivity, genus and orientability, we arrive
t eleven types of map edges (compared to the three edge types of ordinary, bridge and loop for
ultigraphs). These types serve to indicate both the combinatorial and topological role an edge
lays in the map.
Section 3 is devoted to developing the notion of a homomorphism between maps. In Section 3.1

e give a formal account of the operation of vertex gluing, and in Section 3.2 we define the
peration of duplicate edge gluing. In Section 3.3 we use vertex and duplicate edge gluings to define
hat it means to be an epimorphism from one map onto another, and the already established notion
f isomorphism between maps in order to define what it means to be a monomorphism from one
ap into another. By composing an epimorphism and a monomorphism we finally arrive at what

t means to be a homomorphism from one map to another.
Having then in hand the formal definition of a homomorphism between maps, Section 4 is

evoted to the analogue of graph cores for maps. In Sections 4.2 and 4.3 topological notions such as
eparating and contractible curves are defined in terms of the permutation representation of maps
o as to move towards the characterization of when a map is a core given in Section 4.4. Significant
ifferences to graph cores then emerge in the structure of the partial order on the set of cores under
he relation of ‘‘being homomorphic to’’ (Section 4.5).

. Maps

We use the combinatorial definition of maps based on Tutte’s permutation axiomatization of
ellularly embedded graphs [18], [19, Ch. X] (see also [1,12]), which is adapted so as to accommodate
solated vertices (maps without edges). Also, instead of the two involutions and basic permutation
f [19, Axioms X.1 to X.4], we consider three involutions to define the map (as for generalized maps
f dimension 2 [3,13,14], without boundary and with the artifice of empty permutation cycles to
ccommodate edgeless maps). We first introduce some notation.
Permutations of a finite set C are written in function notation, and the product of permutations is

their composition, read from right to left: if α, β : C → C are two permutations then αβ is defined
or c ∈ C by αβ(c) = α(β(c)). Parentheses are used to enclose cyclic permutations and to indicate
he element being mapped; in the first case we add some spacing between the parenthesis and the
3
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Fig. 1. (a) The permutations α0, α1, α2 defining a map acting on a cross c , (b) vertex permutation τ = α1α2 , (c) face
ermutation φ = α1α0 . The shaded area indicates a face, while the dots indicate that there might be some additional
dges in that region.

lements of the cycle, and we may drop several in the second case (writing αc for α(c), note that we
se Latin characters for the crosses while Greek characters for the permutations). For a sequence
= (x1, x2, . . . , xk) of distinct elements in C , the permutation ( x1 x2 · · · xk ) in cycle notation

s denoted by ( x ). For a permutation α, we let αx = (αx1, αx2, . . . , αxk); then ( αx ) = α( x )α−1.
he reverse sequence (xk, . . . , x2, x1) is denoted by x, and as cyclic permutations ( x ) = ( x )−1.
hus, αx, equal to αx, stands for the sequence (αxk, . . . , αx2, αx1), and ( αx ) = α( x )−1α−1.

Definition 1. Let V , E and F be finite sets, elements of which are called vertices, edges and faces,
espectively. A map M = (V , E, F ) is specified by a tuple (C, α0, α1, α2) in which C is a finite set, whose
lements are called crosses; and

• α0, α1, α2 : C → C are involutions with no fixed points, that is, α2
i c = c and αic ̸= c for each

i ∈ {0, 1, 2} and all c ∈ C;
• the permutations α0 and α2 commute, that is, α0α2 = α2α0;
• each vertex v ∈ V is associated with a pair of cycles ( x ) ( α2x ) in the disjoint cycle decomposition

of the permutation α1α2, where x is a sequence of crosses (we allow x to be empty, making a pair
of empty cycles, which corresponds to v being an isolated vertex);
• the disjoint cycle decomposition of the involution α1 is supplemented by pairs of empty cycles (each

pair corresponding to edgeless components of the map);
• each edge e ∈ E is associated with a pair of transpositions ( c α0α2c ) ( α0c α2c ) for some

cross c ∈ C;
• each face z ∈ F is associated with a pair of cycles ( y ) ( α0y ) in the disjoint cycle decomposition of

the permutation α1α0, where y is a sequence of crosses (we allow y to be empty, which corresponds
to z being the face of an isolated vertex).

The vertex and face permutations of M are denoted respectively by

τ = α1α2 and φ = α1α0.

tuple (C, α0, α1, α2) may be alternatively specified by giving C, α0, α2 and either the vertex
ermutation τ or the face permutation φ; this is the approach taken by Tutte [19, Chapter X]. Fig. 1
llustrates the involutions α0, α1 and α2, the vertex permutation τ and the face permutation φ; in
his and later figures it is convenient to use the ribbon graph representation for better visualization.

For a map M = (V , E, F ) specified by a tuple (C, α0, α1, α2) we may write M ≡ (C, α0, α1, α2)
hen spelling out what V , E and F are is not relevant to the context. We shall also write v ≡

x ) ( α2x ), e ≡ ( c α0α2c ) ( α0c α2c ) and z ≡ ( y ) ( α0y ) to indicate the cycles associated
to a vertex v, an edge e, and a face z.

Let v ≡ ( x ) ( α2x ) be a vertex such that a cross c or α0c appears in x. We say that v is
ncident with the edge e ≡ ( c α0α2c ) ( α0c α2c ) and, similarly, the edge e is incident
ith a face z if one cross of e appears in the corresponding pair of cycles of φ associated with
. With this definition of incidence, Γ = (V , E) is the underlying graph of the map M = (V , E, F )
pecified by (C, α0, α1, α2). Isolated vertices of Γ are associated with pairs of empty cycles appended
o the cycle decomposition of τ , and a corresponding pair of empty cycles is appended to the
4
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cycle decomposition of φ (representing the face surrounding the isolated vertex of Γ in the given
mbedding).
The degree of a vertex v is the number of crosses in one of its associated cycles from the cycle

decomposition of τ , and the degree of the face z is the number of crosses in one of its cycles in φ.
A loop of M is an edge incident with just one vertex, and a link is an edge incident with two

distinct vertices. We denote the number of vertices, edges and faces of M by v(M), e(M) and f(M),
espectively. Each orbit of ⟨α0, α1, α2⟩ acting on C is a connected component of M . Each pair of empty
ycles of τ , associated with an isolated vertex, gives its own connected component. The number
of connected components is denoted by k(M). A map is connected if it has just one connected
component (the edgeless map on one vertex is connected).

In a connected map M ≡ (C, α0, α1, α2), the number o(M) of orbits of ⟨α0α2, α1α2⟩ acting on C
is either 1 or 2 [19, Theorem X.11]; M is non-orientable if o(M) = 1, and orientable if o(M) = 2.
Generally, a (not necessarily connected) map M is said to be orientable if all its components are
orientable, and non-orientable otherwise. The parameter o(M) is extended from connected maps to
all maps by setting o(M) = mini o(Mi) when M has connected components {Mi}.

The Euler characteristic of a map M is defined as

χ(M) = v(M)− e(M)+ f(M),

which is used to define the Euler genus by

eg(M) = 2k(M)− χ(M),

the genus by

g(M) = eg(M)/o(M),

and the signed genus by

sg(M) = [2o(M)− 3]g(M) =
2o(M)− 3

o(M)
eg(M) =

{ 1
2eg(M) if o(M) = 2
−eg(M) if o(M) = 1.

(1)

The parameters e, f, v, k, χ, g and eg are additive over connected components: their value on M
is the sum of their values over each connected component. (The parameters of orientability o and
signed genus sg are not additive over connected components in this way.)

Two maps M ≡ (C, α0, α1, α2) and M ′ ≡ (C ′, α′0, α
′

1, α
′

2) are isomorphic [19, X.4] if they have the
same number of isolated vertices and there exists a bijection β : C → C ′ such that βαic = α′iβc
for any c ∈ C and i ∈ {0, 1, 2}. Note that β determines naturally a bijection between the vertices,
edges and faces of the two maps and their respective vertex and face permutation cycles.

The (geometric) dual of a map M ≡ (C, α0, α1, α2) is the map M∗ ≡ (C, α2, α1, α0). The effect
of swapping α0 and α2 to form the dual gives φ = τ ∗ and τ = φ∗: the rotational order of edges
around a face of M becomes the rotational order of edges around a vertex in M∗ and, dually, the
rotational order of edges around a vertex of M becomes the rotational order of edges around a face
of M∗. The graph underlying M∗ is given by Γ ∗ = (F , E) and the edge-face incidence relation.

The permutation representation of a map described in this section is better suited to our
combinatorial approach than the following equivalent topological definition:

A map is a graph Γ embedded on a surface Σ = Σ1⊔· · ·⊔Σk (each Σi is a compact, connected
2-manifold without boundary): vertices are points and edges are closed curves connecting
pairs of vertices that do not intersect, except possibly at their endpoints (informally, the graph
is drawn on the surface in such a way that two edges do not cross).

The idea behind Definition 1 is to describe an embedding of a graph in a surface by explaining
how to go from a point next to a given vertex, edge or face to a point next to the ‘‘adjacent’’ vertex,
5
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edge or face. In order to do this, edges are cut across and lengthwise into four parts or crosses1 and
he involutions describing adjacency act on this set of crosses (see Fig. 1).

From a connected combinatorial map as given by Definition 1, we can obtain a surface Σ
by gluing open discs along the faces (following one of the permutations of the crosses of the
face); this leads to an embedding of the underlying graph Γ of the map in Σ with the property
hat removing the vertices and edges of Γ from Σ leaves a set of connected components each
omeomorphic to a disc. That is to say, a 2-cell embedding of Γ . Therefore, a correspondence holds
etween connected maps and 2-cell embeddings of connected graphs in a surface. In particular, each
onnected component of the graph is 2-cell embedded in its own connected surface. The genus and
rientability of a connected surface Σ coincide with the genus and orientability of a connected map
hose underlying graph has been 2-cell-embedded in Σ .

.1. Deletion and contraction

Deletion and contraction of an edge e of a map M are formally defined in [9], and denoted by
\e and M/e, respectively.2 In the case of a link, these operations have the same effect as deletion
nd contraction in the underlying graph of M . Deleting a loop of M likewise corresponds in the
nderlying graph to deleting the loop. However, the result of contracting a loop depends on its
ype, and is not the same as deleting it in the underlying graph: a loop is twisted if a cross c of
he edge and α0c belong to the same permutation cycle of τ , otherwise, the loop is non-twisted (a
cross c of the edge and α2α0c belong to the same permutation cycle of τ ). Contraction of a twisted
loop has the effect of ‘‘flipping over’’ one side of it, and contraction of a non-twisted loop does not
correspond at all to contracting the loop in the underlying graph: indeed, contracting a non-twisted
loop splits its incident vertex into two vertices.

Just as deletion and contraction of edges in a graph are dual operations (with respect to matroid
duality, the relevant matroid here being the cycle matroid of the graph), so deletion and contraction
of edges in maps are dual operations (with respect to geometric duality). Thus [9, Proposition A.5],

(M/e)∗ = M∗\e and (M\e)∗ = M∗/e. (2)

Similarly to graphs, the order in which deletion and contraction of the edges is performed is
immaterial, which allows us to define deletion and contraction of a subset of edges. We let M\A
denote the result of deleting the edges in A (in any order), and M/B the result of contracting the
edges in B (in any order). As shown in [9, Lemma A.6], for a map M and disjoint subsets A, B of
edges of M it follows that (M \ A)/B = (M/B) \ A.

For the purposes of this paper we only need to know the effect of these operations on the
vertex and face permutations, as described in Tables 1 and 2 (actually, the definition of deletion and
contraction can be retrieved from these tables). For the vertex permutation τ , the effect depends
on three types of edges that have already been defined: a link, a non-twisted loop, and a twisted
loop. For the face permutation φ, we need three further edge types: a dual link, dual twisted loop or
dual non-twisted loop of M , defined respectively as a link, twisted loop or non-twisted loop of the
dual map M∗. Combinations of these give nine edge types; see Fig. 2 for some examples.

While these nine edge types are sufficient to determine the effect of deletion and contraction on
the map parameters v(M), e(M) and f(M), in order to determine the effect on the parameters k(M)
and o(M), and hence, via Euler’s relation, on g(M), two further edge types are needed: a bridge and
a dual bridge. The defining property of a bridge e is that

k(M\e) =
{
k(M)+ 1 if e is a bridge,
k(M) otherwise.

(3)

A dual bridge e is defined with the same property just replacing k(M\e) by k(M/e).

1 As Tutte explains [19, X.10.2], the term ‘‘cross’’ was suggested by their representation in diagrams as two crossed
arrows, one along an edge and the other across it, these arrows being reversed by two commuting involutions. Bryant
and Singerman [1] call crosses blades. As mentioned before, the maps given by Definition 1 can be seen as generalized
maps [3,13,14], in which context these crosses are called darts. For Tutte, the term ‘‘dart’’ is used for a directed edge,
orresponding to a pair of crosses related by the product of the two commuting involutions.
2 The effect of deletion and contraction of an edge on the involution α is described in the proof of Lemma 9.
1

6
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Table 1
The effect of deletion and contraction of an edge on the vertex permutation τ , in which x and y are
(possibly empty) sequences of crosses.
Edge type in M of e
( c α0α2c ) (α0c α2c )

Link Non-twisted loop Twisted loop

cycle pair(s) in τ (c x)(α2c α2x)
(α0α2c y) (α0c α2y)

(c x α0α2c y)
(α2x α2c α2y α0c)

(c x α0c y)
(α2xα2c α2yα0α2c)

cycle pair(s) in τ

after deleting e
(x) (α2x)
(y) (α2y)

(x y) (α2x α2y) (x y) (α2x α2y)

v(M\e) = v(M) v(M) v(M)

cycle pair(s) in τ

after contracting e
(x y) (α2x α2y) (x) (α2x)

(y) (α2y)
(x α2y) (α2x y)

v(M/e) = v(M)− 1 v(M)+ 1 v(M)

Table 2
The effect of contraction and deletion of an edge on the face permutation φ, in which x and y are
(possibly empty) sequences of crosses.
Edge type in M of e
( c α0α2c ) (α0c α2c )

Dual link Dual non-twisted
loop

Dual twisted loop

cycle pair(s) in φ (c x)(α0c α0x)
(α0α2c y) (α2c α0y)

(c x α0α2c y)
(α0x α0c α0y α2c)

(c x α2c y)
(α0xα0c α0yα0α2c)

cycle pair(s) in φ

after contracting e
(x) (α0x)
(y) (α0y)

(x y) (α0x α0y) (x y) (α0x α0y)

f(M/e) = f(M) f(M) f(M)

cycle pair(s) in φ

after deleting e
(x y) (α0x α0y) (x) (α0x)

(y) (α0y)
(x α0y) (α0x y)

f(M\e) = f(M)− 1 f(M)+ 1 f(M)

Table 3
Effect of deletion and contraction on the Euler characteristic: the difference χ(M\e) − χ(M) (in the column headed \e)
and χ(M/e) − χ(M) (in the column headed /e) according to the nine possible edge types for e (without distinguishing
ridges).
Edge type in M of e Dual link Dual non-twisted loop Dual twisted loop

\e /e \e /e \e /e

link 0 0 +2 0 +1 0
non-twisted loop 0 +2 +2 +2 +1 +2
twisted loop 0 +1 +2 +1 +1 +1

A bridge is a special type of link and dual non-twisted loop (it is a link as deleting a loop on
vertex v does not affect the connection of v to other vertices, and it is a dual non-twisted loop
s the deletion of an edge e in disconnecting M increases the number of faces). Similarly, a dual
ridge is a special type of non-twisted loop and dual link. A (dual) link that is not a bridge is called
(dual) ordinary link.
Fig. 2 shows maps that between them contain examples of all eleven edge types.

uler characteristic and Euler genus. The effect of deletion and contraction of an edge e of M on the
uler characteristic χ(M) is recorded in Table 3 using the information given in Tables 1 and 2. As
an be seen from the table – and as shown by Tutte [19, Theorem X.26] – contracting a link does
ot change the Euler characteristic (dually, deleting a dual link does not change it either).
Table 3 together with the distinction of bridges and dual bridges yield Table 4, which shows the

ffect of deletion and contraction on the Euler genus eg(M) according to the eleven edge types. The
uler genus is unchanged when deleting a dual link or a bridge; otherwise it decreases.
7
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Fig. 2. Examples of maps that between them contain all eleven edge types; solid edges (in blue) are of the given type.
ranspose entries in the table are dual maps (those on the diagonal self-dual). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Effect of deletion and contraction on the Euler genus: the difference eg(M\e) − eg(M) (in the column headed \e) and
g(M/e) − eg(M) (in the column headed /e) according to the eleven possible edge types for e (non-twisted loops that
re dual links are divided into those where the dual link is ordinary or a dual bridge, analogously for links that are dual
on-twisted loops.)
Edge type in M of e Dual link Dual non-tw loop Dual twisted loop

Dual ord. link Dual ord. link Dual bridge
\e /e \e /e \e /e

link ordinary 0 0 −2 0 -1 0link bridge 0

non-twisted loop 0 −2 0 −2 −2 −1 −2

twisted loop 0 −1 −2 −1 −1 −1

Orientability. Tutte showed [19, Theorems X.26 and X.28] that the contraction of a link does not
change orientability (dually, deleting a dual link does not change orientability either); we include
this result as statement (ii) in the following lemma (its proof is omitted).

Lemma 2. Let e be an edge of a connected map M.

(i) If o(M) = 2 then o(M\e) = o(M) = o(M/e).
(ii) If e is a dual link then o(M\e) = o(M); if e is a link then o(M/e) = o(M).
(iii) If e is a bridge or a dual bridge then o(M\e) = o(M) = o(M/e).

Proof. Let M ≡ (C, α0, α1, α2), and e ≡ ( c α0α2c ) ( α0c α2c ). If o(M) = 2, then o(M\e) = 2,
as deletion simply removes the crosses of e from the cycles of the vertex permutation τ of M , and
so it cannot merge the two orientation classes (orbits under the action of ⟨τ , α0α2⟩). By the same
argument applied to the face permutation φ (or by duality, o(M∗) = o(M)) we have o(M/e) = 2.
This proves statement (i).

When o(M) = 2 statement (iii) follows from statement (i). Suppose now that the edge e is a
bridge and o(M) = 1. The group ⟨τ , α0α2⟩ acting on C has one orbit: the graph Gτ on cycles of τ , in
which two cycles are joined by an edge if there is a cross a in one such that α0α2a lies in the other,
is connected (as the number of connected components of G corresponds to the number of orbits
τ

8
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of ⟨τ , α0α2⟩ acting on C). The cycles

( c x ) ( α2c α2x ) and ( α0α2c y ) ( α0c α2y )

of τ containing crosses of e have an edge in Gτ connecting ( c x ) and ( α0α2c y ),
nd an edge connecting ( α2c α2x ) and ( α0c α2y ). After deleting e, these cycles

of τ become the cycles ( x )( α2x ) and ( y ) ( α2y ) of the vertex permutation τ ′

f C\{c, α0α2c, α0c, α2c}, and the other cycles of τ remain the same. The edge previously joining
c x ) to ( α0α2c y ) and that joining ( α2c α2x ) to ( α0c α2y ) both disappear

n the new graph Gτ ′ . (Since e is a bridge, the crosses in x are not in the same orbit as crosses
of y under the action of ⟨α0, α1, α2⟩ when restricted to C\{c, α0α2c, α0c, α2c}.) However, all other
dges in Gτ remain. Therefore, the graph Gτ ′ cannot have four connected components, that is, the
roup ⟨τ ′, α0α2⟩ acting on C\{c, α0α2c, α0c, α2c} cannot have four orbits (there is either a single
rbit of the action of ⟨τ ′, α0α2⟩ that contains the crosses of x or a single orbit that contains the
rosses of y). This implies that both connected components of M\e cannot be orientable, and so
(M\e) = o(M) = 1.
Finally, we prove that M/e is non-orientable as the single orbit of ⟨τ , α0α2⟩ acting on C remains
single orbit in M/e. After the contraction of e, the cycles of τ containing crosses of e become
x y ) ( α2x α2y ). Then, the orbit containing the crosses of x coincides with that containing

crosses of y under the action of ⟨τ , α0α2⟩ on C\{c, α0α2c, α0c, α2c}. Hence, o(M\e) = 1.
The case of a dual bridge in statement (iii) then follows by o(M∗) = o(M), (M\e)∗ = M/e, and

(M/e)∗ = M\e. □

Genus and signed genus. In the following two lemmas we highlight those properties of the (signed)
genus with respect to deletion and contraction of an edge that we shall have need for later.

Lemma 3. Let e be an edge of a map M. Then,

(i) sg(M\e) = sg(M) if and only if e is a dual link or a bridge.
(ii) sg(M/e) = sg(M) if and only if e is a link or a dual bridge.
(iii) sg(M\e) = sg(M) = sg(M/e) if and only if e is a link and dual link, a bridge, or a dual bridge.

Proof. It suffices to prove statement (i), as (ii) follows by duality and (iii) is the conjunction of (i)
and (ii). Suppose first that e is a dual link or a bridge. From Table 4 it follows that eg(M\e) = eg(M),
nd by Lemma 2 we have o(M\e) = o(M). This implies sg(M\e) = sg(M) by Eq. (1).
Assume now that sg(M\e) = sg(M) and that e is not a dual link. Then, the edge e is a dual loop.

If o(M) = 2, by Lemma 2, maps M and M\e have the same orientability. Hence eg(M\e) = eg(M),
nd by Table 4, this equality holds if and only if e is a bridge.
Suppose now that o(M) = 1 and o(M\e) = 2 (otherwise we could argue as above). Eq. (1)

ives sg(M) = −eg(M) and sg(M\e) = 1
2eg(M\e). Further, by Table 4 it follows that eg(M\e) ∈

eg(M) − 1, eg(M) − 2}, which gives a contradiction as the Euler genus is an integer number.
herefore, M and M\e must have the same orientability, and we can conclude that e is a bridge
ith the same argument as for the case o(M) = 2. □

By Lemma 3 and Table 4, we have sg(M\e) = sg(M) if and only if eg(M\e) = eg(M). The effect
f edge deletion on the signed genus, sg(M), is otherwise to decrease its absolute value, g(M):

emma 4. Let e be an edge of a map M.

(i) If M is orientable then g(M\e) < g(M) unless e is a dual link or a bridge, in which case
g(M\e) = g(M).

(ii) If M and M\e are non-orientable then g(M\e) < g(M) unless e is a dual link or a bridge, in which
case g(M\e) = g(M).

(iii) If M is non-orientable and M\e is orientable then 2g(M\e) < g(M).

roof. If M is orientable, by Lemma 2(i), M\e is orientable. Statement (i) then follows by Table 4
nd the fact that, under the orientability assumptions, eg(M) = 2g(M) and eg(M\e) = 2g(M\e).
9
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Similarly, statement (ii) follows by Table 4 and the fact that eg(M) = g(M) and eg(M\e) = g(M\e)
under the orientability assumptions). In both statements, by Lemma 3, we have g(M\e) = g(M)
hen e is a dual link or a bridge.
By Lemma 2(i) we cannot have o(M) = 2 and o(M\e) = 1, so the remaining case to consider is

(M) = 1 and o(M\e) = 2, which is the hypothesis of statement (iii). By Lemma 2(ii), in this case
he edge e must be a dual loop. Referring to Table 4, this implies eg(M\e) < eg(M) unless e is a
ridge, in which case by Lemma 2(iii) we have o(M\e) = o(M), contrary to the assumption. Under

the given orientability assumptions, eg(M) = g(M) and eg(M\e) = 2g(M\e). □

Euler genus and signed genus of submaps. Let v be a vertex of a map M = (V , E, F ). The map M − v

obtained by deleting v is the map that results by first deleting all edges incident with v, and then
removing the empty pair of cycles associated with the now isolated vertex v. A map N is an induced
submap of M if N = M −U for some U ⊆ V ; similarly, N is a spanning submap of M if N = M\A for
some A ⊆ E. An induced submap of a spanning submap of M is called a submap of M . All types of
submaps are said to be proper when they are distinct from the map.

IfM ′ is a submap ofM then v(M ′) ≤ v(M) and e(M ′) ≤ e(M), and both the number of components
and the number of faces may change in both directions.3 However, we next show that the Euler
genus is monotonous.

Lemma 5. Let M ′ be a submap of a map M. Then,

(i) eg(M ′) ≤ eg(M), and
(ii) eg(M ′) = eg(M) if and only if sg(M ′) = sg(M).

Proof. Part (i) follows from Table 4: deleting edges does not increase the Euler genus, and neither
does deleting isolated vertices. Part (ii) follows from Table 4 and Lemma 3. □

3. Map homomorphisms

The image of a graph homomorphism can be realized as a sequence of identifications of
pairs of distinct vertices, followed by the suppression of parallel edges (i.e., edges incident with
the same pair of vertices, or same vertex in the case of parallel loops). In order to define the
image of a homomorphism from a map, so that restricted to the underlying graph gives a graph
homomorphism, we need to define how to identify a pair of vertices on a map so as to produce
another map unambiguously, and to define what it means for edges of a map to be parallel. When
identifying vertices in maps we also need to take into account their incident faces along with the
vertex and face rotations: this is where the permutation axiomatization of maps becomes essential
in order to formulate a well-defined operation on maps analogous to vertex identification in graphs.

3.1. Vertex gluing

In this section we define the operation of vertex gluing in terms of cross permutations and draw
on properties of edge deletion and contraction in order to establish that vertex gluing is the only
general way to identify vertices in a map while preserving genus and orientability (this property
is needed, in particular, to enable restriction and composition of homomorphisms to be generally
defined). First, we introduce an operation on maps represented by cross involutions, and go on to
explain how vertex gluing can be formalized using this operation.

Definition 6. Let M ≡ (C, α0, α1, α2) be a map and a, b ∈ C. The map obtained by riffling a and b is
M ( a b )

≡ (C, α0, α̃1, α2) in which α̃1a = α1b, α̃1b = α1a, and α̃1 = α1 on C \ {a, b, α1a, α1b}.

3 For example, two loops embedded in the torus are incident with one common face, while deleting one of the loops
leaves the other loop incident with two faces; deleting this single loop gives an isolated vertex and just one face again.
10
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Fig. 3. Riffling the crosses a and b to obtain the map M ( a b ); this is the map that results from gluing distinct vertices u
nd v, whose incident crosses a and b are: (i) coincident with a face z, (ii) incident with different faces x, y in different

connected components.

Fig. 3 illustrates examples of the riffling operation. With α̃1a = α1b and α̃1b = α1a, we have
α1(α1a) = α̃2

1b = b, and similarly α̃1(α1b) = a. The involution α̃1 on C obtained by riffling a and b
is the result of conjugating the involution α1 by the transposition ( a b ), or by the transposition
( α1a α1b ); we thus have M ( a b )

= M (α1a α1b ). The pair of transpositions ( a α1a ) ( b α1b )
in the disjoint cycle decomposition of α1 is replaced by the pair ( a α1b ) ( b α1a ).

While any pair of distinct crosses a, b of M can be riffled to produce another map, only under
certain conditions are genus and orientability preserved. We next introduce some terminology to
help describe what these conditions are. A cross c is incident with a vertex v (or a face z) if the pair
of permutation cycles associated with v (respectively z) contains c. A pair of crosses are coincident
with the vertex v (face z) if they belong to the same orbit of τ (respectively φ), i.e. they belong
to the same permutation cycle in the pair of cycles associated with v (respectively z). If a, b are
coincident with a common face z, the crosses α1a and α1b appear in the conjugate inverse cycle to
( a . . . b . . . ); thus a, b are coincident with a common face z if and only if α1a, α1b are
coincident with a common face z.

Lemma 7. The operation of riffling crosses a and b preserves genus and orientability when one of the
following conditions holds:

(1) (i) crosses a and b in M are incident with distinct vertices and coincident with a common face,
or (ii) these crosses are incident with vertices and faces in different connected components;

(2) (i) crosses a and b in M are coincident with a common vertex and incident with distinct faces, or
(ii) these crosses are coincident with a common vertex and face and k(M ( a b )) > k(M).

In other words, in these cases, sg(M ( a b )) = sg(M).

Proof. First assume that crosses a, b satisfy condition (1). We define M+ ≡ (C+, α+0 , α+1 , α+2 ) as the
ap obtained from M by adding an edge e ≡ ( c α+0 α+2 c ) ( α+0 c α+2 c ) so that M+\e = M and
+/e = M ( a b ). Explicitly, one can check that M+/e = M ( a b ) setting

• C+ = C ⊔ {c, α+0 c, α+2 c, α+0 α+2 c};
• α+0 = α0 on C;
• α+1 = α1 on C \ {a, b, α1a, α1b}, and α+1 a = c , α+1 b = α+0 α+2 c , α+1 (α1a) = α+2 c , α+1 (α1b) = α+0 c;
• α+2 = α2 on C .

hen a and b belong to the same permutation cycle of φ, the edge e is a link and dual link in
+; when they belong to different connected components of M , the edge e is a bridge of M+. By
emma 3, sg(M) = sg(M+) and sg(M+) = sg(M+/e), whence sg(M) = sg(M ( a b )).
To see that riffling crosses satisfying condition (2) also preserves genus and orientability, it

uffices to show that if in M crosses a and b are coincident with a common vertex and incident with
11
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distinct faces (condition (2)(i)), then in M ( a b ) crosses a and b are incident with distinct vertices and
coincident with a common face (condition (1)(i)); likewise, if in M crosses a and b are coincident
with a common vertex and common face and k(M ( a b )) > k(M) (condition (2)(ii)), then in M ( a b )

crosses a and b are incident with vertices and faces in different connected components (condition
(1)(ii)). For then we have, sg(M ( a b )) = sg((M ( a b ))( a b )), and the result follows as (M ( a b ))( a b )

= M .
It remains then to establish the effect of riffling crosses a, b on the vertex and face permutations

of M under condition (2); as riffling a, b returns M ( a b ) to the original map M , it suffices to establish
the effect of riffling on τ and φ under condition (1). (We choose this direction as it will be useful
for clarifying what is involved in the key operation of vertex gluing, defined in Definition 8 and
illustrated in Fig. 3 with the same notation as here.)

Suppose first condition (1)(i) that the crosses a and b are incident with distinct vertices u and
v, and coincident with a common face z in M . The pair of face permutation cycles associated with
z takes the form

φz = ( a x b y ) ( α0x α0a α0y α0b ),

nd the pairs of vertex permutation cycles associated with u and v take the form

τu = ( a u ) ( α2u α2a ) and τv = ( b v ) ( α2v α2b ),

for (possibly empty) cross sequences x, y,u and v.
After riffling a and b, the face z of M is split into two faces x, y and vertices u and v are merged

into a single vertex w; in terms of the vertex permutation τ̃ = α̃1α2 and face permutation φ̃ = α̃1α0
of the map M ( a b )

≡ (C, α0, α̃1, α2) obtained upon merging u and v through z,

φ̃x = ( a x ) ( α0x α0a ) and φ̃y = ( b y ) ( α0y α0b ),

nd

τ̃w = ( a u b v ) ( α2u α2a α2v α2b ).

n other crosses we have τ̃ = τ and φ̃ = φ. Thus, riffling a, b consists in merging the vertices u
nd v into a single vertex w while splitting the common face z into faces x and y. The crosses a, b
ow satisfy condition (i) of part (2). Riffling a, b again returns us to condition (i) of part (1).
Suppose now condition (1)(ii) that crosses a, b are incident with vertices u, v and faces x, y that

re in different connected components of M . Here we have

τu = ( a u ) ( α2u α2a ) and τv = ( b v ) ( α2v α2b ),

nd

φx = ( a x ) ( α0x α0a ) and φy = ( b y ) ( α0y α0b ),

or (possibly empty) cross sequences x, y,u and v. Then, the result of merging u and v into a single
ertex w, along with x and y into a single face z, is to produce the map M ( a b )

≡ (C, α0, α̃1, α2) in
hich

τ̃w = ( u a v b ) ( α2a α2u α2b α2v ).

φ̃z = ( a x b y ) ( α0x α0a α0y α0b ).

he crosses a, b now satisfy condition (ii) of part (2). Riffling a, b again returns us to condition (ii)
f part (1). □

Condition (1) in Lemma 7 under which genus and orientability are preserved by riffling crosses
eatures in our definition of vertex gluing; see Fig. 3. (The inverse operation to vertex gluing of
iffling crosses under condition (2), which splits a vertex while preserving genus and orientability,
ill feature later in Section 4.2.)
12
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Definition 8. Let a, b be crosses of a map M such that either

(i) a and b are coincident with a face z while a is incident with a vertex u and b is incident with a
different vertex v; or

(ii) a, b are incident with vertices u, v and faces x, y belonging to different connected components.

he map obtained from M by gluing vertices u and v, by (i) splitting face z or by (ii) merging faces x
nd y, is the map M ( a b ) obtained from M by riffling a and b.
In case either u or v is an isolated vertex, gluing vertices u and v is simply the deletion of the isolated

ertex (if both are isolated, then either is chosen arbitrarily to be deleted).

The effect of vertex gluing on the vertex and face permutations of M is given explicitly at the
nd of the proof of Lemma 7 above.
Having now arrived at a formal definition of vertex gluing – an operation of vertex identification

n maps that preserves genus and orientability – we finish this section by establishing some of its
roperties relevant to the sequel. From Lemmas 9 to 11, we establish that vertex gluing commutes
ith deletion of a dual link or bridge. Lemma 14 tells us that permuting the order of a sequence of
ertex gluings gives another sequence of vertex gluings, which by Lemma 13 results in the same
ap.

emma 9. If e ≡ ( c α0α2c ) ( α0c α2c ) is an edge of M ≡ (C, α0, α1, α2) and a, b are crosses
f M such that {a, b, α1a, α1b} ∩ {c, α0c, α2c, α0α2c} = ∅, then

(M\e)( a b )
= M ( a b )

\e, and (M/e)( a b )
= M ( a b )/e.

roof. We prove the identity for deletion of e; the proof for its contraction is similar. The map
( a b )

≡ (C, α0, α̃1, α2) has involution α̃1 equal to α1 conjugated by ( a b ). The map
\e ≡ (C ′, α′0, α

′

1, α
′

2) has C ′ = C \ {c, α0c, α2c, α0α2c}, and α′0 = α0 and α′2 = α2 on C ′. To
btain α′1 from α1 in terms of its disjoint cycle decomposition (product of transpositions) consider
he (at most four) transpositions of α1 containing a cross from edge e. We first describe how the
ranspositions of α′1 are obtained from those of α1; after this we describe the conditions under which
airs of empty cycles are added to α′1 (representing new isolated vertices).
If the crosses of e are in four distinct transpositions of α1, after removing them, merge together

nto a single transposition the crosses that were paired with c and α2c , and likewise those that
ere paired with α0c and α0α2c. If there are three transpositions containing crosses from e, then
here is one transposition containing two crosses of e, and two containing just one cross from e;
fter removing the crosses of e, merge together the remaining non-empty cycles to make a single
ransposition in place of the orginal two. Finally, if there are just two transpositions containing
rosses from e, then the transpositions of α′1 are simply obtained by removing these transpositions.
The conditions under which pairs of empty cycles are added to α′1 are as follows. If α1c = α2c ,

hen a pair of empty cycles is added to represent the isolated vertex that results; likewise, if α1α0c =
0α2c then a pair of empty cycles is added to represent the isolated vertex that results. (This
orresponds to deleting a link with endpoint(s) of degree one.) If α1c = α0c and α1α2c = α2α0c ,
then a single pair of empty cycles is added. (This corresponds to deleting a non-twisted loop, and
a single new isolated vertex is obtained.) If α1c = α2α0c and α1α2c = α0c , then a single pair of
empty cycles is added. (This corresponds to deleting a twisted loop, and a single new isolated vertex
is obtained.)

We thus see that the involution α′1 of M\e differs from α1 only on {c, α0c, α2c, α0α2c} ∪
α1c, α1α0c, α1α2c, α1α0α2c}.

Having now seen how deletion of an edge is defined in terms of the involution α1,4 we
observe that the hypothesis that {a, b, α1a, α1b} ∩ {c, α0c, α2c, α0α2c} = ∅ implies further that
a, b, α1a, α1b} ∩ {α1c, α1α0c, α1α2c, α1α0α2c} = ∅ (by applying the involution α1 to the two sets
in the intersection). As deleting e and riffling a, b thus change α1 on disjoint sets of crosses, and
hey both preserve α0 and α2 on C ′, these operations commute. □

4 For contraction, the effect on α1 is the same as described for deletion with the roles of α0 and α2 switched.
(Contraction produces isolated vertices for non-twisted loops, where α c = α c or α α c = α α c .)
1 0 1 2 0 2

13
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Corollary 10. If e ≡ ( c α0α2c ) ( α0c α2c ) is a dual link or bridge of M ≡ (C, α0, α1, α2) and
, b are crosses of M such that {a, b, α1a, α1b} ∩ {c, α0c, α2c, α0α2c} = ∅, then the vertex gluing of M
epresented by riffling a, b is also a vertex gluing of M\e, again represented by riffling a, b.

roof. As (M\e)( a b )
= M ( a b )

\e by Lemma 9, we only need to check that crosses a, b incident
ith distinct vertices and either coincident with a common face in M or in different connected
omponents of M are also coincident with a common face in M\e or lie in different connected
omponents of M\e.
The effect of deleting a dual link e incident with faces x′ and y′ in M is to merge x′ and y′ into

single face z ′. If a, b are coincident with a common face z of M , then the same is true in M\e
the same face z if z ̸∈ {x′, y′}, the merging of x′ and y′ if z ∈ {x′, y′}). If a, b belong to different
connected components of M and are incident with faces x, y in M , then they belong to different
connected components in M\e and are incident with the same faces x, y in M\e as they are in M .

Deleting a bridge e incident with face z ′ in M splits z ′ into two faces x′, y′ belonging to different
connected components. If a, b are coincident with a common face z of M , then the same is true in
M\e when z ̸= z ′; if z = z ′, crosses a, b are either coincident with common face x′ or with common
face y′ in M\e, or in different connected components incident with faces x′ and y′. If a, b belong
to different connected components of M and are incident with faces x, y in M , then they belong to
different connected components in M\e and are incident with the same faces x, y in M\e as they are
in M unless {x, y} ∩ {z} ̸= ∅, in which case the face in the component of M containing e, say x = z
containing a, is split into two faces, one of which contains a (however, the statement regarding the
fact that a, b belong to different connected components of M \ e remains valid). □

Corollary 10 can be extended to Lemma 11 below to accommodate deletion of any dual link or
bridge, which will allow us in Corollary 12 to induce, from a vertex gluing of M , a corresponding
vertex gluing of a submap of the same genus and orientability.

Lemma 11. Let e be either a dual link or a bridge with no endpoint of degree one of a map
M ≡ (C, α0, α1, α2). Let a, b be crosses of M incident with distinct vertices and either coincident with
a common face or in different connected components of M. Then there are uniquely defined crosses
a′, b′ ∈ C such that (M ( a b ))\e = (M\e)( a

′ b′ ). In particular, to the vertex gluing of M represented by
riffling a, b corresponds a vertex gluing of M\e represented by riffling a′, b′.

Proof. Let e ≡ ( c α0α2c ) ( α0c α2c ). When {a, b, α1a, α1b} ∩ {c, α0c, α2c, α0α2c} = ∅, by
Corollary 10, we can take a′ = a, b′ = b.

If e is a dual link, then a and b cannot both belong to {c, α0c, α2c, α0α2c} because they are
coincident with a common face (preventing b = α0a) and, as e is a dual link, c, α0c belong to a
different face to α2c, α0α2c (preventing b from being one of these crosses). Suppose then, without
loss of generality, that a = c is incident with face x of M and b ̸∈ {c, α0c, α2c, α0α2c} is either a
cross coincident with a on face x or a cross belonging to a different connected component of M . If
we set a′ = α1α2a = τa, then (M ( a b ))\e = (M\e)( a

′ b ).
Now suppose that e is a bridge incident with face z and that a = c. Possibly b = α0α2c , a cross

coincident with a on face z, but in any event b ̸∈ {α0c, α2c}. When b ̸= α0α2c , the same choice of
a′ = α1α2a gives (M ( a b ))\e = (M\e)( a

′ b ), unless a is incident with an endpoint of e of degree one.
When b = α0α2c , crosses a′ = α1α2a and b′ = α1α2b belong to different connected components of
M\e, the edge e is a loop in M ( a b ), and we have (M ( a b ))\e = (M\e)( a

′ b′ )
= M/e.

In all cases, the cross a′ is equal to a when a ̸∈ {c, α0c, α2c, α0α2c} and to τa when a ∈
{c, α0c, α2c, α0α2c}; and likewise b′ is set equal to b or τb according as it does not or does belong
to the crosses of e. □

The following corollary gives a way to restrict a sequence of vertex gluings to a spanning submap,
and will be used in Section 3.3 to define the restriction of a map homomorphism to a submap.

Corollary 12. Let M\A be a spanning submap of M such that sg(M\A) = sg(M), and let a, b be
crosses of M incident with distinct vertices u, v and either coincident with a common face or in different
14
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connected components. If neither u nor v are isolated vertices in M\A, then there are crosses a′, b′ of
M\A such that M ( a b )

\A = (M\A)( a
′ b′ ).

Proof. Lemma 11 and induction yield the result as any spanning submap of the same signed genus
as M is, by Lemma 3(i), obtained by a sequence of deletions of dual links or bridges. □

The following lemma records the effect of switching the order in which two riffles are composed.

Lemma 13. For two pairs of distinct crosses a, b and a′, b′ of a map M ≡ (C, α0, α1, α2), the following
tatements hold:

(i) If a, b, a′, b′ are distinct, then (M ( a b ))( a
′ b′ )
= (M ( a′ b′ ))( a b ), and the same identity holds with

( α1a α1b ) in place of ( a b ) or with ( α1a′ α1b′ ) in place of ( a′ b′ ).
(ii) If a = a′ and b ̸= b′, then (M ( a b ))( a b′ )

= (M ( a b′ ))(α1a α1b ), and the same identity holds with
( α1a α1b ) in place of ( a b ) or with ( α1a α1b′ ) in place of ( a b′ ).

(iii) If a = a′ and b = b′, then (M ( a b ))( a b )
= M, and the same identity holds with either transposition

( a b ) (possibly both) replaced by ( α1a α1b ).

Proof. Suppose first that no cross among a′, b′, α1a′, α1b′ is a cross among a, b, α1a, α1b. Then,
( a b ) ( a′ b′ ) = ( a′ b′ ) ( a b ), and thus conjugating α1 by ( a b ) and then
by ( a′ b′ ) gives the same permutation as when conjugating first by ( a′ b′ ) and then by
( a b ). Hence, (M ( a b ))( a

′ b′ )
= (M ( a′ b′ ))( a b ), which proves (i). The same argument shows that the

identity holds with α1a, α1b replacing a, b or with α1a′, α1b′ replacing a′, b′.
Suppose now that a = a′ and b ̸= b′. The involution

α1 = ( a α1a ) ( b α1b ) ( b′ α1b′ ) . . . (4)

after conjugating by ( a b′ ) or by ( α1a α1b′ ) becomes ( a α1b′ ) ( b α1b )
( b′ α1a ) . . . Then, conjugating by ( α1a α1b ) gives

( a α1b′ ) ( b α1a ) ( b′ α1b ) . . . (5)

Conjugating now the involution α1 in (4) by ( a b ) or by ( α1a α1b ) gives

( b α1a ) ( a α1b ) ( b′ α1b′ ) . . . ,

and then conjugating by ( a b′ ) gives ( b α1a ) ( b′ α1b ) ( a α1b′ ) . . . , which is the
same involution as (5). This establishes (ii).

Finally, when a = a′ and b = b′, conjugating α1 by ( a b ) and then again by ( a b ) is to
conjugate by the product of transpositions ( a b ) ( a b ), equal to the identity permutation.
This yields (iii). □

Before stating the next lemma, we introduce a notion needed for its proof and used further
in Section 4.2 below. Distinct crosses a, b, a′, b′ are interlacing in a cycle of crosses γ if γ =
( a x a′ y b z b′ w ) or γ = ( a x b′ y b z a′ w ), where
x, y, z and w are (possibly empty) sequences of crosses.

Lemma 14. Let a, b and a′, b′ be two pairs of distinct crosses of a map M ≡ (C, α0, α1, α2), and let
( a b ) be a vertex gluing of M and (M ( a b ))( a

′ b′ ) a vertex gluing of M ( a b ). Then, either

(i) M ( a′ b′ ) is a vertex gluing of M and (M ( a′ b′ ))( a b ) is a vertex gluing of M ( a′ b′ ), and (M ( a b ))( a
′ b′ )
=

(M ( a′ b′ ))( a b ), or
(ii) M (α1a′ α1b′ ) is a vertex gluing of M and (M (α1a′ α1b′ ))( a b ) is a vertex gluing of M (α1a′ α1b′ ), and

(M ( a b ))( a
′ b′ )
= (M (α1a′ α1b′ ))( a b ), or

(iii) M ( a′ b′ ) is a vertex gluing of M and (M ( a′ b′ ))(α1a α1b ) is a vertex gluing of M ( a′ b′ ), and (M ( a b ))( a
′ b′ )

= (M ( a′ b′ ))(α1a α1b ).

roof. The final equalities of statements (i), (ii) and (iii) follow from Lemma 13. To establish the
emainder of the lemma we shall show that if a, b are either
15
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(h1) incident with distinct vertices and coincident with a common face of M , or
(h2) incident with vertices and faces in different connected components of M ,

nd a′, b′ are either

(h1’) incident with distinct vertices and coincident with a common face of M ( a b ), or
(h2’) incident with vertices and faces in different connected components of M ( a b ),

hen a′, b′ are either

(c1) incident with distinct vertices and coincident with a common face of M , or
(c2) incident with vertices and faces in different connected components of M ,

nd a, b are either

(c1’) incident with distinct vertices and coincident with a common face of M ( a′ b′ ), or
(c2’) incident with vertices and faces in different connected components of M ( a′ b′ ),

ith the appropriate changes for cases (ii) and (iii) of the statement: For (ii) we replace a′ by α1a′
nd b′ by α1b′ in (c1), (c2), (c1’) and (c2’); for (iii) we replace a by α1a and b by α1b in (c1), (c2),
c1’) and (c2’).

We take in turn the four cases according to the position of crosses a, b in M and the position of
′, b′ in M ( a b ). Notice that cases (ii) and (iii) only occur in the first case.
Case (h1) and (h1’): Riffling a, b in M splits the face z in M containing a, b into two faces x, y, the

first containing a and the second b. By (h1’), there is a face z ′ in M ( a b ) containing a′, b′.
If z ′ ̸= x and z ′ ̸= y, then the face z ′ is also a face in M , and we obtain (c1) (for if the vertices of

a′ and b′ are distinct in M ( a b ), then they are also distinct in M as, since we are performing a vertex
gluing, there is a surjective mapping from the vertices of M onto the vertices of M ( a b )). Now, a and
b are also coincident with the same face in M ( a′ b′ ), by the assumption that z ′ ̸= x and z ′ ̸= y and
(h1’); furthermore, they are also incident with distinct vertices in M ( a′ b′ ) as we have just glued the
vertex incident with a′ and the vertex incident with b′, and if the two distinct vertices incident with
a and b in M now become the same in M ( a′ b′ ), this means that they were also glued together in
M ( a b ), thus contradicting the assumption (h1’). This shows (c1’) as stated.

If z ′ = x (the case z ′ = y is argued similarly), then we conclude that {a, b, a′, b′} are all
incident with the same face z in M . Now, the condition (h1’) implies that {a, b} ̸= {a′, b′}, for
otherwise, a′ and b′ would lie in two different faces, contradicting (h1’). Consider the cycle of crosses
γ = ( a α0a φa α0φa · · · α1a ) interleaving the two permutation cycles of the face z (one
of them being in its order, and the other in reverse). Assume first that |{a, b, a′, b′}| = 4, then the
four crosses cannot be interlacing in γ for otherwise (h1’) would not hold. Then we obtain (c1) and
(c1’). Now assume that |{a, b, a′, b′}| = 3, say without loss of generality that a′ = a. Then there are
two cases for γ , either γ1 = ( a = a′ x b y b′ z ) or γ2 = ( a = a′ x b′ y b z )
where x, y, z are non-empty sequences of crosses.5 In the first case, writing y = (y′, α1b′) and
z = (z′, α1a′), we have γ1 = ( α1a′ a x b y′ α1b′ b′ z′ ), so {α1a′, α1b′} and
{a, b} are not interlacing, and we conclude (c1) and (c1’) hold with α1a′ and α1b′ (thus obtaining
part (ii) of the statement). In the second case, writing y = (y′, α1b) and z = (z′, α1a), we have
γ2 = ( α1a a′ x b′ y′ α1b b z′ ), so {α1a, α1b} and {a′, b′} are not interlacing, and we have
(c1) and (c1’) with α1a and α1b (thus obtaining part (iii) of the statement).

Case (h1) and (h2’): As riffling a, b in M preserves connected components, crosses a′, b′ must also
belong to different connected components of M . Thus (c2) follows. We now show that (c1’) holds.
When riffling a′, b′ in M , the only alteration to the connected component of M containing a and b
may be the addition of some crosses to one of its vertices. Thus, if a and b are incident with distinct
vertices in M , they are also incident with distinct vertices in M ( a′ b′ ). The effect on the faces of this
connected component is the addition of crosses to one of its faces. Thus, if a and b are coincident
with a single face in M , they are also coincident with a face in M ( a′ b′ ). This shows (c1’).

5 The cyclicity of γ and the fact that {a′, b′} and {a, b} are coincident with the face makes the relative position of
{a′, α a} and {b′, α b′} the same within γ and γ .
1 1 1 2
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Fig. 4. (a) Two pairs (thicker blue and dashed) of duplicate edges in a plane map, (b) two duplicate loops in the torus
(thicker edges), and a loop that is not duplicate with the others (dashed), (c) three plane embeddings of four loops on a
vertex, the ones dashed are not duplicate with any other loop, the non-dashed ones are duplicate loops. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Case (h2) and (h1’): The riffling of a, b in M merges their respective faces x, y into a face z, with
which a, b are coincident in M ( a b ). If the face z ′ of M ( a b ) containing a′ and b′ is not equal to z, then
a′, b′ remain coincident with this face in M , and we have (c1) and (c2’). If z ′ = z, then there are two
possibilities. The first is that a′, b′ are coincident with a common face of M (either x or y), so (c1)
holds; also (c2’) holds since gluing the vertices of a′ and b′ in one connected component does not
affect the other connected component. The second possibility is that a′ is incident with the same
face of M as a or b, say the face x (but a and a′ are not necessarily coincident), and b′ is incident
with the face y. In this case (c2) holds. Now, in M ( a b ), crosses a′ and b′ are incident with the same
face as a and b, and (h1’) implies that a′ and b′ are in fact coincident with this face. Crosses a and
b are in the same face permutation cycle as a′ and b′ if both pairs {a, a′} and {b, b′} are coincident
on their faces of M , and different ones if both these pairs are incident but not coincident on their
faces of M . (Hypothesis (h1’) prevents just one of these pairs being coincident and the other not.)
Furthermore, hypothesis (h1’) also implies that a′ and b′ are incident with distinct vertices in M ( a b ).
This shows (c1’).

Case (h2) and (h2’): Riffling a and b in M merges the two connected components of a and b into
one, while the connected components of a′ and b′ are not merged. Thus, the crosses {a, b, a′, b′}
span at least three connected components in M . This shows that (c2) and (c2’) hold. □

3.2. Duplicate edges

If e and f are distinct parallel edges of Γ , then the graphs obtained after deleting e and f ,
respectively, are isomorphic via the mapping fixing vertices and fixing all edges except e and
f , which are swapped. Parallel edges are interchangeable when it comes to the existence of
homomorphisms: there is a homomorphism from Γ \e to a graph Γ ′ if and only if there is a
homomorphism from Γ \f to Γ ′, and a redundancy of one of the parallel edges in that there is
a homomorphism from Γ to Γ ′ if and only if there is a homomorphism from Γ \e to Γ ′. The same
statements hold for homomorphisms from the graph Γ ′ rather than to it.

There are, however, non-isomorphic maps with the same underlying graph which differ only in
the placement of parallel edges. For example, a plane 4-cycle with a chord and an edge added in
parallel to the chord, in one way bounding a face of degree two and a face of degree three, and in
the other bounding two faces of degree three.

In order to carry over to maps the property of parallel edges in graphs being indistinguishable
when it comes to homomorphisms, we need to add a topological constraint.

Definition 15. Two edges of a map M are duplicate if they are incident with a common face of degree
two.

Fig. 4 illustrates different examples of duplicate and non-duplicate edges. One can see that
duplicate edges can be merged into one while remaining in the surface of the map (much as pairs
of vertices on a common face can be glued while remaining in the surface of the map).
17
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Definition 16. Let M ≡ (C, α0, α1, α2) be a map containing crosses a and b = φa such that
≡ ( a α0α2a ) ( α0a α2a ) and f ≡ ( b α0α2b ) ( α0b α2b ) are duplicate

dges, bounding the face ( a b ) ( α0a α0b ) of degree two. The map obtained by gluing e and f is
[ a b ]
≡ (C, α0, α1, α2), in which

• C = C\{a, α0a, b, α0b};
• α0 = α0 and α1 = α1 on C;
• α2 = α2 on C\{α2a, α0α2a, α2b, α0α2b}, and

α2(α2a) = α0α2b, α2(α0α2a) = α2b.

Equivalently, we obtain M [ a b ] from M by preserving the three involutions and setting α0α2b← a and
α0α2a← b (so that α2b← α0a and α2a← α0b).

Observation 17. The map M [ a b ] given by Definition 16 is isomorphic to M\f upon setting α0α2b← a,
α2b← α0a, and to M\e upon setting α0α2a← b, α2a← α0b.

Definition 16 extends to pairs of edges e, f that lie on a common face of larger degree, or that
belong to different connected components, but we shall only apply it to pairs of edges that are
duplicate: the more general operation of gluing e and f can be defined as a composition of two
vertex gluings (if e and f share no endpoint) or one vertex gluing (if e and f share a single endpoint)
and a duplicate edge gluing.

Edges that are duplicate in M are incident with a common vertex of degree two in M∗. The
maximal induced paths in M∗ have edge sets equal to the equivalence classes of the relation defined
on M by taking the transitive closure of the relation of being duplicate: this equivalence relation
refines that of parallel edges in the underlying graph of M .

Lemma 18. If e, f are duplicate edges in M, then sg(M\e) = sg(M\f ) = sg(M).

Proof. The first equality follows by Observation 17, and the second equality by Lemma 3(i) as
duplicate edges are dual links. □

The following lemma tells us that duplicate edges remain duplicate under vertex gluing (except
possibly when the vertex gluing involves the face bounded by the duplicate edges), and that gluing
duplicates can be done before or after a vertex gluing without changing the resulting map.

Lemma 19. Let M ≡ (C, α0, α1, α2) be a map containing crosses a and b = φa such that e ≡
( a α0α2a ) ( α0a α2a ) and f ≡ ( b α0α2b ) ( α0b α2b ) are duplicate edges. Suppose
that a′, b′ are crosses of M such that {a′, b′, α1a′, α1b′} is disjoint from {a, α0a, b, α0b}. Then e and f
are duplicate in M ( a′ b′ ) and

(M [ a b ])( a
′ b′ )
= (M ( a′ b′ ))[ a b ].

Proof. By the disjointedness condition on crosses a′, b′, α1a′, α1b′, riffling a′, b′ fixes a, b, α1a = α0b
and α1b = α0a, and therefore the face of degree two ( a b ) ( α0a α0b ) is unchanged, i.e. the
edges e and f remain duplicate in M ( a′ b′ ).

Riffling a′, b′ fixes α0 and α2, and only changes α1 on the four crosses a′, b′, α1a′, α1b′, which by
assumption all belong to C = C \ {a, α0a, b, α0b}. The map M [ a b ] is obtained by restricting α0, α1
to C , and restricting α2 to C while changing its values on α2a, α0α2a, α2b, α0α2b from a, α0a, b, α0b
o α0α2b, α2b, α0α2a, α2a, respectively. The involutions α0, α1, α2 are thus by riffling/duplicate edge
luing affected as follows:

Riffling Duplicate edge gluing

α0 fix restrict to C
α1 change on {a′, α1a′, b′, α1b′} restrict to C

α2 fix restrict to C and change on {α2a, α0α2a, α2b, α0α2b}.

18



D. Garijo, A. Goodall and L. Vena European Journal of Combinatorics 118 (2024) 103936

C
{

e
f
i

3

g
t
m

D

p

e
f
g

w

P
(

P
g
o
e

a
i

D
a
I
a

u
s

h
f
c
g
i
i

For each involution, duplicate edge gluing followed by riffling has the same effect as riffling followed
by duplicate edge gluing. (For α1, the condition that the four crosses a′, b′, α1a′, α1b′ all belong to
= C \ {a, α0a, b, α0b} is needed so that the restriction to C can be followed by the changes on

a′, b′, α1a′, α1b′}.) □

In a similar way to how we ‘‘remove parallel edges’’ of a graph while maintaining at least one
dge in each parallel class, we can glue pairs of duplicate edges in a map iteratively until no
urther duplicates remain. Duplicate edges e, f of M are interchangeable in the sense that there
s a isomorphism from M\e to M\f that fixes all vertices and all edges apart from e or f .

.3. Homomorphisms

We have seen how a sequence of vertex gluings followed by a sequence of duplicate edge
luings takes one map onto another map of the same signed genus: the mapping induced on
he underlying graphs of the maps is an epimorphism (surjective graph homomorphism). This
otivates, in particular, the following definition of an epimorphism between maps.

efinition 20. Let M and N be maps of the same signed genus.
An epimorphism n : M ↠ N from M onto N is an isomorphism of N to a map obtained from M by

erforming a sequence of vertex gluings and a sequence of duplicate edge gluings.
A monomorphism from M into N is an isomorphism from M to a submap of N.

In an epimorphism either sequence – of vertex gluings or of duplicate edge gluings – may be
mpty. Notice that Lemmas 13, 14 and 19 together imply that vertex gluings can be done first,
ollowed by duplicate edge gluings, and the order within each sequence does not matter (that edge
luings commute with each other easily follows by interpreting it as edge deletion.)
Before giving our definition of map homomorphism, we record the following proposition, which

ill be used in Section 4.

roposition 21. Let M,M ′ be two maps such that there exist epimorphisms M ↠ M ′ and M ′ ↠ M
resp,. monomorphisms M ↣ M ′ and M ′ ↣ M). Then, M and M ′ are isomorphic.

roof. If there are epimorphisms both ways between M and M ′, then there can be neither vertex
luings (which reduce the number of vertices) nor duplicate edge gluings (which reduce the number
f edges). Since M ′ is thus obtained from M by empty sequences of vertex gluings and duplicate
dge gluings, there is an isomorphism between M ′ and M .
If there are monomorphisms both ways between M and M ′, there are isomorphisms between M

nd a submap of M ′ and between M ′ and a submap of M . As the maps are finite there is thus an
somorphism between M and M ′. □

efinition 22. Let M,M ′ be maps of the same signed genus. A map homomorphism from M to M ′ is
composition of an epimorphism from M onto a submap N of M ′ and a monomorphism from N into M ′.

n symbols, a map homomorphism h : M → M ′ is the composition m ◦ n of an epimorphism n : M ↠ N
nd a monomorphism m : N ↣ M ′.

A homomorphism from one map to another gives a graph homomorphism between their
nderlying graphs: a map homomorphism can thus be regarded as a graph homomorphism that
atisfies further topological constraints specified by an embedding of the graph as a map.
A homomorphism h : M → M ′ given by the composition h = m ◦ n, has image, denoted by

(M), equal to the image of its constituent epimorphism n; i.e., h(M) = N . Abusing notation a little
urther, a function on crosses is associated with h, and we let h(c) denote the cross of M ′ to which
ross c of M is sent by h. When the map homomorphism h is given solely by a sequence of vertex
luings, as represented by riffles, h fixes each cross (as a map on crosses); it is the involution α1 that
s altered. When the map homomorphism h consists solely of a single duplicate edge gluing, then
t sends four crosses to four other crosses, as described in Definition 16. Further, the isomorphism
19
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defining the monomorphism from h(M) into M ′ consists of a bijection between crosses of h(M) and
subset of crosses of M ′.
Associated with a homomorphism h : M → M ′, there is a function from vertices of M to vertices

f M ′: the crosses incident with a given vertex v of M are sent by h to crosses incident with a unique
ertex v′ in M ′. Likewise, a function is defined by h : M → M ′ from edges of M to edges of M ′:

the four crosses incident with an edge e of M are sent by h to four crosses incident with an edge
e′ in M ′. These two functions on vertices and on edges define a graph homomorphism between the
underlying graphs of M and M ′.

Restriction of a homomorphism. Lemmas 11 and 12 yield a procedure for converting a sequence of
vertex gluings applied to M into a sequence of vertex gluings applied to a spanning submap M\A
of the same genus and orientability as M .

Definition 23. Let M be a map with vertex permutation τ , and M\A a spanning submap of M of the
ame signed genus. Let h = m ◦ n be a map homomorphism from M to M ′. The restriction of h to M\A,
enoted by h|M\A : M\A→ M ′, is given by restricting n and m as follows:

Restriction of n: first, modify its sequence of vertex gluings to vertex gluings of M\A by replacing a
ertex gluing represented by a riffle of crosses a, b in M incident with vertices u, v by

• a vertex gluing of M\A represented by a riffle of τ ia, τ jb in M\A (where i, j ≥ 0 are minimal with
respect to τ ia, τ jb being crosses of M\A, if such i, j exist);
• deleting isolated vertex u (if τ ia is not a cross of M\A for any i, but τ jb is a cross of M\A for some

j), or isolated vertex v (if τ jb is not a cross of M\A for any j, but τ ia is a cross of M\A for some i);
• deleting one of the isolated vertices u and v (if τ ia, τ jb are not crosses of M\A for any i, j).

econd, modify its sequence of duplicate edge gluings by removing any gluings of duplicate edges, one
r both of which belong to A.

Restriction of m: we restrict the isomorphism that defines m to the image of the submap M\A under
he restricted epimorphism n.

The restriction h|M\A involves gluing the same vertex pairs as in the sequence of vertex gluings
efining the constituent epimorphism of h (what may differ are the faces merged or split by the
ertex gluings): the graph homomorphism corresponding to h from the underlying graph of M to
hat of M ′ is restricted to the underlying graph of M\A.

Having introduced the restriction to a spanning submap M\A, we next define the restriction of a
omomorphism h : M → M ′ to a submap N = (M\A)− U , where U is a subset of isolated vertices
f M\A. To obtain h|N we just perform the restriction h|M\A with the modification that in the vertex
luing sequence, when there is a choice between deleting a vertex in U and one outside U , the
ertex in U is deleted, and after which any remaining vertices in U are deleted. If N has the same
igned genus as M , then so does M\A, so we have the following result.

roposition 24. Let N be a submap of a map M of the same signed genus as M, and let h : M → M ′
e a homomorphism from M to a map M ′. Then, the restriction h|N : N → M ′ is a homomorphism.

In light of the preceding proposition, one may ask if it is possible to define a restriction h|N for
ny submap N even if N is a submap with a different signed genus as M; this is, in general, not
ossible, as Fig. 5 shows; if N is a plane submap, then we are not allowed to follow the sequence

of vertex gluings that h demands. This is the reason for the condition that sg(N) = sg(M).

Composition of homomorphisms. Let M,M ′,M ′′ be maps of the same signed genus, and let h :
M → M ′ and h′ : M ′ → M ′′ be map homomorphisms. The image h(M) is a submap of M ′ of
he same signed genus which implies, by Proposition 24, that the restriction h′

|h(M) : h(M)→ M ′′ is
homomorphism. The composition of h′

|h(M) with h defines the composition of h and h′, denoted by
′ ′′

◦ h : M → M .
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Fig. 5. (a) A map M embedded in the torus, the dotted red and dashed blue lines indicate gluings of the corresponding
ertices, (b) a plane submap N of M in which the vertex gluings of (a) cannot be performed. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

roposition 25. The composition h′ ◦ h of map homomorphisms h and h′ is a map homomorphism.

Decomposing h = m◦n and h′ = m′◦n′ into their constituent epimorphism and monomorphism,
the composition h′◦h has epimorphism n′

|h(M)◦n, whose vertex gluing sequence is the concatenation
f the sequence of vertex gluings defining n and those defining the restriction of n′ to h(M). The
equence of duplicate edge gluings is formed from the concatenation of the sequence of duplicate
dge gluings defining n and the inverse image under n′

|h(M) of the edges in the sequence of duplicate
dge gluings defining the restriction of n′ to h(M), where edges in the inverse image are taken in
n arbitrary order.
Since the composition of map homomorphisms is again a map homomorphism, the existence of

homomorphism between maps defines a transitive relation; as the identity mapping from M to
tself is a homomorphism, this relation defines a quasi-order on maps. In Section 4.5 a partial order
s derived from this quasi-order by defining the analogue of graph cores for maps.

. Cores

A core of a graph Γ [10] is a subgraph ∆ with the property that, for any graph Γ ′, there exists
homomorphism from Γ to Γ ′ if and only if there exists a homomorphism from ∆ to Γ ′, and no
roper subgraph of ∆ has this property. Equivalently, ∆ is a core of Γ if it is a minimal subgraph
f Γ (with respect to containment) for which there exists a graph homomorphism from Γ to ∆. A
ore of a graph is, up to isomorphism, unique.
We define cores for maps analogously to how cores are defined for graphs.

efinition 26. A submap N of a map M is a core of M if there is a homomorphism M → N but no
omomorphism M → N ′ for any proper submap N ′ of N.

As for graphs, we say that a map is a core when it is its own core. A core of a map M , as a
omomorphic image of M , has the same signed genus as M , and has no duplicate edges. If a graph
s not connected, then its core may also not be connected (consider, for instance, the disjoint union
f K3 with the graph obtained from K4 by twice subdividing each edge of a perfect matching, thus
aving girth four, which is a core as K3 is not a homomorphic image of the subdivided K4, and both
onnected components are themselves graph cores); the case is similar for maps (a plane embedding
f the previous graph is a map core, as any embedding of a graph core is a map core). For this reason,
e focus on the quasi-ordered set of connected maps.

.1. Basic properties

For a map M with core N , a homomorphism from M to N must be surjective (otherwise M would
e mapped to a strict submap of N , contradicting that N is a core). As for graphs, the core of a map

s unique.
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Proposition 27. If N and N ′ are cores of a map M, then N is isomorphic to N ′.

Proof. We have sg(N) = sg(M) = sg(N ′), and there are homomorphisms h : M → N and
h′ : M → N ′. By Proposition 24, the restrictions h|N ′ : N ′ → N and h′

|N : N → N ′ are
homomorphisms. In addition, they are surjective since otherwise the compositions h|N ′◦h′ and h′

|N◦h
would be homomorphisms from M to proper submaps of N and N ′, respectively, contradicting the
fact that N and N ′ are cores. The result now follows from Proposition 21. □

In the following proposition we establish that some basic properties of graph cores [10] have
their counterparts for map cores.

Proposition 28. The following statements hold for the core N of a map M:

(i) N is a core (i.e., N is its own core).
(ii) There is a homomorphism from M to N whose restriction to N is the identity.
(iii) N is an induced submap of M after gluing its duplicate edges.
(iv) Given another map M ′ with core N ′, there is a homomorphism from M to M ′ if and only if there

is a homomorphism from N to N ′.

Proof. (i) Suppose that there is a homomorphism h′ from N to a proper submap N ′ of N . We can
compose h′ with a homomorphism h : M → N to obtain a homomorphism h′ ◦ h : M → N ′, which
contradicts the fact that N is a core of M . Hence, N is a core.

(ii) Let h : M → N , and consider the restriction h|N : N → N which, by Proposition 24, is a
homomorphism as sg(N) = sg(M). In addition, it is surjective (since N is a core), and so h|N is an
isomorphism (by Proposition 21 using the identity map as the other epimorphism). Thus, we can
compose h with the inverse of h|N (also an isomorphism) to obtain a homomorphism from M to N ,
which is the identity on N .

(iii) Duplicate edges in any map can be glued to obtain a proper submap as homomorphic image
and so N cannot contain duplicate edges.

Let N ′ be the submap induced in M by the vertices of N (so N is a spanning submap of N ′).
As sg(N) = sg(M), by Lemma 5, we have sg(N ′) = sg(M). Let h : M → N be a homomorphism
that is the identity when restricted to N , which we may assume by (ii). Consider the restriction
h|N ′ : N ′ → N , which is an epimorphism by Proposition 24 and the facts that N is a core of M
and h is the identity on N . Definition 20 then establishes that N is isomorphic to a map obtained
from N ′ after a sequence of vertex gluings followed by a sequence of duplicate edge gluings. Since
V (N) = V (N ′), the sequence of vertex gluings is empty, leaving only a sequence of duplicate edge
gluings. Thus N is the induced submap N ′ with duplicate edges glued until none remain; see Fig. 6
for an example. Note that the glued edges are duplicated in N ′, but not in M .

(iv) Let h : M → N be a homomorphism from M to its core N . Suppose first that there is a
homomorphism k : N → N ′. Then the composition k ◦ h : M → N ′ is a homomorphism, and N ′ is a
submap of M ′ with sg(M ′) = sg(N ′). Hence k ◦ h : M → M ′ is a homomorphism.

Suppose conversely that there is a homomorphism ℓ : M → M ′, and let h′ : M ′ → N ′ be a
homomorphism from M ′ to its core N ′. Since N is a submap of M with its same signed genus, there
is the monomorphism ι : N → M just seeing N as a submap in M; then the composition h′ ◦ ℓ ◦ ι

is a homomorphism between N and N ′ as all the maps have the same signed genus. □

The statement of Proposition 28(ii) holds for any submap N of M with the same signed genus
as M (not necessarily a core), as we establish in the following lemma. This fact will be useful in
Section 4.3 as it ensures that there is an endomorphism of M with image N if and only if there is
such an endomorphism fixing N .

Lemma 29. Let M be a map, and let N be a submap of M of the same signed genus. If there is an
epimorphism n : M ↠ N, then there is an epimorphism from M onto N whose restriction to N is the
identity.
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Fig. 6. A map (left) whose core is a triangle, which is not an induced submap: the duplicate edge of the submap induced
n the three vertices of the triangle needs to be removed. (Notice that this edge becomes duplicate only after removing
he rightmost vertices.).

roof. If N is the core of M and there is an epimorphism n : M ↠ N , the result follows analogously
to Proposition 28(ii). Suppose then that N is not a core, and let N0 ⊂ N be the core of N , and so
the core of M (the epimorphism n : M ↠ N can be composed with an epimorphism N ↠ N0). By
Proposition 28(ii), there exists an epimorphism n0 : M ↠ N0 whose restriction to N0 is the identity.
This epimorphism is defined by a sequence of vertex gluings that gives a map N0 ∪ {e1, . . . , es},
where the ei’s are duplicate edges that must be glued to obtain N0. Each time that a vertex gluing
is performed, we identify two distinct vertices generating a map that has one less vertex. In this
identification we always try to keep the vertices in N0 or in N \ N0; note that the two identified
vertices cannot both belong to V (N0) as n0 is the identity on N0. The sequence of vertex gluings
and the duplicate edge gluings can be viewed in the reverse order: we construct a map N1 from
N0 by not performing the last vertex gluing of the sequence that removes a vertex from N \ V (N0)
and not gluing those edges ei that are no longer duplicate with another edge in N1. This creates an
epimorphism n1 : M ↠ N1 whose restriction to N1 is the identity.

Iterating this procedure, we construct a sequence of maps N0 ⊂ N1 ⊂ . . . ⊂ Nk ⊆ N , where Ni is
obtained from Ni−1 by not performing the last vertex gluing (in the sequence to obtain Ni−1) that
removes a vertex from V (N)\V (Ni−1), and by not gluing those edges ei that are no longer duplicate
in Ni. We have V (Nk) = V (N); then N is obtained from Nk by not gluing duplicate edges of N
(which may have been glued to make Nk as they had duplicates). Associated with each Ni there is
an epimorphism ni : M ↠ Ni whose restriction to Ni is the identity. Thus, the desired epimorphism
from M onto N whose restriction to N is the identity is easily obtained from nk : M ↠ Nk when go
from Nk to N . □

4.2. Separating and contractible cross-circuits

The aim of this section is to translate the topological notions of a simple (i.e. non-self-
intersecting) closed curve, a separating curve and a contractible curve (or at least contractible curves
of a certain type) into the language of cross permutations defining a map.

In topology, a closed curve in a surface is said to be contractible if it can be homotopically mapped
to a point; equivalently, the curve is contained within a region of the surface homeomorphic to an
open disc. There have been several translations of this notion into the context of maps, where closed
curves are described by walks, which are defined combinatorially rather than topologically.

Viewing a map M as an embedding of a graph Γ into a surface Σ , Mohar and Thomassen [17]
define a cycle of Γ (a simple circuit, entering and leaving each vertex at most once) to be
contractible in M if the closed curve that it defines in Σ is contractible. One shortcoming of this
definition for our purposes is that it only applies to cycles in Γ and not to closed walks of Γ that
revisit vertices or edges. This shortcoming is circumvented by the definition offered by Cabello and
Mohar [2], who define a closed walk of Γ to be contractible in M if the closed curve that it defines in
Σ can be ϵ-perturbed into a contractible closed curve in Σ . Such a perturbation ensures that there
are only finitely many self-intersections, and edges that are traversed more than once or vertices
that are visited more than once by the walk are represented by disjoint curves or points and are
thus distinguished from each other. Problematic from our perspective is that both these definitions
of contractibility rely on topological properties of curves in Σ determined by closed walks of Γ

rather than properties of the map M as a combinatorial object.
In order to remain within the realm of maps as defined by cross involutions, we begin by

introducing an analogous object to a circuit in a graph; in a graph a circuit is a closed walk that
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repeats no edges, in a map it is a closed walk that repeats no crosses (Definition 30). In this way,
we extend the scope of the term contractibility from the graph cycles of Mohar and Thomassen to
cross-circuits; facial walks are then all contractible, even if they traverse an edge more than once,
corresponding to the defining property of faces as enclosing topological discs.

Definition 30. Let M ≡ (C, α0, α1, α2) be a map with vertex permutation τ and face permutation φ.
cross-circuit κ of M is a pair of cycles,

κ = ( c0 c1 · · · cℓ−1 ) ( α0cℓ−1 · · · α0c1 α0c0 ),

with the property that the 2ℓ crosses among {ci} ∪ {α0ci} are pairwise distinct and for each i there is a
j such that ci = τ jφci−1 (indices i taken modulo ℓ).

The two cycles of the cross-circuit κ represent its traversal in opposite directions. Its length is
denoted by ℓ(κ). A facial walk traversing face z is represented by the cross-circuit φz .

Recall that a closed walk in a graph is a sequence of edges which joins a sequence of vertices,
starting and ending at the same vertex; for a circuit, edges are not allowed to be repeated. For
orientable maps, we can find a combinatorial representation using half-edges (considering the set
of half-edges to be the set of crosses in the equivalence classes modulo ⟨α0α2, φ⟩ thus having two
half-edges per each edge in the graph, instead of four crosses). Thus, in a cross-circuit along an
orientable map, we would traverse each half-edge at most once, so each edge at most twice, once
in each direction. If a map is non-orientable, we add an extra pair of half-edges per edge in the
combinatorial representation to make a total of four crosses; then a cross-circuit only uses each
cross from {c, α0c} at most once, so each edge is used at most twice.

The choice of cross for a vertex-edge incidence reflects, not only the direction of travel (we go
from c ‘‘to α0c ’’ and then ‘‘to α1α0c ’’), but also which ‘‘side’’ of the edge the walk is on, c being on one
side and α2c on the other. For instance, which direction a loop is traversed is determined by which
of c, α2c or α0c , α0α2c is chosen to represent the vertex-edge incidence, and hence the side of the
edge as well. A closed walk in a map is thus given not only by the sequence of vertices and edges, but
by the side along which the edges are traversed — this is determined by how the face permutation
φ instructs the walk to take a step along an edge, which explains its role in Definition 30.

A cross-circuit ( c0 c1 · · · cℓ−1 ) ( α0cℓ−1 · · · α0c1 α0c0 ) is said to be non-self-
intersecting if there are no pair of distinct indices (i, j) such that the pairs of crosses α0ci, ci+1 and
α0cj, cj+1 interlace in a cycle ( c α1c τ c τα1c · · · τ−1c τ−1α1c ) consisting of all the crosses
incident with a given vertex.

We next present a procedure of cutting a map around a non-self-intersecting cross-circuit, which
leans on two operations that are first defined: edge splitting and vertex splitting.

Definition 31. Let e ≡ ( c α0α2c ) ( α0c α2c ) be an edge of a map M ≡ (C, α0, α1, α2). The
map M ′ ≡ (C ′, α′0, α

′

1, α
′

2) obtained from M by splitting the edge e into two distinct edges bounding a
new face of degree two is defined as follows:

• C ′ = C ⊔ {α′2c, α
′

2α0c, α′2α2c, α′2α0α2c};
• α′0 = α0 on C, and

α′0 (α
′

2c) = α′2α0c , α′0 (α
′

2α0c) = α′2c ,

α′0 (α
′

2α0α2c) = α′2α2c , α′0 (α
′

2α2c) = α′2α0α2c ;

• α′2 = α2 on C \ {c, α0c, α2c, α0α2c}, and

α′2 (α
′

2c) = c , α′2 (α
′

2α0c) = α0c ,

α′2 (α
′

2α0α2c) = α0α2c , α′2 (α
′

2α2c) = α2c ;

• α′1 = α1 on C, and

α′1 (α
′

2c) = α′2α2c , α′1 (α
′

2α2c) = α′2c ,

α′ (α′ α c) = α′ α α c , α′ (α′ α α c) = α′ α c .
1 2 0 2 0 2 1 2 0 2 2 0
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Fig. 7. (a) Edge splitting: the new crosses are labelled in blue, (b) Splitting a vertex of a map M through crosses a, b to
make the map M (a b) . (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Edge splitting is illustrated in Fig. 7(a), where it can be easily seen that this operation is the
inverse to edge gluing (setting a = α′2c and b = α′2 (α0α2c) in Definition 16).

Definition 32. Let a, b be a pair of distinct crosses that are coincident with a vertex v of a map
M ≡ (C, α0, α1, α2). The map M (a b) obtained by riffling a, b is the result of splitting the vertex v
through a, b.

Vertex splitting is depicted in Fig. 7(b). This operation is inverse to vertex gluing when the pair
of crosses a, b satisfy condition (2) of Lemma 7 (see Fig. 3). Tutte [19, Ch. X] defines a related
operation of vertex splitting, which follows the operation in Definition 32 by the insertion of a
link joining the two vertices produced by splitting in our sense, in a way that preserves genus an
orientability (exactly how this edge is inserted is described in the proof of Lemma 7 above). In the
proof of Lemma 44 the reader can find how Tutte’s vertex splitting operation can be recovered using
Definition 32, vertex-gluing, duplicate edge-gluing, and edge addition.

Informally, the procedure of cutting around a non-self-intersecting cross-circuit κ , which we
define next, is performed as follows. While traversing κ we split each edge as we pass through it
(in total, we split each edge as many times as it is traversed). Then, crosses of the split edges are
associated with new faces of degree two (generated by the edge splitting). The property of non-
self-intersecting allows us to merge these new degree-two faces when splitting vertices: as we
proceed, these faces merge together to make a face of larger even degree until the last step, when
the circuit closes, and the merged face is joined back on itself and the last vertex-splitting produces
two new faces x and y. If this last vertex-splitting disconnects the map, x and y are in different
connected components (in which case the last vertex splitting, as all the previous ones, is inverse
to vertex gluing, and preserves genus and orientability). Otherwise, the two vertices produced by
this last splitting are not incident with a common face (neither do they belong to different connected
components); one is incident with face x and the other with face y.

Definition 33. Let M ≡ (C, α0, α1, α2) be a map, and let

κ = ( c0 c1 · · · cℓ−1 ) ( α0cℓ−1 · · · α0c1 α0c0 )

be a non-self-intersecting cross-circuit of M. The map M ⋉ κ obtained from M by cutting around
κ is the result of: (i) splitting the edges of M containing c0, c1, . . . , cℓ−1 in turn, producing a map
M ′ ≡ (C ′, α′0, α

′

1, α
′

2), (ii) applying the sequence of vertex-splittings in M ′ realized by riffling crosses
α′ α c and α′ α′ c for i = 0, . . . , ℓ− 1 (indices modulo ℓ).
2 0 i 1 2 i+1
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Note that M ⋉ κ has the same set of crosses as M ′ in Definition 33. Figs. 8 and 9 illustrate
examples of the procedure of cutting around a non-self-intersecting cross-circuit κ . The new facial
alks produced by cutting around κ are next recorded explicitly.

emma 34. Let M ≡ (C, α0, α1, α2) be a connected map, and let

κ = ( c0 c1 · · · cℓ−1 ) ( α0cℓ−1 · · · α0c1 α0c0 )

e a non-self-intersecting cross-circuit of M. If M ′ ≡ (C ′, α′0, α
′

1, α
′

2) is obtained from M by splitting the
dges containing c0, c1, . . . , cℓ−1 in turn as in Definition 33, then the two facial walks of M⋉κ that are
ot facial walks of M are{

κ⋉ = ( α′2c0 α′2c1 . . . α′2cℓ−1 ) ( α′0α
′

2cℓ−1 . . . α′0α
′

2c1 α′0α
′

2c0 ),
κ⋉
= ( α′1α

′

2c0 α′1α
′

2c1 . . . α′1α
′

2cℓ−1 ) ( α′0α
′

1α
′

2cℓ−1 . . . α′0α
′

1α
′

2c1 α′0α
′

1α
′

2c0 ).

Proof. This follows by recording the effect of splitting edges to form the map M ′, and splitting
vertices visited by κ . If the vertex being split is not the last one, the two faces incident with the
two riffled crosses are different; for the last vertex we have crosses coincident with a common
vertex and with a common face. See Fig. 7. Vertex splitting after edge splitting means that we slice
between α′2c and α′2α2c , and between α′2α0c and α′2α0α2c in Fig. 7(a) all along the edges of κ . □

The effect of vertex splitting on the signed genus in the cases that arise when we cut around a
non-self-intersecting cross-circuit is presented in the following lemma.

Lemma 35. Let M ≡ (C, α0, α1, α2) be a connected map, and let a, b be crosses of M that are coincident
with a vertex w. After vertex splitting w through a, b to make the map M ( a b ):

(i) If a, b are incident with distinct faces, then k(M ( a b )) = k(M) and sg(M ( a b )) = sg(M).
(ii) If a, b are coincident with a common face and k(M ( a b )) > k(M), then sg(M ( a b )) = sg(M).
(iii) If a, b are coincident with a common face and k(M ( a b )) = k(M), then sg(M ( a b )) ̸= sg(M).

Proof. (i) In this case, crosses a, b are in M ( a b ) incident with different vertices and coincident with
a common face, so, by Lemma 7 and since [M ( a b )

]
( a b )
= M , we have sg(M ( a b )) = sg(M). That

k(M ( a b )) = k(M) follows from the fact that the Euler characteristic and Euler genus are unchanged.
(ii) The assumption on the number of connected components implies that splitting w into u and

v disconnects the component of M ( a b ) containing u from the one containing v. Therefore, crosses
a, b are in M ( a b ) incident with vertices and faces in different connected components. By Lemma 7,
the result follows.

(iii) From v(M ( a b )) = v(M) + 1, e(M ( a b )) = e(M) and f(M ( a b )) = f(M) + 1, it follows that
χ(M ( a b )) = χ(M) + 2. The latter, together with the assumption k(M ( a b )) = k(M), implies that
eg(M ( a b )) = eg(M)+ 2. Hence,

if

⎧⎪⎪⎨⎪⎪⎩
o(M ( a b )) = o(M) = 2
o(M ( a b )) = o(M) = 1
o(M ( a b )) = 2, o(M) = 1
o(M ( a b )) = 1, o(M) = 2

then

⎧⎪⎪⎨⎪⎪⎩
sg(M ( a b )) = sg(M)+ 1
sg(M ( a b )) = sg(M)− 2
sg(M ( a b )) = 1− sg(M)

2
sg(M ( a b )) = −2sg(M)− 2 □

The map M ⋉ κ is produced from M by first splitting (or duplicating) the edges of κ , which does
not change the signed genus of M , and then by a sequence of vertex-splittings. When κ is a non-self-
intersecting cross-circuit of M , by Lemma 35(i) splitting its vertices visited in turn does not change
the number of connected components until possibly when splitting the last vertex. In the notation
of Definition 33, this last vertex-splitting is realized by riffling the crosses α′2α0cℓ and α′2c0, which
are coincident with a common vertex and with a common face, and so k(M) ≤ k(M⋉κ) ≤ k(M)+1.
When k(M ⋉κ) = k(M), the non-self-intersecting cross-circuit κ is said to be non-separating, and it
s separating if k(M ⋉ κ) = k(M)+ 1. Lemmas 35(iii) and 35(ii) give the effect on the signed genus
for these two cases.
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Fig. 8. A cross-circuit κ in a map M (embedded in the torus) given by ( c0 c1 c2 c3 ). Splitting the edges containing
crosses of κ (edges in dark grey) gives the map M ′ (edges in light grey come from some edge splitting). The map M ⋉ κ

is then obtained by a sequence of vertex-splittings in M ′: it is the disjoint union of Mκ and Mκ . The cross-circuit κ is
contractible (Mκ is plane) and not prefacial (Mκ is not plane).

When κ is a separating cross-circuit of a connected map M , the map M ⋉ κ is the disjoint union
f two maps:

• a connected map Mκ containing the crosses of κ and the facial walk κ⋉, and
• a connected map Mκ containing the crosses of the facial walk κ⋉.

The facial walks κ⋉ and κ⋉ are both described in Lemma 34; see also Figs. 8 and 9. We say that
κ is contractible if Mκ or Mκ is a plane map. For non-connected maps, a cross-circuit is said to be
contractible if it has this property in its own connected component. This notion of contractibility
includes, as a special case, the contractible cycles as defined by Mohar and Thomassen [17], and is
consistent with the definition given by Cabello and Mohar [2] when restricting the latter to those
curves that can be ϵ-perturbed so as not to be self-intersecting. (Our term ‘‘contractible’’ assumes
that the cross-circuit is separating and therefore non-self-intersecting.)

Definition 36. A contractible cross-circuit κ of a connected map M is said to be prefacial if Mκ is
lane and the facial walk κ⋉ traverses a cycle in the underlying graph of Mκ .

Asking a cross-circuit κ to be prefacial adds to the contractibility constraint that it is contractible
in a certain direction (Mκ is plane), and the constraint on the facial walk κ⋉ adds an irreducibility
condition. Fig. 8 illustrates a contractible cross-circuit that is not prefacial because its direction of
contraction is not towards the plane part. An example of a contractible cross-circuit κ with Mκ plane
and not prefacial is given by traversing two plane loops on a vertex along the half-edges ‘‘inside’’
the loops. (Or take κ given by ( a φa b φb φ2b ) in the right-hand map in Fig. 3(a).) Fig. 9
illustrates a prefacial cross-circuit.

4.3. Cross-circuits and homomorphisms

In this section, we present technical tools on the interaction between map homomorphisms and
different types of cross-circuits; this leads to the characterization of map cores (Theorem 42). We
begin by showing that there is a correspondence between prefacial cross-circuits of a connected
map and facial walks of any connected submap of the same signed genus. Prefacial cross-circuits
are then used to properly partition the set of edges of a map so that homomorphisms will act
independently on each subset of the partition.
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Fig. 9. A cross-circuit κ in a map M (embedded in the torus) given by ( c0 c1 c2 c3 c4 c5 c6 c7 ). The map M ′ is
obtained by splitting the edges containing crosses of κ (edges in dark grey); each edge is split twice as it contains two
crosses in the cycle defining κ (edges in light grey come from some edge splitting). The map M ⋉ κ is then obtained by
a sequence of vertex-splittings in M ′: it is the disjoint union of Mκ and Mκ . The cross-circuit κ is prefacial.

Lemma 37. Let M be a connected map, and let N be a connected submap of M with the same signed
genus. Then,

(i) Each facial walk κ in N is a prefacial cross-circuit of M.
(ii) Conversely, for each prefacial cross-circuit κ , there exists a submap N(κ) with the same signed

genus as M such that κ is a facial walk of N(κ).
(iii) Each edge in E(M) \ E(N) belongs to a unique Mκ \ E(κ⋉) for some facial walk κ in N.

roof. For (i) and (iii) it suffices to prove that if we add the edges e of E(M) \ E(N) to N one by one
so that the resulting map is always connected), each edge e either subdivides an existing face or
dds a new vertex. Then, a small inductive argument over the facial walks of the successive maps
stablishes the result.
As the orientability of the submaps generated by adding the edges e remains constant, so does

he signed genus and the Euler genus (see Lemma 5). Then, all these submaps have the same genus,
hich, by Lemma 4, implies that the edge e is either a dual link (hence dividing a face into two) or
bridge (adding a new vertex), as desired.
Part (ii) follows from removing in M the edges and vertices in Mκ that do not belong to κ; this

operation creates a submap N(κ) of M satisfying the conditions of the statement. □

Lemma 38. Let κ be a separating cross-circuit of a connected map M.

(i) A homomorphism hκ : Mκ → Mκ fixing the crosses of κ induces a homomorphism h : M → M
with the following properties:
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• κ is a separating cross-circuit of h(M),
• h(M) ⋉ κ consists of the map Mκ and the connected map hκ (Mκ ),
• h is the identity on M \ [E(Mκ ) \ E(κ)].

(ii) The cross-circuit φz corresponding to a face z in M is a facial walk of either Mκ or Mκ . Conversely,
a facial walk of Mκ (resp. Mκ ) other than κ⋉ (resp. κ⋉) defines a facial walk of M.

Proof. (i) Since the crosses of κ are fixed by hκ , the rifflings associated with the vertex gluings that
hκ defines in Mκ do not involve any cross from κ⋉. Further, we may assume that no cross from κ⋉
is removed when gluing duplicate edges (in the notation of Definition 16 at least one of the crosses
a and b does not belong to κ⋉; if one of them belongs, say a, we can say that the edge containing
a still belongs to the map). Similarly, we may consider the identity map on Mκ , and conclude that
no vertex or duplicate edge gluings involve crosses from κ⋉.

As κ is separating, Lemma 35(ii)(i) give that sg(M) = sg(M ⋉ κ) = sg(Mκ ⊔ Mκ ). Thus,
we can reverse the cutting operations that form M ⋉ κ by gluing the appropriate vertices (in
the notation of Definition 33 these vertex gluings correspond to riffling back all the crosses
(α′2α0ci, α′1α

′

2ci−1), indices modulo ℓ) and then gluing the edges of κ⋉ with the edges of κ⋉. This
creates a homomorphism h : M → M satisfying the stated properties.

(ii) Cutting around a non-self-intersecting cross-circuit κ creates, by Lemma 34, two additional
faces in M ⋉ κ , and these precisely involve those crosses added in the process of cutting around;
the remaining facial walks not involving the added crosses to M ⋉ κ are unchanged. As in addition
dditional separating hypothesis on κ , M ⋉ κ = Mκ ⊔Mκ and the result follows. □

A face z of a map M that is a face of Mκ (in the sense that the pair of cross cycle permutations
f φz defines a facial walk of both M and Mκ ) is said to be contained in κ (and κ contains z).

bservation 39. A prefacial cross-circuit κ of odd length is either a facial walk or contains an odd
number of odd-degree faces. If κ has even length, it contains an even number of odd-degree faces. The
argument to prove the odd-length statement is the following (similar for even length): Mκ is plane, and
has an odd-degree face defined by κ⋉. Considering the dual map M∗κ , there must be an odd number of
other faces of odd degree in Mκ , each of which by Lemma 38(ii) is a face of M contained in κ (by the
handshaking lemma, the number of odd-degree vertices is even).

Fixed a prefacial cross-circuit κ of a map M , there is a partial order ⪯ on contractible cross-
circuits of Mκ defined by: λ ⪯ µ if λ determines a cross-circuit in Mµ and all the crosses in Mλ

belong to Mµ (perhaps with the exception of λ⋉). This order has maximum element κ⋉ and, for
each face z of Mκ , one of its minimal elements is φz .

We next use the partial order ⪯ and bring together the previous results in this section to
establish when a whole plane map can be sent (in a map-homomorphic way) to its surrounding
prefacial cross-circuit. When no confusion may arise, we shall use M → λ to indicate that a map

is mapped to the map induced by the edges of a prefacial cross-circuit λ.

emma 40. Let κ be a prefacial cross-circuit of a connected map M. Assume that there exists a face z
of Mκ such that:

(i) z is different from the face defined by κ⋉ in Mκ ;
(ii) the degree of z is at least the degree of the face traversed by κ⋉, and both faces have degree of

the same parity;
(iii) every other face of Mκ has even degree;
(iv) ℓ(κ) ≤ ℓ(λ) for every prefacial cross-circuit λ of Mκ such that φz ⪯ λ ⪯ κ .

hen there is an endomorphism of Mκ that maps Mκ to the map induced by the edges of κ (equivalently
⋉) and it is the identity over κ and κ⋉.

The following facts are used in the proof of the preceding lemma.
bservation 41. Under the hypotheses of Lemma 40 it holds that:
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• Mκ and all its connected submaps are plane, and hence orientable. Thus, we can indicate a single
permutation cycle associated to faces, vertices, and contractible cross-circuits.
• Any cross-circuit of Mκ that is a cycle in the underlying graph of Mκ is a contractible cross-circuit

(as Mκ is plane).
• Any prefacial cross-circuit λ such that φz ⪯ λ ⪯ κ has the same parity as κ and φz (this follows

from assumptions (ii) and (iii) by a parity argument involving the fact that if an even contractible
cross-circuit contains an odd degree face, then it contains at least two of them (Observation 39)).

roof of Lemma 40. We show the result inductively on the number of edges and vertices inside
κ . The base case occurs when φz = κ , and so Mκ is a plane cycle; the statement follows by using

he identity map as a map homomorphism. Suppose now that φz ̸= κ; the induction argument
ollows a case analysis.

Case 1: There is no prefacial cross-circuit λ with φz ⪯ λ ⪯ κ and φz ̸= λ ̸= κ . Let z ′ be a face
ifferent from z containing crosses of κ in Mκ (it exists as φz ̸= κ). We shall assume that φz′ ̸= κ ,

otherwise κ would only contain z ′ and not z as well. Let φz′ = ( c0 · · · cs ) such that c0 ∈ κ and
c1 /∈ κ . Note that z ′ must contain crosses in κ and outside κ: if all the crosses were in κ , it would
e κ = φz′ as κ⋉ is a cycle in the underlying graph of the plane map; if all the crosses were outside
, one could find a prefacial cross-circuit λ between φz and κ (using the connectedness of M and
κ .).
Case 1.1: If the vertex adjacent to c2 belongs to κ and is the same as the vertex of c0, then c2 = c0;

otherwise we can find a prefacial cross-circuit λ strictly shorter than κ containing z but, as there
are no other prefacial circuits between them, it must be λ = φz , which contradicts assumption (ii).
Hence, we conclude c2 = c0 and z ′ is a face of length 2. By removing/gluing the edge closing z ′, we
obtain a map M ′κ with no new prefacial cross-circuits between φz and κ satisfying the hypotheses
of Lemma 40. By induction, M ′κ can be mapped to κ by a homomorphism. Thus, the composition of
first removing/gluing the edge from Mκ to M ′κ and then mapping M ′κ to κ gives us the result.

Case 1.2: If the vertex adjacent to c2 belongs to κ and is different than the vertex of c0, then κ is of
the form ( c0 c ′1 · · · c ′i c2 c ′i+2 · · · c ′ℓ(κ)−1 ) and it can be partitioned into the crosses
{c ′1, . . . , c

′

i } and {c2, c
′

i+2, . . . , c
′

ℓ(κ)−1, c0}. Then, either the prefacial cross-circuit formed by α2α0c1
nd the crosses {c ′1, . . . , c

′

i }, or the one formed by c1 and {c2, c ′i+2, . . . , c
′

ℓ(κ)−1, c0} contains face z.
ence, this prefacial cross-circuit must be φz as there are no prefacial cross-circuits between κ and
z (and it is not κ). Since the vertices of c0 and c2 are distinct, the length of φz is strictly smaller
han that of κ , contradicting assumption (ii).

Case 1.3: If the vertex adjacent to c2 does not belong to κ , then we glue the vertices of c0 and c2
along the face z ′ via M (c0 c2)

κ , and remove/glue the edge of c2. We obtain a new map M ′κ with κ⋉ in
the outer face, one edge and one vertex less, and all the faces having even length (as z ′ had even
length and we have shrink it by two units). Further, we have not created any prefacial cross-circuit
between κ and φz , as it would correspond to a (perhaps several) contractible cross-circuit between
κ and φz in Mκ . No other face length has been altered (in particular, the length of z). Thus, the
assumptions of Lemma 40 are met, and we can apply the result by induction. The result follows
by composing the vertex gluing M (c0 c2)

κ with gluing the now duplicate edge containing c2 and the
mapping from M ′κ to κ . (Note that one of the glued vertices does not belong to κ , and neither does
the edge where c2 belongs, thus the condition that the mapping is the identity over κ is preserved.)

Case 2: There exists a prefacial cross-circuit λ with φz ⪯ λ ⪯ κ and φz ̸= λ ̸= κ . Let λ0 be the
refacial cross-circuit that is the ‘‘closest’’ to φz having the same length as κ (perhaps being κ itself),
hat is,

• λ0 ̸= φz and φz ≺ λ0 ⪯ κ;
• ℓ(κ) = ℓ(λ0) and ℓ(λ0) < ℓ(λ) for every λ with φz ≺ λ ⪯ λ0.

he prefacial cross-circuit λ0 induces a graph cycle in Mκ ; otherwise, by choosing λ′0 to be the
cross-circuit of the (minimal) graph cycle all whose crosses belong to λ0 and that contains face z,
we would have φz ⪯ λ′0 ⪯ κ and ℓ(λ′0) < ℓ(κ), which contradicts assumption (iv).6

6 Note that we are not claiming that such λ′0 is inside λ0; for instance, if λ′0 is a cycle and λ0 is that cycle with a
pendant edge inside it, then λ is inside λ′ .
0 0
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Case 2.1: If λ0 ̸= κ , then Mλ0 is a strict submap of Mκ with the same signed genus. Indeed, both
aps are plane and λ0 induces a graph cycle, and so cutting around λ0 inMκ is the same as removing
ll the edges and vertices outside λ0 in Mκ . Thus, by induction, there is an endomorphism Mλ0 → λ0
hat maps φz to λ0, and is the identity over λ0. Lemma 38 allows us to extend this endomorphism
o a mapping hλ0 : Mκ → Mκ (restricted to Mλ0 is the endomorphism Mλ0 → λ0, and is the identity
lsewhere). Since λ0 ̸= κ , the image hλ0 (Mκ ) is a strict submap of Mκ and has λ0 as a facial walk.

We can apply induction to obtain an endomorphism hκ : hλ0 (Mκ ) → κ that maps λ0 to κ , and is
he identity over κ . The composition hλ0 ◦ hκ : Mκ → κ has the desired properties.

Case 2.2: Assume now that λ0 = κ . We perform a similar procedure of gluing a vertex and an
dge (as in Case 1.3), or simply glue an edge (as in Case 1.1).
Let λ1 be a prefacial cross-circuit with φz ≺ λ1 ≺ κ (it exists by the assumption of Case 2)

nd such that there is no prefacial cross-circuit λ2 with λ1 ≺ λ2 ≺ κ (can be assumed as the
number of prefacial walks is finite). We have ℓ(λ1) > ℓ(κ) (by the properties of λ0 and that
0 = κ in our case). A small reduction argument (as done for Case 1) shows that λ1 is of the
orm ( c0 c1 · · · ci c ′i+1 · · · c ′t ) where the cj’s are crosses of κ (assuming we start with
0 for convenience) and c ′i+1, . . . , c

′
t are not. The vertex of c ′i+1 belongs to κ , yet the vertex adjacent

to c ′i+2 does not (otherwise it would be ℓ(λ1) ≤ ℓ(κ)). The face of ci+1 is also the face of α0α2c ′i+1
(in fact, φα0α2c ′i+1 = ci+1), otherwise there would exist another prefacial cycle between λ1 and κ .
Moreover, the face of ci+1 is not z as it is not inside λ1. Now, we glue the vertices adjacent to ci+2
and c ′i+2 by the riffling M (α0α2ci+1 φci+1)

κ . Observe that, for this new map:

• Condition (ii) holds, as κ and φz have not been modified.
• The parities of the prefacial cross-circuits between φz and κ are the same as κ (Observation 41).
• Condition (iii) holds since we do a gluing through a face outside z of two vertices at distance

two in a face. Further, the parity of the prefacial cross-circuits between φz and κ remains the
same (using Observation 41 on both the new and the old map).
• Some prefacial cross-circuits between φz and κ may have been removed or modified by

reducing their size. The reduction would be of (exactly) two units, and thus the new prefacial
cross-circuits between φz and κ satisfy condition (iv) with ≤ (the hypothesis on Case 2 asked
for a strict inequality between their lengths).

Therefore, we can apply Lemma 40 inductively to the new map M (α0α2ci+1 φci+1)
κ . Since the two

mappings are the identity over κ (we are using here Lemma 38 for the vertex gluing that we have
performed) the composition of gluing a vertex and afterwards performing the inductive step is also
a mapping that is the identity over κ , thus the result follows. □

4.4. Characterization of map cores

We bring together the notions and results of the previous sections on cores in the following
theorem.

Theorem 42. A connected map M is a core if and only if each of its prefacial cross-circuits λ either is
a facial walk, or contains more than one face of odd degree, or contains no face whose degree is greater
than or equal to ℓ(λ) and has the same parity as ℓ(λ).

Proof. We argue with the contrapositive in both implications. From left to right, assume that there
is a prefacial cross-circuit λ of M such that: (i) is not a facial walk, (ii) contains at most one face of
odd degree, (iii) contains a face z whose degree is at least ℓ(λ) and has the same parity as ℓ(λ).

If λ has odd length, by (ii) and (iii), z is the only face of odd degree inside λ, and any prefacial
ross-circuit µ with φz ⪯ µ ⪯ λ has odd length (see Observation 41). If λ has even length, then
all the faces inside λ have even degree (otherwise, by Observation 39, there would be at least two
faces of odd degree inside λ).

Let κ be a prefacial cross-circuit such that φz ≺ κ ⪯ λ and ℓ(κ) = min{ℓ(µ) : φz ⪯ µ ⪯ λ}
(perhaps being λ itself). The conditions of Lemma 40 are met with face z and prefacial cross-circuit
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κ . There is thus a homomorphism hκ : Mκ → κ that is the identity over κ . Since κ is a prefacial
cross-circuit, by Lemma 37, we can conclude that the submap M ′ obtained by removing the interior
of κ (which is the largest submap of M where κ is a facial walk) has the same signed genus as M .
Further, κ ̸= φz which implies that M ′ is a proper submap of M . Lemma 38 (applied to hκ ) then
gives a homomorphism h : M → M ′ ⊊ M; therefore, M is not a core.

Now, we prove the implication from right to left using the contrapositive again. Assume that M
is not a core; we want to find a prefacial cross-circuit satisfying conditions (i)–(iii) stated above.

Let N be the core of M , and let h : M → N be a homomorphism, whose restriction to N is
the identity (see Proposition 28(ii)). Since N is a proper submap of M with the same signed genus,
Lemma 37 asserts that there is a facial walk of N that is a prefacial cross-circuit κ of M but not a
facial walk of M . Consider again the submap M ′ of M (defined as above), and let h′ : M → M ′ be
the mapping obtained from h as follows:

• Vertices u, v are glued if h glues them and either they are in the interior of κ , or u is in the
interior of κ and v is in κ .
• Edges e, e′ are glued if h glues them and either they are in the interior of κ , or e is in the

interior of κ and e′ belongs to κ .

Once we cannot perform any of the two previous operations, we stop and obtain h′. Observe that
we never glue two vertices or two edges of κ as h is the identity over N .

We now construct a layered and labelled graph T by matching the above described gluing
instructions; the layers will represent the state, at that stage of the process, of the faces in the
interior of κ , which are denoted by {f1, . . . , fr}. In the first layer of T , we place r vertices labelled
f1, . . . , fr (one vertex per face). Now, if a vertex gluing subdivides a face (into two new faces), we
place two new vertices (in the following layer) adjacent to the vertex that represents the original
face (the parent); the edges are directed, always pointing towards the new vertices, which are both
labelled with the label of the parent. If we glue two edges, the two faces that they bound are merged
into one; this is represented by a vertex in the new layer, which is adjacent to the parent vertices
by directed edges (again pointing towards the ‘‘new’’). This new vertex takes the label of the face
with the largest degree among the two that we are merging (if there is a tie between two faces of
degree 2, we choose the label of one of them arbitrarily). For the remaining vertices (representing
faces, including those that have not been subdivided), we place a new vertex in the new layer with
the same label as the parent, and with a directed edge pointing from the old vertex to the new one.

The preceding procedure ensures that all the vertices of T bear one of the labels of the original
faces inside κ , that is, {f1, . . . , fr}. Further, from one layer of T to the next, the process involve some
subdivision of faces (when two vertices are glued) and some destruction of faces (when two edges
are glued); at the end, only one face remains, represented by a unique vertex in the last layer of T ,
whose label indicates the original face that has not been destroyed/merged-into-another-one. We
next discuss how the parity of the degree of the faces evolve in this process.

When a face of odd degree is subdivided, a new face of odd degree and a face of even degree
appear; if we subdivide a face of even degree, two faces of odd degree or two faces of even degree
appear. Then, no faces of odd degree are created when subdividing even degree faces, as there is
only one face at the end of the process, and when an odd degree face is created, actually two are
created, and none of them can be removed (we can only remove faces of degree 2). Further, the
vertices of any path in T traversing different layers (from higher to lower layers) have the property
that if their label is the same, the sequence of degrees of their associated faces is weakly decreasing.
Let fi be the label of the unique vertex in the last layer, and consider a path with all vertices labelled
fi that goes from the first to the last layer; we conclude that:

• the parity of fi is the same as κ (it is maintained through the process, and such facial walk is
modified until it becomes κ);
• the degree of the other faces in M is even, and the degree of fi is larger or equal than ℓ(κ).

Thus, κ is a prefacial cross-circuit of M satisfying conditions (i)–(iii); this finishes the contrapositive
of the implication from right to left and completes the proof of the whole statement. □
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Application of the characterization to four classes of maps. A bouquet is a map with one vertex, all
dges being loops. Dually, a quasi-tree is a map with one face, also known as a unicellular map.
Bouquets and quasi-trees are necessarily connected.) Theorem 42 says that: a bouquet is a core if
nd only if it has no duplicate edges; a quasi-tree is a core if and only if either it is plane and consists
f one edge or one isolated vertex, or it is not plane and has no vertices of degree one. (These two
acts can be shown directly.) For the other two classes of connected maps, we exploit the parity
onditions for κ in Theorem 42 to conclude the following. A connected map with no vertices of
egree one and all faces of odd degree is a core. Any plane connected core map satisfies exactly
ne of the following properties: (i) consists on a single edge or a single isolated vertex (when all
aces have even degree and thus the underlying graph is bipartite by Observation 41), or (ii) is a
ycle of odd length (thus having precisely two faces, both of odd degree), or (iii) has at least four
dd degree faces (four instead of three using Observation 39).

raph cores vs. map cores. Since a map homomorphism is a graph homomorphism, any embedding
f a graph core is a map core. However, there are map cores for which the underlying graph is
ot a graph core, for example, the quasi-tree embedding of a vertex with two loops on a torus.
urther, the characterization of quasi-trees as map cores (stated in the previous paragraph) gives a
harp contrast between map cores and graph cores. Indeed, the fact that any connected graph has
quasi-tree embedding in some surface, possibly non-orientable [4, Page 123, Third paragraph],
ields that any connected graph without vertices of degree one can be the underlying graph of a
ap core by embedding it in an appropriate surface.
On the other side, identifying two vertices by a graph homomorphism can be seen as gluing

wo vertices by a map homomorphism, using an appropriate embedding (placing a face between
he two vertices to be glued); to deal with parallel edges, the graph is embedded so that they are
uplicated. Therefore, any graph homomorphism can be viewed as the composition of several map
omomorphisms (perhaps by changing the embeddings of the corresponding underlying graphs).
This discussion prompts a natural question on whether map cores can be used to identify graph

ores: for every connected graph Γ that is not a core, is it possible to find a map M with underlying
raph Γ such that M is not a (map) core?
We answer this question in the negative. Let Γ be the graph resulting from identifying two

opies of the complete graph K5 by a vertex (it has 9 vertices and no additional edges). The core of
Γ is K5. In fact, all graph homomorphisms from Γ leading to a subgraph (not necessarily a core)
are obtained by mapping one of the copies of K5 into the other. Now, suppose that there exists a
map M with underlying graph Γ that is not a map core. We can apply the arguments used in the
proof of Theorem 42 to conclude that there exist a prefacial cross-circuit κ (which is not a facial
alk) and a homomorphism from M to a strict submap of M that maps the interior of κ to κ . In
articular, this homomorphism is a graph homomorphism from Γ to a subgraph that must be K5.
herefore, the underlying graph of the interior of κ should contain K5, which is a contradiction as
he interior of κ is a plane map.

.5. The poset of map cores

Having now described how to tell whether a map is a core, we introduce and study the poset of
ap cores, comparing its properties with those of the poset of graph cores.
For fixed g ∈ Z, let M(g) and Mc(g) be the sets of, respectively, maps and cores of signed

enus g . For M,M ′ ∈M(g), we say that M ≤ M ′ if there exists a map homomorphism from M to
′, that is, if M → M ′. The associated strict order relation, M < M ′, holds if M → M ′ and M ′ ̸→ M .
he relation ≤ is defined analogously on Mc(g); indeed, it is obtained from the preorder (M(g),≤)

upon quotienting out by the equivalence relation ∼= defined by M ∼= M ′ if M ≤ M ′ and M ′ ≤ M .

emma 43. The relation ≤ defines a preorder on M(g) and a partial order on Mc(g).

Proof. The preorder part follows by Proposition 21 and the fact that the composition of homomor-
phisms between maps in M(g) is again a homomorphism. For cores, Proposition 27 ensures that

the preorder is in fact a partial order, since we are considering maps up to isomorphism. □
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The first property that we establish is that the poset (Mc(g),≤) is connected, by first showing
hat the preorder (M(g),≤) is connected. Recall that a preorder (P,≤) is connected if for every pair
of elements a, b there is a sequence a = c0, c1, . . . , ck−1, ck = b such that ci ≤ ci+1 or ci+1 ≤ ci for
each i = 0, 1, . . . , k− 1.

Lemma 44. Given connected maps M and M ′ of the same signed genus and with at least one edge, M ′
can be obtained from M by a sequence of vertex gluings, vertex splittings (Definition 32 with the extra
condition of Lemma 7(2)(i)), edge splittings, and duplicate edge gluings.

Proof. Vertex gluing and vertex splitting under the conditions indicated are inverse operations,
as are duplicate edge gluing and edge splitting, and all these operations preserve signed genus
and connectivity. A connected map with more than one face has some edge that is a dual link;
dually, a connected map with more than one vertex has some edge that is a link. For a dual link
e ≡ ( c α2α0c ) ( α2c α0α2c ), crosses c and α2c belong to different faces. Splitting the vertex
containing crosses c and α2c by riffling c and τ c has the effect of adding a vertex and removing
a face (so that all the crosses of e now belong to a single face), while the signed genus and the
connectivity are preserved, so the number of faces is reduced. This procedure can be repeated until
the map becomes a quasi-tree. If this quasi-tree has more than one vertex, by contracting links we
can reduce the number of vertices, while preserving signed genus (Lemma 4(ii)) and connectivity,
thus producing no new faces; the quasi-tree can thus be made simultaneously into a bouquet by a
sequence of such link contractions. Such a map with one vertex and one face is called by Tutte a
unitary map. If the map has at least two edges, contracting a link e ≡ ( c α2α0c ) ( α2c α0α2c ) can
be realized by a sequence of vertex gluings/vertex splittings (Definition 32 with the extra condition
of Lemma 7(2)(i)) and duplicate edge gluings/edge splittings as follows: (1) glue the two vertices
incident with e by riffling crosses c and φc , making e become a loop; then (2) split the vertex
incident with this loop by riffling c and α2α0c , thereby creating a leaf vertex; then (3) glue this leaf
vertex to the vertex containing φ−1c by riffling α0α2c and φ−1c , thereby creating a pair of duplicate
dges; and finally (4) glue these duplicate edges.
We have just seen how any connected map with at least one edge can be taken to a unitary

ap by a sequence of vertex gluings/vertex splittings and duplicate edge gluings/edge splittings.
he orientable canonical map of genus g is the unitary map whose vertex permutation has a cycle
f the form7 ( c1 c2 α0α2c2 α0α2c1 · · · c2g−1 c2g α0α2c2g α0α2c2g−1 ), and the
on-orientable canonical map of genus g has vertex permutation with a cycle of the form

( c1 α0c1 c2 α0c2 · · · cg α0cg ).

As remarked after Definition 32, Tutte defines an operation of vertex splitting [19, Figs. X.7.1
nd X.7.2] related to ours in following our vertex splitting operation by the insertion of a link; this
akes his operation inverse to that of contracting a link. Thus, to realize Tutte’s vertex splitting
peration we take the inverse sequence of four operations above that realized the operation of
ink contraction. In other words, start with the inverse of step (4) above (split an edge to make
duplicate edge), follow this by the inverse of step (3) (split an endpoint of the duplicate edge to
ake a leaf vertex), then carry out the inverse of step (2) (glue the leaf vertex to the vertex incident

o it), finishing with the inverse of step (1) (split the endpoint of the loop). Tutte showed [19,
heorem X.37] that, using vertex splittings in his sense and link contractions, one can transform
ny unitary map into a canonical map while maintaining the signed genus.8 Hence the same is true
hen using vertex gluings and splittings in our sense, along with edge splittings and duplicate edge

7 When g = 0 the canonical map is an isolated vertex and the vertex permutation consists of a pair of empty cycles;
as Tutte does not allow edgeless maps, he defines the canonical map of genus zero to be the map consisting of a single
link.
8 The crosses belonging to a cross cap (twisted loop appearing as a pair c, α0c in a cycle of the vertex permutation) or

to a handle (two interlaced non-twisted loops a, b, α0α2a, α0α2b in a cycle of the vertex permutation) appear consecutively
in the canonical map, or, to use Tutte’s term, they are assembled: Tutte in this way gives a combinatorial proof of the
classification theorem for compact surfaces.
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gluings, as these operations can simulate the two operations used by Tutte in the way described
above.

Finally, then, we compose the sequence of operations that reduces M to the canonical map of its
igned genus with the inverse of the sequence of operations reducing M ′ to the same canonical map,
which takes the canonical map to M ′. In this way we move from M to M ′ via the canonical map of
their signed genus by a sequence of operations of the type described in the lemma statement. □

Theorem 45. The poset (Mc(g),≤) is connected.

Proof. By Lemma 44, for each pair of maps M,M ′ ∈M(g) with at least one edge there is a sequence
of maps M0 = M,M1,M2, . . . ,Mk = M ′ such that there is either a homomorphism from Mi to
Mi+1 (when Mi+1 is obtained from Mi by vertex gluing or duplicate edge gluing) or from Mi+1 to
Mi (when Mi+1 is obtained from Mi by vertex splitting or edge splitting); all the operations are
the ones described in Lemma 44. With the additional observation that the single vertex can be
mapped everywhere in the case of g = 0, this shows that the preorder (M(g),≤) is connected;
then, by considering the corresponding homomorphisms between their cores, we obtain that the
poset (Mc(g),≤) is also connected. □

We recall some further definitions from poset theory. Let a, b be elements of a poset (P, <) such
that a < b. The poset P is dense between a and b if for any c, d ∈ P with a ≤ c < d ≤ b, there
exists an element e such that c < e < d; the pair a, b forms a gap in P if there is no element c
with a < c < b (alternatively, b covers a, i.e., b is an immediate successor of a). In the poset of
(cores of) graphs with order G ≤ H defined by the existence of a graph homomorphism G → H ,
each comparable pair of cores (with the exception of the one between the vertex and K2) defines
an interval that is a dense total order (actually, such interval is universal, in the sense that every
countable partial order can be seen as one of its suborders [5]). The following theorem shows that
the partial order of map cores is drastically different from that of graph cores.

Theorem 46. In the partial order (Mc(g),≤), there is no pair of cores N1,N2 with N1 < N2 and a
dense total order between them.

Proof. Suppose for a contradiction that there is a dense total order between two cores N1,N2 ∈

Mc(g), and assume first that both are connected. Thus, there are infinitely many cores in between
N1 and N2, and there must exist two cores N3,N4 ∈ Mc(g) with N1 < N3 < N4 < N2 such that
every core between them (including them) have the same number of odd-degree faces,9 and there
is a dense total order between them. Let N3,4 be the set of cores between N3 and N4.

Claim. There exist two cores N5,N6 ∈ N3,4 with N5 < N6 such that:

• there is a dense total order of cores from N3,4 in between N5 and N6, and
• for each pair of cores N ′ < N ′′ in between N5 and N6 (including them) in the total order, there

is a homomorphism N ′ → N ′′ that induces a one-to-one correspondence between faces of odd
degree and preserves their degree.

Proof of the claim. Let N, Ñ ∈ N3,4 with N < Ñ , and let h : N → Ñ . The image under h of each
odd-degree face of N is a face that induces a prefacial cross-circuit κ in Ñ of length smaller or equal
than its degree (here we use that h(N) is a submap of Ñ and Lemma 37; note that the image of a face
does not induce a prefacial cross-circuit, but rather a union of prefacial cross-circuits, we select one
of them). Each of these κ ’s contains exactly one face zκ of odd degree in Ñ as, by Observation 39, it
should contain at least one, and it cannot contain more since the number of odd faces in Ñ would
be strictly larger than that in N , a contradiction with N, Ñ ∈ N3,4. Since Ñ is a core, by Theorem 42,

9 N2 has a finite number of odd-degree faces, and the total number of odd-degree faces is non-decreasing when
aking homomorphic images: removal of parallel edges preserves their degree, while vertex gluing always produces one
dd-degree face from an odd-degree face, and either zero or two odd-degree faces from an even-degree face.
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either φzκ = κ , or the degree of zκ is strictly smaller than ℓ(κ). As there are infinitely many cores
n N3,4, totally ordered, these degrees stabilize between two cores, which are the desired N5,N6.
hese cores N5,N6 can be further assumed to contain a dense total order between them, as there

is a dense total order between N3 and N4. □

Let N5,6 be the set of cores totally ordered in between N5 and N6. We next prove that there are
wo cores in N5,6 with finitely many cores in between them, which contradicts the assumption that
there is a dense total order between N1 and N2. Let h : N → N ′ where N < N ′ are two cores in N5,6.
Each even-length facial walk λ of N turns into several even-length facial walks in h(N) ⊆ N ′ whose
total length is at most ℓ(λ) (it may happen that the face completely disappears); this follows from
the fact that no even-degree face can be subdivided (applying the sequence of vertex and duplicate
edge gluings) to create two odd-degree faces. These even-degree faces in h(N) become prefacial
cross-circuits κ in the core N ′. If κ is not a facial walk, by Theorem 42, the faces in the interior of κ

have even degree strictly smaller than ℓ(κ). Therefore, when we consider a homomorphism from N5
into a core in N5,6, its image is obtained by either reducing the number of faces (gluing duplicated
edges) or subdividing even-degree faces into smaller even-degree faces (gluing vertices); one can
place within these faces a plane submap with all the faces of strictly smaller even degree (we use
that the codomain is another core, and Theorem 42 where the prefacial cross-circuit κ is a part of
a facial walk from N5). Since there is an absolute minimum on the degree of a face, this process
cannot be performed infinitely many times.10 Hence, at some point, the number and the degree of
the even-degree faces is stabilized. Since we have also stabilized the number of odd-degree faces
and their respective degree, and there is only a finite number of maps with such parameters, we
conclude that the interval between N5 and N6 is not dense. This finishes the proof when the cores
N1,N2 are connected.

Suppose now that the cores N1,N2 are not connected; we argue similarly on the connected
components as they are cores and a map homomorphism can only merge them. Since the signed
genus is fixed and the Euler genus is additive along connected components, up to plane connected
components, we can find two cores N3,N4 with N1 < N3 < N4 < N2 such that the profile of
connected components with different signed genuses (different from 0) is the same, and it is the
same with all the cores in-between. Regarding the plane connected components, we next use an
argument on the number of odd-degree faces.

As mentioned in the applications of Theorem 42, each of the plane connected components either
has at least three odd-degree faces or it is a plane odd cycle or it is bipartite (all faces of even
length). In the latter case, the core is an edge, which can be mapped anywhere else. We also
know that there cannot be more than one plane odd cycle among the connected components since
otherwise one could be mapped into another and the whole map would not be a core. Furthermore,
a homomorphism between cores of N3,4 cannot merge one plane connected component into a
non-plane one, since that would strictly increase the number of odd-degree faces of the non-plane
component (each plane component besides, possibly, the odd cycle, has at least three odd-degree
faces, while merging two connected components can reduce the total number of odd-degree faces
by at most two). Thus, as the overall number of odd-degree faces is bounded in N4, the number of
plane connected components is also bounded for each of the cores in N3,4. Therefore, there exist
N5,N6 ∈ N3,4 with N5 < N6 that have the same profile of connected components and odd-degree
faces (the genuses of the components, and the number of odd-degree faces on each of the connected
components), and with a dense total order between them. Applying the same reasoning as in the
connected case, we find two cores in N5,6 with finitely many cores in between them. □

Corollary 47. In the preorder (M(g),≤), there is no pair of maps M1,M2 with M1 < M2 and a dense
total order between them.

10 When fixing the image of a homomorphism, the number of faces themselves is finite, even though we could fill a
iven face with arbitrarily many configurations that are cores using faces of strictly smaller degree; this arbitrary number
ill be fixed again, and all those inner faces will have strictly smaller degree. Thus, this procedure cannot be repeated

nfinitely many times once that arbitrary number is fixed and a particular collection of cores is chosen.
36



D. Garijo, A. Goodall and L. Vena European Journal of Combinatorics 118 (2024) 103936

P
P
t

d
a

Fig. 10. Copy of the graph U , and the dimaps Ti .

roof. This follows from the fact that a dense total order between two maps would imply, by
roposition 28 part (iv), a dense total order between their cores; here we also use that if M1 < M2,
hen their cores are different. □

Let us now exhibit an infinite chain of map cores. For the remainder of this section we use Ci to
enote the plane map of a graph cycle of length i. Let Ti,j be the plane map obtained by adding to C4
path of length i between the first and the third vertex, and a path of length j between the second

and the fourth vertex (each of these paths subdivides one of the faces induced by the C4 on the
plane). Thus, Ti,j has four faces, two of length i+ 2 and two of length j+ 2. Since T2k+1, 2s+1 has all
faces of odd degree and no vertices of degree one, then T2k+1, 2s+1 is a core for all k, s ≥ 0. By folding
one edge appropriately, we have T2k+1, 2s+1 → T2k+1, 2(s−1)+1 for s ≥ 1 and k ≥ 0; symmetrically,
T2k+1, 2s+1 → T2(k−1)+1, 2s+1 for s ≥ 0 and k ≥ 1. As Ti,3 has a face of length 5, we conclude that
C5 → · · · → T2s+1,3 → T2(s−1)+1,3 → · · · → T3,3 → T1,3 is an infinite (ordered) chain of cores.

We can also find an infinite chain of gaps by using that a plane connected map that is a core is
bipartite (an edge or an isolated vertex) or a cycle of odd length or has at least four faces of odd
degree, and that the codomain of a map homomorphism must have at least as many odd-degree
faces as the domain.

Theorem 48. Let Ci denote the plane map of the cycle graph of length i. For each k ≥ 1, C2k+3 → C2k+1
and there is a gap between C2k+3 and C2k+1.

For each signed genus g , we obtain an infinite antichain in Mc(g) and M(g) by considering maps
with an increasing number of odd-degree faces, and an increasing degree for each of these faces.
In [10] the authors consider, for each graph H , the family G(H) = {G |G is a graph and G→ H} and
show the existence of a graph H0 for which G(H0) contains an infinite antichain [10, Theorem 6]
(the argument uses only planar graphs); we next present a similar construction to find arbitrarily
large antichains in the posets given by F(H) = {M |M is a map and M → H}.

Theorem 49. For every even n, and odd k ≥ 3, there exist plane maps B and A1, . . . , An such that

• the underlying graphs of A1, . . . , An are graph cores, and B is a map core,
• each of B and A1, . . . , An have underlying graph of odd girth 2k+ 1,
• Ai → B for each i ∈ [n], and Ai ↛ Aj for distinct i, j ∈ [n].

Proof. We slightly adapt the arguments from [10, Theorem 6]; see Figs. 10 and 11 for illustrations
of the constructions.

Let U be a graph with vertices {a1, a2, . . . , a2k−1, b1, b2, . . . , b2k−1, c1, c2, . . . , c2k−1, d} where
there is a cycle (a1, a2, . . . , a2k−1, b1, b2, . . . , b2k−1, c1, c2, . . . , c2k−1, a1) and d is adjacent to b1, c1,
a . Now use the label u for a and v for b . A plane embedding of U is a map core since all the
1 1 k−1
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Fig. 11. Exchanging edges of T1 by copies of U to create A1 . The map B is obtained by gluing the first u and the last v,
long the exterior face.

aces have odd degree. It is also a graph core as each odd cycle should be mapped to an odd cycle,
nd a cycle of length the odd girth should be mapped to a cycle of length the odd girth; two of the
ycles cannot be mapped to a single one as otherwise the third odd-girth-length cycle would be
hortened.
Let Ti, 1 ≤ i ≤ n, be a path with n + 4 directed edges, all of them oriented in one direction

ut the i + 2-th edge that is oriented in the opposite direction. Let Gi be the graph obtained by
eplacing each edge of Ti by a copy of U , placing vertex u as the tail of the edge and v as the head.
ow, consider the plane embeddings of the graphs Gi, denoted by Ai, where all the vertices b1 of
he respective triangles are ‘‘facing up’’ except the b1 corresponding to the copy of U given by the
ackward edge, which is ‘‘facing down’’. The plane map B is formed by gluing the first vertex u with
he last vertex v. Thus, B consists of n+4 copies of U with all but one vertex b1 to the outside of the
ircle, and one of the vertices b1 to the inside. It is clear that Ai → B, but by the argument in [10,
heorem 6] all the graphs Gi are graph cores and Ai ↛ Aj (indeed, assume not, since U is a core, each
opy of U in Ai should be mapped to a copy of U , vertices u in different copies should be mapped
mong them as well as vertices v, since v is located slightly to one side along an odd-girth-length
ycle; we would thus have a graph homomorphism between Ti and Tj, a contradiction) and thus Ai
re map cores. Further, for n even, each face of B has odd degree, and thus it is a map core. This
ollows from the fact that each face of a plane embedding of U has odd degree, and so the path uv
as odd length on one side and even length on the other; in particular, by joining an even number
f U ’s together, and merging the first u and the last v as in Ai, we obtain two faces, both of odd
egree (the facial walk of one face is obtained as the addition of an odd number of odd-length paths
lus an even-length path, and the facial walk of the other face is obtained as the addition of an odd
umber of even-length paths plus an odd-length path). □

In [10, Theorem 6], the graph codomain of the antichain is the odd cycle of length 2k+1, which
s a (graph) core and does not depend on n, but only on k. However, since the number of odd faces
f A1, . . . , An increases with n, when using the same construction the map core B, codomain of the
ntichain, also depends on n. Thus, we can find arbitrarily large antichains, but not an infinite one.
his raises the following question:

Is there a map B for which F(B) contains an infinite antichain?
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