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Resumen

Esta tesis doctoral desarrolla nuevos problemas en el campo de los modelos de transporte,

con una perspectiva orientada al uso de drones. En este trabajo se de�nen nuevos modelos

de transporte, tomando ciertos elementos de los problemas de localización, los cuales se

resuelven con herramientas de la investigación operativa, como la optimización. La tesis

se divide en dos partes.

La Parte I se compone de cinco capítulos que abordan diferentes aspectos. El Capítulo

1 introduce el marco teórico que permite comprender los problemas que se desarrollan y

cuáles son los últimos avances alcanzados en la literatura. En el Capítulo 2 se establecen

qué objetivos se persiguen en este trabajo. El Capítulo 3 presenta los resultados obtenidos

hasta la fecha. A continuación, en el Capítulo 4, se lleva a cabo una discusión detallada

de dichos resultados. Finalmente, en el Capítulo 5 se presentan las conclusiones generales

extraídas de la tesis.

La Parte II también está compuesta por seis capítulos, del 6 al 11. Cada uno de los

capítulos en la Parte II puede ser abordado de manera independiente y representa una

contribución original de investigación en sí mismo.

En el Capítulo 6, se aborda una extensión del problema del cartero rural que se centra

en diseñar rutas que deben visitar diferentes elementos dimensionales en lugar de sim-

plemente aristas. Este problema modela la plani�cación de rutas para drones u otros

vehículos, donde es necesario visitar múltiples ubicaciones geográ�cas para entregar bi-

enes o servicios, y luego pasar directamente a la siguiente ubicación utilizando desplaza-

mientos en línea recta. En este capítulo, se presentan dos familias de formulaciones de

programación matemática. La primera familia se basa en un modelo por etapas y cap-

tura diversas características con aplicaciones prácticas, pero tiene la desventaja de utilizar

índices de tres variables. La segunda familia de formulaciones prescinde de estas etapas y

utiliza propiedades de conectividad para garantizar la correcta de�nición de las rutas. Es-

tas formulaciones se comparan utilizando instancias con diferentes formas, como conjuntos

representables con conos de segundo orden (SOC), entornos poliédricos y poligonales. Los

resultados computacionales presentados en este trabajo demuestran que los modelos son

efectivos y que las formulaciones pueden resolver de manera óptima instancias de tamaño

mediano, similares a otros problemas combinatorios con entornos que han sido estudiados

en la literatura. Para resolver instancias más grandes, también se presenta un algoritmo

heurístico que consta de dos fases: agrupación y un metaheurístico de búsqueda local.

Este algoritmo ofrece buenos resultados al generar soluciones factibles cercanas al óptimo

que, además, puede utilizarse para inicializar los solvers con dichas soluciones.
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El Capítulo 7 se enfoca en dos problemas distintos de diseño de rutas en el espacio con-

tinuo que involucran entornos y barreras: el problema del camino más corto y el problema

del viajante de comercio con entornos y barreras. La presencia de estos dos elementos,

entornos y barreras, hace que los problemas sean más desa�antes en comparación con sus

contrapartes estándar. Al combinar ambos aspectos, surge un nuevo problema que hasta

la fecha no ha sido abordado. No obstante, este problema tiene aplicaciones relevantes

en actividades de inspección y vigilancia, así como en la industria de reparto, especial-

mente cuando existe una demanda uniformemente distribuida en ciertas regiones. En el

capítulo se presentan formulaciones de programación matemática para ambos problemas,

asumiendo barreras lineales y entornos representables con conos de segundo orden. Es-

tos supuestos conducen a formulaciones enteras mixtas con conos de segundo orden , las

cuales son sometidas a preprocesamiento y se refuerzan mediante desigualdades válidas.

Además, se llevan a cabo experimentos computacionales que demuestran que el método

exacto puede resolver instancias con 75 entornos y un rango de 125 a 145 barreras.

El Capítulo 8 aborda problemas de localización de instalaciones en un espacio con-

tinuo con vecinos y barreras. Especí�camente, se analiza el problema de la p-mediana

con vecinos y barreras lineales en dos situaciones diferentes. Como primer bloque de con-

strucción, se aborda el problema asumiendo que los entornos no son visibles entre sí y,

por lo tanto, no existen rutas rectilíneas que unan dos entornos sin cruzar barreras. Bajo

esta hipótesis, se obtiene una formulación válida de programación lineal entera mixta.

Al eliminar esa hipótesis, se obtiene el problema más general y realista, pero con el in-

conveniente de ser más desa�ante. Adaptando los elementos de la primera formulación,

también se desarrolla otra formulación válida de programación bilineal entera mixta. Am-

bas formulaciones manejan barreras lineales y entornos que son representables con conos

de segundo orden, los cuales se preprocesan y fortalecen con desigualdades válidas. Estas

formulaciones de programación matemática también son fundamentales para generar un

algoritmo matheurístico adaptado que proporciona soluciones de buena calidad para am-

bos problemas en un tiempo de cómputo corto. El capítulo también detalla una amplia

experiencia computacional que demuestra que los enfoques exactos y heurísticos son útiles:

el enfoque exacto puede resolver instancias con hasta 50 entornos y diferentes números de

barreras en una hora de tiempo de CPU, mientras que el matheurístico siempre devuelve

excelentes soluciones factibles en menos de 100 segundos.

El Capítulo 9 se centra en mejorar la plani�cación de rutas utilizando drones. Se

examina la coordinación entre un nave principal y un dron para encontrar las rutas más

e�cientes que deben seguir para visitar diferentes objetivos representados como grafos. El

objetivo es minimizar la distancia total recorrida por ambos vehículos, al mismo tiempo que

se cumplen los requisitos de visitas a los objetivos en términos de porcentajes. Se analizan

distintos enfoques según las suposiciones realizadas sobre la ruta de la nave principal: i) la

nave se puede mover en un plano continuo (plano euclídeo), ii) en una poligonal, o iii) en un

grafo general. En todos los casos, se desarrollan formulaciones exactas mediante modelos

de programación cónica entera mixta de segundo orden que se comparan en un conjunto de

pruebas para evaluar su rendimiento. La complejidad de estos métodos exactos di�culta
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la búsqueda de soluciones óptimas en un tiempo de cálculo reducido. Por lo tanto, además

de las formulaciones exactas, también presentamos un procedimiento matheurístico que

permite obtener soluciones de alta calidad en un tiempo razonable. Los experimentos

computacionales demuestran la utilidad de nuestros métodos en diferentes escenarios.

En el Capítulo 10 se examina un modelo que combina el movimiento de un dron con

cierta autonomía que puede visitar múltiples puntos, junto con un vehículo base que puede

moverse libremente en el espacio continuo. Este vehículo desempeña el papel de cargar

la batería del dron, mientras que el dron se encarga de visitar diferentes objetivos, repre-

sentados por puntos o poligonales. En el caso de las poligonales, se establece el requisito

de que el dron atraviese una fracción especí�ca de sus longitudes, que representan activi-

dades de vigilancia o inspección. El objetivo principal del problema consiste en minimizar

la distancia total ponderada recorrida por ambos vehículos. Para abordar este problema,

se desarrolla y mejora una formulación de programación cónica entera mixta de segundo

orden, utilizando desigualdades válidas y proporcionando límites adecuados para las M

grandes que aparecen en el modelo. Además, se propone una estrategia matemática re-

�nada que permite obtener soluciones de calidad en un tiempo de cálculo reducido. La

calidad de las soluciones generadas por ambos enfoques se compara y analiza exhaustiva-

mente utilizando un conjunto aleatoria de instancias con diferentes números y formas de

objetivos, lo que demuestra la utilidad de nuestro enfoque y su aplicabilidad en diversas

situaciones.

En el Capítulo 11 se analizan los desafíos de optimización asociados a la coordinación

de un sistema compuesto por un vehículo principal y una �ota de drones. Cada dron

es lanzado desde el vehículo principal para llevar a cabo una tarea especí�ca. Una vez

completada la tarea, los drones regresan al vehículo principal para recargar sus baterías

y prepararse para una nueva tarea. Estas tareas implican visitar parcialmente grafos con

una longitud determinada, con el propósito de brindar servicios o realizar actividades de

vigilancia e inspección. El objetivo principal consiste en minimizar el tiempo total de

los desplazamientos realizados por el vehículo principal, al mismo tiempo que se cumplen

ciertos requisitos en términos de porcentajes de visitas a los grafos objetivo. Para abordar

este problema, se desarrollan formulaciones exactas utilizando programas de conos de

segundo orden con variables enteras, los cuales son comparados en un conjunto de pruebas

para evaluar su rendimiento. Además, se presenta un algoritmo matheurístico que genera

soluciones razonables. Los experimentos computacionales demuestran la utilidad de esta

metodología en diversos escenarios.





Abstract

This thesis develops new problems in the �eld of transportation, with a perspective ori-

entated to the use of drones. In this work, new transportation models are de�ned taking

certain elements from localisation theory, which are solved with elements from operations

research, such as optimisation. The thesis is divided into two parts.

Part I consists of �ve chapters dealing with di�erent aspects. Chapter 1 introduces

the theoretical framework that allows us to understand the problems that are developed

and the latest advances that have been achieved in the literature. Chapter 2 sets out the

objectives of this work. Chapter 3 presents the results obtained to date. This is followed

by a detailed discussion of these results in Chapter 4. Finally, Chapter 5 presents the

general conclusions drawn from the thesis.

Part II is also composed of six chapters, from Chapter 6 to Chapter 11. Each of the

chapters in Part II can be approached independently and represents an original research

contribution in itself.

In Chapter 6, an extension of the rural postman problem is addressed that focuses on

designing routes that must visit di�erent dimensional elements rather than simply edges.

This problem models route planning for drones or other vehicles, where it is necessary to

visit multiple geographic locations to deliver goods or services and then move directly to

the next location using straight-line travel. In this chapter, two families of mathematical

programming formulations are presented. The �rst family is based on a model by stages

and captures several features with practical applications, but has the disadvantage of

using three-variable indices. The second family of formulations avoids stages and uses

connectivity properties to ensure the correct de�nition of routes. These formulations

are compared using instances with di�erent shapes, such as second-order cone (SOC)

representable sets, polyhedral, and polygonal neighbourhoods. The computational results

presented in this paper demonstrate that the models are e�ective and that the formulations

can optimally solve medium-sized instances, similar to other combinatorial problems with

neighbourhoods that have been studied in the literature. To solve larger instances, a

heuristic algorithm is also presented that consists of two phases: clustering and a variable

neighbourhood search metaheuristic. This algorithm gives good results by generating

feasible solutions close to the optimum, which can also be used to initialise the solvers

with these solutions.

Chapter 7 focuses on two distinct route design problems in continuous space involv-

ing neighbourhoods and barriers: the shortest path problem and the travelling salesman

problem with neighbourhoods and barriers. The presence of these two elements, neigh-
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bourhoods and barriers, makes the problems more challenging compared to their stan-

dard counterparts. When both aspects are combined, a new problem arises that has not

been addressed to date. However, this problem has relevant applications in inspection

and surveillance activities, as well as in the delivery industry, especially when there is

a uniformly distributed demand in certain regions. The chapter presents mathematical

programming formulations for both problems, assuming linear barriers and second-order

cone (SOC) representable neighbourhoods. These assumptions lead to mixed-integer for-

mulations with second-order cones, which are preprocessed and strengthened by valid

inequalities. In addition, computational experiments are carried out that show that the

exact method can solve instances with 75 neighbourhoods and a range of 125 to 145

barriers.

Chapter 8 addresses facility location problems in a continuous space with neighbour-

hoods and barriers. Speci�cally, the p-median problem with linear neighbourhoods and

barriers is analysed in two di�erent situations. As a �rst building block, the problem is

approached assuming that the neighbourhoods are not visible to each other, and there-

fore there are no rectilinear routes linking two neighbourhoods without crossing barriers.

Under this assumption, a valid mixed-integer linear programming formulation is obtained.

Removing that assumption yields the more general and realistic problem, but with the

drawback of being more challenging. By adapting the elements of the �rst formulation,

another valid mixed-integer bilinear programming formulation is also developed. Both for-

mulations handle linear barriers and neighbourhoods that are representable with second-

order cones (SOCs), which are preprocessed and reinforced with valid inequalities. These

mathematical programming formulations are also instrumental in generating an adapted

matheuristic algorithm that provides good quality solutions for both problems in a short

computational time. The chapter also details extensive computational experience that

demonstrates that exact and heuristic approaches are useful: the exact approach can solve

instances with up to 50 neighbourhoods and di�erent numbers of barriers in one hour of

CPU time, while the matheuristic approach always returns excellent feasible solutions in

less than 100 seconds.

Chapter 9 focuses on improving route planning using drones. It examines the coor-

dination between a mothership and a drone to �nd the most e�cient routes to follow to

visit di�erent targets represented as graphs. The aim is to minimise the total distance

travelled by both vehicles, while meeting the target visit requirements in terms of percent-

ages. Di�erent approaches are analysed depending on the assumptions made about the

mothership route: i) the mothership can move in a continuous plane (Euclidean plane),

ii) in a polygonal, or iii) in a general graph. In all cases, exact formulations are devel-

oped using second-order mixed-integer conic programming models that are compared on

a test set to evaluate their performance. The complexity of these exact methods makes

it di�cult to �nd optimal solutions in a short computational time. Therefore, in addition

to exact formulations, a matheuristic procedure is also presented that allows us to obtain

high quality solutions in a reasonable time. Computational experiments demonstrate the

usefulness of our methods in di�erent scenarios.
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Chapter 10 examines a model that combines the movement of a drone with a limited

endurance that can visit multiple points, together with a base vehicle that can move freely

in continuous space. This vehicle plays the role of charging the battery of the drone, while

the drone is in charge of visiting di�erent targets, represented by points or polygonals. In

the case of polygonals, there is a requirement for the drone to traverse a speci�c fraction of

their lengths, representing surveillance or inspection activities. The main objective of the

problem is to minimise the total weighted distance travelled by both vehicles. To address

this problem, a second-order mixed-integer conic programming formulation is developed

and improved, using valid inequalities and providing appropriate bounds for the bigM

appearing in the model. In addition, a re�ned mathematical strategy is proposed that

allows for the generation of quality solutions in a reduced computational time. The quality

of the solutions generated by both approaches is thoroughly compared and analysed using

a random set of instances with di�erent numbers and forms of targets, which demonstrates

the usefulness of our approach and its applicability in various situations.

Chapter 11 discusses the optimisation challenges associated with coordinating a system

composed of a mothership and a �eet of drones. Each drone is launched from the mother-

ship to perform a speci�c task. Once the task is completed, the drones return to the main

vehicle to recharge their batteries and prepare for a new task. These tasks involve partially

visiting networks of a certain length with the purpose of providing services or performing

surveillance and inspection activities. The main objective is to minimise the total travel

time of the mothership while meeting certain requirements in terms of the percentage of

visits to the target networks. To address this problem, exact formulations are developed

using second-order cone programmes with integer variables, which are compared in a test

set to evaluate their performance. In addition, a matheuristic algorithm that generates

reasonable solutions is presented. Computational experiments demonstrate the usefulness

of this methodology in various scenarios.
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Operations Research (OR) plays an important role in contemporary decision-making

processes in various domains. It provides a systematic and analytical approach to solving

complex problems, optimising processes, and making informed decisions. OR o�ers value

in resource allocation, cost minimisation, risk assessment, and performance improvement,

leading to enhanced e�ciency and productivity. OR techniques have been widely applied in

supply chain management, transportation, healthcare, �nance, and other industries. It has

resulted in cost savings, improved quality of services, and better utilisation of resources.

Furthermore, it enables organisations to address real-world challenges and make data-

driven decisions, contributing to increased competitiveness and sustainable development

(Augier and Teece, 2021).

Conic optimisation is a powerful mathematical programming framework that has gained

signi�cant attention in recent years. It extends traditional linear programming by incorpo-

rating second-order cones, semide�nite cones, and other convex cones into the optimisation

formulation. This extension allows for the e�cient modelling and solution of complex op-

timisation problems with nonlinear and nonconvex constraints. Conic programming has

found applications in various �elds such as portfolio optimisation, control theory, machine

learning, and logistics (Lobo et al., 1998).

This thesis explores the applications of conic optimisation in the context of location

and transportation problems. Location models are designed to determine the optimal

placement of various services, taking into account factors such as user distance and cost

considerations (nic, 2005). Location problems often arise in various �elds, including lo-

gistics and supply chain management, urban planning, facility management, and telecom-

munications (Drezner and Hamacher, 2004). On the other hand, transportation models

focus on �nding the most e�cient way to transport resources from a source to multiple

destinations while minimising costs (Ahuja et al., 1993; Gutin and Punnen, 2006). In this

case, this thesis speci�cally concentrates on drone transport models because of their im-

mense applicability and promising future potential. Drones have revolutionised the �eld

by introducing a level of �exibility and freedom in route selection that was previously

unattainable (Otto et al., 2018). This paradigm shift has opened up new possibilities

for employing continuous optimisation techniques in problems that traditionally relied on

discrete optimisation methods. This thesis seeks to integrate location and transportation

models, thereby paving the way for solving more realistic problems. By combining the

strengths of location and transportation models and leveraging the �exibility of drone

transport, researchers hope to address real-world challenges more e�ectively.

Combinatorial optimisation problems, including location and transportation problems,

have been extensively studied in the specialised literature for several decades (Papadim-

itriou and Steiglitz, 1998). However, the emergence of drones has caused a signi�cant shift

in the way these problems are approached. Previously, discrete optimisation techniques

were prevalent due to the restrictions imposed on traditional transportation methods.

However, drones have alleviated many of these restrictions, making continuous optimisa-

tion approaches, such as conic optimisation, more viable and advantageous. In this thesis,

new problems of combinatorial optimisation are studied by examining their key properties,



4 Chapter 1. Introduction

solution schemes, and contributions. In this introduction, the necessary background and

initial motivation are presented. The aim is to build upon existing knowledge and address

speci�c challenges within the context of these problems and contribute to the development

of the �eld.

1.1 Conic programming

Let K be a convex, pointed, closed, and with a non-empty interior cone, a conic program

on K is the optimisation program:

min
x

ctx (CP)

s.t. b ≤K Ax ⇔ Ax− b ∈ K, (1.1a)

where (c, A, b) is the tuple that represents the data values. Note that (CP) optimises

a linear function over a convex set and thus is a convex program. It is possible to repre-

sent every convex program as a conic one. In addition, a huge spectrum of applications

are covered using only three families of cones: nonnegative orthants, �nite products of

Lorentz cones, and direct products of semide�nite cones. The advantages of these fami-

lies are the fully symmetric duality, heavily utilised by solution algorithms, the existence

of polynomial-time interior point methods and its extremely powerful expressive abilities

(Nemirovski, 2006).

Duality

In mathematical programming, duality is introduced as having a systematic way of taking

good lower bounds of the optimal value over a minimisation problem. For the conic

program in K described in (CP), its dual problem is de�ned as follows.

min btu (D)

s.t. Atu = c, (1.2a)

0 ≤K∗ u ⇔ u ∈ K∗, (1.2b)

where K∗ = {u : utξ ≥ 0,∀ξ ∈ K} is the cone dual of K. The resulting problem is

again a conic problem, and assuming the columns of A to be linearly independent, the

duality is fully symmetric.

The power of duality in conic programming is summarised in the following theorem

(see, e.g. Nesterov and Nemirovski (1992), Nesterov and Nemirovski (1994), Alizadeh

(1995)):

Theorem 1 Assuming A in (CP) is a full column rank matrix, it veri�es:

1. (D) is symmetric: it is a conic program, and its conic dual is equivalent to (CP).
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2. Weak Duality: The optimal value of the dual is a lower bound of the optimal

value of the primal, i.e., if x̄ and ū are the optimal solution of the primal and dual,

respectively:

ctx̄ ≥ btū.

3. Strong Duality: If one of the programs (CP) or (D) is bounded and strictly feasible,

the other is solvable and the optimal value coincide:

ctx̄ = btū.

4. Optimality conditions: If, additionally, (CP) and (D) are both strictly feasible,

then a feasible solution (x, u) is optimal if and only if ut[Ax− b] = 0.

Interior point methods

An interior penalty scheme to solve the conic program (CP), introduced in Fiacco and

McCormick (1990), consists of:

1. De�ning a smooth and strictly convex function F that converges to ∞ for every

sequence {xki } in the interior of K convergent to its boundary.

2. Associating (CP) with a parametric optimisation problem:

x∗(s) = argmin
x∈K

sctx+ F (x). (1.3)

Under mild assumptions, x∗(s) is well de�ned and converges to the optimal of (CP),

when s → +∞. The path traced using this parametric optimisation problem is described

below. Given (x, s) with x close to x∗(s):

1. Replace s with s+ > s.

2. Minimise s+ctx+ F (x) by the Newton method, using x as the starting point, until

a point x+ is close to x∗(s
+) is built.

3. Replace (x, s) with (x+, s+) and iterate.

The advantages of interior point methods in conic programming are that every cone K
admits a self-concordant barrier, and the path-following scheme presented above becomes

polynomial when the barrier is self-concordant. Hence, every conic programming problem

admits a polynomial interior point method (see Nesterov and Nemirovski (1994) for more

details). Essentially, all convex programming is within the grasp of polynomial time

interior point methods (Nemirovski, 2006).

In the following, two of the most important families of cones and its applications are

introduced.
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1.1.1 Linear programming

The nonnegative orthant of dimension n is described as:

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}.

Then a linear programming program (LP) is de�ned as

min ctx (LP)

s.t. 0 ≤ Ax− b ⇔ Ax− b ∈ Rn
+.

Linear programming was invented around 1947 by George Dantzig. LP was the start-

ing point to the development of Mathematical Programming, in which a general function is

optimised under di�erent assumptions. It allowed modelling and processing logistic, rout-

ing and planning problems. In addition, the great performance of the Simplex algorithm

for LP together with the improvement of the computational devices developed the theory

and algorithms of LP programs. However, it took over 30 years to �nd a polynomial-time

algorithm to solve a LP program (Khachiyan, 1980).

Linear programming has been applied to a wide spectrum of problems, like regression in

statistics or portfolio selection or option pricing in �nancials. However, the most important

special class of linear programming is formed by network �ow problems. They consist of

minimising the transportation cost of moving some commodities through a network to

meet demands at various locations given sources of commodities at other locations. The

most important applications of network �ow problems are the transportation problem, the

assignment problem, the shortest-path problem, and the maximum-�ow problem. This

class of problems also includes facility location, resource management, �nancial planning,

and others.

1.1.2 Second-order cone programming

Let ∥ · ∥2 denote the standard Euclidean norm derived from the dot product in Rn, i.e.,

∥u∥2 = (utu)1/2. The second-order cone (or Lorentz cone) of dimension k + 1 is de�ned

as:

Lk+1 = {(x, y) ∈ Rk × R : ∥x∥2 ≤ y}.

Then the second-order conic program (SOCP) is de�ned as

min ctx (SOCP)

s.t. ∥Aix− bi∥ ≤ ctix− di ⇔ (Aix− bi, c
t
ix− di) ∈ Lki+1, i = 1, . . . ,m,

where Ai ∈ Rki×n, bi ∈ Rki , ci ∈ Rn and di ∈ R are the problem parameters.

Second-order cone programming can be used to represent common convex constraints.

If Ai ≡ 0 and bi ≡ 0, for some i ∈ 1, . . . ,m, the corresponding second-order cone constraint
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is reduced to a linear. On the other hand, if ci ≡ 0 and di ≤ 0, the constraint is reduced

to a convex quadratic constraint.

1.2 The Travelling Salesman Problem

The travelling salesman problem (TSP) consists of �nding a tour who starts from a home

location, visits a prescribed set of points, and returns to the original location in such a

way that the total distance travelled is minimum and each point is visited exactly once.

Let G = (V,E) be a complete graph, where V = {1, . . . , n} is the set of nodes that

represent the cities and E, the set of edges that join each pair of cities. Each edge e ∈ E

has a cost associated ce. Let C = (cij)n×n denote the cost matrix, where cij corresponds

to the cost of the edges that join cities i and j in G.

Depending on the nature of the cost matrix, the TSP can be classi�ed into two classes.

If C is symmetric, then the TSP is called the symmetric travelling salesman problem

(STSP). If C is not symmetric, then it is called the asymmetric travelling salesman (ATSP).

The classical integer formulation of the ATSP is based on the assignment problem

described as follows:

min

n∑

i=1

n∑

j=1

cijxij

s.t.

n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

xij ∈ {0, 1},

where the binary variable xij indicates if the edge (ij) is used in the tour. Note that

the edges chosen in the solution of this problem represent a tour or a collection of subtours

in G. Hence, additional restrictions are included to avoid the existence of subtours. The

two most well-known ways to avoid them are:

� Clique Packing Constraints: Introduced by Dantzig et al. (1954). There are an

exponential number which are given by

∑

i∈Q

∑

j∈Q
xij ≤ |Q| − 1, ∅ ̸= Q ⊂ {2, 3, . . . , n}. (1.4)

� MTZ Constraints: Miller et al. (1960) proposed a compact representation using

(n− 1)2 additional constraints and n− 1 additional continuous variables ui that are

described as

ui − uj + (n− 1)xij ≤ n− 2, i, j = 2, 3, . . . , n. (1.5)
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The formulation of the TSP can be stated as:

min

n∑

i=1

n∑

j=1

cijxij (TSP)

s.t.
n∑

i=1

xij = 1, j = 1, . . . , n,

n∑

j=1

xij = 1, i = 1, . . . , n,

(1.4) or (1.5),

xij ∈ {0, 1}.

In the literature, some variations of the TSP that have been studied are the generalised

TSP (Laporte and Nobert, 1983), the time dependent TSP (Fox et al., 1980), the orien-

teering problem (Golden et al., 1987), or the angle TSP (Aggarwal et al., 2000). Other

extensions that could be discussed, depending on various application scenarios, include

the travelling salesman location problem (Burness and White, 1976), k-best TSP (van der

Poort et al., 1999) or the minmax TSP (França et al., 1995). For a detailed survey, the

reader is referred to Gutin and Punnen (2006).

The TSP with Neighbourhoods (TSPN), introduced by Arkin and Hassin (1994), has

played a special role in this thesis. In this extension, each point to be visited is associated

with a region, denoted as neighbourhood, that contains it. The goal is to determine the

shortest tour that visits all nodes, where a node is visited when the tour traverses or

reaches the region associated with the node. Several real-world problems are modelled by

the (TSPN), including metre reading problems (Shuttleworth et al., 2008) and localisation,

monitoring, and diagnostic reconnaissance problems (Poikonen et al., 2017; Di Placido

et al., 2022).

1.3 The Mothership and Drone Routing Problem

In Poikonen and Golden (2020), the mothership and drone routing problem (MDRP) is

introduced. The MDRP considers the routing of a two-vehicle tandem. A larger vehicle

is called the mothership and a smaller vehicle is called the drone. The mothership and

the drone begin at a starting location, denoted orig. The drone is launched from the

mothership to visit, in each operation, a target vi ∈ V and then returns to the mothership.

When all nodes are visited, both vehicles must return to a �nal location, denoted dest.

The MDRP assumes that:

� Both vehicles are capable of moving freely in R2. There are no obstacles to prevent

mothership and drone to travel in straight-line segments.

� Both vehicles are not required to arrive at a rendezvous location at the same time;

the drone can wait for the mothership to be retrieved.
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� The drone cannot be separated from the mothership for more than Nd time units

due to limited battery endurance.

� The mothership has a maximum unit speed; the drone has a maximum speed of

νD > 1.

� The drone can not visit multiple targets consecutively.

The MDRP is a generalisation of the Euclidean travelling salesman problem. The aim

is to �nd a path of minimum duration that begins at orig and ends at dest and where

every vi ∈ V is visited by the drone.

A formulation based on Poikonen and Golden (2020) is stated. Let us denote O =

{0, . . . , n + 1} the set of operations that the mothership and the drone have to perform.

An operation is termed as the process in which the mothership launches a drone from a

take-o� location, denoted by xoL and then returns to a rendezvous location xoR. To take into

account the di�erent times among the decision variables of the model, same continuous

variables are de�ned:

� timeioL : time taken by the drone to go from the launching point on the mothership

to the target point vi associated with the operation o.

� timeioR : time taken by the drone from the target point vi to the rendezvous point

associated with the operation o.

� timeoLR: time spent by the mothership from the launching point to the rendezvous

point at operation o.

� timeoRL: time spent by the mothership and drone from the rendezvous point at

operation o to the launching point at the operation o+ 1.

To include the de�nition of the routes followed by the drone in the mathematical

programming formulation, the optimal assignment of each target vi to each operation o is

required. The binary variable χio attains value one if the drone visits the target vi in the

operation o.

The goal of the MDRP is to �nd a feasible solution that minimises the total time spent

by the mothership and the drone.
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min

n∑

o=1

timeoLR +

n∑

o=0

timeoRL (MDRP)

s.t.
n∑

i=1

χio = 1, o = 1, . . . , n, (1.6a)

n∑

o=1

χio = 1, i = 1, . . . , n, (1.6b)

1

νD
∥xoL − vi∥ ≤ timeioL , i, o = 1, . . . , n, (1.6c)

1

νD
∥vi − xoR∥ ≤ timeioR , i, o = 1, . . . , n, (1.6d)

∥xoL − xoR∥ ≤ timeoLR, o = 1, . . . , n, (1.6e)

∥xoR − xo+1
L ∥ ≤ timeoRL, o = 0, . . . , n, (1.6f)

n∑

i=1

χio
(
timeioL + timeioR

)
≤ timeoLR, o = 1, . . . , n, (1.6g)

timeoLR ≤ Nd, o = 1, . . . , n, (1.6h)

x0L = orig, (1.6i)

x0R = orig, (1.6j)

xn+1
L = dest, (1.6k)

xn+1
R = dest. (1.6l)

The objective function sets the duration of the tour as the sum of the times during

which the mothership and drone are operating. Constraints (1.6a) and (1.6b) ensure that

the drone visits only one node in each operation. Constraints (1.6c) state that timeioL is

at least the time that the drone spends since it is launched at xoL from the mothership

until it visits the node vi. Constraints (1.6d) ensure that timeioR is at least the time it

spends visiting node vi until it is retrieved in xoR, respectively. The restrictions (1.6e) and

(1.6f) represent the time spent by the mothership on each operation. Constraints (1.6g)

state that the time that the drone spends doing the operation o is less than or equal to

the time that the mothership needs to move from the launching point to the rendezvous

point during this operation. Constraints (1.6h) explain that the time spent by the drone

to visit the node vi must not exceed the time endurance Nd. Constraints (1.6i) through

(1.6l) establish the origin and destination of the path.

The relationship between the TSP and the MDRP is as follows. If obj(TSP ) and

obj(MDRP ) denote the optimal objective value of the TSP and the MDRP for the set of

locations V ∪ {orig}, respectively. Then

1

νD
obj(TSP ) ≤ obj(MDRP ) ≤ obj(TSP ).

In Poikonen and Golden (2020), the authors also de�ne a more general case in which

the drone can visit more than one target in the same operation. They proposed a branch-
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and-bound algorithm capable of solving small-sized instances. They describe heuristics

based on greedy approaches and local search strategies for larger instances.

The MDRP is a variant of the �ying sidekick TSP, introduced by Murray and Chu

(2015). They were the �rst authors to introduce the concept of truck-drone systems in

which each node is served by either a truck or a drone. It assumes that the drone is only

allowed to depart from and return to the truck at a node. This variant is also known as

the TSP with drone (TSP-D), considered in Agatz et al. (2018). This problem has been

extended to the case of a single truck with multiple drones in Murray and Raj (2020).

An excellent survey of truck-drone systems from an operational research perspective is

elaborated in Boysen et al. (2021).

1.4 The Mixed Windy Rural Postman Problem

One of the most important applications of the travelling salesman problem is the possibility

of solving arc routing problems (ARPs), such as the mixed windy rural postman problem

(MWRPP), which is stated in the following.

Let G = (V,A∪E) be a mixed graph, where A are arcs and E are edges. The MWRPP

aims to �nd a minimum cost closed walk on G that contains all arcs in a subset A′ ⊂ A

and all edges in E′ ⊂ E. Laporte (1997) describes a transformation into a TSP that

associates each arc or edge with one vertex in a graph D whose edge costs are associated

with the shortest paths in the original graph G.

This problem extends a family of arc routing problems including the mixed Chinese

postman problem (Papadimitriou, 1976), the windy postman problem (Minieka, 1979),

the windy rural postman problem (Benavent et al., 2007), or the stacker crane problem

(Frederickson et al., 1976). Corberán and Laporte (2015) provides a thorough discussion

of arc routing problems and its applications.

An special case of the MWRPP is the rural postman problem (RPP), in which only

edges are considered (A = ∅). In Ghiani and Laporte (2015), some mathematical formula-

tions for the RPP are presented followed by exact algorithms and improvement heuristics.

Based on this problem, Gar�nkel and Webb (1999) introduced the crossing postman prob-

lem (XPP), which relaxes the RPP to the case in which it is allowed to leave the edges of

the network and cross from one edge to another at points other than the original vertices.

The authors proved that the XPP is NP-hard and presented a number of results that al-

low certain non-required edges to be eliminated without sacri�cing the optimal solutions.

In Campbell et al. (2018), the Drone Rural Postman Problem (Drone RPP) extended

the XPP for curved lines and developed a solution based on the undirected RPP with

polygonal chains that approximates the curved lines.

1.5 The discrete p-median problem

The p-median, one of the most studied discrete facility location problems, concerns the

optimal placement of one or several new facilities/plants to satisfy the demands of cus-

tomers. Here, the positions of both the customers and the potential new facilities are part
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of the input, as well as the travel costs between them. It was introduced by Hakimi (1965)

as a generalisation of the concept of median. The p-median problem is concerned with the

location of p facilities within a given region to minimise the total distance between the

facilities and a set of demand points.

Let I be the set of potential facility locations and J the set of demand points. The

cost or distance between a demand point i ∈ I and a facility location j ∈ J is represented

by cij . The classical formulation of the p-median is described as follows:

min
∑

i∈I

∑

j∈J
cijxij (p-median)

s.t.
∑

j∈J
xij = 1, i ∈ I,

xij ≤ yj , i ∈ I, j ∈ J,
∑

j∈J
yj = p,

xij , yj ∈ {0, 1},

where xij is a binary variable which takes the value one if the demand point i is assigned

to the facility j and yj , which takes the value one if the facility location j is selected. The

�rst constraint states that the demand point is assigned to only one facility, the second

ensures that the demand point i is assigned to the location j only if a facility is opened in

j. Finally, the third constraint means that the number of facilities to be located is exactly

p.

The problem arises in various domains, including facility location planning, supply

chain management, transportation, and public services. The p-median problem can have

additional constraints or variations depending on the speci�c context and requirements of

the problem. For example, capacity constraints can be introduced to limit the number of

demand points assigned to each facility location (Kuehn and Hamburger, 1963; Puerto,

2008). Robust or stochastic formulations may also consider uncertain demand Albareda-

Sambola et al. (2011); Correia et al. (2018); Correia and Saldanha-da-Gama (2019). In

Tansel et al. (1983), an extended survey of some extensions of the p-median problem can

be reviewed.

An uni�ed approach for p-facility location problems that studies a wide family of ob-

jective functions in facility location problems is the ordered p-median problem. The goal of

the ordered p-median location problem is to minimise the ordered weighted average of the

distances or transportation costs, between the clients/demand points and the server, once

we have applied rank dependent compensation factors on them. This problem, introduced

by Puerto and Fernández (2000), allows modelling location problems in which customers

support the median (p-median) or the maximum (p-center) travel costs, among many other

robust alternatives (see Puerto and Rodríguez-Chía (2019) for a recent survey).
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1.6 Location problems with polyhedral barriers

An interesting extension of the discrete p-median is the p-median problem with barriers.

In this case, there exist some areas that cannot be traversed and it is necessary to compute

the minimum distance between each pair of points in the graph induced by the facility

locations and demand points.

Formally, let B = {B1, . . . , Bm} be a �nite set of closed and pairwise disjoint barrier

sets in Rn. The placement of a facility or travelling through the interior of these sets is

forbidden. Then, the feasible region is given by F = Rn \ int(B). Let dB be the barrier

distance, that is, the length of the shortest path that does not cross int(B), joining a pair
of points in F . Let I be the set of potential facility locations and J the set of demand

points that are assumed to be located in F . The distance between a demand point i ∈ I

and a facility location j ∈ J is represented by cij . In this case, the p-median with barriers

has the same mixed-integer linear programming formulation as in (p-median). Note that

the di�culty of this problem is based on a previous step of computing the shortest path

that joins each pair of points. However, when the set of potential facility locations is not

�xed `a priori', and it is allowed to be located at any point in F , the problem becomes

much harder.

This problem, in the context of planar location modelling, represents restrictions that

appear in a real-life context. One of them is the case in which there are regions (called

forbidden regions) in which the placement of a facility is forbidden, but transportation

is still possible. They can model state parks or regions where geographic characteristics

forbid the construction of the facility. For a survey of location problems with forbidden

regions, see Hamacher and Nickel (1995) or Nickel (1995). The case in which transportation

is possible, but only at a higher cost (called congested regions) is studied in Butt and

Cavalier (1996) or Mitchell and Papadimitriou (1991). In this case, in these regions,

di�erent travel speeds or travel costs are considered. However, the existence of military

areas, mountain ranges, lakes, big rivers, and highways does not allow transportation.

These examples of barrier regions involve circuit board design (LaPaugh, 1980), pipe

network design for ships (Wangdahl et al., 1974), or location and routing with robots

(Lozano-Pérez and Wesley, 1979).

The �rst time barrier regions were considered in location modelling was in Katz and

Cooper (1981). In this paper, the authors consider the 1-median in the plane with the

Euclidean distance and one circular barrier. The same authors extended their work to

cases with several circles and introduced those with one polyhedral barrier set in the plane

and distances measured by any lτ metric, 1 < τ < ∞ (see Katz and Cooper (1979a,b)).

Aneja and Parlar (1994); Butt and Cavalier (1996); Katz and Cooper (1981) studied the

1-median problem for polyhedral barriers and any lτ norm.

A variation of the 1-median problem, in which the barrier is a line with a �nite number

of passages, such as rivers or highways, and any distance induced by a norm, is studied in

Klamroth (2001). This variation was extended to a bi-objective version in Klamroth and

Wiecek (2002).

On the other hand, Batta et al. (1989) considered the stochastic queue median prob-
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lem in the presence of barriers while employing the distance l1. The authors developed

connections between network location problems and planar location problems with this

metric. Finally, Fekete et al. (2005) introduced the p-median problem with continuous

demand over some given polyhedral set, possibly with holes acting as barriers to travel,

and l1 metric.
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In this chapter, the objectives of this thesis are established. The main objective of

this thesis is the use of conic programming to extend state-of-the-art routing and location

models. These new models seek for the applicability to more realistic scenarios. For each

model studied in this thesis, the following objectives are considered:

� To analyse the current state-of-the-art in the �eld. This involves studying the as-

sumptions made in existing works to identify opportunities for relaxing some of these

assumptions and incorporating new elements to enrich the problem.

� To introduce new mathematical programming formulations that provide exact solu-

tions to the problem. Additionally, to explore the possibilities of reinforcing these

formulations with bound-tightening and valid inequalities to e�ectively reduce the

feasible solution space.

� To study the structure of the problem and propose theoretical results that can be

exploited to simplify the problem. This will include employing preprocessing tech-

niques and variable �xing strategies.

� To develop a matheuristic that take advantage of the structure of the problem to

obtain high-quality solutions within a reasonable time. This matheuristic will serve

as initialisation for the exact model and will aim to obtain near-optimal solutions in

certain scenarios.

� To conduct extensive computational experiments to compare the performance of

the proposed formulations, as well as the e�ectiveness of reinforcement and variable

�xing techniques. The study will also assess the quality of the approximate solutions

obtained through the matheuristic approach.
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The following chapter describes the results attained related to the objectives proposed

in the previous chapter of this thesis. These results have given rise to the publication of

four articles: Puerto and Valverde (2022), Amorosi et al. (2021), Amorosi et al. (2022)

and Amorosi et al. (2023), which correspond, respectively, to the chapters 6, 9, 10 and 11.

The results can be summarised as follows.

� New routing and location continuous problems have been proposed by exploiting

the possibility of modelling distances with conic programming tools. A variant of

the travelling salesman problem with neighbourhoods is considered that includes the

traversing of a percentage of the length of the polygonal chains. Linear barriers that

cannot be crossed have been included in the classical travelling salesman problem

and p-median problem with neighbourhoods. The mothership drone routing problem

has been extended in di�erent directions: the possibility of the mothership of moving

on a continuous framework or only on a general network; target graphs whose edges

must be traversed in some percentage of their lengths; coordination of multiple

drones and drones that have the possibility of visiting more than one target in a

single operation.

� Mixed-integer second-order conic programming formulations have been developed

for the problems described above. They have been reinforced by studying the best

bounds for the variables and including valid inequalities that break symmetries. Us-

ing these formulations, some matheuristics are proposed to obtain feasible solutions

in a reasonable time.

� Theoretical study of the exact formulations that include relations in terms of the

lower bounds of the continuous relaxations between formulations; use of the La-

grangian dual to construct a Benders-like decomposition algorithm; study of geomet-

ric properties of some problems to generate dominating sets; NP-hardness results,

among others.

� An extensive series of computational experiments have been conducted to evaluate

the e�ectiveness of the proposed formulations and matheuristics to solve the prob-

lems. Various types of instances were used in these experiments, including bench-

mark instances borrowed from the existing literature, randomly generated instances,

and those inspired by real-world scenarios.
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The results presented in the previous chapter, related to the material included in

chapters 6 to 11 of this thesis, are discussed in terms of contributions to the state-of-the-

art.

In Chapter 6, an extension of the travelling salesman problem with neighbourhoods is

considered. This assumes a cost structure, that is, the travel cost of moving between neigh-

bourhoods and the travel cost of crossing a neighbourhood. Unlike the classical TSPN,

it is necessary to locate exit and entry points in each neighbourhood. It also includes

arc routing elements, like polygonal chains, that must be traversed in some speci�ed per-

centage of their lengths. To solve this problem, neighbourhoods and polygonal chains are

modelled by using unions of second-order cone representable sets. Then, two di�erent ap-

proaches are used to state the problem. First, a time-dependent formulation is employed

that allows us to include a number of speci�c characteristics in the modelling phase, such

as time-dependent travel distances, time windows, or time-dependent discount factors.

Then another formulation that does not make reference to stages in the routes and that

simpli�es the model is described by using McCormick envelopes. To provide good quality

solutions, a matheuristic approach is proposed by integrating a clustering phase based on

the 1-median to �nd the point candidates and a variable neighbourhood search phase to

�nd the best route with the points obtained in the previous phase. Later, the geome-

try of the neighbourhoods is explored to �x a priori some variables in the formulations

and to increase the e�ciency of the model. In addition, the linearisation of the objective

function yields bigM constants. Therefore, good upper and lower bounds are provided

for these constants. Subsequently, an alternative row generation approach is presented

to solve the problem based on a Benders decomposition (Benders, 1962) observing that

�xing the binary variables, the continuous problem is convex and easy to solve. Finally, a

battery of computational experiments have been performed by generating three types of

neighbourhood: circles, regular polygons, and polygonal chains of di�erent sizes. For each

typology, time- and non-time-dependent formulations are compared. Since the latest pro-

vides better results, the Benders cuts approach is compared with the non-time-dependent

approach. Again, formulations yield better results. Finally, new experiments are devoted

to conclude that initialising the proposed formulations with an initial solution provided

by the matheuristic helps in solving the problem.

Chapter 7 extends the neighbourhood version of the TSP by including linear barriers

that cannot be crossed. The associated shortest path problem with neighbourhoods and

barriers is described, and later used as a building block for the TSP extension. Since

points are not �xed a priori, to check if a path is valid in the problem, a computational ge-

ometry result is used to check if the path intersects a barrier in terms of the orientations of

these points with respect to the barrier. This geometric result makes use of determinants.

Hence, mixed-integer quadratic programming formulations that take into account this fact

are proposed. The chapter distinguishes between the case when two neighbourhoods can-

not be joined by a rectilinear path that does not cross any barrier (hidden version) and

when this is possible (general version). A proof of NP-completeness is given for this exten-

sion. This discussion is motivated because the hidden version is easier to solve since the
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problem becomes convex, while the general version is not. Then, a preprocessing result

is proposed that allows us to �x some variables based on analysing the relative position

between the neighbourhoods and the barriers. In addition, there are some results that

adjust the bigM constants that appear in the constraints that bound the determinants

in the formulations. Afterwards, computational experiments are conducted to study the

performance of the formulations. In this section, the process of data generation is �rstly

described, taking into account the hidden version and assuming that barriers do not cross

each other. Then, a proposition is introduced that establishes an upper bound for the

number of balls that can be generated in this context. Next, the creation of neighbor-

hoods is addressed, involving both random and �xed sizes. The random case serves to

examine the performance of both versions of the problem, while the �xed case focuses on

evaluating the e�ectiveness of the general model in terms of the overlapping ratio of the

neighborhoods. A relevant insight from Mennell (2009) is presented, indicating that the

instance di�culty increases with a higher overlap ratio in the neighborhoods. The results

obtained state that solving the problem considering balls as neighbourhoods is harder

than solving with segments. In addition, strengthening increases the number of instances

in which the solver �nds a solution and the fraction of gaps certi�ed after the execution

time and improves signi�cantly the time spent by the solver to get the optimal solution.

On the other hand, the other experiment allows us to conclude that the larger the radii

of the neighbourhood, the higher the complexity of the problem to be solved in line with

the existing trend in the literature.

In Chapter 8, the p-median version with neighbourhoods and barriers is described.

In this case, the formulations are modelled using a shortest-path geodesic representation,

based on the problems studied in Mitchell (2017). Again, quadratically constrained mixed-

integer formulations are stated. However, the objective function takes into account both

the Euclidean and link weighted distances to join the selected sources with their assigned

targets. Then, since �nding even feasible solutions becomes a challenge for large-size in-

stances, motivated by the results obtained for the TSP, a matheuristic is proposed. This

procedure is based on a reduction to the classical p-median problem with barriers. The

basic idea of this procedure is to consider only the centres of each neighbourhood as the

points chosen in each of them. By �xing those points, the resulting problems become

mixed-integer linear. This reduction allows to obtain feasible solutions for them. To

computationally compare the models, random-sized neighbourhoods and barriers are gen-

erated taking into account the same approach as in Chapter 7. In this case, the parameter

p that controls the number of neighbourhoods in which a facility is located and the number

of barriers considered for the same instance are also studied. In addition, formulations

are tested without and with the initial solution provided by the matheuristic. The results

state that the solver is capable of �nding feasible solutions up to 80 neighbourhoods when

the hidden formulation is considered while the general version the solver cannot �nd even

a feasible solution for instances with 50 and 80 neighbourhoods. It is remarkable that the

initial solution found by the matheuristic helps to certify optimality in less CPU time and

also to get better gaps whenever the optimal solution is not found within the time limit.
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For medium to large-size instances, the matheuristic algorithm always �nds a feasible so-

lution that cannot be improved by the solver. Another remarkable fact is that the higher

the percentage of barriers that are set, the greater the di�culty of the problem.

Chapter 9 develops the mothership and drone routing problem. In this version of the

problem, target points to be visited by the drone are extended to graphs that permit one to

model several real situations like roads or wired networks inspection. A graph is considered

to be visited if a fraction of the length of each edge is traversed or the total length of

the graph is traversed. In addition, two di�erent versions of the problem are considered

depending on the assumptions made on the movements of the mothership vehicle: it can

move freely on the continuous space (all terrain ground vehicle, boat on the water, or

aircraft vehicle); it must move on a road network (that is, it is a normal truck or van).

Firstly, new second-order cone programming formulations are proposed for these models.

A �rst attempt to model this problem uses stages identi�ed with the order in which the

di�erent graphs in the problem are visited. Then, the use of stages is modi�ed by including

constraints that ensure connectivity, associating the launching and rendezvous point with

each graph. Second, the bigM constants that appear in the formulations to model the

di�erent distances covered by both the drone and the mothership are tightened for each

of the variants considered in the chapter. Thirdly, given the di�culty of these types of

problems, a general matheuristic framework is designed to address a feasible solution for

the problem. The idea of the algorithm is to solve a TSP over the neighbourhoods of

those centroids of the graphs using the TSP with neighbourhoods from Chapter 6. Then,

given such an order of visits, the launching/rendezvous points where the mothership must

stop are determined by solving the problem but limited to one single graph at a time,

following the sequence previously computed. Finally, all the formulations are tested in

small instances of two typologies, Delaunay and grid graphs. A novel way to randomly

generate the latest is described. The main results are that connectivity formulations

provide a better gap than stages, but, in many cases, all these problems are hard to solve

and only it is possible to obtain a feasible solution. In addition, the matheuristic is capable

of improving the quality of the solutions when its solution is used as initial one in the exact

model. Finally, one observes that using Delaunay or grid graphs and visiting a fraction of

each edge or all graphs are not very di�erent in terms of complexity.

Chapter 10 reports the all terrain mothership and drone routing problem that visits

points and polygonal chains, but allowing to visit more than one target in a single operation

if drone has enough endurance. First, a mixed-integer second-order cone programming

formulation is described that includes the variant of visiting more targets. Then, the

formulation is strengthened by �xing a priori some variables in terms of the endurance of

the drone; presenting valid inequalities that compactify all operations made by the drone

for the �rst operations and tightening bigM constants for the distances covered by the

drone. Second, a matheuristic based on the formulation of the TSPN of Chapter 6 is used

to generate the order of a feasible solution. This order is set by �xing only the binary

variables of the model and solving the resulting problem to obtain a complete feasible

solution that includes also the continuous variables. Once again, both procedures are
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computationally tested in randomly generated instances that include only point targets,

only polygonal targets, and a third set with points and polygonals. The results show that

for small instances, considering points as targets is easier to solve than polygonals or a

mixture. However, for the biggest instances, this behaviour changes, and points are harder

to be solved in terms of gap. A second test with a larger time limit allows one to conclude

that polygonal targets are still more di�cult to be solved than the instances with point

targets. The di�erent structure of the targets provides an initial advantage in the lower

bound of the polygonal target instances, due to the constraint related to the minimum

ratio of each polygonal to be visited. Another remarkable result is that the matheuristic

is a very good alternative to the exact model. This approach provides fast solutions with

a small relative gap with respect to the exact formulation.

In Chapter 11, a multiple drone version of the mothership and drone routing problem

with graphs is studied. Again, given the complexity of the problem, only the all-terrain

case is analysed. To deal with this, two versions of the problem are presented that make

the mathematical programming approach �exible with respect to di�erent working prin-

ciples of the tandem system. In the �rst version (called complete overlapping), operations

consisting of the launch and retrieval of a set of drones are carried out sequentially so

that no two consecutive launches are possible without the retrieval of previously launched

drones. The second (called partial overlapping), which is an extension of the previous,

allows consecutive launch or retrieval actions so that the visits of several drones to their

target graphs are allowed to partially overlap over time. First, for the sake of simplicity,

the �eet is assumed to be homogeneous, and drones have the same characteristics. Once

mixed-integer second-order cone programming formulations for both versions are set, a

result that links the two models is stated. The proof builds a feasible solution for the

partial overlapping version as a solution from the complete overlapping. Then, it is shown

that the models are not equivalent. Again, these formulations are strengthened by means

of valid inequalities that concentrate all drone activities on the �rst operations and tight-

ening the bigM constants. Afterwards, a matheuristic that groups the graphs into clusters

is proposed for the complete overlapping version. This allows the �eet of drones to visit all

the graphs in the clusters in the same operation. This algorithm is also used to generate

solutions for the partial overlapping model taking advantage of the relationship between

models. Formulations and matheuristic are also tested in small-sized instances, giving rise

to the conclusion that the more general version is the hardest to be solved. In addition,

a sensitivity test is performed to conclude that the higher the number of drones and en-

durance, the lower the makespan of the mothership route. Then, a realistic application

of the system studied in this paper to perform surveillance operations is described. This

case study considers the Cordoba Courtyards Festival to monitor the situation to avoid the

concentration of people in the context of the pandemic. Finally, an extension of this model

to deal with the case of nonhomogeneous �eets of drones is reported. A mixed integer

second-order cone formulation is proposed, which is strengthened and tested computation-

ally asserting that these kind of models are really hard to be solved and a matheuristic

procedure is necessary even for �nding feasible solutions.
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This thesis focuses on the analysis of various mathematical programming problems

that combine location and routing approaches. Routing-location problems continue to be

a captivating �eld of study, and this research has explored novel insights in this area. New

routing-location problems are introduced and studied in order to be applicable in logistics,

especially, in a context of widespread use of drones. To address these problems, several

mathematical programming formulations have been developed that serve as the basis for

other solution approaches. In addition, the properties of these problems have been investi-

gated. It has allowed us to design supplementary algorithms, like matheuristics, to aid in

their solution. This theoretical methodology has been validated through several compu-

tational experiments using generated instances and, in other cases, case study situations.

Each chapter of this thesis (Chapters 6-11) is independently presented and provides its own

conclusions. To provide a comprehensive overview of the signi�cant accomplishments of

the thesis, these conclusions are summarised in the following. In addition, some potential

avenues for future research are proposed.

Chapter 6 investigates a novel variant of the travelling salesman problem with neigh-

bourhoods. This problem can be formulated as mixed-integer second-order cone program.

Several exact formulations are presented, which have been extensively tested on a set of

instances. Furthermore, a heuristic algorithm is proposed that produces high-quality solu-

tions. This algorithm is suitable for large-scale problems and can serve as an initialisation

procedure for exact solvers when dealing with formulations. Computational experiments

reveal the considerable di�culty of the problem, with exact approaches failing to �nd

optimal solutions within a two-hour CPU time limit for instances containing only 20

neighbourhoods. This study paves the way for various research directions and extensions

of the core problem, which can be incorporated into the model. For instance, potential

avenues include improving formulations or decomposition schemes to enable exact solu-

tions for larger instances, developing alternative heuristic algorithms capable of handling

large-scale problems, incorporating conditions for nonlinear neighbourhood borders (e.g.,

circles), and addressing the limited endurance of drones by requiring them to return to a

depot for recharging before completing the route. Some of these topics will be explored

further in the future.

Chapter 7 focuses on two problems, namely the shortest path problem with neighbour-

hoods and barriers and the travelling salesman problem with neighbourhoods and barriers,

where direct movements between neighbourhoods are prohibited due to barriers. The more

general case gives rise to non-convex mixed-integer problems. It remains an open question

whether there exists a �nite dominating set with polynomial cardinality for the general

version, which could potentially simplify the problem formulation. Additionally, it would

be valuable to integrate di�erent types of barriers, such as polygonals and second-order

cone representable sets, into a uni�ed model. These problems represent natural extensions

to the ones addressed in this chapter and will be the focus of future investigations.

Chapter 8 addresses the p-median problem with hidden neighbourhoods and barriers

and its general version, where the assumption that neighbourhoods are not visible to each

other is removed. The latter version leads to non-convex mixed-integer problems, whereas
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the former results in second-order cone mixed-integer problems. Despite their similarities,

these two problems exhibit signi�cant di�erences in terms of computational di�culty, as

discussed in the computational experiments section. Nevertheless, the proposed mathe-

matical programming approaches o�er a formal treatment that enables optimal solutions

for small to medium-sized instances. For larger instances, this approach also inspires a

matheuristic algorithm that delivers high-quality solutions within short computation times

by leveraging the structure of the problem. The existence of a �nite dominating set with

polynomial cardinality for the more constrained version remains an open question, which

has the potential to simplify the underlying graph structures and problem solutions. Addi-

tionally, due to the complexity of the problem, investigating valid inequalities that reduce

the space of feasible solutions will play a crucial role in e�ciently solving larger instances.

Moreover, extending these problems by assuming limited path lengths between the source

and its associated target can be considered. Combining di�erent types of barriers, such

as piecewise-linear and second-order cone representable sets, in the same model would

also be an intriguing avenue to explore. Furthermore, studying three-dimensional barriers

that represent buildings paths would bring the drone delivery industry closer to real-life

applications. All of these problem extensions mentioned above are natural continuations

from those addressed in this chapter and are likely to attract the attention of researchers

in the future.

Chapter 9 focuses on analysing the coordination problem between a mothership vehicle

and a drone, aiming to minimise travel distances while visiting a set of targets represented

by graphs. Exact formulations for di�erent versions of the problem are provided, depend-

ing on the constraints imposed on the movement of the mothership (freely in a continuous

space or constrained to a given network). Computational results indicate that the problem

is highly challenging, with only small to medium-sized instances solvable to optimality.

To address this, a matheuristic algorithm that can be applied to all problem versions with

minimal modi�cations is proposed, producing feasible solutions within short computation

times. This algorithm serves as a promising alternative to exact methods. Future research

in this area will explore the coordination of operations involving multiple drones with a

mothership in combination with the possibility of visiting more than one target per oper-

ation. Although these topics are highly appealing, they exceed the scope of this chapter

and will be the focus of a follow-up research.

Chapter 10 addresses a coordination problem between a mothership vehicle and a

drone, considering the scenario where the drone can visit multiple targets during its op-

eration. The objective is to minimise the overall travel distance by synchronising the

displacements of both vehicles. The mothership is capable of freely moving in a contin-

uous space, allowing �exibility in launching and recovering the drone at optimal points.

An exact model for this problem is presented that can accommodate both point-wise and

graph-like targets. The model is formulated as a mixed-integer second-order cone problem,

which can be e�ectively solved using modern solvers. However, the computational results

demonstrate that the problem is challenging and that only small to medium-sized instances

can be solved to optimality. To address the di�culty of larger instances, a matheuristic
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algorithm has been developed as a computationally e�cient alternative to exact methods.

This algorithm produces feasible solutions within short computation times, providing ac-

ceptable results. An intriguing related problem is the coordination of operations involving

one or more motherships and multiple drones, where each drone is allowed to visit mul-

tiple targets per operation. This realistic and challenging problem mirrors the situations

encountered in drone delivery scenarios. However, while this problem is highly interest-

ing and deserves attention, it exceeds the scope of this chapter and will be explored in a

subsequent research publication.

Chapter 11 addresses the coordination problem between a mothership vehicle and a

�eet of drones, aiming to minimise the makespan while visiting a set of targets represented

by graphs. Exact formulations of the problem are provided using mixed-integer non-

linear programming for both complete and partial overlapping versions. To strengthen the

models, some valid inequalities are incorporated. The computational results reveal that the

problem is highly challenging, even for small and medium-sized instances. Consequently,

a matheuristic algorithm is proposed as an alternative to exact methods, which produces

high-quality feasible solutions within a short computing time. Extensive computational

experiments are conducted using randomly generated instances, and a case study related

to COVID-19 inspection activities is presented at the Courtyards Festival in Córdoba. The

application of the system described in this paper is illustrated, showcasing the solutions

obtained through the problem formulation and the initialisation provided by the proposed

matheuristic. The formulation and algorithms proposed in this chapter serve as essential

components for coordination systems consisting of a mothership and multiple drones.

Future research in this area should focus on developing faster and more accurate algorithms

capable of solving larger instances. Additionally, extensions can be explored, such as

considering the time required for the mothership to launch and retrieve drones, treating

the speeds of the mothership and drones as decision variables, and accommodating di�erent

shapes of graph edges, such as curve lines instead of straight lines. These problems are

of signi�cant interest and go beyond the scope of this paper, which warrants further

investigation in subsequent research e�orts.
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a b s t r a c t 

In this paper we deal with an extension of the crossing postman problem to design routes that have 

to visit different shapes of dimensional elements rather than edges. This problem models the design of 

routes of drones or other vehicles that must visit a number of geographical elements to deliver some 

good or service and then move directly to the next using straight line displacements. We present two 

families of mathematical programming formulations. The first one is time-dependent and captures a 

number of characteristics of real applications at the price of using three indexes variables. The second 

family of formulations is not time-dependent, instead it uses connectivity properties to ensure the proper 

definition of routes. We compare them on a testbed of instances with different shapes of elements: sec- 

ond order cone (SOC) representable and polyhedral neighborhoods and polygonal chains. The computa- 

tional results reported in this paper show that our models are useful and our formulations can solve 

to optimality medium size instances of sizes similar to other combinatorial problems including neigh- 

borhoods that have already been studied in the literature. To address larger instances we also present 

a heuristic algorithm that runs in two phases: clustering and Variable Neighborhood Search. This algo- 

rithm performs very well since it provides promising feasible solutions and, in addition, it can be used 

to initialize the solvers with feasible solutions. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Drones, or UAVs (unmanned aerial vehicles), provide new op- 

portunities for improving logistics in a variety of settings. Specif- 

ically, we would like to emphasize, among other characteristics, 

their capability for moving without an underlying network using 

straight line displacements. Recent technological improvements as 

battery life, better communication devices and reduction in manu- 

facturing costs have increased the use of drones in logistics. Thus, 

this technology has increased its use in many different fields as 

disaster management in remote regions (see Knight, 2016 ), par- 

cel delivery as shown in Lavars (2015) , communication cover- 

age, worked in Amorosi, Chiaraviglio, D’Andreagiovanni, & Blefari- 

Melazzi (2018) , traffic monitoring, infrastructure inspection, coastal 

surveying and many other applications. The reader is referred to 

the review by Otto, Agatz, Campbell, Golden, & Pesch (2018) for 

further references. 

The availability of this new technology has brought new busi- 

ness opportunities and, at the same time, has opened a lot of new 

∗ Corresponding author. 

E-mail addresses: puerto@us.es (J. Puerto), cvalverde@us.es (C. Valverde). 
1 Both the authors contributed equally to this work. 

challenges in the Operations Research field to propose solutions 

to new emerging problems in the areas of logistics and routing. 

As drones play a growing role in business operations, questions of 

planning and optimization increase in practical and academic im- 

portance. However, some of the characteristics of drone’s displace- 

ment are not fully exploited by most previous routing models in 

literature. Unlike standard ground vehicles that must follow paths, 

drones can use direct connections by straight lines between desti- 

nations because they can fly across areas, but their limited battery 

autonomy range makes the problem of coordination with mother- 

ship vehicles a challenging problem. 

In 1962, Meigu Guan introduced the undirected Chinese Post- 

man Problem (CPP) whose aim is to determine a least-cost closed 

route that traverses all edges of the graph. Orloff (1974) extended 

the CPP to travel through a subset of required edges that is known 

as the Rural Postman Problem (RPP). Based on this idea, Garfinkel 

& Webb (1999) introduced the Crossing Postman Problem (XPP) 

which relaxes the RPP to the case in which it is permitted to 

leave the edges of the network and cross from one edge to an- 

other at points other than the original vertices. These Arc Routing 

Problems (ARP) are studied in depth in Corberán & Laporte (2015) . 

On the other hand, some drone routing problems inherit some of 

the structure of the well-known Traveling Salesman Problem with 

https://doi.org/10.1016/j.ejor.2021.06.061 

0377-2217/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. An example of convex sets and polygonal chains considered in the problem. 

neigborhoods (TSPN) that was first introduced by Arkin & Hassin 

(1994) and later was studied, among others, by Gentilini, Margot, 

& Shimada (2013) using convex sets and Yuan & Zhang (2017) pre- 

senting a hybrid framework in which metaheuristics and classical 

TSP solvers are combined strategically to produce high quality so- 

lutions for TSPN with arbitrary neighborhoods. Some other com- 

binatorial optimization problems analyzed with neighborhoods are 

shortest paths in Disser, Mihalák, Montanar, & Widmayer (2014) , 

minimum spanning trees in Yang, Lin, Xu, & Xie (2007) , Blanco, 

Fernández, & Puerto (2017) , ordered p-median location, in Blanco 

(2019) and hub location, Blanco & Puerto (2021) . 

The aim of this paper is motivated by the design of drones’ 

routes that must connect a number of dimensional targets with 

given shapes, that we will call from now on elements , that are lo- 

cated on an area. The use of this terminology is not new and the 

interested reader is referred to Schöbel (2015) , Díaz-Báñez, Mesa, 

& Schöbel (2004) and Mallozzi, Puerto, & Rodríguez-Madrena 

(2019) for further details and references on the concept of dimen- 

sional facilities. In addition, in some cases it will be required some 

extra service beyond the simple visit to an element. For instance, 

one has to visit a percentage of its total length (assuming that its 

dimension is one). In our approach we would like to exploit some 

new features of Mixed Integer Non-Linear Programming (MINLP) to 

develop formulations and solution algorithms. Obviously, we have 

to impose some limits to the shapes of the considered elements to 

achieve tractable models. As a first building block, we restrict our- 

selves to two main types of elements (see Fig. 1 ): convex bodies 

and piecewise linear chains (including segments). For the case of 

the convex bodies, they can represent regions that the drone must 

reach and where the customers are willing to pick up the orders 

(they can be seen as uniform probability densities). On the other 

hand, polygonal chains can be used to model different paths that 

the drone must follow to do some inspection or to avoid some bar- 

riers that can appear in a real-world scenario. The use of convex 

bodies in the model can be extended to more general shapes as 

explained in Section 2 . 

We assume a structure of costs trying to capture the main fea- 

tures of these situations. We assume that there are two types of 

costs: 1) the travel cost of moving between elements, and 2) the 

travel cost of crossing (moving on) an element. The travel costs 

of moving between elements may change over time: it may be 

cheaper to go from A to B at time 1 than at time 2. On the 

other hand, the cost of crossing an element may be cheaper or 

more expensive than moving between them: controlling the drone 

over polygonal chains to do some inspection may be more expen- 

sive than flying directly between targets. However, one may obtain 

some discount for flying over some large area (parks, lakes, nat- 

ural reserves...) because the drone can do a secondary job, as re- 

porting information in its way back to the base. This fact is repre- 

sented as a weighting factor in the objective function as explained 

in Section 2 . A survey of these coverage path planning problems 

can be found in Otto et al. (2018) . 

The goal of the model considered in this paper is to find a min- 

imum total cost route that visits all the elements and traverses 

some proportions of those with dimension one. In the rest of the 

paper, we will refer to this problem as the Crossing Postman Prob- 

lem with Neighborhoods (XPPN). 

The contribution of this paper is to introduce new mod- 

els for the design of routes that combine several characteristics 

that have not been previously analyzed simultaneously: design of 

routes without underlying graph structure, required targets (like 

in the RPP) defined on dimensional elements (as in the TSP with 

neighborhoods) that can be polygonal chains or other kind of 

more general sets and free entry and exit points over the ele- 

ments. Combining these features altogether gives rise to a chal- 

lenging new problem that is analyzed for the first time in this 

paper. 

The paper is structured in 8 sections. The first section is the 

introduction. In the second section we describe the problem and 

set the notation followed in the rest of the paper. Section 3 is 

devoted to present different valid formulations of the problem. 

In Section 4 we present a heuristic algorithm for solving XPPN. 

This heuristic has two phases: clustering and Variable Neighbor- 

hood Search (VNS). The results show that it provides good qual- 

ity solution in very limited computation time. Section 5 deals with 

some strengthening of our formulations: pre-processing variables 
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and deriving valid inequalities to be added to the formulations. 

Next, in Section 6 we present a decomposition algorithm ‘a la’ Ben- 

ders that can be also applied to solve the problem. We derive all 

the details of that decomposition and show preliminary computa- 

tional results. 

An extensive computational experience is reported in Section 7 . 

There, we compare the different formulations in terms of final gaps 

and computing time. The paper ends with a section devoted to 

conclusions and extensions, where we list some interesting open 

lines of research connected with the problems addressed in this 

paper. 

2. Description of the problem 

Let V be a set of points (vertices) embedded in R 

2 . (The reader 

may note that extensions to the three dimensional space are pos- 

sible at the price of increasing the models’ complexity.) Associated 

with each vertex v ∈ V, we assign an element N v that can belong 

to two different types: either a convex set or a polygonal chain. 

Later, we will show how to extend the elements to deal with union 

of convex sets. In the former case, let C v ⊂ R 

2 denote the convex 

set associated to v that must contain v in its interior. In the latter, 

let P v ⊂ R 

2 denote the polygonal chain assigned to v that we as- 

sume to be parameterized by its breakpoints A 

1 
v , . . . , A 

n v +1 
v , where 

n v is the number of line segments of the polygonal chain. We de- 

note 

V C = { v ∈ V : v is associated with a convex set } , 

V P = { v ∈ V : v is associated with a polygonal chain } . 
Let us denote by x i v ∈ N v : i = 1 , 2 , v ∈ V the access ( x 1 v ) and exit 

( x 2 v ) points to the elements N v associated with vertices v ∈ V . A 

feasible solution to the XPPN problem consists of a set of pairs of 

access and exit points, X = 

⋃ 

v ∈ V { x 1 v , x 
2 
v } , together with a tour T 

that the drone must traverse on the graph G = (X, E) , with edge 

set E = E out ∪ E in , where: 

E out = { (x 1 v , x 
2 
w 

) : v � = w ∈ V } , E in = { (x 1 v , x 
2 
v ) : v ∈ V } . 

Edges in the set E out are links between different elements 

whereas those in E in are those that define the part of the tour 

that is traveled within the convex neighborhoods or the polygo- 

nal chains while the drone is doing a secondary job. Observe that 

all the links in E in are required and therefore they must be vis- 

ited by the route. Edge lengths of an outside link (x 1 v , x 
2 
w 

) is given 

by the Euclidean distance, d v w 

(x 1 v , x 
2 
w 

) = ‖ x 1 v − x 2 w 

‖ 2 , between their 

endpoints. Edge length, d v (x 1 v , x 
2 
v ) , of an inner link (x 1 v , x 

2 
v ) is com- 

puted as the distance measured over the corresponding element 

(polygonal or convex set). Observe that in the case of a polygonal 

the distance is computed as the sum of the lengths of the corre- 

sponding edges or partial edges, since the drone is following the 

path given by the polygonal chain. 

The cost of a feasible solution (X, T ) is then given by the overall 

sum of outside edges plus the weighted sum of the inner edges: 

d(X, T ) = 

∑ 

e v w =(x 1 v ,x 
2 
w ) ∈T 

d v w 

(x 1 v , x 
2 
w 

) + 

∑ 

e v =(x 1 v ,x 
2 
v ) ∈T 

f v d v (x 1 v , x 
2 
v ) , 

where f v is a weighting factor for traveling within the neigh- 

borhoods. This factor depends on the worth given to a possible 

secondary job done by the drone. We point out that in case of 

overlapping of two or more neighborhoods the discount factor is 

accounted for each one of them, as shown in the above formula. 

The reader may note that in all our discussions we are assuming 

that the autonomy of the drone battery suffices to travel the whole 

route. Therefore, the model does not allow a route longer than the 

flying autonomy. 

Throughout this paper we adopt the following notation: 

• T G as the set of incidence vectors associated with tours on G, 

i.e., T G = { z ∈ R 

| E| 
+ : z is a tour on G } . 

• X = 

∏ 

v ∈ V ( N v × N v ) , the space where the access and exit 

points are selected. 

The goal of XPPN is to find a feasible solution (X, T ) of minimal 

total cost. Then, it can be expressed as: 

min 

∑ 

e v w =(x 1 v ,x 
2 
w ) ∈ E out 

d v w 

(e ) z e + 

∑ 

e v =(x 1 v ,x 
2 
v ) ∈ E in f e d v (e ) 

s.t z ∈ T G , x ∈ X 

(1) 

Here it is assumed that the drone route enters and exits from 

an element only once. Note that, since the distance between neigh- 

borhoods is minimized, there always exists an optimal solution in 

which the drone visits each neighborhood only once. The reader 

may observe that the above formulation is only formal, but it is 

clearly not separable into the continuous and discrete counterparts 

since the access and exit point to each one of the elements (con- 

tinuous part) depend on the order of the visit to the elements (dis- 

crete part) and vice versa. We also point out that the discrete part, 

that is a TSP, is an NP-hard problem whereas the continuous part, 

that is a location problem, is easily solvable by using interior-point 

algorithms. This structure is exploited to decompose the problem 

in a master problem (TSP) and a subproblem (Location Problem) in 

the Benders decomposition (see Section 6 ). Moreover, the problem 

involves Euclidean distances among variable points and sets, there- 

fore it is not linearly representable. In spite of that, it is suitable to 

model this problem as a MINLP. 

In this paper, we focus on the case where the sets C v are second 

order cone (SOC) representable, that is, the sets can be expressed 

by using second-order cone constraints as follows: 

x i v ∈ C v ⇐⇒ ‖ A 

j 
v x 

i 
v + b j v ‖ ≤ (c j v ) 

T x i v + d j v , j = 1 , . . . , n v , ( C − C ) 

where x i v , i = 1 , 2 is the decision variable, A 

j 
v , b 

j 
v , c 

j 
v and d 

j 
v are pa- 

rameters of the constraint j and n v represents the number of con- 

straints that appear in the block associated to vertex v . 
Note that these inequalities can also model linear constraints 

(for A 

j 
v , b 

j 
v ≡ 0 ), ellipsoids and hyperbolic constraints (see Lobo, 

Vandenberghe, Boyd, & Lebret, 1998 for more details). 

These type of elements could be extended further to unions of 

SOC representable sets. This type of neighborhood is obtained in- 

troducing binary variables, whose meaning is similar to those in 

disjunctive programming. Thus, we can determine in which set of 

the union happens the access or the departure points of the differ- 

ent sets. 

Let {C 1 v , . . . , C m v 
v } be the second order cone representable sets 

that define the neighborhood associated to the vertex v and let 

U v = 

m v ⋃ 

� =1 

C � v denote the union of these sets. Consider the binary 

variable χ i� 
v that assumes the value of one if x i v is located in the 

set C � v and zero otherwise. Thus, for each v ∈ V, we can model that 

x i v ∈ U v by using the following inequalities for each i = 1 , 2 : 

x i v ∈ U v ⇐⇒ 

{ ‖ A 

j � 
v x 

i 
v + b j � v ‖ ≤ (c j � v ) 

T x i v + d j � v + M 

j � 
v (1 − χ i� 

v ) , 
� = 1 , . . . , m v , j � = 1 , . . . , n � v , ∑ m v 
� =1 χ

i� 
v = 1 , 

( U − C ) 

where M 

j � 
v is a big-M constant on the maximal distance between 

two points in the union of sets. The reader may observe that one 

can replace ( C-C) by ( U − C ) in all our formulations without com- 

promising their validity. Therefore, our model can deal easily with 

these more general forms of neighborhoods. 

On the other hand, the second type of elements are the piece- 

wise linear constraints. Let n Sv be the number of line segments of 

the polygonal chain v . Since we need to refer to interior points 

of the segment, these continuum of points is parametrized by 

the two endpoints of the segment: x ∈ [ A 

j 
v , A 

j+1 
v ] if and only if 
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∃ γ ∈ [0 , 1] such that x = γ A 

j 
v + (1 − γ ) A 

j+1 
v . In order to deal with 

them, we introduce the following variables for each vertex v ∈ V P 
and i = 1 , 2 : 

• u v : Binary variable that determines the traveling direction in 

the polygonal chain v . 
• γ i j 

v : Continuous variable in [0,1] that represents the parameter 

value of the x i v variable in the line segment j of the polygonal 

chain v , j = 1 , . . . , n Sv . 
• μi j 

v : Binary variable that is one when x i v is located in the line 

segment j of the polygonal chain v , and zero otherwise, for j = 

1 , . . . , n Sv . 
• λi 

v : Continuous variable in [0 , n Sv ] that models the parametriza- 

tion of the entry or exit points along the polygonal chain asso- 

ciated with v . 

Using these variables, we can determine the placement of the 

entry and exit points on the polygonal chain v introducing the fol- 

lowing inequalities for each i = 1 , 2 : 

x i v ∈ P v ⇐⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

λi 
v − j ≥ γ i j 

v − (n Sv + 1)(1 − μi j 
v ) , j = 2 , . . . , n Sv + 1 

λi 
v − j ≤ γ i j 

v + (n Sv + 1)(1 − μi j 
v ) , j = 2 , . . . , n Sv + 1 

γ i 1 
v ≤ μi 1 

v 
γ i j 

v ≤ μi j−1 
v + μi j 

v j = 2 , . . . , n Sv 

γ in Sv 
v ≤ μin Sv 

v ∑ n Sv 
j=1 

μi j 
v = 1 ∑ n Sv +1 

j=1 
γ i j 

v = 1 

x i v = 

∑ n Sv +1 
j=1 

γ i j 
v A 

j 
v 

( P − C ) 

Observe that the first and second inequalities determine the up- 

per and lower limits for the parametrization of each segment of P v . 

If μi j 
v = 0 the inequalities are always fulfilled and there is no entry 

or exit point in the jth segment of the polygonal v . On the con- 

trary, if μi j 
v = 1 then λi 

v ∈ [ j, j + 1] meaning that the correspond- 

ing entry or exit point is in the jth segment of the polygonal P v . 

The third, fourth and fifth inequalities link μi j 
v and γ i j 

v variables 

(and thus implicitly λi 
v ):they state that the variable γ i j 

v that gives 

the representation of a point x i v on the line segment j is active 

(non-null) only if this line segment is chosen (to enter of exit), i.e., 

μi j 
v = 1 . The sixth equation sets that only one line segment is cho- 

sen for entering or leaving each polygonal chain. Finally, the sev- 

enth equation and eighth inequality set the representation of x i v as 

a convex combination of the extreme points of the adequate line 

segment. 

In addition, we assume that the tour must traverse at least 

some given percentage αv of each polygonal chain total length. De- 

noting by λmin 
v and λmax 

v the parameter values of λ representing 

the initial and final points of P v , respectively, we can model that 

condition by the following absolute value constraint: 

| λ1 
v − λ2 

v | ≥ n S v αv ⇐⇒ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ1 
v − λ2 

v = λmax 
v − λmin 

v 
λmax 

v + λmin 
v ≥ αv n Sv 

λmax 
v ≤ n Sv (1 − u v ) 

λmin 
v ≤ n Sv u v . 

(α − C ) 

The above modelling assumptions are sufficient to address the 

range of situations that we want to model. Obviously, they could 

be more general at the price of not being easy to implement with 

off-the-shelf solvers. 

2.1. Some interesting particular cases 

Three very interesting well-known models appear as particu- 

lar cases of the problems that can be modelled within our frame- 

work. If the element associated with each vertex is a single point 

the problem reduces to the standard traveling salesman problem. 

If the element associated with each vertex v ∈ V is a segment 

P v = [ x 1 v , x 
2 
v ] and αv = 1 , then XPPN becomes the classical Rural 

Postman Problem in which the edges (x 1 v , x 
2 
v ) are required, in the 

Fig. 2. An example with 9 elements: 7 convex sets and 2 polygonal chains. 

complete graph induced by these vertices with edge lengths given 

by the Euclidean norm distance (see Orloff, 1974 ). In addition, if 

αv � = 1 , ∀ v ∈ V then XPPN is an extension of the RPP where some 

edges are only partially required. On the other hand, if the consid- 

ered neighborhoods are big enough so that ∩ v ∈ V C v � = ∅ , then the 

problem reduces to finding a degenerate one-vertex tour and the 

solution to the XPPN is that vertex with cost 0. Finally, if all ele- 

ments N v , v ∈ V are neighborhoods we obtain the Traveling Sales- 

man problem with Neighborhoods (see Arkin & Hassin, 1994 ). 

Fig. 2 shows an example of the solution obtained for a case 

in which the elements are circles, triangles and we also have two 

polygonal chains to visit in our required route. 

The discussion above allows us to state the complexity of the 

XPPN. 

Theorem 1. The decision version of the problem XPPN, given a length 

L deciding whether the graph G has a XPPN tour of length at most L, 

is NP-complete. 

The proof follows using a reduction from TSP that as shown 

above is a particular case of this problem. 

3. Mixed integer non linear programming formulations 

In this section we present alternative MINLP formulations for 

the XPPN that will be compared computationally in Section 7 . First, 

we start with a time dependent formulation that allows us to in- 

clude a number of specific characteristics in the modeling phase 

such as time dependent travel distances, time windows or time de- 

pendent discount factors. Then, we give another formulation that 

does not make reference to stages in the routes and that simpli- 

fies the model at the price of losing some of the above mentioned 

characteristics. 

3.1. A time dependent formulation 

One way to model the drone route in our problem is to make 

variables dependent on the index of the stage when an element 

is visited in the sequence of visited elements. Thus, this formula- 

tion requires binary variables depending on the index order when 
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they are chosen. Since variables depend on time parameters in the 

problem, weighting factors for visiting the neighborhoods (b t v ) and 

distances d t (as proxy for travel times βt ), can also be dependent 

on the stage when they are used. 

To model the problem, we introduce a binary variable y t v to in- 

dicate that the element associated with vertex v is visited by the 

drone at stage t . In addition, we define the following variables: 

• y t v : Binary variable whose value is one when v is visited at the 

tth position in the route sequence and zero otherwise. 
• z t v w 

: Binary variable that is one when v and w are visited con- 

secutively, assuming that v is visited at the stage t and zero 

otherwise. 
• z t v w 

= y t v y 
t+1 
w 

, v � = w . 
• d t v w 

: Continuous variable that represents the distance between 

pairs of chosen points v , w from different components at the 

stage t . 
• d t v : Continuous variable that represents the distance between 

two consecutive points within the same component associated 

with v ∈ V at the stage t . 
• λ1 

v , λ
2 
v : Continuous variables determining the position of x 1 v and 

x 2 v , respectively, in the polygonal chain P v . 

Using these variables, the first formulation follows: 

min 

| V | ∑ 

t=1 

∑ 

v � = w 

d t v w 

z t v w 

+ 

| V | ∑ 

t=1 

∑ 

v ∈ V 
f t v d 

t 
v (2a) 

s.t. d t v w 

≥ βt 
v w 

‖ x 2 v − x 1 w 

‖ , ∀ v � = w (2b) 

d t v ≥ βt 
v ‖ x 1 v − x 2 v ‖ , ∀ v ∈ V (2c) 

∑ 

v ∈ V 
y t v = 1 , ∀ t (2d) 

| V | ∑ 

t=1 

y t v = 1 , ∀ v ∈ V (2e) 

y t v + y t+1 
w 

− 1 ≤ z t v w 

, ∀ v � = w, t = 1 , . . . , |C| − 1 (2f) 

(C − C ) , (P − C ) , (α − C ) (2g) 

The first addend of the objective function (2a) includes the 

drone traveling distance among different elements while the sec- 

ond one accounts for the distances between the entry and exit 

points of each component taking into account the weighting fac- 

tor for traveling within this component at the stage t . Constraints 

(2d) and (2e) state, respectively, that in each stage the route visits 

one element and each component is traversed once and only once. 

Constraint (2f) is obtained by linearizing z t v w 

and ensures that if 

we travel from v to w, assuming that we are in v at the instant t, 

then we visit v in t and w in t + 1 . Constraint (2g) refers to the do- 

main of the entry and exit points of each element in the problem, 

as well as the minimal required percentage of the polygonal chain 

length that must be traversed by the drone. They were defined in 

Section 2 . 

Despite the versatility of this formulation for capturing actual 

characteristics of drone routes, its drawback comes from the three 

index dimension of its variables which makes it difficult to handle 

medium size instances. In the next section, we shall simplify this 

formulation making it independent of time at the price of losing 

some of its time-dependent characteristics. 

3.2. Non-time dependent formulations 

The simplification mentioned above can be performed, based 

on the rationale of ensuring connectivity on the graph G, through 

different sets of inequalities. In particular, we compare Miller- 

Tucker -Zemlin (MTZ) inequalities and subtour elimination con- 

straints (SEC). All formulations use the following sets of decision 

variables: 

• Binary variables z e ∈ { 0 , 1 } , e ∈ E out , to represent the edges of 

the tours. 
• Continuous variables d e ≥ 0 , e = { v , w } ∈ E out ⊆ E, to represent 

the distance d v w 

(x 1 v , x 
2 
w 

) between the pairs of selected points of 

different elements (neighborhoods) and d v ≥ 0 , v ∈ V, to repre- 

sent the distance d v (x 1 v , x 
2 
v ) between the pairs of points of the 

same element. 

Let 

D e = { d ∈ R 

| E out | 
+ : d e ≥ d v w 

(x 1 v , x 
2 
w 

) , ∀ e = (v , w ) ∈ E out , x ∈ X } , 

D v = { d ∈ R 

| E in | + : d v ≥ d v = (x 1 v , x 
2 
v ) , ∀ v ∈ V, x ∈ X } , 

denote the domains for the feasibility of the d variables. The reader 

can see that these sets, namely D e and D v , can be alternatively 

described using the constraints 

‖ x 1 v − x 2 w 

‖ 2 ≤ d e , ∀ e = { v , w } ∈ E out , ( D 1 ) 

‖ x 1 v − x 2 v ‖ 2 ≤ d v , ∀ v ∈ V, ( D 2 ) 

x ∈ X , ( D 3 ) 

which set the distance values and impose that x belongs to its suit- 

able neighborhood. 

Then, a generic bilinear formulation for XPPN is 

min 

∑ 

e ∈ E out 

d e z e + 

∑ 

e ∈ E in 
f v d v ( Pdz ) 

s.t. z ∈ T G , 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

The reader should observe that, as already mentioned, the 

above formulation is bilinear since the first term of the objec- 

tive function contains products of variables of the form d e z e , for 

e ∈ E out . 

Next, we use McCormick’s envelopes ( McCormick, 1976 ) for the 

linearization of those bilinear terms of the objective function. We 

define additional variables p e ≥ 0 , e ∈ E out that stand for that prod- 

uct. 

Replacing the products by the new variables and introducing 

a new set of constraints enforcing the correct representation, we 

obtain the following formulation: 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( RL-XPPN ) 

s.t. p e ≥ d e − M e (1 − z e ) ∀ e ∈ E out ( LIN-Mc ) 

p e ≥ 0 , ∀ e ∈ E out 

z ∈ T G 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Here M e denotes an upper bound of the distance between the 

sets that are joined by e . 

Furthermore, this formulation can be reinforced by adding some 

valid inequalities: p e ≥ m e z e , ∀ e ∈ E out and d v ≤ M v , ∀ v ∈ V, where 

m e and M v are bounds that are adjusted in Section 5 . The first 

family of valid inequalities sets lower bounds on the values for p e 
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whereas the second ones sets upper bounds on the distances trav- 

eled by the drone within each neighborhood. 

The above discussion leads us to strengthen a generic formu- 

lation for XPPN. This formulation will be particularized once the 

connectivity condition of the solutions is specifically introduced in 

the model. 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v 

s.t. p e ≥ d e − M e (1 − z e ) ∀ e ∈ E out ( LIN-Mc ) 

p e ≥ m e z e ∀ e ∈ E out ( VI-1 ) 

d v ≤ M v ∀ v ∈ V ( VI-2 ) 

z ∈ T G 
( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

The two formulations that we present below differ from one 

another in the family of constraints used to enforce connectivity. 

One of them is by the family of subtour elimination constraints 

(SEC), Edmonds (2003) . The other one relies on a compact formu- 

lation based on the well-known Miller-Tucker-Zemlin (MTZ) con- 

straints, Miller, Tucker, & Zemlin (1960) . 

3.2.1. A valid formulation for XPPN based on SECs 

The family of SEC is well-known in combinatorial optimization. 

It enforces connectivity by imposing that the number of edges 

among any subset of vertices can not exceed its cardinality mi- 

nus one. Augmenting these constraints into the generic formula- 

tion presented above we obtain the following valid formulation for 

XPPN: 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( SEC-XPPN ) 

( LIN-Mc ) , ( VI-1 ) , ( VI-2 ) ∑ 

w ∈ V \{ v } 
z v w 

= 1 , ∀ v ∈ V ( C 1 ) ∑ 

w ∈ V \{ v } 
z w v = 1 , ∀ v ∈ V ( C 2 ) ∑ 

e =(v ,w ): v ,w ∈ S 
z e ≤ | S| − 1 , ∀ S � V ( SEC ) 

( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Assignment Constraints ( C 1 ) and ( C 2 ) ensure that the drone en- 

ters and exits each component of the problem exactly once. Con- 

straint (SEC) prevents the existence of subtours. This constraint 

forces that in any subset S of nodes included in V there can not 

be more edges between nodes in S than its number of nodes mi- 

nus one, thus avoiding the existence of cycles. 

Since there is an exponential number of SEC constraints, when 

we implement this formulation we need to perform a row gener- 

ation procedure including constraints, whenever they are required, 

by a separation oracle. To find SEC inequalities, as usual, we search 

for disconnected components in the current solution. Among them, 

we choose the shortest subtour found in the solution to be added 

as a lazy constraint to the model. 

If the considered distance between components is symmetric, 

we obtain the symmetric formulation based on SECs, denoted by 

(sSEC-XPPN). In this formulation, we can halve the number of bi- 

nary variables and replace constraints ( C 1 ) and ( C 2 ) in ( SEC-XPPN ) 

by the following connectivity restrictions: 

∑ 

w ∈ V \{ v } 
z w v = 2 , ∀ v ∈ V. 

3.2.2. XPPN formulation based on the Miller-Tucker-Zemlin 

inequalities 

This section addresses an alternative formulation that results 

replacing SEC inequalities by the so called Miller-Tucker-Zemlin 

constraints (see Miller et al., 1960 ). In this formulation, we intro- 

duce the integer variable s v to generate an alternative formulation 

that eliminates the subtours and the exponential number of in- 

equalities of ( SEC-XPPN ) . 

min P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v ( MTZ-XPPN ) 

s.t. ( LIN-Mc ) , ( VI-1 ) , ( VI-2 ) ∑ 

w ∈ V\{ v } 
z v w = 1 , ∀ v ∈ V ( C 1 ) ∑ 

w ∈ V\{ v } 
z w v = 1 , ∀ v ∈ V ( C 2 ) 

| V | z v w + s v − s w ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out ( MTZ 1 ) 

s 1 = 1 ( MTZ 2 ) 

2 ≤ s v ≤ | V | , ∀ v ∈ V ( MTZ 3 ) 

s v − s w + | V | z w v ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out , w > 1 ( MTZ 4 ) 

s v − s w + (| V | − 2) z w v ≤ | V | − 1 , ∀ e = (v , w ) ∈ E out , v > 1 ( MTZ 5 ) 

( D 1) , ( D 2) 

(C − C ) , (P − C ) , (α − C ) 

Again constraints ( C 1 ) and ( C 2 ) require that in each feasible so- 

lution only one edge departs from node v and only one edge en- 

ters at node v for any v ∈ V, respectively. It is well-known that con- 

straints ( MTZ 1 ) - ( MTZ 3 ) (see Miller et al., 1960 ) model the elimina- 

tion of subtours. The constraints ( MTZ 1 ) - ( MTZ 3 ) enforce connec- 

tivity, i.e., that there is only a single tour covering all vertices. The 

constraints ( MTZ 4 ) and ( MTZ 5 ) define the intermediate conditions 

for the tour that may improve the performance of this formulation 

over the formulation based on subtour elimination constraints (see 

Sawik (2016) for more details). 

Now we state a result related to the relationship between the 

SEC and MTZ polytopes of our formulations of the XPPN, that is, 

the feasible regions of the respective LP relaxations of these mod- 

els. 

Theorem 2. The SEC polytope is contained in the MTZ polytope for 

the XPPN. 

Proof. Observe that the only difference between these two poly- 

topes is the family of constraints that ensures the elimination of 

subtours. Therefore, it is enough to see that the (SEC) constraints 

are stronger than those given in ( MTZ 1 ) - ( MTZ 3 ) which is proved 

in Velednitsky (2017) . �

4. A heuristic algorithm for XPPN 

In this section we present a heuristic algorithm for solving 

XPPN. This algorithm has two different applications. On the one 

hand, it provides good quality feasible solutions for XPPN that be- 

come a promising alternative to exact methods whenever the size 

of the problems is large. On the other hand, it also helps in solving 

exactly XPPN by feeding the exact formulations with a good initial 

solution which in turns speeds up the branch and bound search. 

The considered algorithm is composed by two phases: the Cluster- 

ing Phase and the Variable Neighborhood Search (VNS) Phase. The 

so called clustering phase determines some points in each dimen- 

sional element (polygonal chain or neighborhood) and then the 

VNS phase finds a heuristic tour on the complete graph spanned 

by the previously obtained points. 

The clustering phase 

The first phase of the heuristic algorithm is based on solving a 

relatively easy single facility location problem: the Weber or me- 

dian Problem. The solution of this problem looks for a prototype 

point (a representative) x v , v ∈ V of the dimensional elements in 

the problem (neighborhoods and polygonal chains) and another 
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Fig. 3. Illustration of the first phase of the heuristic algorithm. 

point, Med, so that the sum of the Euclidean distances from x v to 

Med is minimized. 

min 

∑ 

v ∈ V 
‖ x v − Med ‖ ( Web er ) 

s.t. (C − C ) , (P − C ) , (α − C ) 

The idea of this approach is to find some points that are likely 

to be close to the true chosen points in each element in the final 

optimal drone route. Fig. 3 shows an example that combines six 

neighborhoods and four polygonal chains. Red points represent the 

points of each set and the green point is the proposed 1-median 

obtained after solving the corresponding Weber problem described 

above. 

The variable neighborhood search phase 

Once the points of each set have been chosen, the idea is to 

find the minimal cost drone route that joins these points. To ob- 

tain this route, we have used the well-known and general Vari- 

able Neighborhood Search metaheuristic developed in Mladenovi ́c 

& Hansen (1997) . The Python implementation code has been taken 

from Pereira (2018) . In that implementation, the distance matrix 

is computed by taking the Euclidean distances between each pair 

of points. In our case, we had to modify it because our distance 

matrix requires also distances computed along the different con- 

sidered polygonals. 

Using the example depicted in Fig. 3 , we generate a tour con- 

sidering this VNS approach with a maximum number of 25 at- 

tempts, a neighborhood of size 5 and 10 iterations. The final result 

is shown in Fig. 4 . 

Finally, in order to build a feasible solution for XPPN we take 

into account the position of the points (represented by x 1 v and x 2 v ) 

and the order in which they are visited in the tour obtained by the 

VNS phase of our heuristic (represented by z v w 

). Once the solution 

is built, it can also be taken as an initial solution for any of the 

exact formulations presented above. In the following, we present 

the pseudo-code of this heuristic: 

Fig. 4. Application of the VNS phase to the example of Fig. 3 . 

Algorithm 1: Heuristic for solving XPPN. 

Let {N v : v ∈ V } be the neighborhood set.Set at tempt s = 25 , 

neigh _ size = 5 , iter = 10 . 

1. Solve the Weber problem for N v to get x̄ . 

2. Consider the VNS approach with parameters at tempt s, 

neigh _ size and iter and points x̄ to obtain the order of visit 

to the neighborhoods z̄ . 

5. Strengthening the formulation of XPPN 

5.1. Pre-processing 

In this section we explore the geometry of the neighborhoods 

that appear in the problem to fix a priori some variables and to 

increase the efficiency of the model. 

First of all, we consider two special cases that relate the posi- 

tion of the entry and exit points of each neighborhood with the 

coefficient f v of the objective function. 

Remark. If the problem verifies that f v = 0 for all v ∈ V C , then the 

entry and exit points x 1 v and x 2 v selected in each neighborhood are 

the same that the ones obtained by minimizing the distance be- 

tween the neighborhoods. 

Remark. If f v ≥ 1 for some v ∈ V C , then, there exists an optimal 

solution verifying x 1 v = x 2 v . 

Proof. Let us consider an optimal route and let p be the path in 

that route that visits C v . Assume without loss of generality that 

to visit C v , the route departs of the previous element C u from x 2 u , 

enters C v through x 1 v and exits from x 2 v where x 1 v � = x 2 v and f v ≥ 1 . 

Assume again without loss of generality that after visiting C v the 

route goes to C w 

entering by x 1 w 

. Let us consider the alternative 

path p ′ formed by x 2 u , the midpoint x ′ v between x 1 v and x 2 v and 

x 1 w 

. The contribution of visiting C v in the objective function of the 

problem will be 
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length (p ′ ) = d(x 2 u , x 
′ 
v ) + d(x ′ v , x 1 w 

) 

≤ d(x 2 u , x 
1 
v ) + d(x 1 v , x 

′ 
v ) + d(x ′ v , x 2 v ) + d(x 2 v , x 

1 
w 

) 

= d(x 2 u , x 
1 
v ) + d(x 1 v , x 

2 
v ) + d(x 2 v , x 

1 
w 

) 

≤ d(x 2 u , x 
1 
v ) + f v d(x 1 v , x 

2 
v ) + d(x 2 v , x 

1 
w 

) 

= length (p) , 

but p is an optimal path to visit those elements in this optimal so- 

lution which turns all the above inequalities into equalities. There- 

fore, the path p ′ is also an optimal path within that optimal solu- 

tion. However, by construction on C v , p ′ has the same entry and 

exit point which proves the claim. �

From now on, we assume in the rest of this section that f v ≥ 1 

for all v ∈ V . The following outcome restricts the domain where the 

selected points can be located. 

Proposition 1. There exists always an optimal solution of the XPPN 

whose selected points are placed in the boundary of the neighbor- 

hoods. 

Proof. If the number of elements of the problem is two, the prob- 

lem consists of calculating the minimum distance between two 

convex sets and it is known that the selected points are clearly 

located in the boundary of the sets if they do not overlap and can 

be chosen in the border in case of overlapping. If the number of 

neighborhoods is more than two, we can reduce the proof to ana- 

lyze three consecutive elements. Let T be the triangle spanned by 

the point x u ∈ C u of the previously visited neighborhood, the point 

x v in the neighborhood C v and the point x w 

∈ C w 

of the next neigh- 

borhood to be visited in an optimal sequence. We could have three 

possible cases depending on the number of points allocated in the 

boundary. If x u , x v , x w 

are aligned, for each point that is not in the 

boundary, namely C v , we can consider the closest point obtained 

by the intersection of the line generated by x u and x v with the 

boundary of C v , ∂C v . This point is also aligned with the others and 

its contribution to the objective function is the same as the one 

given by x v . Therefore, let assume that these points are not aligned. 

We have three cases: 

• Case 1 : Suppose that only x v ∈ C v is not in the boundary. Let 

x u x w 

be the line segment that joins x u and x w 

. Let suppose, for 

the sake of contradiction, that there exists a neighborhood C v 
whose selected point in the optimal sequence is in the topo- 

logical interior of C v , i.e., x v ∈ int(C v ) . The idea of the proof is 

to find another point in the boundary of C v closer to x u and 

x w 

. We consider the point x ′ v = r ⊥ ∩ ∂C v , where r ⊥ is the per- 

pendicular line to the line segment x u x w 

and ∂C v is the bound- 

ary of C v . Observe that this intersection produces two points in 

∂C v : among them we take the closest one to x u x w 

. If we call T ′ 
the triangle generated by x u , x ′ v and x w 

, then the height of T ′ 
to x u x w 

is smaller than the one of T . Hence by the Pythagoras 

Theorem, x u x ′ v < x u x v and x ′ v x w 

< x v x w 

, which is a contradiction. 
• Case 2 : Assume that x u ∈ C u and x v ∈ C v are not in the bound- 

ary. We can take x ′ u = x u x v ∩ ∂C u . This point is closer to x v than 

x u and it is in the boundary of C u . Therefore, we have two 

points in the boundary and we can apply the previous case to 

conclude that x v must be in ∂C v too. 
• Case 3 : Finally, suppose that no point is in the boundary of 

each neighborhood. Again, we can construct x ′ u = x u x v ∩ ∂C u 
that is closer to x v and x w 

. Then, we have a point in the bound- 

ary and Case 2 can be applied to the rest of points. �
The special case in which all the neighborhoods are circles, al- 

lows us to limit even more the location of the points based on the 

construction given in the Proposition 1 . 

Corollary 2.1. Any point selected in an optimal solution of the XPPN 

when all the neighborhoods are circles is placed in some arc of one of 

the circumferences inside of the convex hull generated by the center 

of the circles. 

Proof. If we have two neighborhoods, the selected points are lo- 

cated in the line segment that joins the center of the circles and 

the result follows. If the number of neighborhoods is more than 

two, we can reduce the proof to analyze three consecutive ele- 

ments. Let T be the triangle spanned by the point x u ∈ C u of the 

previously visited neighborhood, the point x v in the neighborhood 

C v and the point x w 

∈ C w 

of the next neighborhood in an optimal 

sequence. Let assume that we have two points inside the convex 

hull and x v ∈ C v does not satisfy this property. Let also x u x w 

be the 

line segment that joins x u and x w 

. We distinguish two cases de- 

pending on the location of x v in the neighborhood: 

• If x u , x v , x w 

are aligned, it is straightforward to conclude that x v 
is in the convex hull of the centers. 

• If x u , x v , x w 

are not aligned, let assume that in N v its selected 

point is not in the convex hull C v of the centers of the neigh- 

borhoods. The idea of the proof is to find another point in the 

boundary of the convex hull C v whose distance to x u and x w 

is 

smaller than the distance from x v . We split the boundary of C v 
(circumference) in two arcs A R and A B . These arcs are built by 

taking the perpendicular line to the edge of the convex hull C: 
• If x v ∈ A R , we take x ′ v the projection to the convex hull and 

it produces a triangle T ′ with lower height to x u x w 

. Then, we 

can use the Proposition 1 to construct a point in the bound- 

ary of C v that lies in the convex hull. (See Fig. 5.1). 
• If x v ∈ A B , we construct x ′ v the diametrically opposite point 

of x v in N v . This point also produces a smaller height that 

contradicts the assumption that x v gives the shortest tour. 

(See Fig. 5.2) 

If the number of points outside the convex hull is more than 

one, we can apply this procedure iteratively to include these points 

in the convex hull generated by the center of the circles. �
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Finally, we conclude this section giving another result that al- 

lows one to eliminate some neighborhoods and thus simplify the 

problem without modifying the objective value of the problem. 

Proposition 2. Given two neighborhoods A and B, if B ⊃ A, then B 

can be removed in the problem. 

Proof. Starting from the optimal solution of problem without B, 

we are going to build an optimal solution including B that is es- 

sentially the same. Let z ∗ the optimal tour by deleting the neigh- 

borhood B in the problem. By connectivity, there exist two neigh- 

borhoods A −1 and A +1 that are connected with A, i.e., such that 

z ∗
A −1 A 

= z ∗
AA +1 

= 1 . In addition, let x ∗
A 

be the point chosen to visit 

the neighborhood A . If we include B ⊃ A in the problem and 

we fix x B = x ∗
A 

and z AB = z BA +1 
= 1 . This solution is also a simple 

path whose objective value is the same because d(A, B ) = 0 and 

d(B, A +1 ) = d ∗(A, A +1 ) . �

5.2. Valid inequalities 

The different models that we have proposed include in one way 

or another big-M constants. In order to strengthen the formula- 

tions we provide good upper bounds for those constants. In this 

section we present some results that adjust them for each kind of 

set considered in our models. 

The first big-M constant we need to adjust is M e that denotes 

an upper bound of the distance between the sets joined by an edge 

e ∈ E out . We have three cases that depend on the shape of the sets 

A and B : 

• If A and B are both ellipsoids, we cannot easily compute the 

maximum distance between A and B, but we can generate an 

upper bound of this distance by taking diametrically oppo- 

site points of minimum radius circles containing each ellipsoid. 

When both ellipsoids are circles, this bound coincides with the 

maximum distance. 
• If A is an ellipsoid and B is a polygon or a polygonal chain, we 

can set this bound by the maximum of the distances of each 

vertex of B to the center of A plus the radius of the minimum 

circle that contains the ellipsoid A . 
• If A and B are both polygons or polygonal chains, this bound can 

be computed exactly by taking the maximum of the distances 

between vertices of A and B . 

The second bound to be adjusted is m e . It denotes a lower 

bound of the distance of the sets joined by the edge e ∈ E out . In 

this case, we can compute this distance exactly by solving a con- 

vex program that minimizes the distance between the sets A and 

B . 

In the Figs. 5 –7 we show the selected maximal (red) and mini- 

mal (blue) bounds depending on the shape of the sets. 

In addition, the third bound represents the maximal distance 

between two points within a given neighborhood. We can compute 

this upper bound according to the shape of this set (see Fig. 8 ): 

• If the set is an ellipsoid, we can take diametrically opposite 

points of the minimum radius circle that contains this ellipsoid. 

Fig. 5. Upper and lower bound when both sets are ellipsoids. 

Fig. 6. Upper and lower bound when a set is a polygon and the other is an ellip- 

soid. 

Fig. 7. Upper and lower bound when both sets are polygons. 

Fig. 8. Upper bound on the maximal distance within a set. 

• If the set is a polygon, we can compute the maximum of the 

distances between each pair of vertices. 
• If the set is a polygonal chain, this bound equals the length of 

the polygonal. 

6. A decomposition algorithm 

In this section we present an alternative row generation ap- 

proach to solve the XPPN based on a Benders decomposition of 

the problem. The general method is based on the following obser- 

vation: If we fix z ∈ T G in the generic formulation of XPPN, we ob- 

tain a continuous SOC problem, which is well-known to be convex. 

On the other hand, the objective function that we are considering 

is bilinear. Hence, we can use a Benders-like decomposition ap- 

proach (see Benders, 1962 ) to generate an iterative algorithm that 

solves this problem. 

For a given z̄ ∈ T G , the “optimal” vertices and distances of its 

associated XPPN can be computed by solving the following sub- 
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Fig. 9. Comparison of the times of the MTZ formulation varying the α parameter. 

problem: 

min d( ̄z ) = 

∑ 

e ∈ E out 

d e ̄z e + 

∑ 

v ∈ V 
f v d v ( Pd ̄z ) 

s.t. d e ∈ D e , d v ∈ D v . 

Note that the number of d variables in ( Pd ̄z ) is 2 | V | , because 

only distances with nonzero z̄ e variables need to be calculated. 

Thus, Benders decomposition is a good approach for solving the 

XPPN problem based on our formulations (see Blanco et al., 2017 ). 

The explicit form of the Benders cuts is the following: 

P ≥ d( ̄z ) + 

∑ 

e : ̄z e =1 

M e (z e − 1) + 

∑ 

e : ̄z e =0 

m e z e (4) 

where P = 

∑ 

e ∈ E out 
p e + 

∑ 

v ∈ V f v d v with p e ≥ 0 and M e and m e are 

the upper and lower bounds estimated in the above section. 

Therefore, the relaxed master problem at the k th iteration of 

the row-generation algorithm can be stated as: 

P ∗ = min P 

P ≥ d( ̄z k ) + 

∑ 

e : ̄z k e =1 

M e (z k e − 1) + 

∑ 

e : ̄z k e =0 

m e z 
k 
e , k = 1 , . . . , K, (5) 

P = 

∑ 

e ∈ E out 

p e + 

∑ 

v ∈ V 
f v d v (6) 

z ∈ T G . 

Adding the above cuts sequentially gives rise to the solution 

scheme described in Algorithm 2 : 

Observe that in the while loop we set the stopping criterion as 

the maximum allowed gap between the upper and lower bound: 

this gap cannot exceed the fixed threshold value ε. 

Theorem 2.4 in Geoffrion (1972) states the finite convergence 

of the decomposition approach under the following assumptions: 

convexity and finiteness of the feasible domains, closeness of the 

“linking” constraints between the sets, and convexity of the objec- 

tive functions. In our case, the finiteness of the number of under- 

lying tours of T G , the convexity of ( Pd ̄z ) for any z ∈ T G , and the 

Algorithm 2: Decomposition Algorithm for solving XPPN. 

Initialization : Let z 0 ∈ T G be an initial solution and ε a given 

threshold value. 

Set LB = 0 , UB = + ∞ , z̄ = z 0 . 

while | UB − LB | > ε do 

1. Solve (Pd ̄z ) for z to get d( z ) . 

2. Add the cut P ≥ d( ̄z ) + 

∑ 

e : ̄z e =1 M e (z e − 1) + 

∑ 

e : ̄z e =0 m e z e 
to the current master problem. 

3. Obtain the optimal value P̄ to the current master problem, 

and its associated solution z̄ . 

4. Update LB = max { LB, P̄ } and 

UB = min { UB, 
∑ 

e ∈ E d e ( z ) z e + 

∑ 

v ∈ V f v d v } 
end 

linear separability of the problem allows us to apply the above re- 

sult, which assures that Algorithm 2 terminates in a finite number 

of steps (for any given ε ≥ 0 ). 

To avoid the enumeration of all tours of T G , we have initialized 

the algorithm with a non-empty set of randomly generated cuts 

which give a suitable initial representation of the lower envelope 

of P . 

Given that the master problem exhibits a combinatorial na- 

ture, we have embedded the cut generation mechanism within a 

branch-and-cut scheme. 

7. Computational experiments 

7.1. Data generation 

In this section we have performed a series of experiments to 

compare the formulations presented in Sections 3 and 6 . Since no 

benchmark instances are available in the literature for this prob- 

lem, based on the work of Blanco et al. (2017) , we have generated 

five instances with a number | V | ∈ { 5 , 10 , 15 , 20 } of neighborhoods 
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Table 1 

Computational comparison between MTZ formulation with and without initial solution. 

Size Radii Mode Final Gap (Init) Final Gap (NoInit) Opt. Time (Init) Opt. Time (NoInit) 

5 1 1 0.0 0.0 0.61 0.45 

5 1 2 0.0 0.0 0.12 0.08 

5 1 3 0.0 0.0 0.21 0.13 

5 1 4 0.0 0.0 0.25 0.27 

5 2 1 0.0 0.01 0.27 0.4 

5 2 2 0.0 0.0 0.13 0.11 

5 2 3 0.0 0.0 0.17 0.14 

5 2 4 0.0 0.0 0.17 0.19 

5 3 1 0.0 0.0 0.44 0.42 

5 3 2 0.0 0.01 0.16 0.12 

5 3 3 0.0 0.0 0.17 0.16 

5 3 4 0.0 0.0 0.3 0.35 

5 4 1 0.0 0.01 0.34 0.4 

5 4 2 0.0 0.0 0.14 0.34 

5 4 3 0.0 0.0 0.16 0.16 

5 4 4 0.0 0.0 0.28 0.3 

10 1 1 0.0 0.0 1.93 4.53 

10 1 2 0.0 0.0 0.75 0.84 

10 1 3 0.0 0.0 0.72 1.77 

10 1 4 0.0 0.0 1.52 2.95 

10 2 1 0.0 0.0 38.83 61.53 

10 2 2 0.0 0.0 14.14 44.93 

10 2 3 0.0 0.0 2.23 4.65 

10 2 4 0.0 0.0 2.52 7.5 

10 3 1 0.0 1.09 487.94 1049.86 

10 3 2 0.0 0.0 35.81 153.37 

10 3 3 0.0 0.0 13.28 29.43 

10 3 4 0.0 0.0 133.81 510.58 

10 4 1 19.28 10.0 3513.38 4134.31 

10 4 2 0.0 0.0 238.98 1253.21 

10 4 3 0.0 0.0 20.25 82.39 

10 4 4 0.0 11.75 1142.17 3490.88 

15 1 1 0.0 0.0 18.58 196.71 

15 1 2 0.0 0.0 3.38 23.37 

15 1 3 0.0 0.0 314.57 44.56 

15 1 4 0.0 0.0 10.94 90.1 

15 2 1 6.69 23.17 3135.29 7200.72 

15 2 2 0.0 14.06 2460.78 7200.49 

15 2 3 0.0 0.0 14.58 49.51 

15 2 4 0.0 5.88 1052.16 4660.88 

15 3 1 46.33 59.74 5760.56 7200.28 

15 3 2 20.79 31.2 5760.84 7200.8 

15 3 3 0.0 0.0 322.77 599.25 

15 3 4 14.07 19.17 5865.82 6896.78 

15 4 1 100.0 100.0 7200.47 7200.98 

15 4 2 20.2 36.9 4421.25 7200.51 

15 4 3 0.19 0.72 2195.2 3566.82 

15 4 4 21.6 27.71 7200.42 7200.5 

Table 2 

Computational comparison between MTZ formulation and Benders algorithm for problems with up to 10 neighborhoods. 

Size Radii Mode Final Gap (Benders) Time (Benders) #Cuts Final Gap (MTZ) Time (MTZ) 

10 1 1 0.0 15.72 19.0 0.0 1.93 

10 1 2 0.0 23.64 55.4 0.0 0.75 

10 1 3 0.0 13.22 25.8 0.0 0.72 

10 1 4 0.0 33.96 29.8 0.0 1.52 

10 2 1 76.1 6430.08 1209.0 0.0 38.83 

10 2 2 56.14 4777.58 1009.6 0.0 14.14 

10 2 3 0.0 1766.06 380.6 0.0 2.23 

10 2 4 10.57 5993.57 804.6 0.0 2.52 

10 3 1 96.21 7208.56 1481.2 0.0 487.94 

10 3 2 92.16 7203.99 1352.2 0.0 35.81 

10 3 3 9.29 5832.51 520.4 0.0 13.28 

10 3 4 84.41 7214.86 921.8 0.0 133.81 

10 4 1 98.79 7205.35 2283.0 19.28 3513.38 

10 4 2 95.53 7207.51 1343.4 0.0 238.98 

10 4 3 19.55 7220.14 499.0 0.0 20.25 

10 4 4 82.69 7211.46 789.8 0.0 1142.17 
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Table 3 

Asymmetric SEC results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.11 2.29 0.83 

5 1 2 0.0 0.06 2.2 0.57 

5 1 3 0.0 0.14 3.82 0.37 

5 1 4 0.0 0.12 2.8 0.92 

5 2 1 0.0 0.09 2.35 2.51 

5 2 2 0.0 0.06 2.37 2.25 

5 2 3 0.0 0.15 3.51 1.37 

5 2 4 0.0 0.09 2.68 2.53 

5 3 1 0.0 0.11 2.26 3.79 

5 3 2 0.0 0.08 2.34 3.85 

5 3 3 0.0 0.16 3.72 2.05 

5 3 4 0.0 0.15 2.82 2.29 

5 4 1 0.0 0.13 2.31 4.42 

5 4 2 0.0 0.26 2.18 5.18 

5 4 3 0.0 0.16 3.48 3.69 

5 4 4 0.0 0.14 2.89 8.05 

10 1 1 0.0 0.95 4.31 3.25 

10 1 2 0.0 0.47 4.37 2.56 

10 1 3 0.0 1.72 7.72 1.28 

10 1 4 0.0 4.81 5.6 1.53 

10 2 1 0.0 21.74 4.73 6.48 

10 2 2 0.0 8.45 4.36 6.37 

10 2 3 3.23 2949.61 9.25 2.21 

10 2 4 1.38 2188.88 6.14 3.22 

10 3 1 0.0 522.23 5.08 10.0 

10 3 2 0.0 84.64 4.9 9.26 

10 3 3 3.47 4324.06 10.54 1.69 

10 3 4 0.0 404.51 5.29 7.48 

10 4 1 5.32 2484.47 5.17 7.76 

10 4 2 0.0 539.03 4.85 9.21 

10 4 3 3.57 3656.07 10.11 5.47 

10 4 4 16.69 6548.93 6.18 7.86 

15 1 1 0.0 14.12 5.63 2.74 

15 1 2 0.0 4.63 5.58 4.59 

15 1 3 12.12 7200.55 12.9 0.6 

15 1 4 0.46 1597.94 7.44 4.2 

15 2 1 29.42 7200.43 5.7 11.07 

15 2 2 17.89 6178.28 5.6 8.74 

15 2 3 13.91 7200.95 12.55 0.1 

15 2 4 23.44 7200.6 7.25 3.11 

15 3 1 70.59 7200.52 5.77 12.59 

15 3 2 35.67 7200.65 5.78 12.85 

15 3 3 9.7 5828.43 12.44 2.16 

15 3 4 45.94 7200.79 9.95 0.49 

15 4 1 100.0 7200.38 99.95 81.0 

15 4 2 43.12 7200.7 5.67 7.02 

15 4 3 7.6 5789.95 12.67 3.58 

15 4 4 41.1 7200.6 8.48 6.57 

20 1 1 2.58 3189.58 6.9 2.72 

20 1 2 1.78 2894.34 6.47 4.59 

20 1 3 10.17 5797.93 13.57 1.78 

20 1 4 11.01 6434.25 11.34 1.47 

20 2 1 63.7 7200.95 6.41 10.96 

20 2 2 39.3 7201.34 6.77 10.83 

20 2 3 11.82 6050.34 14.24 4.17 

20 2 4 37.99 7200.84 10.26 2.74 

20 3 1 95.47 7200.71 6.7 15.29 

20 3 2 55.89 7201.07 6.62 16.12 

20 3 3 17.75 7201.0 14.43 2.0 

20 3 4 45.88 7200.79 11.44 11.6 

20 4 1 100.0 7200.55 5.11 11.71 

20 4 2 60.12 7201.0 6.43 1.85 

20 4 3 10.06 7201.0 14.34 4.05 

20 4 4 23.76 7200.58 7.05 4.16 

and we report the average results. We have considered three dif- 

ferent types of neighborhoods to be visited: 

• Circles of radii r. 
• Regular polygons of radii r with a random number of vertices 

in the interval [3 , 10] . 

• Polygonal chains parameterized by its breakpoints that are at a 

distance of in r from one another and some random percentage 

α ∈ [0 , 1] of their length to be visited. 

In addition, the centers or breakpoints of these elements have 

been generated uniformly in the square [0, 100]. On the one hand, 
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Table 4 

Symmetric SEC results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.08 2.38 0.0 

5 1 2 0.0 0.04 2.29 0.0 

5 1 3 0.0 0.08 3.74 0.51 

5 1 4 0.0 0.05 2.88 0.09 

5 2 1 0.0 0.06 2.35 0.01 

5 2 2 0.0 0.06 2.38 0.0 

5 2 3 0.0 0.08 3.59 1.5 

5 2 4 0.0 0.06 2.72 1.26 

5 3 1 0.0 0.05 2.28 0.01 

5 3 2 0.0 0.05 2.36 2.47 

5 3 3 0.0 0.09 3.67 0.81 

5 3 4 0.0 0.07 2.83 3.36 

5 4 1 0.0 0.06 2.32 0.01 

5 4 2 0.0 0.05 2.31 0.13 

5 4 3 0.0 0.07 3.62 5.95 

5 4 4 0.0 0.08 2.95 1.9 

10 1 1 0.0 0.29 4.52 0.01 

10 1 2 0.0 0.14 4.66 0.01 

10 1 3 0.0 0.2 7.8 0.0 

10 1 4 0.0 0.23 5.51 0.04 

10 2 1 0.0 3.72 5.41 0.05 

10 2 2 0.0 1.88 5.69 2.28 

10 2 3 0.0 1.34 9.34 0.0 

10 2 4 0.0 1.36 9.68 1.17 

10 3 1 0.0 45.54 5.27 0.15 

10 3 2 0.0 9.37 4.9 0.53 

10 3 3 0.0 490.19 10.53 0.67 

10 3 4 0.0 7.78 5.33 4.51 

10 4 1 0.0 520.74 5.22 0.26 

10 4 2 0.0 36.72 4.99 8.1 

10 4 3 0.54 1474.78 11.41 0.0 

10 4 4 0.0 1461.93 6.84 2.91 

15 1 1 0.0 2.1 6.83 0.0 

15 1 2 0.0 0.86 6.46 1.11 

15 1 3 3.14 2881.8 13.26 0.0 

15 1 4 0.0 1.17 7.92 0.0 

15 2 1 12.93 5840.0 7.19 0.0 

15 2 2 8.9 4560.43 7.0 0.75 

15 2 3 11.18 5761.15 15.14 0.11 

15 2 4 8.3 4642.84 8.36 0.0 

15 3 1 64.34 7200.42 7.39 0.0 

15 3 2 28.89 7200.44 7.45 0.0 

15 3 3 5.59 5765.79 16.7 0.42 

15 3 4 24.3 7200.44 10.87 2.94 

15 4 1 99.69 7200.18 99.96 92.84 

15 4 2 35.34 7200.52 7.41 3.21 

15 4 3 12.84 7200.49 248.17 0.96 

15 4 4 35.59 7200.53 10.82 0.8 

20 1 1 0.0 175.65 11.47 0.81 

20 1 2 0.95 1632.15 10.98 0.03 

20 1 3 0.0 466.74 18.07 1.28 

20 1 4 8.59 2887.48 16.38 1.36 

20 2 1 43.77 7200.49 11.95 0.0 

20 2 2 26.72 7200.65 11.51 0.0 

20 2 3 4.65 4354.1 27.26 0.0 

20 2 4 26.11 7200.5 16.42 0.37 

20 3 1 81.51 7200.5 12.52 0.0 

20 3 2 47.27 7200.95 12.13 0.0 

20 3 3 16.84 7200.81 37.43 0.26 

20 3 4 44.18 7200.59 19.15 0.0 

20 4 1 100.0 7200.61 4.72 12.06 

20 4 2 55.27 7200.73 12.43 0.0 

20 4 3 15.84 7200.84 3191.77 0.28 

20 4 4 40.08 7200.79 20.47 0.0 

we have studied four different scenarios to generate the radii to 

define the elements: 

• Small size Neighborhoods (r = 1) : Radii randomly generated 

in [0 , 5] . 
• Small-Medium Neighborhoods (r = 2) : Radii randomly gener- 

ated in [5 , 10] . 
• Medium-Large size Neighborhoods (r = 3) : Radii randomly 

generated in [10 , 15] . 

• Large size Neighborhoods (r = 4) : Radii randomly generated 

in [15 , 20] . 

Finally, we have also considered four modes depending on the 

nature of the neighborhoods: 

• Mode 1: All neighborhoods are circles. 
• Mode 2: All neighborhoods are regular polygons. 
• Mode 3: All neighborhoods are polygonal chains. 

130 



J. Puerto and C. Valverde European Journal of Operational Research 298 (2022) 118–136 

Table 5 

MTZ results with initial solution. 

Size Radii Mode Final Gap Exact Time Heur. Time % Improved Gap 

5 1 1 0.0 0.61 1.47 0.02 

5 1 2 0.0 0.12 1.3 0.0 

5 1 3 0.0 0.21 2.01 0.08 

5 1 4 0.0 0.25 1.64 0.06 

5 2 1 0.0 0.27 1.33 2.38 

5 2 2 0.0 0.13 1.25 0.01 

5 2 3 0.0 0.17 1.9 0.64 

5 2 4 0.0 0.17 1.49 2.22 

5 3 1 0.0 0.44 1.28 1.01 

5 3 2 0.0 0.16 1.28 4.02 

5 3 3 0.0 0.17 1.95 0.73 

5 3 4 0.0 0.3 1.68 0.44 

5 4 1 0.0 0.34 1.28 15.36 

5 4 2 0.0 0.14 1.26 8.52 

5 4 3 0.0 0.16 1.98 1.55 

5 4 4 0.0 0.28 1.7 4.39 

10 1 1 0.0 1.93 2.63 0.09 

10 1 2 0.0 0.75 2.3 0.01 

10 1 3 0.0 0.72 4.49 0.3 

10 1 4 0.0 1.52 5.11 0.05 

10 2 1 0.0 38.83 2.33 0.01 

10 2 2 0.0 14.14 2.11 2.29 

10 2 3 0.0 2.23 15.6 0.97 

10 2 4 0.0 2.52 3.28 0.77 

10 3 1 0.0 487.94 2.44 0.16 

10 3 2 0.0 35.81 2.22 1.8 

10 3 3 0.0 13.28 14.76 2.94 

10 3 4 0.0 133.81 3.1 1.16 

10 4 1 19.28 3513.38 2.39 0.47 

10 4 2 0.0 238.98 2.28 13.46 

10 4 3 0.0 20.25 21.99 5.45 

10 4 4 0.0 1142.17 3.57 5.52 

15 1 1 0.0 18.58 5.98 0.15 

15 1 2 0.0 3.38 2.98 0.35 

15 1 3 0.0 314.57 9.09 0.2 

15 1 4 0.0 10.94 8.58 2.26 

15 2 1 6.69 3135.29 3.7 0.67 

15 2 2 0.0 2460.78 3.8 4.81 

15 2 3 0.0 14.58 87.78 3.68 

15 2 4 0.0 1052.16 8.27 2.28 

15 3 1 46.33 5760.56 4.12 4.04 

15 3 2 20.79 5760.84 4.51 3.57 

15 3 3 0.0 322.77 420.37 4.26 

15 3 4 14.07 5865.82 7.74 2.37 

15 4 1 100.0 7200.47 5.23 3.13 

15 4 2 20.2 4421.25 4.35 9.72 

15 4 3 0.19 2195.2 237.9 6.28 

15 4 4 21.6 7200.42 6.55 11.68 

20 1 1 0.0 743.32 13.95 2.78 

20 1 2 0.0 110.91 62.75 9.0 

20 1 3 1.6 2896.62 17.67 0.13 

20 1 4 1.16 3112.33 20.05 1.19 

20 2 1 37.26 7200.45 90.1 9.42 

20 2 2 19.43 7200.68 5.23 4.37 

20 2 3 0.0 1051.22 254.06 5.93 

20 2 4 17.15 7200.48 19.33 2.06 

20 3 1 78.16 7200.35 6.05 4.07 

20 3 2 34.44 5763.72 5.63 6.17 

20 3 3 0.73 4530.27 299.19 5.04 

20 3 4 30.71 7200.52 22.32 7.34 

20 4 1 100.0 7200.63 8.71 6.0 

20 4 2 41.32 7200.67 35.68 25.64 

20 4 3 1.83 7200.52 307.92 7.45 

20 4 4 29.84 7200.52 33.81 9.7 

• Mode 4: Mixture of the three previously considered neighbor- 

hoods. 

The reader should observe that all our instances are symmetric 

since they are embedded in R 

2 and distances are measured with 

Euclidean norm. All the formulations were coded in Python 3.7, 

and solved using Gurobi Optimization (2019) in a Intel(R) Xeon(R) 

E-2146G CPU @ 3.50 GHz and 64GB of RAM. A time limit of 2 

hours was set in all the experiments. The interested reader can 

download some examples of the XPPN formulations in.lp format 

for several instances in the GitHub link cited in Puerto & Valverde 

(2021) . 
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Fig. 10. Comparison of the final gap between MTZ formulation with and without initial solution after 7200 seconds for instances with 15 neighborhoods. 

Fig. 11. Performance profile: Time vs #Solved. 

7.2. Comparing time and non-time dependent formulations 

We analyzed in a preliminary study the time dependent formu- 

lation in Section 3.1 . For this formulation we have solved a number 

of instances of the easiest configuration corresponding to neigh- 

borhoods given by circles of small radius (Mode 1 and r = 1 ). For a 

size of n = 10 neighborhoods, these instances are always solved to 

optimality on average in 1800 seconds. However, already for a size 

of n = 12 neighborhoods we could not solve to optimality any of 

the considered instances within 7200 seconds. Moreover, for 20% 

of the instances the solver could not even find a feasible solu- 

tion, and for the rest the average gap was above 80%. For this rea- 

son, in the rest of the section, we have restricted ourselves to the 

comparisons of the non-time dependent formulations presented in 

Section 3.2 where larger instances can be solved. 

7.3. Assessing the difficulty of the problems depending on the α
parameter 

In order to assess the difficulty of the problem as a function 

of α we report in this section the following experiment. A batch 

of 5 instances involving only polygonal chains have been created 

and solved by fixing the location of the polygonal chains and vary- 

ing only the α parameter in { 0 , 0 . 1 , 0 . 2 , . . . , 0 . 9 , 1 } . To simplify the 

analysis, we have set the same α for all the polygonals in each 

instance, although the model has the flexibility to assign a differ- 

ent α for each one. In Fig. 9 we report a boxplot of the execu- 

tion time that the solver needs to compute the optimal solution of 

the five instances for each α. As the reader can see, the difficulty 

of the problem is not monotone on α. It increases monotonically 

from zero (the simplest) to some maximum difficulty around 0.7 

or 0.8 and then, it decreases until α = 1 which is, approximately, 

of the same difficulty as α = 0 . 5 . These results make sense accord- 

ing to the complexity of choosing the entering and exiting points 

of the polygonals: for α = 0 these points reduce to only one, the 

closest point; whereas for α = 1 these points are also fixed since 

they must be the initial and final points. These facts simplifies the 

problem as explained above. 

7.4. Initializing the solver with a heuristic solution 

Our next preliminary test was devoted to decide whether ini- 

tializing the proposed formulations with an initial solution helps 

in solving the problem or not. In this regard, we have performed 
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Fig. 12. Final gap after 7200 seconds. 

a comparison between formulation MTZ with and without the ini- 

tial solution provided by the VNS heuristic. The results are sum- 

marized in Table 1 . This table reports average results for instances 

of sizes 5,10 and 15 neighborhoods with all combinations of radii 

and modes. It compares the final gap and running times for the 

formulation with and without initial solution ( Final Gap (Init), 

Opt. Time (Init) ) (resp. Final Gap (NoInit), Opt. Time (NoInit) ). 

The results are also depicted in the boxplox diagrams in Fig. 10 . 

Both, table and figure, clearly show that loading an initial so- 

lution helps in reducing the gap and the cpu time: all the in- 

stances up to 10 neighborhoods are solved to optimality with and 

without initial solution but for 15 neighborhoods the final gap 

in the first case is always better than in the latter (blue boxes 

are always below orange ones). Based on this results, in the fol- 

lowing, we have always solved the instances loading an initial 

solution. 

7.5. Comparing benders cuts with the MTZ formulation 

Here, the decomposition algorithm described in Algorithm 2 is 

compared with the MTZ formulation without initialization. The 

computational results obtained by our implementation are in- 

cluded in Table 2 . This table compares the results of the Final 

Gap, cpu time and number of cuts added applying the decomposi- 

tion algorithm versus those obtained with formulation MTZ. From 

these results we conclude that the decomposition algorithm per- 

forms worse than formulation MTZ even for small size problems. 

The Benders optimality cuts involve big-Ms, which in turns im- 

plies that a lot of cuts are needed (if not all) to certify optimal- 

ity. The big-M constraints comes from the linearization of bilinear 

terms which do to allow to apply the Benders approach because 

the lack of convexity. Thus, this may be one of the reasons why its 

performance is worse than MTZ. To reinforce our observation, we 

have also included a performance profile of number of solved in- 

stances versus time for formulations sSEC, MTZ and the decompo- 

sition algorithm (see Fig. 11 ). The reader can observe that the num- 

ber of solved instances within the time limit is approximately one 

half comparing Benders decomposition with MTZ and sSEC. These 

results lead us to not include this algorithm in the final compu- 

tational experience for larger problem sizes presented in the last 

subsection. 
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Fig. 13. Performance profile: Time vs #Solved. 

7.6. Comparing MTZ, SEC and sSEC with initialization from a 

heuristic solution 

The remaining information of our computational experiments 

can be found in Tables 3–5 . The first one reports our results for 

formulation SEC, the second one for sSEC (symmetric version of 

SEC) and the third one for MTZ. Information in all the three ta- 

bles is organized in the same way. Each row shows averages of 

five instances for different combinations of factors ( Size , Radii 

and Mode ) each one with four different levels. Our tables have 9 

columns. The first three (Size, Radii and Mode) describe the pa- 

rameters of the problem. Then, we report the final gap ( % Final 

Gap ), time required by the exact method ( Exact Time ), time re- 

quired by the heuristic ( Heur. Time ) and the % improvement of the 

gap with respect to the initial solution ( % Improved Gap ). Overall, 

we have solved 320 instances. 

To have a clearer view of the results we also present some com- 

parative boxplots obtained from the tables above. First of all, we 

report the final gap after two hours of running time. We have gath- 

ered all the information in Fig. 12 . It is organized in four rows cor- 

responding with the different modes: row i shows results for Mode 

i, i = 1 , . . . , 4 . Within each row, there are four columns one per ra- 

dius size. Then, each graph within this 4 × 4 grid contains com- 

parative diagrams for the four different problem sizes considered, 

namely | V | = 5 , 10 , 15 , 20 neighborhoods. Finally, for each problem 

size we compare the results obtained for our three different formu- 

lations Miller-Tucker-Zemlin (MTZ), Subtour elimination (SEC) and 

the symmetric version of SEC (sSEC). For instance, looking at the 

second row, third column (Mode 2, Radius 3) one can see that for 

| V | = 5 and 10, which correspond to the first two boxes the gap 

of the three formulations is zero in all the instances (actually the 

boxes are collapsed to lines). However, for | V | = 15 and 20 MTZ 

seems to outperforms SEC and sSEC, and moreover, sSEC is also 

better than SEC since the green boxes lie below the orange ones. 

As a general comment, one can observe that for all combinations 

of factors MTZ (the blue boxes) outperforms SEC (orange) and sSEC 

(green) and also sSEC reports smaller gaps than SEC, with the only 

exception of Mode 3 where SEC seems to work better than sSEC. 

Finally, we have included in Fig. 13 a performance profile graph 

of number of instances solved versus time. This figure shows that 

SEC formulation is the weakest since it solves less number of 

instances in the same cpu time. The comparison between MTZ 

and sSEC is not that clear although in the long run MTZ seems to 

outperforms sSEC since the former solves more instances than the 

latter. 

We also compare next, the behaviour of SEC and sSEC in num- 

ber of cuts required by these two formulations to solve the corre- 

sponding problems. As before, we have organized the information 

in a 4 × 4 grid of boxplox graphs. The reader can easily observe 

that sSEC always requires less number of cuts (blue boxes corre- 

sponding to SEC are always above orange ones corresponding to 

sSEC) showing that this formulation is more accurate than SEC: it 

reports smaller gaps (see Fig. 14 ) and needs less number of cuts. 

8. Concluding remarks 

This paper has analyzed a novel version of the crossing post- 

man problem with neighborhoods. We have shown that the prob- 

lem can be cast within the framework of the family of mixed in- 

teger second order cone programming and several exact formu- 

lations are presented and computationally tested on an extensive 

testbed of instances. Additionally, we have presented a heuristic al- 

gorithm providing good quality solutions. It can be considered for 

large scale problems and also as a procedure to obtain initial so- 

lutions to initialize exact solvers handling our formulations. Com- 

putational results show that the problem is very hard and already 

for problems with 20 neighborhoods exact approaches fail to find 

an optimal solution within two hours of cpu time. 

This research opens up several research lines and extensions of 

the basic problem that can be included in the model. Among them 
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Fig. 14. Number of SEC added in the execution time. 

we mention finding better formulations or decomposition schemes 

that help in solving exactly larger instance sizes; and alternative 

heuristic algorithms that allow tackling large scale problems. Other 

extensions of the proposed models considered in this paper are 

the consideration of barriers that represent some buildings that the 

drone tour can not cross, conditions that control the displacement 

on the border of nonlinear neighborhoods like circles or problems 

that take into account the limited autonomy of drones requiring 

that the drone comes back to a depot to be recharged before to 

complete the route. Some of these topics will be the subject of a 

follow up paper. 
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Abstract

This paper deals with two di�erent route design problems in a continuous space with neighbours and

barriers: the shortest path and the travelling salesman problems with neighbours and barriers. Each

one of these two elements, neighbours and barriers, makes the problems harder than their standard

counterparts. Therefore, mixing both together results in a new challenging problem that, as far as we

know, has not been addressed before but that has applications for inspection and surveillance activities

and the delivery industry assuming uniformly distributed demand in some regions. We provide exact

mathematical programming formulations for both problems assuming polygonal barriers and neighbours

that are second-order cone (SOC) representable. These hypotheses give rise to mixed integer SOC formu-

lations that we preprocess and strengthen with valid inequalities. The paper also reports computational

experiments showing that our exact method can solve instances with 75 neighbourhoods and a range

between 125-145 barriers.

Keywords: Routing, Travelling salesman, Networks, Conic programming and interior point methods

1. Introduction

Routing problems are considered classical problems at the core of combinatorial optimisation. Among

them, the Travelling Salesman Problem (TSP) is one of its most important representations, and it has

been studied extensively in many di�erent forms. The problem is well-known to be NP-hard. Its analysis

has led in the last decades to methodological advances and new optimisation techniques that have allowed

solving real life instances that few years ago were beyond solvable limits. The TSP has been studied in

its geometric and pure combinatorial forms because of its algorithmic and practical implications. One

very interesting extension arises when we require the tour to visit a set of regions rather than points.

This version of the problem is called the TSP with Neighbours (see Arkin and Hassin (1994)) which

is APX-hard to approximate even for regions that are (intersecting) line segments. They can represent

regions that the drone must reach and where customers are willing to pick up the orders (they can be seen

as uniform probability densities) in the delivery industry. Moreover, they can also be used for modelling

some areas that must be inspected by the drone (whenever visiting a point of these areas, it su�ces to

consider them as inspected). On the other hand, the graphic TSP (see T. Moemke and O. Svensson

⋆This research has been partially supported by the Agencia Estatal de Investigación (AEI) and the European Regional
Development Fund (ERDF): PID2020-114594GB-C21; and Regional Government of Andalusia: project P18-FR-1422.
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Email addresses: puerto@us.es (Justo Puerto ), cvalverde@us.es (Carlos Valverde )
1Equally contributing authors
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(22)), where distances are measures by geodesics (shortest paths in the respective metric space), has

also attracted the attention of many researchers since it models, in a natural way, TSP routes among

forbidden barriers, robot motion planning and automatic navigation in computer games.

For the above mentioned reasons, it is very important to analyse the mathematical implications of

barriers to the geometry and computation of routes in a continuous space. Beyond the mathematical

relevance due to the intrinsic di�culty of the resulting models (non-convexities), the importance of

this topic also comes from its many real-life applications and, more speci�cally, drone delivery with

uniformly distributed demand and drone inspection and surveillance in urban areas with buildings or

similar barriers. Most of the classical methods in route design are based on an underlying network

structure. Our approach is essentially di�erent since, on top of assuming the existence of barriers, we

also assume that the locations of targets to be visited are uniformly distributed in neighbourhoods, giving

rise to challenging problems in the continuous space. Nevertheless, the resulting problems still retain

geometric elements that must be exploited to partially overcome the di�culties of solution approaches

and algorithms in the design of routes among neighbourhoods with barriers.

The well-known Travelling Salesman Problem with Neighbourhoods (TSPN) was introduced by Arkin

and Hassin (1994). These authors addressed this problem by proposing heuristic procedures that con-

struct tours and prove that the length of these tours is within a constant factor of the length of an

optimal tour. In Gentilini et al. (2013), authors formulate this problem as a non-convex mixed integer

non-linear program (MINLP) that yields a convex nonlinear program when the discrete variables are

�xed. Moreover, Yuan and Zhang (2017) combine strategically metaheuristics and classical TSP solvers

to produce high quality solutions for the TSPN with arbitrary neighbourhoods. In Glock and Meyer

(2023), the concept of spatial coverage in routing and path planning is uni�ed and de�ned, and a cate-

gorisation scheme of related problems is introduced. Other classical combinatorial problems, such as the

Minimum Spanning Tree (MST) or the Crossing Postman Problem (XPP), which have been extended

to deal with neighbourhoods, are developed in Blanco et al. (2017) and Puerto and Valverde (2022),

respectively.

In Mennell (2009), the Close-Enough Travelling Salesman problem was introduced. This problem is

a particular case of the TSPN where the neighbourhoods are represented by circles. In that dissertation,

the author also performed extensive computational experiments by solving instances developed by them.

The authors of Coutinho et al. (2016) proposed an exact algorithm based on branch-and-bound and

second-order cone programming. Finally, a metaheuristic approach was developed that computes the

upper and lower bounds of the optimal solution value. This metaheuristic used a discretization scheme

and the Carousel Greedy algorithm to obtain high-quality solutions (see Carrabs et al. (2020) for more

details).

As far as we are concerned, the use of barriers in location problems has been widely considered (see

Klamroth (2002)) but the corresponding barrier routing problem has attracted less attention in the �eld

of Operations Research. In spite of that, one can �nd connections with some problems in the area

of computational geometry, such as the shortest path problem in polygons and the touring polytopes

problem (see Mitchell (2017)), in navigation games competition as, for instance, the Physical Travelling

2



Salesman Problem (see D. Perez et al. (2014)), or in robot motion planning (see Y. K. Hwang and N.

Ahuja (1992) and J. . -P. Laumond et al. (1994)). Di�erent complexity results are known, and many

e�ective heuristic algorithms have been developed for speci�c classes of problems. However, as far as we

know, in all cases targets are points and no exact algorithms are provided. Moreover, at times, these

problems can appear as subproblems of some other combinatorial problems, so that one would like to

embed them into some mathematical programming formulation. Nevertheless, we are not aware of any

mathematical programming formulation for these problems that permits it to be considered as a building

block of more complex/integrated problems in real life applications, even without requiring target to be

neighbourhoods.

Our goal in this paper is to deal with the TSP with Neighbourhoods and barriers that we call the

Hampered Traveling Salesman with Neighbourhoods (H-TSPN). As commented above, each one of these

two elements (neighbourhoods and barriers) makes the problem di�cult. Thus, mixing both together

results in a new problem that, as far as we know, has not been addressed before, but that has a lot of

applications in the delivery industry and inspection and surveillance activities, as justi�ed previously.

Moreover, it also has implications from the methodological point of view because introduces non-�xed

elements in network representation and the issue of obtacles (barriers) in the solution space in the same

problem.

Our contribution is to provide exact mathematical programming formulations for the problem as-

suming polygonal barriers and neighbourhoods that are second-order cone (SOC) representable. These

hypotheses give rise to mixed integer SOC formulations that we preprocess and strengthen with valid

inequalities. In our way to the formulations we deal with the associated Hampered Shortest Path Prob-

lem with Neighbourhoods (H-SPPN) which is used as a building block for the more di�cult H-TSPN.

Although we prove that the H-SPPN is polynomially solvable, we also give a formulation for this prob-

lem that highlights the constraints necessary for H-TSPN. The respective H-TSPN is NP-hard. We give

exact formulations using a geodesic shortest-path representation that allows us to solve medium-sized

instances of this class of problems. Our computational tests show the di�culty of handling barriers and

neighbourhoods together, but also that our formulation is useful for problems with 75 neighbourhoods

and a range between 125-145 barriers.

The paper is organised into 6 sections. The �rst section is the introduction. In the second section,

the problems to be dealt with are described, and the notation followed in the rest of the paper is set.

Section 3 develops formulations for the problems de�ned in the manuscript. These initial formulations

are later reformulated using �nite dominating sets described in the paper. Section 4 strengthens these

formulations by preprocessing variables, developing families of valid inequalities to be added to the

formulations and proposing some variable-�xing strategies. A computational experience is reported in

Section 5. The paper ends with a section devoted to conclusions and extensions, where some interesting

further research connected with the problems addressed in this paper is discussed.
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2. Preliminaries and Problems' Description

This section is devoted to setting the hypotheses that describe the framework where we analyse the

considered problems. We will deal with two problems in this paper: the Hampered Shortest Path Problem

with Neighbourhoods H-SPPN and the Hampered Travelling Salesman Problem with Neighbourhoods H-

TSPN. Since we have in mind their applications to the drone delivery problem with uniformly distributed

demand in regions and inspection problems, at times, we will refer to the moving object as drone.

2.1. Assumptions and notation

In both problems considered, we denote by B the set of line segments that model the barriers and

adopt the assumptions listed below.

A1 The line segments of B are located in a general position, i.e., the endpoints of these segments are

not aligned. Although it is possible to model the aligned case, one can always slightly modify one

of the endpoints so that the segments are not aligned.

A2 The line segments of B are open sets, that is, it is possible that the drone visits the endpoints of

the segments, but entering into its interior is not allowed. Observe that without loss of generality,

we can always slightly enlarge these segments to make them open.

A3 If there are two aligned overlapping barriers, we assume that there is only one barrier containing

both of them.

In this work, we also analyse a special case of the H-TSPN that assumes, besides the previous

hypotheses, that:

A4 There is no rectilinear path connecting two neighbourhoods without crossing an obstacle.

This problem is called the Hampered Traveling Salesman Problem with Hidden Neighbourhoods H-

TSPHN. The consideration of this more constrained subproblem appears as a natural extension of the

H-SPPN. Indeed, in H-SPPN, the shortest path that joins two neighbourhoods is sought by assuming

A4. Otherwise, it would be trivially solved by �nding the standard shortest path between both neigh-

bourhoods since no obstacles would block its use.

Figures 1, 2 and 3 show an example of each one of the three problems that are being considered,

respectively. Figure 1 shows an instance of the H-SPPN, where the blue neighbourhood represents the

source, the green one represents the target, and the red line segments show the barriers that the drone

cannot cross. In Figure 2, an instance of the H-TSPHN is shown, where the neighbourhoods are balls and

the barriers are, again, the red line segments. Finally, Figure 3 illustrates an example of the H-TSPN,

where the orange and blue balls can be joined by a rectilinear path.

To simplify the presentation, we introduce some general notation used throughout the paper.
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Figure 1: H-SPPN instance
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Figure 2: H-TSPHN instance
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Figure 3: H-TSPN instance
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Notation

The following terminology clari�es the notation applied throughout the paper:

� P andQ are referred to as generic points that, at the same time, are identi�ed with their coordinates

P = (Px, Py) and Q = (Qx, Qy), respectively.

� Given two points P 1 and P 2, the line segment that joins P 1 and P 2 is denoted by P 1P 2. It can

be parameterized as follows:

P 1P 2 = {P ∈ R2 : P = λP 1 + (1− λ)P 2, λ ∈ [0, 1]}.

� Given two points P 1 and P 2, the edge whose vertices are P 1 and P 2 is denoted by (P 1, P 2).

� Given two points P 1 and P 2, the vector pointing from P 1 to P 2 is denoted by
−−−→
P 1P 2. It is computed

as
−−−→
P 1P 2 = P 2 − P 1.

� Given three points P 1, P 2 and P 3, det(P 1|P 2P 3) denotes the following determinant:

det(P 1|P 2P 3) = det

(
−−−→
P 1P 2

−−−→
P 1P 3

)
:= det




P 2
x − P 1

x P 3
x − P 1

x

P 2
y − P 1

y P 3
y − P 1

y


 .

The sign of det(P 1|P 2P 3) gives the orientation of the point P 1 with respect to the line segment

P 2P 3. Note that det(P 1|P 2P 3) ̸= 0 by A1.

Once de�ned the problems treated in this work, the following subsections describe the construction of

the visibility graphs that are used to develop some mathematical programming formulations that solve

the problem exactly. These objects represent the set of possible rectilinear paths the drone can follow

without crossing any barrier (see, e.g., O'Rourke (2017), for more details). For these problems, the

visibility graphs are not �xed. They depend on the points selected in the neighbourhoods, as shown in

Figures 4 and 5.
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2.2. Description of the Hampered Shortest Path Problem with Neighbourhoods

In H-SPPN, we have a source neighbourhood NS ⊂ R2 and a target neighbourhood NT ⊂ R2, which

we assume to be second-order cone-representable sets and a set B of line segments that play the role of

barriers that the drone cannot cross.

The goal of the H-SPPN is to �nd the best pair of points (PS , PT ) ∈ NS × NT in the source and

target neighbourhoods that minimise the length of the path that joins both points without crossing any

barrier of B and assuming A1-A4. To state the model, we de�ne the following sets:

� VS = {PS}. Set composed by the point selected in the source neighbourhood NS .

� VB = {P 1
B , P

2
B : B = P 1

BP
2
B ∈ B}. Set of endpoints of the barriers in the problem.

� VT = {PT }. Set composed by the point selected in the target neighbourhood NT .

� ES = {(PS , P
i
B) : P

i
B ∈ VB and PSP i

B ∩ B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed by the

lines that join the selected point in the source neighbourhood NS and each endpoint on the barriers

that do not cross any other barrier in B.

� EB = {(P i
B , P

j
B′) : P i

B , P
j
B′ ∈ VB and P i

BP
j
B′ ∩ B′′ = ∅, ∀B′′ ∈ B, i, j = 1, 2}. Set of edges formed

by the line segments that join two endnodes of VB and do not cross any other barrier in B.

� ET = {(P i
B , PT ) : P

i
B ∈ VB and P i

BPT ∩ B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed by the

line segments that join the selected point in the target neighbourhood NT and every endpoint on

the barriers that do not cross any other barrier in B.

The above sets allow us to de�ne the visibility graph GSPP = (VSPP, ESPP) induced by barriers and

neighbourhoods, where VSPP = VS ∪ VB ∪ VT and ESPP = ES ∪ EB ∪ ET .

Figures 4 and 5 show how the visibility graph GSPP is generated for an instance of the H-SPPN. The

blue dashed line segments represent the edges of ES , the green dashed lines, the edges of ET and the

red dashed lines represent the edges of EB.

Figure 4: Generation of the visibility graph
GSPP. Case 1
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Figure 5: Generation of the visibility graph
GSPP. Case 2
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A special case that can be highlighted occurs when the neighbourhoods, NS and NT , are points. In

that case, the induced graph is completely �xed and it is only necessary to �nd which edges are included
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by keeping in mind that the graph must be planar, i.e., without crossings. This idea is later exploited in

Subsection 3.3.1.

2.3. Description of the Hampered Travelling Salesman Problem with Hidden Neighbourhoods

The H-TSPHN is an extension of the H-SPPN where the neighbourhood set N is considered to play

the role of source and target in the H-SPPN and, moreover, a set of given targets must be visited. The

aim of the H-TSPHN is to �nd the shortest tour that visits each neighbourhood N ∈ N exactly once

without crossing any barrier B ∈ B and assuming again A1-A4.

To present our formulation for the H-TSPHN, the graph induced by the endpoints of the barriers and

the neighbourhoods is di�erent from the previous one for the H-SPPN. For its description, we introduce

the following sets:

� VN = {PN : N ∈ N}. Set of points selected in the neighbourhoods N to be visited.

� VB = {P 1
B , P

2
B : B = P 1

BP
2
B ∈ B}. Set of endpoints of the barriers of the problem.

� EN = {(PN , P i
B) : PN ∈ VN , P i

B ∈ VB and PNP i
B∩B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed

by line segments that join each point selected in the neighbourhoods of N with each endpoint on

the barriers and do not cross any barrier in B.

� EB = {(P i
B , P

j
B′) : P i

B , P
j
B′ ∈ VB and P i

BP
j
B′ ∩ B′′ = ∅, ∀B′′ ∈ B, i, j = 1, 2}. Set of edges formed

by line segments that join two vertices of VB and do not cross any barrier in B.

Following the same idea as before, we consider the visibility graph GTSPH = (VTSPH, ETSPH) induced

by barriers and neighbourhoods, where VTSPH = VN ∪ VB and ETSPH = EN ∪ EB.

2.4. Description of the Hampered Travelling Salesman Problem with Neighbourhoods

For the general case, barriers are not required to completely separate all neighbourhoods, i.e., when

moving from one neighbourhood to another, sometimes it is possible to follow a straight line without

crossing any barrier. The main di�erence lies in the description of the edges of the graph induced by the

neighbourhoods and endpoints of the barriers.

By following the same approach that before, the sets that describe the visibility graph in this case

are:

� VN = {PN : N ∈ N}. Set of points in the neighbourhoods N that must be visited.

� VB = {P 1
B , P

2
B : B = P 1

BP
2
B ∈ B}. Set of endpoints of the barriers of the problem.

� VTSP = VN ∪ VB.

� ETSP = {(P, P ′) : P, P ′ ∈ VTSP and PP ′ ∩ B′′ = ∅,∀B′′ ∈ B}. Set of edges formed by the line

segments that join every pair of points in VTSP that do not cross any barrier.
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3. MINLP Formulations

This section proposes a mixed integer nonlinear programming formulation for the problems described

in Section 2. First of all, we present the conic programming representation of the neighbourhoods and

distance. Then, we set the constraints that check if a segment is included in the set of edges EX

with X ∈ {SPP, TSPH, TSP}. Finally, the formulations for the H-SPPN, H-TSPHN and H-TSPN are

described.

We would like to remark that having a mathematical programming representation for the H-SPPN

is very important, even though we will prove in the following that this problem can be solved with a

polynomial-time combinatorial algorithm. Indeed, we will need this type of representation to address

some NP-hard problems that require computing shortest paths as building blocks, such as, for example,

the location problem with barriers and neighbours and the H-TSPN. Therefore, we will start providing

two di�erent mathematical programming formulations for the H-SPPN capable of being embedded in

more complex problems.

First, we introduce the decision variables that represent the problem. These are summarised in Table

1.

Table 1: Summary of decision variables used in the mathematical programming model

Binary Decision Variables

Name Description

α(P |QQ′)
1, if the determinant det(P |QQ′) is positive,

0, otherwise.

β(PP ′|QQ′)
1, if the determinants det(P |QQ′) and det(P ′|QQ′) have the same sign,

0, otherwise.

γ(PP ′|QQ′)
1, if the determinants det(P |QQ′) and det(P ′|QQ′) are both positive,

0, otherwise.

δ(PP ′|QQ′)
1, if the line segments PP ′ and QQ′ intersect,

0, otherwise.

ε(PP ′)
1, if the line segment PP ′ does not cross any barrier,

0, otherwise.

y(PQ)
1, if the edge (P,Q) is selected in the solution of the model,

0, otherwise.

Continuous Decision Variables

Name Description

PN Coordinates representing the point selected in the neighbourhood N .

d(PQ) Euclidean distance between the points P and Q.

g(PQ) Amount of commodity passing through the edge (P,Q).

3.1. Conic programming constraints in the models

Let ∥·∥2 denote the standard Euclidean norm derived from the dot product in Rn, i.e., ∥u∥2 = (utu)1/2.

The second-order cone (or Lorentz cone) of dimension k + 1 is de�ned as:

Lk+1 = {(x, y) ∈ Rk × R : ∥x∥2 ≤ y}.
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Then, a second-order cone constraint is de�ned as

∥Aix− bi∥2 ≤ ctix− di ⇔ (Aix− bi, c
t
ix− di) ∈ Lki+1, i = 1, . . . ,m,

where Ai ∈ Rki×n, bi ∈ Rki , ci ∈ Rn and di ∈ R are the problem parameters.

Second-order cone constraints can be used to represent common convex constraints. If Ai ≡ 0 and

bi ≡ 0, for some i ∈ 1, . . . ,m, the corresponding second-order cone constraint is reduced to a linear one.

On the other hand, if ci ≡ 0 and di ≤ 0, the constraint is reduced to a convex quadratic constraint that

can represent ellipsoids or hyperbolic constraints (see Lobo et al. (1998) and Boyd and Vandenberghe

(2004) for more information). The advantages of second-order constraints are the fully symmetric duality,

heavily utilised by solution algorithms, the existence of polynomial-time interior point methods and its

extremely powerful modeling possibilities (Nesterov and Nemirovski, 1994).

In the two problems considered, namely H-SPPN and H-TSPN, there exist two second-order cone

constraints that model the distance between pairs of points P and Q, as well as the representation of

neighbourhoods where the points can be chosen.

For modelling the distance between pairs of points, we introduce the nonnegative continuous variable

d(PQ) that represents the distance between P and Q:

∥P −Q∥ ≤ d(PQ), ∀(P,Q) ∈ EX , (d-C)

where EX is the set of edges ESPP, ETSPH or ETSP.

For the representation of neighbourhoods where points can be chosen, since we are assuming that

the neighbourhoods are second-order cone (SOC) representable, they can be expressed by means of the

constraints:

PN ∈ N ⇐⇒ ∥Ai
NPN + biN∥ ≤ (ciN )TPN + diN , i = 1, . . . , ncN , (N-C)

where Ai
N , biN , ciN and diN are the constraints parameters, i and ncN denotes the number of constraints

that appear in the block associated with the neighbourhood N .

These type of elements could be extended further to unions of SOC representable sets by introducing

binary variables. Each one determines the set where the point chosen to visit the union of these SOC

representable sets is located.

Let UN = {C1
N , . . . , CmN

N } be the second-order cone representable sets that de�ne the neighbourhood
N . Consider the binary variable χj

N that is one if PN ∈ Cj
N , and zero otherwise. Therefore, for each

N ∈ N ,

PN ∈ UN ⇐⇒





∥Aij
NPN + bijN∥ ≤ (cijN )TPN + dijN + U j

N (1− χj
N ), i = 1, . . . , ncN , j = 1, . . . ,mN ,

∑mN

j=1 χ
j
N = 1,

(U-C)

where U j
N is a big M constant on the maximal distance between two points in the union of sets. The
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reader may observe that (N-C) can be replaced by (U-C) without altering the validity of the formulations.

However, for the sake of simplicity, only the SOC-representable sets are considered in the paper.

3.2. Checking whether a segment is an edge of the induced graph

The goal of this subsection is to provide a test to check whether, given two arbitrary vertices P,Q ∈
VX , the edge (P,Q) ∈ EX , with X ∈ {SPP, TSPH, TSP}, that is, whether the line segment PQ does

not intersect any barrier of B. The following well-known computational geometry result described, among

others, in Boissonnat and Snoeyink (2000), can be used to check if two line segments intersect.

Remark 1. Let PQ and B = P 1
BP

2
B ∈ B be two di�erent line segments. If

sign
(
det(P |P 1

BP
2
B)

)
= sign

(
det(Q|P 1

BP
2
B)

)
or sign

(
det(P 1

B |PQ)
)
= sign

(
det(P 2

B |PQ)
)
,

then PQ and B do not intersect.

If the sign of det(P |P 1
BP

2
B) is the same than det(Q|P 1

BP
2
B), then, the orientation of P and Q with

respect to the segment P 1
BP

2
B is the same. It means that both points lie in the same half-plane generated

by the line that contains this segment.

Let P,Q ∈ VX , where VX denotes the set of vertices VSPP, VTSPH or VTSP. It is essential to model the

conditions of the Remark 1 by using binary variables that check the sign of determinants, the equality

of signs, and the disjunctive condition, since these determinants depend on the location of P and Q.

To model the sign of each determinant in Remark 1, we introduce the binary variable α, which

assumes the value one if the determinant is positive and zero, otherwise. Note that the case where the

determinants are null does not need to be considered because the segments are located in a general

position.

It is possible to represent the sign condition by including the following constraints:

[
1− α(P |P 1

BP
2
B)

]
L(P |P 1

BP
2
B) ≤ det(P |P 1

BP
2
B) ≤ U(P |P 1

BP
2
B) α(P |P 1

BP
2
B), (α-C)

[
1− α(Q|P 1

BP
2
B)

]
L(Q|P 1

BP
2
B) ≤ det(Q|P 1

BP
2
B) ≤ U(Q|P 1

BP
2
B) α(Q|P 1

BP
2
B),

[
1− α(P 1

B |PQ)
]
L(P 1

B |PQ) ≤ det(P 1
B |PQ) ≤ U(P 1

B |PQ) α(P 1
B |PQ),

[
1− α(P 2

B |PQ)
]
L(P 2

B |PQ) ≤ det(P 2
B |PQ) ≤ U(P 2

B |PQ) α(P 2
B |PQ),

where L and U are the lower and upper bounds of the value of the corresponding determinants, re-

spectively. If a determinant is positive, then α must be one to make the second inequality feasible.

Analogously, if the determinant is not positive, α must be zero to enforce the correct condition.

Assuming the possibility of going directly between neighbourhoods leads us to include product of

continuous variables in the determinants of constraints (α-C). These products make our formulation

for the H-TSPN to become non-convex. However, in the H-TSPHN, since two of the three arguments of

each determinant are �xed, the α constraints become linear. This important di�erence motivates the

computational comparison between the two formulations in Section 5.
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Now, we check whether the pairs of determinants

det(P |P 1
BP

2
B), det(Q|P 1

BP
2
B) and det(P 1

B |PQ), det(P 2
B |PQ) (1)

have the same sign, we introduce the binary variable β, that is one if the corresponding pair has the

same sign, and zero otherwise.

Therefore, the correct value of the variable β can be enforced by the following constraint of the

variables α.

β(PQ|P 1
BP

2
B) = α(P |P 1

BP
2
B)α(Q|P 1

BP
2
B) +

[
1− α(P |P 1

BP
2
B)

] [
1− α(Q|P 1

BP
2
B)

]
,

β(P 1
BP

2
B |PQ) = α(P 1

B |PQ)α(P 2
B |PQ) +

[
1− α(P 1

B |PQ)
] [
1− α(P 2

B |PQ)
]
.

This condition can be equivalently written using an auxiliary binary variable γ that models the product

of the α variables:

β(PQ|P 1
BP

2
B) = 2γ(PQ|P 1

BP
2
B)− α(P |P 1

BP
2
B)− α(Q|P 1

BP
2
B) + 1, (β-C)

β(P 1
BP

2
B |PQ) = 2γ(P 1

BP
2
B |PQ)− α(P 1

B |PQ)− α(P 2
B |PQ) + 1,

We observe that γ can be linearised using the following constraints:

γ(PQ|P 1
BP

2
B) ≤ α(P |P 1

BP
2
B),

γ(PQ|P 1
BP

2
B) ≤ α(Q|P 1

BP
2
B),

γ(PQ|P 1
BP

2
B) ≥ α(P |P 1

BP
2
B) + α(Q|P 1

BP
2
B)− 1,

γ(P 1
BP

2
B |PQ) ≤ α(P 1

B |PQ), (γ-C)

γ(P 1
BP

2
B |PQ) ≤ α(P 2

B |PQ),

γ(P 1
BP

2
B |PQ) ≥ α(P 1

B |PQ) + α(P 2
B |PQ)− 1.

Later, we need to check whether there exists any coincidence of the sign of determinants, so we de�ne

the binary variable δ, which is one if the segments do not intersect and zero, otherwise. This condition

can be modelled by using the following disjunctive constraints:

1

2

[
β(PQ|P 1

BP
2
B) + β(P 1

BP
2
B |PQ)

]
≤ δ(PQ|P 1

BP
2
B) ≤ β(PQ|P 1

BP
2
B) + β(P 1

BP
2
B |PQ). (δ-C)

Indeed, the above constraints state that if there exists a sign coincidence in any of the two pairs of

determinants in (1) , then δ is one to satisfy the left constraint, and the right one is always ful�lled.

However, if none of the signs of the pairs of determinants is the same, then the second constraint is zero

and δ is null.

Finally, we need to check that

PQ ∩B′′ = ∅, ∀B′′ ∈ B, ⇐⇒ δ(PQ|P 1
B′′P 2

B′′) = 1, ∀B′′ ∈ B.

Hence, if we denote by ε(PQ) the binary variable that is one if the previous condition is satis�ed for
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all B′′ ∈ B and zero otherwise, this variable can be represented by means of the following inequalities:

[ ∑

B′′∈B
δ(PQ|P 1

B′′P 2
B′′)− |B|

]
+ 1 ≤ ε(PQ) ≤ 1

|B|
∑

B′′∈B
δ(PQ|P 1

B′′P 2
B′′). (ε-C)

If there is, at least, a barrier B′′ ∈ B that intersects the segment PQ, then δ(PQ|P 1
B′′P 2

B′′) is zero and

the second inequality forces ε to be zero because the right hand side is fractional and the �rst inequality

is nonpositive. Nevertheless, if no barrier intersects the segment PQ, then ε is equal to one, because the

left-hand side of the �rst inequality is one and the right-hand side of the second inequality is also one.

Based on the description above, we can identify the set of actual edges of the graph G using the

variables ε as follows:

EX = {(P,Q) : P,Q ∈ VX ,ε(PQ) = 1, P ̸= Q}, X ∈ {SPP, TSPH, TSP}.

This representation of EX with X ∈ {SPP, TSPH, TSP} will be exploited in the formulations

described in the following subsections.

It is interesting to note that EB is a �xed set whose edges can be computed using Remark 1. Then,

the variables ε can be pre�xed in advance. However, the edges in EX \EB depend on the points selected

in the neighbourhoods, as explained before.

3.3. A formulation for the H-SPPN

The idea of the formulation of the H-SPPN is to extend the classical formulation of the Shortest Path

Problem by taking into account the description of the graph GSPP in Subsection 2.2.

The formulation describes the path that the drone can follow by taking into account the edges of the

induced graph. Let P,Q ∈ VSPP and let y(PQ) be the binary variable that is one if the drone goes from

P to Q. Then, the inequalities

y(PQ) ≤ ε(PQ), (y-C)

assure that the drone can go from P to Q only if the segment PQ does not cross any barrier.

Taking into account the constraints explained in the subsections above, the following MINLP formu-

lation is valid for H-SPPN.
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minimize
∑

(P,Q)∈ESPP

d(PQ)y(PQ) (H-SPPN)

subject to
∑

{Q:(P,Q)∈ESPP}
y(PQ)−

∑

{Q:(Q,P )∈ESPP}
y(QP ) =





1, if P ∈ VS ,

0, if P ∈ VB,

−1, if P ∈ VT .

,

(α-C), (β-C), (γ-C), (δ-C) ∀P,Q ∈ VSPP, ∀P 1
B , P

2
B ∈ VB,

(ε-C), (y-C), (d-C) ∀P,Q ∈ VSPP,

(N-C) ∀P ∈ VS ∪ VT .

The objective function minimises the length of the path followed by the drone at the edges of the

induced graph GSPP. The �rst constraints are the �ow conservation constraints that ensure connectivity

(they will be also used in the formulations of the H-TSPN), the second constraints represent the sets ES

and ET and the third ones state that the selected points must be in their respective neighbourhoods.

Figure 7 reports the optimal solution for the example of the H-SPPN.

3.3.1. Reformulating the H-SPPN

The formulation for the H-SPPN presented above can be simpli�ed taking into account the following

observation.

Proposition 1. There exist two �nite dominating sets, N∗
S and N∗

T , of possible candidates to be starting

points in NS and terminal points in NT , respectively. Moreover,

N∗
S = {PS(P

i
B) : PS(P

i
B) = argmin

PS∈NS

∥PS − P i
B∥, (PS , P

i
B) ∈ ES and P i

B ∈ VB},

N∗
T = {PT (P

i
B) : PT (P

i
B) = argmin

PT∈NT

∥P i
B − PT ∥, (P i

B , PT ) ∈ ET and P i
B ∈ VB}.

Proof. Note that the points chosen in NS and NT in an optimal solution for H-SPPN must be those that

give the minimum distances to the points of the �rst and last barriers visited in any optimal solution,

respectively. Therefore, N∗
S and N∗

T must contain, at most, the points in the sets

{PS(P
i
B) : PS(P

i
B) = argmin

PS∈NS

∥PS − P i
B∥, (PS , P

i
B) ∈ ES and P i

B ∈ VB},

{PT (P
i
B) : PT (P

i
B) = argmin

PT∈NT

∥P i
B − PT ∥, (P i

B , PT ) ∈ ET and P i
B ∈ VB},

as claimed.

Therefore, we can compute, `a priori', the sets N∗
X , X ∈ {S, T}. For each P i

B ∈ VB, the corresponding

point in the source neighbourhood PX(P i
B) is computed by solving the following convex problem:
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PX(P i
B) = arg min

PX ∈ NX

d(PXP i
B) (N∗

X)

subject to (α-C), (β-C), (γ-C), (δ-C), ∀P 1
B , P

2
B ∈ VB,

(ε-C),

ε(PXP i
B) = 1,

∥PX − P i
B∥ ≤ d(PXP i

B).

Then, the visibility graph is constructed by means of these dominating sets. This graph, required

to address the new formulation, uses the previous graph GSPP in which we increase the new edges that

connect the initial and terminal points PS ∈ NS and PT ∈ NT , respectively, with the corresponding

points in N∗
S and N∗

T . Moreover, we also augment the edges connecting the points in the dominating

sets with the extreme points of the segments where the minimal distances are attained. The reader may

note that since the optimisation model minimises the overall distance, in an optimal solution PS must

belong to N∗
S and PT to N∗

T .

Therefore, the following sets are needed to build the new visibility graph induced by the dominating

sets.

� V ∗
S = N∗

S . Dominating set of points associated with the neighbourhood NS .

� V ∗
T = N∗

T . Dominating set of points associated with the neighbourhood NT .

� Eint
S = {(PS , PS(P

i
B)) : PS ∈ VS and P i

B ∈ VB}. Set of edges that join the selected point PS ∈ NS

with each point PS(P
i
B) in the dominating set N∗

S .

� Eext
S = {(PS(P

i
B), P

i
B) : P

i
B ∈ VB}. Set of edges joining the point PS(P

i
B) with its respective P i

B in

VB.

� E∗
S = Eint

S ∪ Eext
S .

� Eint
T = {(PT (P

i
B), PT ) : P

i
B ∈ VB and PT ∈ VT }. Set of edges that join each point PS(P

i
B) in the

dominating set N∗
S with the point selected PT ∈ NT .

� Eext
T = {(P i

B , PT (P
i
B)) : P i

B ∈ VB. Set of edges joining the point P i
B in VB with its respective

PT (P
i
B).

� E∗
T = Eint

T ∪ Eext
T .

We de�ne the graph G∗
SPP = (V ∗

SPP, E
∗
SPP), where V ∗

SPP = V ∗
S ∪ VSPP ∪ V ∗

T and E∗
SPP = E∗

S ∪ EB ∪ E∗
T .

The major advantage of this approach is that, once the sets N∗
S and N∗

T are calculated beforehand,

the entire graph G∗
SPP is �xed because the incident edges can be computed for each point PS(P

i
B) and

PT (P
i
B), P

i
B ∈ VB, separately. Figure 6 shows how the dominating sets N∗

S and N∗
T are calculated for an

instance of the H-SPPN.

14



Figure 6: Illustration of the dominating sets associated with an instance of the H-SPPN.
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De�ning again the variables d and y for the edges in E∗
SPP, the new formulation for the H-SPPN can

be expressed as the following simpli�ed form:

minimize
∑

(P,Q)∈E∗
SPP

d(PQ)y(PQ) (H-SPPN∗)

subject to
∑

{Q:(P,Q)∈E∗
SPP

}
y(PQ)−

∑

{Q:(Q,P )∈E∗
SPP

}
y(QP ) =





1, if P ∈ VS ,

0, if P ∈ V ∗
S ∪ VB ∪ V ∗

T ,

−1, if P ∈ VT .

,

(d-C) ∀P,Q ∈ V ∗
SPP,

(N-C) ∀P ∈ VS ∪ VT .

Let us assume that the �nite dominating sets N∗
S and N∗

T are given.

Proposition 2. Let n = |B|. The H-SPPN can be solved in polynomial time O(n3).

Proof. The proof follows using the �nite dominating sets N∗
S and N∗

T . First, it is clear that the cardinality

of these �nite dominating sets is O(n) since there is one point in each set for each endpoint of a segment

in B. Next, we recall that given a set of polygonal obstacles with O(n) vertices, the shortest linear size

map from any given point can be computed in O(n log n) time. Once you have that map, �nding the

shortest path to any other point in the region is done in O(n) time (Mitchell, 2017). Therefore, the

H-SPPN can be solved as follows.

15



For each point PS(P
i
B) ∈ N∗

S we compute the shortest path map of linear size and solve the problem of

the shortest path with respect to all O(n) points in N∗
T . In general, this operation takes O(n log n+n2).

The same operation has to be repeated for all O(n) points in N∗
S . The best among all those paths is the

shortest path from S to T . Therefore, the overall complexity to solve H-SPPN is O(n3).

3.4. A formulation for the H-TSPHN

The rationale of the formulation for the H-TSPHN is to consider the variant called Steiner TSP

(STSP) (see Letchford et al. (2013)). In this problem, the task is to �nd a minimal cost route that visits

a set of required nodes (VN ). During the route, vertices (VTSPH) can be visited more than once, and

edges (ETSPH) may be traversed more than once.

It is well-known that it is possible to convert any instance of the STSP into an instance of the

standard TSP, by computing the shortest paths between every pair of required nodes, when these nodes

are �xed. However, in our problem, since the points in the neighbourhoods are not �xed, the H-SPPN

cannot be used directly to derive an optimal solution for the H-TSPHN, although it may produce a good

approximation to generate lower bounds for the H-TSPHN that allows to solve larger instances.

Similarly as in the H-SPPN, we use a single-commodity �ow formulation to ensure connectivity. We

can assume that the neighbourhood N1 is required and that the drone departs from that depot (assuming

that it is N1) with |N | − 1 units of commodity and one unit of commodity must be delivered to each

neighbourhood. Then, for each edge (P,Q) ∈ ETSPH, we de�ne the following variables:

� y(PQ), binary variable equal to one if the drone goes from P to Q.

� g(PQ), non-negative continuous variable that represents the amount of commodity passing through

the edge (P,Q).

Hence, we can adjust the single-commodity �ow formulation to the induced graph GTSPH as follows:
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minimize
∑

(P,Q)∈ETSPH

d(PQ)y(PQ) (H-TSPHN)

subject to
∑

{Q:(PN ,Q)∈EN }
y(PNQ) ≥ 1, ∀PN ∈ VN ,

∑

{Q:(P,Q)∈ETSPH}
y(PQ) =

∑

{Q:(Q,P )∈ETSPH}
y(QP ), ∀P ∈ VTSPH,

∑

{Q:(Q,PN )∈EN }
g(QPN )−

∑

{Q:(PN ,Q)∈EN }
g(PNQ) = 1, ∀PN ∈ VN \ {PN1},

∑

{Q:(Q,P i
B)∈ETSPH}

g(QP i
B)−

∑

{Q:(P i
B ,Q)∈ETSPH}

g(P i
BQ) = 0, ∀P i

B ∈ VB,

g(PQ) ≤ (|N | − 1)y(PQ), ∀(P,Q) ∈ ETSPH,

(α-C), (β-C), (γ-C), (δ-C) ∀P,Q ∈ VTSPH, ∀P 1
B , P

2
B ∈ VB,

(ε-C), (y-C), (d-C) ∀P,Q ∈ VTSPH,

(N-C) ∀PN ∈ VN .

The �rst group of constraints imposes that the drone departs from each neighbourhood. The second

block of constraints is the �ow-conservation constraints. The third inequalities ensure that one unit of

commodity is delivered to each of the required neighbourhood. The fourth ensures that the �ctitious

nodes at the end of the barriers do not consume commodity. Finally, the last inequalities enforce that

some commodity goes throughout an edge only if this edge is used in the tour. The inequalities (α-C),

(β-C), (γ-C), (δ-C), (ε-C), (y-C), (d-C), (N-C) require the variables of the problem to be well de�ned.

Figure 8 shows the optimal solution for the example of the H-TSPHN.

Proposition 3. The H-TSPHN is NP-complete.

Note that, once a point is �xed in each neighbourhood, the problem that results in the induced graph

GTSPH is the Steiner TSP. This problem is an extension of the TSP, that is NP-complete (Papadimitriou

and Steiglitz, 1977).

3.4.1. Reformulating the H-TSPHN

The idea of computing a dominating set that represents each of the neighbourhoods in the H-SPPN

can be adopted to reformulate the H-TSPHN in the same way. The dominating sets are stated in the

next proposition.

Proposition 4. Given a neighbourhood N ∈ N , there exists a �nite dominating set, N∗ of possible

candidates to be in N . Moreover,

N∗ = {PN (P i
B , P

j
B′) : PN (P i

B , P
j
B′) = argmin

PN∈N
∥P i

B − PN∥+ ∥PN − P j
B′∥ and (P i

B , PN ), (PN , P j
B′) ∈ EN }.
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Proof. The way a drone visits a neighbourhood N is

P i
B −→ PN −→ P j

B′ ,

for some points P i
B , P

j
B′ ∈ VB, since, by A4, there does not exist a rectilinear path that joins any pair of

neighbourhoods. Therefore, the points chosen in an optimal solution for H-TSPHN must be those that

produce the minimum distances to the points of the barriers visited previously and next visited in the

optimal solution. Therefore, N∗ must be composed, at most, of the points in the set

{PN (P i
B , P

j
B′) = argmin

PN∈N
∥P i

B − PN∥+ ∥PN − P j
B′∥ : (P i

B , PN ), (PN , P j
B′) ∈ EN },

which completes the proof.

Again, we can compute the respective dominating set N∗ of a neighbourhood N ∈ N by solving a

convex problem for each pair of barrier endpoints:

N∗ = {PN (P i
B , P

j
B′) : PN (P i

B , P
j
B′) = argmin

PN∈N
∥P i

B − PN∥+ ∥PN − P j
B′∥, ε(P i

BPN ) = 1 and ε(PNP j
B′) = 1}.

The graph induced by the precomputed dominating sets is described in terms of the following sets:

� V ∗
N = {N∗ : N ∈ N}. Union of the dominating sets associated with each neighbourhood.

� Eint
N = {(PN (P i

B , P
j
B′), PN ), (PN , PN (P i

B , P
j
B′)) : P i

B ∈ VB, PN ∈ N and P j
B′ ∈ VB}. Set of edges

joining the point selected PN ∈ N with each point PN (P i
B , P

j
B′) in the dominating set N∗.

� Eext
N = {(P i

B , PN (P i
B , P

j
B′)), (PN (P i

B , P
j
B′), P

j
B′) : P i

B ∈ VB and P j
B′ ∈ VB}. Set of edges joining the

point PN (P i
B , P

j
B′) with its respective P i

B and P j
B′ in VB.

� E∗
N = Eint

N ∪ Eext
N . Set of edges associated with the neighbourhood N .

� E∗
N = {E∗

N : N ∈ N}. Union of the edges of every neighbourhood.

We de�ne the graph G∗
TSPH = (V ∗

TSPH, E
∗
TSPH), where V ∗

TSPH = VTSPH ∪ V ∗
N and E∗

TSPH = E∗
N ∪ EB.

Again, the sets N∗ for each N ∈ N can be computed in advance so that the whole graph G∗
TSPH is

�xed. The new formulation for the H-TSPHN can be represented as the next simpli�ed program:
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minimize
∑

(P,Q)∈E∗
TSPH

d(PQ)y(PQ) (H-TSPHN∗)

subject to
∑

{Q:(PN ,Q)∈Eint

N }
y(PNQ) ≥ 1, ∀PN ∈ VN ,

∑

{Q:(P,Q)∈E∗
TSPH

}
y(PQ) =

∑

{Q:(Q,P )∈E∗
TSPH

}
y(QP ), ∀P ∈ V ∗

TSPH,

∑

{Q:(Q,PN )∈Eint

N }
g(QPN )−

∑

{Q:(PN ,Q)∈Eint

N }
g(PNQ) = 1, ∀PN ∈ VN \ {PN1

},

∑

{Q:(Q,P )∈E∗
TSPH

}
g(QP )−

∑

{Q:(P,Q)∈E∗
TSPH

}
g(PQ) = 0, ∀P ∈ VB ∪ V ∗

N ,

g(PQ) ≤ (|N | − 1)y(PQ), ∀(P,Q) ∈ E∗
TSPH,

(d-C) ∀P,Q ∈ V ∗
TSPH,

(N-C) ∀PN ∈ VN .

The reader may note that the maximum number of dominating points associated with an instance

(N ,B) of the H-TSPHN is 1
2 |N ||B|(|B| − 1). Therefore, to obtain all sets N∗ for each N ∈ N , it is

required to solve, at most, 1
2 |N ||B|(|B| − 1) convex programs which may be computationally expensive

but polynomial.

3.5. Relaxing the assumptions of the problem: The H-TSPN

In this subsection, we analyse the di�erences between H-TSPHN and H-TSPN, where it is possible

to move from one neighbourhood to another one without crossing any barrier. The main di�erence lies

in the description of the edges of the graph induced by the neighbourhoods and the endpoints of the

barriers.

By taking the same approach as before, the sets that describe the graph in the new case are VN , VB,

VTSP and ETSP, as described in Subsection 2.3.
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minimize
∑

(P,Q)∈ETSP

d(PQ)y(PQ) (H-TSPN)

subject to
∑

{Q:(PN ,Q)∈EN }
y(PNQ) ≥ 1, ∀PN ∈ VN ,

∑

{Q:(P,Q)∈ETSP}
y(PQ) =

∑

{Q:(Q,P )∈ETSP}
y(QP ), ∀P ∈ VTSP,

∑

{Q:(Q,PN )∈EN }
g(QPN )−

∑

{Q:(PN ,Q)∈EN }
g(PNQ) = 1, ∀PN ∈ VN \ {PN1},

∑

{Q:(Q,P i
B)∈ETSP}

g(QP i
B)−

∑

{Q:(P i
B ,Q)∈ETSP}

g(P i
BQ) = 0, ∀P i

B ∈ VB,

g(PQ) ≤ (|N | − 1)y(PQ), ∀(P,Q) ∈ ETSP,

(α-C), (β-C), (γ-C), (δ-C) ∀P,Q ∈ VTSP, ∀P 1
B , P

2
B ∈ VB,

(ε-C), (y-C), (d-C) ∀P,Q ∈ VTSP,

(N-C) ∀PN ∈ VN .

The formulation described above is analogous to those detailed in (H-TSPHN). The di�erence be-

tween the set of edges in the H-TSPN with respect to the graph in H-TSPHN is that, in the former case,

the edges that join each pair of neighbourhoods must be considered. This fact leads to including the

product of continuous variables in the constraints α of the model that represent the determinants that

determine whether the segment joining the two variable points in the neighbourhoods crosses any barrier

or not. These products make the problem a non-convex, quadratically constrained program. In Figure

9, the optimal solution for the example of the H-TSPN is represented. It shows a direct path joining the

blue and orange neighbourhoods.

Figure 7: Optimal solution for the
instance of the H-SPPN
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Figure 8: Optimal solution for the
instance of the H-TSPHN
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Figure 9: Optimal solution for the
instance of the H-TSPN
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3.5.1. Real-world scenario

In this subsection, we include an example from a real neighbourhood of the city map of Cordoba

in the south of Spain. In order to make surveillance drone activities in some parks of the district, the
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Figure 10: Satellite view for the real-
world scenario

Figure 11: Block view for the real-
world scenario

Figure 12: Optimal solution for the
real-world scenario

neighbourhoods, represented as circles, must be visited by the drone by taking into account buildings

that can not be crossed. Figure 10 shows a part of the district that contains three parks that must be

inspected and the buildings the drone cannot cross. Figure 11 represents a block view that includes, in

a schematic way, the barriers and neighbourhoods that must be visited. Finally, the optimal solution for

the H-TSPN for this real scenario is given by the tour included in Figure 12.

The data describing this case study can be downloaded from Puerto and Valverde (2023).

4. Strengthening the formulations

4.1. Preprocessing

In this subsection, a pre-processing result is proposed that allows one to �x some variables. It is based

on analysing the relative position between the neighbourhoods and the barriers. Speci�cally, we present

a su�cient condition that ensures that there are some barriers whose endpoints cannot be incident at

the edges of EN so that it is not necessary to include them in EN .

Let us denote

cone(P |QR) := {µ1
−−→
PQ+ µ2

−→
PR : µ1, µ2 ≥ 0},

cone(P |QR)− := {µ1
−−→
PQ+ µ2

−→
PR : µ1, µ2 ≥ 0, µ1 + µ2 ≤ 1},

cone(P |QR)+ := {µ1
−−→
PQ+ µ2

−→
PR : µ1, µ2 ≥ 0, µ1 + µ2 ≥ 1}.

Note that cone(P |QR) is the union of cone(P |QR)− and cone(P |QR)+. It is also important to note that

cone(P |QR)+ represents the subset of points P ′ in the plane whose segments PP ′ cross the barrier QR

(see Figure 13), i.e.

cone(P |QR)+ = {P ′ : PP ′ ∩QR ̸= ∅}.

Let B = P 1
BP

2
B ∈ B a barrier. In the following proposition, we give a su�cient condition to not

include the edge (PN , P i
B) in EN .
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Figure 13: Representation of the cone generated by the point P and the line segment QR.

Proposition 5. Let B′ = P 1
B′P 2

B′ ∈ B and cone(P i
B |P 1

B′P 2
B′)+ the conical hull generated by these points.

If

N ⊂
⋃

B′∈B
cone(P i

B |P 1
B′P 2

B′)+,

then (PN , P i
B) ̸∈ EN .

Proof. If PN ∈ N , then there exists aB′ ∈ B such that PN ∈ cone(P i
B |P 1

B′P 2
B′)+. Therefore, P i

BPN∩B′ ̸=
∅ and (PN , P i

B) ̸∈ EN .

One can easily check computationally the condition of the previous proposition by using the following

procedure. First, we deal with the case where neighbourhoods are segments. Let N = P 1
NP 2

N be a line

segment and rN be the straight line that contains the line segment N represented as:

rN : P 1
N + λ

−−−−→
P 1
NP 2

N , λ ∈ R.

In Figure 14 an example of the Algorithm 1 is described to check if there exists a rectilinear path that

joins the solid point P i
B in the red barrier de�ned by the extreme points P i

B and P j
B with the segment

P 1
NP 2

N . First, the dashed straight lines r(P i
B , P

j
B′′) generated by P i

B and each point of the barrier are

computed. Second, the straight line rN is determined by P 1
N and P 2

N . Then, each of the straight lines

r(P i
B , P

j
B′′) is intersected with rN obtaining the points Q1

1, Q
1
2, Q

2
1 and Q2

2. Each of these points has two

associated parameter values µ and λ with respect to the straight lines r(P i
B , P

j
B′′) and rN , respectively.

Finally, the points are ordered in nondecreasing sequence with respect to the λ values. Since

M = λ1
1 ≤ 0, 1 ≤ λ2

1 = 2,

the segment P 1
NP 2

N is fully included in cone(P i
B |P 1

1P
2
1 )

+ and, therefore, (P i
B , PN ) is not included in EN .

Note that this algorithm also allows us to decide whether the drone can access a barrier point from

22



Algorithm 1: Checking computationally whether (PN , P i
B) ̸∈ EN when N is a segment.

Initialization: Let P i
B be the point of the edge (PN , P i

B) to check whether (PN , P i
B) ̸∈ EN .

Set points = {P 1
N , P 2

N}, lambdas = {0, 1}.
1 for B′′ ∈ B do

2 for j ∈ {1, 2} do
3 Compute the straight line

r(P i
B , P

j
B′′) = P i

B + µj
B′′

−−−−→
P i
BP

j
B′′ ,

that contains the points P i
B and P j

B′′ .

4 Intersect r(P i
B , P

j
B′′) and rN at the point Qj

B′′ and compute µj
B′′ such that

Qj
B′′ = P i

B + µj
B′′

−−−−→
P i
BP

j
B′′ .

5 if |µj
B′′ | ≥ 1 then

6 Compute λj
B′′ such that

Qj
B′′ = P 1

N + λj
B′′

−−−−→
P 1
NP 2

N .

7 if µj
B′′ ≥ 1 then

8 Include λj
B′′ in lambdas.

9 else

10 if λj
B′′ ≥ 0 then

11 Set λj
B′′ = M << 0 and include it in lambdas.

12 else

13 Set λj
B′′ = M >> 0 and include it in lambdas.

14 Order the set lambdas in non-decreasing order.
15 If it is satis�ed that

min{λ1
B′ , λ2

B′} ≤ 0 ≤ max{λ1
B′ , λ2

B′}, for some B′ ∈ B,
min{λ1

B′ , λ2
B′} ≤ 1 ≤ max{λ1

B′ , λ2
B′}, for some B′ ∈ B,

min{λ1
B′ , λ2

B′} ≤ λj
B′′ ≤ max{λ1

B′ , λ2
B′}, for some B′ ∈ B \ {B′′}, ∀λj

B′′ ∈ lambdas \ {M},

or
min{λ1

B′ , λ2
B′} ≤ 0, 1 ≤ max{λ1

B′ , λ2
B′}, for some B′ ∈ B,

then (PN , P i
B) ̸∈ EN .

any point in the neighbourhood N . It is enough to check in (15) that

0 ̸∈
[
min{λ1

B′ , λ2
B′},max{λ1

B′ , λ2
B′}

]
and 1 ̸∈

[
min{λ1

B′ , λ2
B′},max{λ1

B′ , λ2
B′}

]
, ∀B′ ∈ B.

For the case where N is an ellipse, the same rationale can be followed. The idea is to generate the

largest line segment contained in the ellipse and to repeat the procedure in Algorithm 1. Let F1 and F2

be the focal points of N .
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Figure 14: Example of the Algorithm 1
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Algorithm 2: Checking computationally whether (PN , P i
B) ̸∈ EN when N is an ellipse.

Initialization: Let P i
B be the point whose edge (P i

B , PN ) is going to check whether

(PN , P i
B) ̸∈ EN .

Set points = {}, lambdas = {}.
1 Compute the straight line r(F 1, F 2).

2 Intersect r(F 1, F 2) and the boundary of N , ∂N , in the points P 1
N and P 2

N .

3 Include P 1
N and P 2

N in points.

4 Apply Algorithm 1.

4.2. Valid inequalities

This subsection is devoted to showing some results that adjust the big M constants that appear in the

previous formulation, speci�cally, in constraints (α-C), where modelling of the sign requires computing

the lower and upper bounds L and U , respectively. We are going to determine these bounds explicitly

for the cases where the neighbourhoods are ellipses and segments.

Let P 1
B′P 2

B′ = B′ ∈ B be a barrier, and PN ∈ N . Let det(PN |P 1
B′P 2

B′) also be the determinant
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whose value must be bounded. Clearly, the solution of the following problem gives a lower bound of the

determinant:

L = min
PN=(x,y)∈N

F (x, y) := det(PN |P 1
B′P 2

B′) =

∣∣∣∣∣∣∣

P 1
B′

x
− x P 2

B′
x
− x

P 1
B′

y
− y P 2

B′
y
− y

∣∣∣∣∣∣∣
. (L-Problem)

4.2.1. Lower and upper bounds when the neighbourhoods are line segments

In this case, the segment whose endpoints are P 1
N and P 2

N can be expressed as the following convex

set:

N = {(x, y) ∈ R2 : (x, y) = µP 1
N + (1− µ)P 2

N , 0 ≤ µ ≤ 1}.

Since we optimise a linear function in a compact set, we can conclude that the objective function in

(L-Problem) achieves its minimum and maximum at the extreme points of N , that is, in P 1
N and P 2

N .

4.2.2. Lower and upper bounds when the neighbourhoods are ellipses

The next case considered is that when N is an ellipse, that is, N is represented by the following

inequality:

N = {(x, y) ∈ R2 : ax2 + by2 + cxy + dx+ ey + f ≤ 0},

where a, b, c, d, e, f are coe�cients of the ellipse. In extended form, we need to �nd:

minimize F (x, y) =

∣∣∣∣∣∣∣

P 1
B′

x
− x P 2

B′
x
− x

P 1
B′

y
− y P 2

B′
y
− y

∣∣∣∣∣∣∣
= xP 1

B′
y
− xP 2

B′
y
+ yP 2

B′
x
− yP 1

B′
x
+ P 1

B′
x
P 2
B′

y
− P 1

B′
y
P 2
B′

x
,

(L-Ellipse)

subject to ax2 + by2 + cxy + dx+ ey + f ≤ 0.

Since we minimise a linear function in a convex set, we can conclude that the extreme points are located

in the frontier, so we can use the Lagrangian function to compute these points.

F (x, y;λ) = xP 1
B′

y
− xP 2

B′
y
+ yP 2

B′
x
− yP 1

B′
x
+ P 1

B′
x
P 2
B′

y
− P 1

B′
y
P 2
B′

x
+ λ(ax2 + by2 + cxy + dx+ ey + f).

∇F (x, y;λ) = 0 ⇐⇒





∂F
∂x = P 1

B′
y
− P 2

B′
y
+ 2axλ+ cyλ+ dλ = 0,

∂F
∂y = P 2

B′
x
− P 1

B′
x
+ 2byλ+ cxλ+ eλ = 0,

∂F
∂λ = ax2 + by2 + cxy + dx+ ey + f = 0.

From the �rst two equations, we obtain the following:

λ =
P 2
B′

y
− P 1

B′
y

2ax+ cy + d
=

P 1
B′

x
− P 2

B′
x

2by + cx+ e
.
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From this equality, we obtain the following general equation of the straight line:

(P 2
B′

y
− P 1

B′
y
)(2by + cx+ e)− (P 1

B′
x
− P 2

B′
x
)(2ax+ cy + d) = 0,

[
c(P 2

B′
y
− P 1

B′
y
)− 2a(P 1

B′
x
− P 2

B′
x
)
]
x+

[
2b(P 2

B′
y
− P 1

B′
y
)− c(P 1

B′
x
− P 2

B′
x
)
]
y +

[
e(P 2

B′
y
− P 1

B′
y
)− d(P 1

B′
x
− P 2

B′
x
)
]
= 0,

[
(2a, c) ·

−−−−→
P 1
B′P 2

B′

]
x+

[
(c, 2b) ·

−−−−→
P 1
B′P 2

B′

]
y +

[
(d, e) ·

−−−−→
P 1
B′P 2

B′

]
= 0,

where · denotes the scalar product of two vectors. Solving the quadratic system:





[
(2a, c) ·

−−−−→
P 1
B′P 2

B′

]
x+

[
(c, 2b) ·

−−−−→
P 1
B′P 2

B′

]
y +

[
(d, e) ·

−−−−→
P 1
B′P 2

B′

]
= 0,

ax2 + by2 + cxy + dx+ ey + f = 0,

they arise two solutions x± and y± that are evaluated in the objective function to obtain the lowest

and highest value, respectively, according to L(PN |P 1
B′P 2

B′) and U(PN |P 1
B′P 2

B′), respectively. The reader

may note that the same approach can be adopted to obtain the bounds for the rest of the determinants

that appear in (α-C).

4.2.3. Variable Fixing

In this subsection, the geometry of the problem is exploited to �x the variables. In particular, when a

neighbourhoodN is in the half-space generated by a barrier B, the sign of the determinant det(PN |P 1
BP

2
B)

does not change for any point PN ∈ N . Therefore, a relevant number of variables α (hence β, γ, δ and

ε) that model the sign of this determinant can be �xed `a priori'. It is su�cient to check whether

both bounds L(PN |P 1
B′P 2

B′) and U(PN |P 1
B′P 2

B′) computed in Subsection 4.2.2 have the same sign or

not. Figure 15 shows an example where variables α can be �xed. Each of the blue neighbourhoods is

completely contained in the half-spaces generated by the barrier, and α is �xed. However, the variable

α corresponding to the orange neighbourhood depends on the half-space in which PN is located.

5. Computational experiments

This section is devoted to studying the performance of (H-TSPHN) and (H-TSPN) formulations

proposed in Section 3. In the �rst subsection, the procedure for generating the considered random

instances is described. The second subsection details the experiments that have been conducted. The

third subsection reports the results obtained in these experiments.

5.1. Data generation

To generate the instances of our experiments, we assume assumptions A1-A4 stated in Section 2.

The following proposition gives an upper bound for the number of balls that can be generated given an

instance with n = |B| barriers:

Proposition 6. Under assumptions A1-A4, the maximum number of balls that can be considered in

H-TSPHN is O(n2).
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Figure 15: Fixing α variables when the whole neighborhood lies in one of the half-spaces generated by the barrier
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2
B) ≡ 1

det(PN |P 1
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2
B) ≥ 0 ⇒ α(PN |P 1

BP
2
B) ≡ 0

Proof. Let GB = (VB, EB) the visibility graph of the barrier con�guration in B. The proof is based on

the properties of this visibility graph described in Mitchell (2017), where it is proven that for a graph

with n vertices EB = O(n2). It is clear that the maximum number of balls coincides with the number of

faces, fGB , of GB. Recall that the number of vertices in B is n. Next, by the Euler formula, the number

of faces fGB is 2 + EGB − n. Since EB = O(n2), it follows that fGB = O(n2).

Algorithm 3 describes a general way to construct instances where neighbourhoods are balls.

Algorithm 3: General scheme of the instances generation

Initialization: Let |N | be the number of neighbourhoods to generate.

Let R = [LBx, UBx]× [LBy, UBy] ⊆ R2 be the rectangle where centers will be

generated.

Set points = {}; B = {}; N = {}.
1 Generate |N | points uniformly distributed in R and include them in points.

2 Generate pairwise disjoint barriers that separate the points and include them in B.
3 Generate neighbourhoods around points and include them in N .

The two following subsections develop Steps 2 and 3 of the Algorithm 3, respectively. Speci�cally,

the Algorithm 4, related with Step 2, details how barriers are generated assuming A1-A4, while the

Algorithm 5, related with Step 3, describes the way neighbourhoods are designed. In practice, Algorithms

3, 4 and 5 are implemented to be run sequentially and generate the battery of instances used for testing

the formulations.

Barriers generation

In this subsection, we focus on how to generate line segments located in general position without

crossings. The idea is to build bisectors that separate each pair of points in the set points. The initial

length of each bisector is rinit. This length is reduced until it does not intersect any of the previously
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generated line segments. The Algorithm 4 reports the pseudocode to generate barriers.

Algorithm 4: Generation of the barriers

Initialization: Let points be the set already randomly uniformly generated in R.

Let rinit be one half of the initial length of the barriers.

Set B = {}.
1 for P, P ′ ∈ points do

2 if PP ′ ∩B = ∅, ∀B ∈ B then

3 Compute
−→
d =

−−→
PP ′.

4 Compute M = P + 1
2

−→
d .

5 Compute the unitary vector −→nu perpendicular to
−→
d .

6 Set r = rinit.

7 Generate the barrier B(r) = P+
B P−

B where P±
B = M ± r−→nu.

8 while B(r) ∩B′ ̸= ∅ for some B′ ∈ B do

9 Set r := r/2.

10 Generate the barrier B(r).

11 Include B(r) in B.

Neighbourhood generation

Once the set of points and barriers are generated, the neighbourhoods are created using two di�erent

sizes:

� Randomly-sized neighbourhoods: that do not intersect barriers and verify A4.

� Fixed-sized neighbourhoods: that can cross barriers and are not required to assume A4.

The �rst case is used to study the performance of the models H-TSPHN and H-TSPN proposed in the

article when the neighbourhoods are circles or line segments. The following procedure describes the

pseudocode to create circles.

Algorithm 5: Generation of randomly-sized circles

Initialization: Let points be the set randomly, uniformly generated in R.

Let B be the barriers already generated.

Set N = {}.
1 for P ∈ points do

2 Set rmax = min{PB∈B:B∈B} d(P, PB).

3 Generate a random radii uniformly distributed in the interval
[
1
2rmax, rmax

]
.

4 Set the ball N whose centre is P and radii is radii.

5 Include N in N .

The line segments instances are generated by randomly selecting two diametrically opposite points

in the boundary of the balls instances obtained with Algorithm 5.

The second case focuses on the e�ectiveness of the exact model for the H-TSPN in terms of overlapping

ratio of the circles. This ratio, introduced in Mennell (2009), is calculated by dividing the average radius
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of the neighbourhood sets by the length of the longest side of R. Mennell (2009) shows that the higher

the overlaping ratio, the higher the di�culty of the instance. Algorithm 5 is slightly modi�ed by setting

a �xed value for radii, based on instances considered in Behdani and Smith (2014).

The data of all the instances used in all our computational experiments can be downloaded from

Puerto and Valverde (2023).

5.2. Con�guration of the experiments

In this work, three experiments are designed to study the behaviour of the models H-TSPHN and

H-TSPN.

In the �rst experiment, we construct �ve instances for each number of randomly-sized neighbourhoods

in |N | ∈ {5, 10, 20, 30, 50, 60, 65, 70, 75, 80, 100} within R = [0, 100]× [0, 100]. These neighbourhoods are

balls and line segments that have been created using the Algorithm 5. In addition, barriers are generated

according to Algorithm 4. |B| reports the average number of barriers generated for each experiment.

For each instance, we run the models with and without strengthening the formulations.

In the second experiment, we generate ten instances with a number |N | = 10 of �xed circles of radii

equals to 0.5. The centres are drawn in R = [0, 0] × [16, 10]. We run H-TSPN considering removing

edges, variable �xing and big M estimation in a separate way to know the marginal contribution of each

of these strengthening methods to improve the behaviour of the solver.

In the third experiment, based on Behdani and Smith (2014), we generate ten instances with a

number |N | ∈ {6, 8, 10, 12, 14, 16, 18, 20} of �xed circles. The centres are drawn in R = [0, 0] × [16, 10].

The �xed radii considered are 0.25, 0.5, and 1. Therefore, the overlap ratios are 0.015625, 0.03125 and

0.0625, respectively. We run H-TSPN with strengthening to see the performance of our methods when

neighbourhoods overlap.

Formulations are coded in Python 3.9.2 (Van Rossum and Drake (2009)) and solved in Gurobi 9.1.2

(Gurobi Optimization LLC (2022)) on an AMD® Epyc 7402p 8-core processor.

The values obtained by the solver that are reported in our tables are:

� #Found: number of instances in which the solver �nds a feasible solution.

� Gap: gap between the best incumbent solution with respect to the best bound found by the solver.

It is computed as Gap = (upper bound− lower bound)/lower bound.

� T imemodel: time (in seconds) spent by the solver to obtain the best solution found.

� T imemarginal: time (in seconds) spent by Python to set up the model, including only a strength-

ening subprocess.

� T imeprepro: time (in seconds) spent by Python to set up the model, including all the strengthening

process.

� T imetotal: overall time (in seconds) to solve the model.

For all the experiments, a time limit of 1 hour of solver time was set in the branch-and-bound

procedure.
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5.3. Results of the experiments

We report the results of the �rst experiment in Table 2. The layout is organised in 3 blocks of

columns. The �rst block describes the parameters of the problem: number of neighbourhoods |N |, if A4
is assumed or not (H-TSPHN vs H-TSPN), if strengthening is considered, and the number of barriers. The

second and third blocks describe the average results obtained with the solver for circles and segments,

respectively.

Table 2: Computational results obtained with (H-TSPHN) and (H-TSPN)

Circles Segments

|N | A4 Strengthening |B| #Found Gap T imemodel T imeprepro T imetotal #Found Gap T imemodel T imeprepro T imetotal

5

no
no 4.8 5 0 157.24 0.29 157.53 5 0 42.59 0.91 43.5

yes 4.8 5 0 1.24 0.44 1.68 5 0 0.42 1.47 1.89

yes
no 10.4 5 0.1 819.98 1.3 821.28 5 0 22.03 1.58 23.61

yes 10.4 5 0 0.61 1.16 1.77 5 0 0.38 1.57 1.95

10

no
no 9.2 5 0.17 2193.53 2.09 2195.62 5 0.42 2884.22 6.6 2890.82

yes 9.2 5 0 9.1 2.58 11.68 5 0 1.69 9.61 11.3

yes
no 19.2 5 0.17 933.67 9.59 943.26 5 0.3 1448.73 11.8 1460.53

yes 19.2 5 0 2.56 6.36 8.92 5 0 1.53 9.24 10.77

20

no
no 17.6 5 0.17 3600 16.15 3616.15 5 0.2 3600 50.93 3650.93

yes 17.6 5 0 68.67 17.43 86.1 5 0 11.66 74.89 86.55

yes
no 35.8 5 0.21 2349.26 87.7 2436.96 5 0 145.06 111.34 256.4

yes 35.8 5 0 42.45 43.49 85.94 5 0 8.05 64.01 72.06

30

no
no 28 4 0.5 3600 75.15 3675.15 5 0.4 3600 201.05 3801.05

yes 28 5 0 2034.53 65.23 2099.76 5 0 54.35 246.96 301.31

yes
no 56.4 5 0.23 3027.02 512.03 3539.05 5 0.18 1039.08 672.46 1711.54

yes 56.4 5 0 147.98 179.95 327.93 5 0 96.72 270.56 367.28

50

no
no 44.2 3 0.87 3600 364.75 3964.75 4 0.3 3600 960.53 4560.53

yes 44.2 3 0 2485.76 297.99 2783.75 5 0 311.49 1043.15 1354.64

yes
no 89 5 0.37 3600 4650.3 8250.3 5 0 1445.39 4654.95 6100.34

yes 89 5 0.1 3600 1213.85 4813.85 5 0 353.17 1292.12 1645.29

60

no
no 50.2 0 - - - - 5 0.53 3600 1213.08 4813.08

yes 50.2 3 0.22 3600 538.11 4138.11 5 0 1384.92 1103.43 2488.35

yes
no 100.8 5 0.15 3600 8688.65 12288.65 5 0 1671.85 8726.63 10398.48

yes 100.8 5 0.13 3600 2179.26 5779.26 5 0.01 2903.27 2339.58 5242.85

65

no
no 52.8 0 - - - - 4 0.75 3600 1561.46 5161.46

yes 52.8 2 0.35 3600 671.07 4271.07 5 0.02 3249.12 1343.12 4592.24

yes
no 106 5 0.13 3600 11250.62 14850.62 5 0 1381.66 11269.25 12650.91

yes 106 5 0.17 3600 2843.48 6443.48 5 0.01 2877.66 3003.47 5881.13

70

no
no 57.6 0 - - - - 4 0.85 3600 1977.3 5577.3

yes 57.6 3 0.12 3600 898.99 4498.99 5 0.04 3211.2 1754.51 4965.71

yes
no 115.6 5 0.29 3600 17366.28 20966.28 5 0.04 2853.58 17433.28 20286.86

yes 115.6 5 0.32 3600 4106.95 7706.95 5 0.02 3203.33 4311.14 7514.47

75

no
no 63.2 0 - - - - 3 0.74 3600 2976.6 6576.6

yes 63.2 0 - - - - 5 0.24 3283.37 242407 5707,44

yes
no 126.8 4 0.24 3600 26363.48 29963.48 5 0.01 1903.99 26153.87 28057.86

yes 126.8 3 0.23 3600 5382.14 8982.14 5 0.02 2458.75 6140.02 8598.77

80

no
no 64 0 - - - - 1 0.83 3600 4205.41 7805.41

yes 64 0 - - - - 5 0 1775.16 2858.51 4633.67

yes
no 128.6 0 - - - - 5 0.11 3471.06 29073.69 32544.75

yes 128.6 0 - - - - 5 0 2701.21 7031.87 9733.08

100

no
no 81.6 0 - - - - 0 - - - -

yes 81.6 0 - - - - 4 0 1761.08 6620.09 8381.17

yes
no 163.2 0 - - - - 5 0.48 3600 91153.55 94753.55

yes 163.2 0 - - - - 5 0 2720.76 19429.1 22149.86

Analysing the results in Table 2, we �rst observe that solving the problem considering balls as

neighbourhoods is harder than solving with segments. Next, we also observe that this approach solves

to optimality all instances for circles up to |N | = 30 with strengthening for the H-TSPHN problem.

However, if we do not strengthen the formulation, the solver always reports gap for all the instances with

circles. The same behaviour can be seen for the H-TSPN up to |N | = 30. Nevertheless, for sizes |N | in
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50-75, both formulations start to di�er in the number of instances in which the solver can �nd a feasible

solution. For the H-TSPHN, the reader may observe that strengthening does not improve the gap within

the time limit. However, in the H-TSPN, strengthening does increase the number of instances in which

the solver �nds a solution and the fraction of gaps certi�ed after the execution time. Anyway, whenever a

feasible solution is found, the maximum average gap that is reported with strengthening is 0.35. Finally,

for sizes 80 and 100, the solver cannot �nd any solution for any of the models, regardless of whether

strengthening is considered or not. In terms of execution time, we can conclude that strengthening always

improves both the time to obtain the optimal solution (T imemodel) and the time the computer takes

to load all the variables and constraints of the model (T imeprepro). This di�erence is more appreciable

in the H-TSPHN, as the reader can notice in the aggregation of these two columns in (T imetotal). This

fact can be explained in terms of the number of barriers: the higher the number of barriers, the larger

the number of variables that can be �xed beforehand. On the other hand, we can observe that Gurobi

can report the optimal solution for almost all segment instances generated by solving the strengthened

versions of the H-TSPHN and H-TSPN. In addition, the time spent to solve all these instances is lower

than the time limit. However, the time to load and strengthen the model is very similar to that for circle

instances.

In Figures 16 and 17, the reader can compare, at a glance, the time that the solver spent to obtain the

best solution found and the gap between this solution and the best bound found by the solver. We can

conclude that strengthening improves signi�cantly the time spent by Gurobi to get the optimal solution

and instances with circles are harder to be solved than those with segments, in terms of time and �nal

gap.
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Figure 16: Runtime of the model (H-TSPN) without and with strengthening when the neighborhoods are segments and
balls.

Once we have validated in our �rst set of experiments that the proposed strengthening techniques

are useful, we want to test their individual contribution to that improvement. For this reason, we have

designed a second experiment to assess the usefulness of each individual strengthening: edge removing,

variable �xing and Big-M estimation. In this case, we have considered a representative set of instances
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Figure 17: Gap of the model (H-TSPN) without and with strengthening when the neighborhoods are segments and balls.

with |N | = 10 and an average number of barriers |B| = 18 and we have compared the performance of

the plain formulation without any improvement and with each one of the strengthenings at a time.

Table 3: Computational results for assessing the usefulness of di�erent strenghthenings

|N | |B| Edge removing V ariable fixing Big M estimation
#Found Gap T imemodel T imemarginal

mean min max mean min max mean min max

10 18

yes no no 10 0.29 0 0.87 2643.25 46.93 3600 3.05 1.56 3.12

no yes no 10 0.41 0 1 2920.99 50.99 3600 5.30 3.41 7.71

no no yes 10 0.08 0 0.32 2863.76 227.67 3600 5.30 3.41 7.71

no no no 10 0.34 0.08 0.67 3600 3600 3600 2.25 1.45 3.02

In Table 3, the reader may observe that each one of the improvements separately speeds the solver

up to �nd the optimal solution in less computing time, for those instances in which the best solution is

obtained within the time limit. In addition, if none of the three preprocessings is considered, the solver

does not �nd optimal solutions for any of the instances and the best gap for the any of the instances, in

this case, is 0.08. Analyzing the qualitative e�ect of the variable �xing, one can observe that, at times,

its application worsen the gaps with respect to the plain model. This can be due to the overlapping with

the preprocessing techniques that the solver applies internally to simplify the model before executing

its branch and bound algorithms. In spite of that, from the results reported in Table 3, we observe

that applying each strengthening separately always decreases the computing time and improves the

average gap for most of the instances. Therefore, we can conclude that the combination of these three

enhancements improves the solver performance. This supports the combination of all of them in our

computational experience.

In Table 4, we detail the values obtained with Gurobi for the third experiment. The �rst block

reports the size of the instances and the average number of barriers for each size. The other three blocks

describe the features reported by the solver to compare the e�ciency of the model for radii equals to

0.25, 0.5 and 1, respectively. For the smallest radii, all the instances are almost solved to optimality

reporting a maximum average gap of 0.03 for |N | = 20. In the instances with radii = 0.5, the number of

feasible solutions found starts to decrease from size 16. In terms of the gap, from |N | = 14, the solver is
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unable to �nd the optimal solution because it reaches the time limit. In any case, the maximum average

gap for these instances is 0.32 for the largest size. Finally, for radii = 1, only instances with |N | = 6

are solved to optimality. For sizes 10, 12 and 14, the solver only �nds a feasible solution for one half of

the instances, approximately. However, it cannot �nd any solution for |N | ≥ 16. The results obtained

for these instances lead us to conclude that the larger the radii of the neighbourhood, the higher the

complexity to be solved. This conclusion is in line with the existing trend in the literature, as exposed

in Puerto and Valverde (2022) or Blanco et al. (2017).

Table 4: Computational results obtained with (H-TSPN) for Smith instances

Radii = 0.25 Radii = 0.5 Radii = 1

|N | |B| #Found Gap T imemodel T imeprepro T imetotal #Found Gap T imemodel T imeprepro T imetotal #Found Gap T imemodel T imeprepro T imetotal

6 8.6 10 0 2.58 1.21 3.79 10 0 16.31 1.26 17.57 10 0.03 1512.68 1.4 1514.08

8 12.7 10 0 14.12 3.07 17.19 10 0 171.44 3.16 174.6 10 0.27 3600 3.56 3603.56

10 18 10 0 199.23 7.35 206.58 10 0.03 1453.59 7.55 1461.14 5 0.35 3600 8.5 3608.5

12 19.7 10 0 149.49 10.12 159.61 10 0.09 3454.33 10.54 3464.87 6 0.46 3600 12.46 3612.46

14 24.5 10 0 374.8 23.53 398.33 10 0.11 3600 24.23 3624.23 4 0.65 3600 26.56 3626.56

16 29.4 10 0.01 2486.62 40.2 2526.82 8 0.16 3600 41.1 3641.1 0 - - - -

18 32 10 0.03 3053.15 52.18 3105.33 7 0.21 3600 53.05 3653.05 0 - - - -

20 37 10 0.03 3040.06 75.25 3115.31 6 0.32 3600 80.03 3680.03 0 - - - -

6. Concluding Remarks

This paper has dealt with two problems, the H-SPPN and the H-TSPN. In both cases, we have

assumed that barriers do not allow direct movements between neighbourhoods A4. The more general

case that does not assume A4 gives rise to nonconvex mixed-integer problems. It is still an open problem

whether there is some kind of �nite dominating set with polynomial cardinality for the version of the

H-TSPN which could help simplify the formulation of the problem. These questions are very interesting

but beyond the scope of this paper. Needless to say, we plan to continue its analysis in a follow-up paper.

It would also be interesting to combine in the same model di�erent typologies of barriers such as

polygonals and second-order cone-representable sets. It is also interesting to consider the single- or

multiple facility problem with barriers and neighbourhoods.

All the above-mentioned problems are natural extensions of the ones considered in this paper and

will deserve our attention in the future.
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Abstract

This paper deals with facility location problems in a continuous space with neighbours and barriers. Each

one of these two elements, neighbours and barriers, make the problems harder than their standard coun-

terparts. Therefore, mixing both together results in a new challenging problem that, as far as we know,

has not been addressed before but that has applications for inspection and surveillance activities and

the delivery industry assuming uniformly distributed demand in some regions. Speci�cally, we analyze

the K-Median problem with neighbours and polygonal barriers under two di�erent situations. As a �rst

building block, we deal with the problem assuming that neighbourhoods are not visible from one another

and therefore there are no rectilinear paths joining any two of them without crossing barriers. Under this

hypothesis we derive a valid mixed integer, linear formulation. Removing that hypothesis leads to the

more general, realistic problem but at the price of making it more challenging. Adapting the elements of

the �rst formulation, we also develop another valid mixed integer, bilinear formulation. Both formula-

tions handle polygonal barriers and neighbours that are second-order cone (SOC) representable, that we

preprocess and strengthen with valid inequalities. These mathematical programming formulations are

also instrumental to derive an adapted matheuristic algorithm that provides good quality solutions for

both problems in short computing time. The paper also reports an extensive computational experience

showing that our exact and heuristic approaches are useful: the exact approach can solve to optimality

instances with up to 50 neighbourhoods and di�erent number of barriers within one hour of CPU time,

whereas the matheuristic always returns good feasible solutions in less than 100 seconds.

Keywords: Facility location, Continuous Location, Barriers, Mixed integer Conic programming

1. Introduction

Location analysis is a classical branch of operations research that studies the best way to place some

facilities to satisfy the demand of customers. In location analysis, problems are usually classi�ed in

discrete or continuous facility location problems. The �rst class is considered when there is a �nite

number of candidates to allocate facilities (see Ulukan and Demircio§lu (2015) for a survey). Continuous

facility location problems arise if facilities can be placed anywhere in some continuous regions. Both

versions are widely investigated in the literature (see Drezner and Hamacher (2004) or Nickel and Puerto
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(2007) for more details) by their many applications in transportation, logistics or telecommunication.

For these problems, lot of variants have been studied in terms of the objective functions to be optimized,

the number of facilities that must be allocated or the maximum capacity that facilities can supply, among

many other respects (we refer the reader to Kuehn and Hamburger (1963) and Puerto (2008)).

In Blanco (2019), the Ordered k-Median Problem with Neighbourhoods is presented as a single source

uncapacitated continuous facility location problem that extends its respective underlying discrete location

problem. In this problem, facilities are allowed to be allocated in certain regions called neighbourhoods. If

those are points, the problem reduces to the single source uncapacitated facility discrete location problem,

that have been already studied in the literature. Otherwise, the continuous version is considered. In

this version, di�erent shapes and sizes for the neighbourhoods allow one to model how imprecise the

provided locational information is. This problem also has interest on drone delivery and inspection

problems. Neighbourhoods can represent regions that the drone must reach and where the customers are

willing to pick up the orders (they can be seen as uniform probability densities) in the delivery industry.

Moreover, they can be also used for modelling some areas that must be inspected by the drone (whenever

visiting a point of these areas is enough to consider them as inspected). This framework will be called

Facility Location with Neighbourhoods, a terminology borrowed from the neighbourhood versions of the

Minimum Spanning Tree problem, described in Blanco et al. (2017) and the Traveling Salesman problem,

studied in Gentilini et al. (2013), Yuan and Zhang (2017) or Puerto and Valverde (2022).

This paper extends the k-Median Problem with Neighbourhoods by including a set of barriers, repre-

sented by line segments, that the trips between demand points and service facilities cannot cross. These

barriers simulate buildings in urban areas that vehicles (drones) cannot cross. The resulting problem

keeps geometric components from the p-median problem with neighbourhoods that must be exploited to

partially overcome the di�culties of the solution approaches and algorithms in the network design among

neighbourhoods with barriers. The use of barriers in location problems has been studied (see Klamroth

(2002)). However, the combination of both elements has attracted less attention in the Operations

Research literature.

Our goal in this paper is to deal with the k-median problem with neighbourhoods and barriers that we

call the Hampered k-Median problem with Neighbourhoods (H-KMPN). We present exact mathematical

programming formulations assuming linear barriers and second-order cone (SOC) representable neigh-

bourhoods. These formulations are modeled by using a geodesic shortest-path representation, based on

problems studied in Mitchell (2017). These assumptions lead to quadratically-constrained mixed-integer

formulations. Solving this family of formulations in addition to the classic k-median, that is NP-hard,

makes the solution of the problem under study a hard challenge. On-the-shelf solvers can deal only

with small-size instances. This fact motivates the design of a matheuristic that provides good quality

solutions for medium-size instances.

The paper is organized in six sections. In Section 2 the problem and its variant are introduced

and described. Section 3 is devoted to provide quadratically-constrained mixed-integer programming

formulations of the problems. In Section 4 the matheuristic approach is described. The results of some

computational experiments are reported in Section 5. Finally, some conclusions are presented in Section

2



6.

2. Description of the Problem

In this section, the framework of the two versions of the problem considered in the manuscript are

analyzed: the Hampered k-Median Problem with Hidden Neighbourhoods H-KMPHN and the Hampered

k-Median Problem with Neighbourhoods H-KMPN. Since we have in mind their applications to the drone

delivery problem with uniformly distributed demand in regions and inspection problems, at times, we

will refer to the moving object as the drone.

First of all, we state the sets that describe the main elements of the problems. Second, we set the

assumptions that barriers must verify. Finally, the goal and the sets of parameters used in the following

are de�ned in order to give valid formulations for these problems.

2.1. Parameters and Assumptions of the Problem

The sets describing both versions of the problem are:

� S: Set of neighbourhoods describing the possible sources where a facility can be allocated. It is

assumed, wlog, that one facility can be allocated to each source at most once.

� T : Set of neighbourhoods representing the targets that must be served by a facility. It is assumed,

wlog, that each target is served when it has been assigned to a facility.

� B: Set of barriers (line segments) that can not be crossed when a facility is joined with a target.

The assumptions made for this set of line segments are the following:

A1 The line segments of B are located in general position, i.e., the endpoints of these segments are

not aligned. Although it is possible to model the most general case, one can always slightly

modify one of the endpoints so that the segments are in general position.

A2 The line segments of B are open sets, that is, it is possible that the drone visits endpoints of

segments, but entering in its interior is not allowed. Observe that without loss of generality,

we can always slightly enlarge these segments to make them open.

A3 If there are two overlapping barriers, we assume that there is only one barrier given by the

union of them.

A4 There is no rectilinear path joining a pair of source-target neighbourhoods without crossing

an obstacle.

The H-KMPN is the relaxed version of the H-KMPHN without imposing assumption A4. In this

case, it is not required that the barriers separate neighbourhoods completely, i.e., when moving from

one neighbourhood to another one it is possible to go following a straight line without crossing any

barrier. Figure 1 shows an example of each version of the problem that is being considered. The left

picture shows an instance of the H-KMPHN, where green neighbourhoods represent possible sources to

allocate the facilities, blue neighbourhoods represent targets to be assigned to the sources and the red

3



line segments show the barriers that the drone cannot cross. The right picture illustrates an instance of

the H-KMPN where some sources and targets can be joined by a rectilinear path.
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Figure 1: Problem data of the H-KMPHN and H-KMPN

2.2. Description of the Hampered k-Median Problem with Neighbourhoods

The goal of the H-KMPHN is to �nd a subset of k points in the source set S, at most one in each

neighbourhood, and one point in each target set T that minimize the weighted length of the path joining

each target point with its associated source point and the weighted link distance without crossing any

barrier of B assuming A1-A4. Recall that the link distance accounts for the numbers of edges of the path

joining two points in the underlying graph. The interested reader is referred to de Berg et al. (1990);

Daescu et al. (2008) for further details. To state the model, we de�ne the following sets:

� VS = {PS : S ∈ S}. Set of the points selected in the sources of S.

� VB = {P 1
B , P

2
B : B = P 1

BP
2
B ∈ B}. Set of vertices that come from the endpoints of barriers in the

problem.

� VT = {PT : T ∈ T }. Set of the points selected in the targets of T .

� ES = {(PS , P
i
B) : PS ∈ VS , P

i
B ∈ VB and PSP i

B ∩ B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed

by the line segments that join the point selected in any source neighbourhood S ∈ S and every

endpoint in the barriers that do not cross any other barrier in B.

� EB = {(P i
B , P

j
B′) : P i

B , P
j
B′ ∈ VB and P i

BP
j
B′ ∩ B′′ = ∅, ∀B′′ ∈ B, i, j = 1, 2}. Set of edges formed

by the line segments that join two vertices of VB and do not cross any other barrier in B.

� ET = {(P i
B , PT ) : P

i
B ∈ VB, PT ∈ VT and P i

BPT ∩B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed

by the line segments that join the point selected in any target neighbourhood T ∈ T and every

endpoint in the barriers that do not cross any other barrier in B.

4



The above sets allow us to de�ne the graph GKMPHN = (VKMPHN, EKMPHN) induced by the barriers

and neighbourhoods, where VKMPHN = VS ∪ VB ∪ VT and EKMPHN = ES ∪ EB ∪ ET .

By taking the same approach, the graph induced for the relaxed version H-KMPN can be described

as GKMPN = (VKMPN, EKMPN), VKMPN = VKMPHN and EKMPN = EKMPHN ∪ EST , where:

� EST = {(PS , PT ) : PS ∈ VS , PT ∈ VT and PSPT ∩B′′ = ∅,∀B′′ ∈ B, i = 1, 2}. Set of edges formed

by the line segments that join the point selected in any source neighbourhood S ∈ S and the point

selected in any target neighbourhood T ∈ T .

3. MINLP Formulations

This section proposes a mixed-integer non-linear programming formulation (MINLP) for the problem

described in Section 2. First of all, the conic programming representation of the neighbourhoods and

distance is presented. Then, the constraints that check if a segment is included in the set of edges EX

with X ∈ {KMPHN,KMPN} are set. Finally, the formulations for the H-KMPHN and H-KMPN are

described and compared.

First of all, we introduce the decision variables that represent the problem. They are summarized in

Table 1.

3.1. Conic programming constraints in the models

For the two problems considered in this paper, namely H-KMPHN and H-KMPN, there exist two

typologies of second-order cone constraints. One of them models the distance between each pair of

points P and Q in VX , X ∈ {KMPHN,KMPN}, and the other, the representation of source and target

neighbourhoods, where the points are chosen.

Firstly, we de�ne the non-negative continuous variable d(PQ) that represents the distance between

P and Q:

∥P −Q∥ ≤ d(PQ), ∀(P,Q) ∈ EX , (d-C)

where EX is the set of edges EKMPHN or EKMPN, depending on the considered problem.

Secondly, since we are assuming that the neighbourhoods are second-order cone (SOC) representable,

they can be expressed by means of the constraints:

PN ∈ N ⇐⇒ ∥Ai
NPN + biN∥ ≤ (ciN )TPN + diN , i = 1, . . . , n(N), (N -C)

where Ai
N , biN , ciN and diN are parameters of the constraint i and n(N) denotes the number of constraints

that appear in the block associated with the neighbourhood N ∈ S ∪ T .
These inequalities can model the special case of linear constraints (for Ai

N , biN ≡ 0), ellipsoids and

hyperbolic constraints (see Lobo et al. (1998) and Boyd and Vandenberghe (2004) for more information).
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Table 1: Summary of decision variables used in the mathematical programming model

Binary Decision Variables

Name Description

α(P |QQ′)
1, if the determinant det(P |QQ′) is positive,

0, otherwise.

β(PP ′|QQ′)
1, if the determinants det(P |QQ′) and det(P ′|QQ′) have the same sign,

0, otherwise.

γ(PP ′|QQ′)
1, if the determinants det(P |QQ′) and det(P ′|QQ′) are both positive,

0, otherwise.

δ(PP ′|QQ′)
1, if the line segments PP ′ and QQ′ do not intersect,

0, otherwise.

ε(PP ′)
1, if the line segment PP ′ does not cross any barrier,

0, otherwise.

f(PQ|ST )
1, if edge (P,Q) is traversed in the path joining S and T ,

0, otherwise.

y(S)
1, if a facility is allocated in the source S in the solution of the model,

0, otherwise.

x(ST )
1, if source S and target T are joined by a path in the solution of the model,

0, otherwise.

Continuous Decision Variables

Name Description

PN Coordinates representing the point selected in the neighbourhood N ∈ S ∪ T .

d(PQ) Euclidean distance between the points P and Q.

3.2. Checking whether a segment is an edge of the induced graph

The goal of this subsection is to represent by linear constraints a test to check whether given two

arbitrary vertices P,Q ∈ VX , the edge (P,Q) ∈ EX , with X ∈ {KMPHN,KMPN}, i.e., whether the line
segment PQ does not intersect with any barrier of B. The following well-known computational geometry

result can be used to check if two line segments intersect.

Remark 1. Let PQ and B = P 1
BP

2
B ∈ B be two di�erent line segments. If

sign
(
det(P |P 1

BP
2
B)

)
= sign

(
det(Q|P 1

BP
2
B)

)
or sign

(
det(P 1

B |PQ)
)
= sign

(
det(P 2

B |PQ)
)
,

then PQ and B do not intersect.

Let P,Q ∈ VX , where VX can be the set of vertices VKMPHN or VKMPN. Let P
1
B , P

2
B ∈ VB also be the

two extreme points determining the barrier B ∈ B. To model the conditions of the Remark 1, the use of
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binary variables that verify the sign of determinants, the equality of signs, and the disjunctive condition

are required, since these determinants depend on the location of P and Q.

Firstly, the sign of each determinant in Remark 1 is modelled. The binary variable α is introduced and

assumes the value one if the determinant is non-negative and zero, otherwise. Note that determinants

can not be null, because the barriers are located in general position.

The following constraints represent the sign condition:

[
1− α(P |P 1

BP
2
B)

]
L(P |P 1

BP
2
B) ≤ det(P |P 1

BP
2
B) ≤ U(P |P 1

BP
2
B) α(P |P 1

BP
2
B), (α-C)

[
1− α(Q|P 1

BP
2
B)

]
L(Q|P 1

BP
2
B) ≤ det(Q|P 1

BP
2
B) ≤ U(Q|P 1

BP
2
B) α(Q|P 1

BP
2
B),

[
1− α(P 1

B |PQ)
]
L(P 1

B |PQ) ≤ det(P 1
B |PQ) ≤ U(P 1

B |PQ) α(P 1
B |PQ),

[
1− α(P 2

B |PQ)
]
L(P 2

B |PQ) ≤ det(P 2
B |PQ) ≤ U(P 2

B |PQ) α(P 2
B |PQ),

where L and U are lower and upper bounds for the value of the corresponding determinants, respectively.

If a determinant is non-negative, then α must be one to make the second inequality feasible. Analogously,

if the determinant is not positive, α must be zero to satisfy the correct condition.

Secondly, to check whether the sign of any pair

det(P |P 1
BP

2
B), det(Q|P 1

BP
2
B) or det(P 1

B |PQ), det(P 2
B |PQ) (1)

of determinants is the same, the binary variable β is de�ned, that is one if the corresponding pair has

the same sign, and zero otherwise.

Hence, the correct value of β variable can be expressed by the following constraint of the α variables

β(PQ|P 1
BP

2
B) = α(P |P 1

BP
2
B)α(Q|P 1

BP
2
B) +

[
1− α(P |P 1

BP
2
B)

] [
1− α(Q|P 1

BP
2
B)

]
,

β(P 1
BP

2
B |PQ) = α(P 1

B |PQ)α(P 2
B |PQ) +

[
1− α(P 1

B |PQ)
] [

1− α(P 2
B |PQ)

]
.

This condition can be equivalently written by means of an auxiliary binary variable γ that models the

product of the α variables:

β(PQ|P 1
BP

2
B) = 2γ(PQ|P 1

BP
2
B)− α(P |P 1

BP
2
B)− α(Q|P 1

BP
2
B) + 1, (β-C)

β(P 1
BP

2
B |PQ) = 2γ(P 1

BP
2
B |PQ)− α(P 1

B |PQ)− α(P 2
B |PQ) + 1,

These γ variables can be linearized by using the following constraints:

γ(PQ|P 1
BP

2
B) ≤ α(P |P 1

BP
2
B),

γ(PQ|P 1
BP

2
B) ≤ α(Q|P 1

BP
2
B),

γ(PQ|P 1
BP

2
B) ≥ α(P |P 1

BP
2
B) + α(Q|P 1

BP
2
B)− 1,

γ(P 1
BP

2
B |PQ) ≤ α(P 1

B |PQ), (γ-C)

γ(P 1
BP

2
B |PQ) ≤ α(P 2

B |PQ),

γ(P 1
BP

2
B |PQ) ≥ α(P 1

B |PQ) + α(P 2
B |PQ)− 1.

Thirdly, verifying whether there exists any coincidence of the sign of determinants is required, so a

binary variable δ is de�ned assuming the value one if segments do not intersect and zero, otherwise. This

condition can be modelled by adopting the following disjunctive constraints:

1

2

[
β(PQ|P 1

BP
2
B) + β(P 1

BP
2
B |PQ)

]
≤ δ(PQ|P 1

BP
2
B) ≤ β(PQ|P 1

BP
2
B) + β(P 1

BP
2
B |PQ). (δ-C)
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Indeed, the above restrictions state that if there exists a sign coincidence in any of the two pairs of

determinants in (1), then δ is one to satisfy the left constraint, and the right one is always ful�lled.

However, if none of the signs of any pairs of determinants is the same, then the second constraint is zero

and δ must be null.

Finally, to check whether

PQ ∩B′′ = ∅, ∀B′′ ∈ B, ⇐⇒ δ(PQ|P 1
B′′P 2

B′′) = 1, ∀B′′ ∈ B,

the binary variable ε(PQ) is introduced, and it is one if this condition is veri�ed for all B′′ ∈ B. This
variable can be expressed as:

[ ∑

B′′∈B
δ(PQ|P 1

B′′P 2
B′′)− |B|

]
+ 1 ≤ ε(PQ) ≤ 1

|B|
∑

B′′∈B
δ(PQ|P 1

B′′P 2
B′′). (ε-C)

If there exists, at least, a barrier B′′ ∈ B that intersects the segment PQ, then δ(PQ|P 1
B′′P 2

B′′) is

zero and the second inequality enforces ε to be zero because the right hand side is fractional and the

�rst inequality is non-positive. However, if no barrier intersects the segment PQ, then ε is equals to one,

because the left hand side of the �rst inequality is one and the right hand side of the second inequality

too.

It is possible to identify the set of actual edges of graph GX by using the ε variables based on the

above description, as follows:

EX = {(P,Q) : P,Q ∈ VX ∧ ε(PQ) = 1, P ̸= Q}, X ∈ {KMPHN,KMPN}.

This representation of EX with X ∈ {KMPHN,KMPN} will be applied in the formulations that are

presented in the following subsections.

It is interesting to note that EB is a �xed set whose edges can be computed by using the Remark 1.

Then, ε variables can be pre�xed in advance. However, edges in EX \EB depend on the points selected

in the neighbourhoods. A special case that can be highlighted happens when the set of neighbourhoods,

S and T , are represented by points. In that case, the induced graph is completely �xed and it is only

necessary to �nd which edges are included by keeping in mind that the graph must be planar, i.e., without

crossings.

3.3. A formulation for the H-KMPHN

The formulation of the H-KMPHN is based on the structure of the well-known k-Median Problem

where distances between each pair of source-target neighbourhoods are represented by the shortest path

joining them without traversing any barrier.

Note that, although computing the shortest paths between every pair of neighbourhoods is possible,

converting an instance of the H-KMPHN into an instance of the standard k-median is not, since the points

in neighbourhoods are not �xed. However, this simpli�cation can be applied to produce an approximation

to generate lower bounds for the H-KMPHN.

Firstly, it is necessary to de�ne the binary variables inherited from the k-median:

� y(S), that assumes value one if the source neighbourhood S ∈ S is selected.
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� x(ST ), that is one if the target neighbourhood T ∈ T is assigned to the selected source S ∈ S.

Secondly, adjusting a single-commodity �ow formulation to ensure connectivity will also be used.

The idea is that the model must deliver one unit of commodity from the selected source neighbourhood

to each of the required target neighbourhoods. Then, for each edge (P,Q) ∈ EKMPHN, a binary variable

f(PQ|ST ) is de�ned, and takes the value of one when edge (P,Q) is traversed in the path to go from

the source S to the target T .

Then, the inequalities

f(PQ) ≤ |T |ε(PQ), (f -C)

are included to assure that the delivery can go from P to Q only if the segment PQ does not cross any

barrier.

Hence, we can adjust the �ow formulation to the induced graph GKMPHN as follows:

minimize αE

∑

(P,Q)∈EKMPHN

∑

S∈S

∑

T∈T
d(PQ)f(PQ|ST ) +

αL

2

∑

(P,Q)∈EKMPHN

∑

S∈S

∑

T∈T
f(PQ|ST ) (H-KMPHN)

subject to
∑

S∈S
y(S) = k,

x(ST ) ≤ y(S), ∀S ∈ S, ∀T ∈ T ,

∑

S∈S
x(ST ) = 1, ∀T ∈ T ,

∑

{Q∈VKMPHN:(P,Q)∈EKMPHN}
f(PQ|ST ) −

∑

{Q∈VKMPHN:(Q,P )∈EKMPHN}
f(PQ|ST ) =





x(ST ), if P ∈ S,

0, if P ∈ VB,

−x(ST ), if P ∈ T.

∀S ∈ S, ∀T ∈ T ,

(α-C), (β-C), (γ-C), (δ-C) ∀P,Q ∈ VKMPHN, ∀P
1
B, P

2
B ∈ VB,

(ε-C), (f-C), (d-C) ∀P,Q ∈ VKMPHN,

(N-C) ∀P ∈ VS ∪ VT .

The objective function takes into account both the Euclidean and link weighted distances to join the

selected sources with their assigned targets. The �rst group of constraints imposes that a subset of k

sources is selected in S. The second constraints ensure that one target T is assigned to a source S only if

it is selected. The third inequalities ensure that every target is assigned to one source. The fourth ones

are the �ow conservation constraints, where the units of commodity launched from the source must be

the number of targets that are assigned to that source. The �fth group of inequalities ensures that the

trip can reach, in endurance terms, the target T when it starts from the source S. Constraints (α-C),

(β-C), (γ-C), (δ-C), (ε-C), (f -C), (d-C), (N -C) enforce the variables of the problem to be well-de�ned.

To deal with the bilinear terms that appear in the objective function, the McCormick's envelope are

used to linearize them by including variables p(PQ|ST ) ≥ 0 that represent the products and introducing

the following constraints:

p(PQ|ST ) ≥ m(PQ)f(PQ|ST ),

p(PQ|ST ) ≥ d(PQ)−M(PQ)(1− f(PQ|ST )),

where m(PQ) and M(PQ) are, respectively, lower and upper bounds of the distance variable d(PQ).

Proposition 1. The H-KMPHN is NP-complete.
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Note that, once a point is �xed in each neighbourhood, the problem that results in the induced graph

GKMPHN is the k-median with geodesic distances, that is NP-complete. Figure 2 shows the solutions of

the problem data in Figure 1 for k = 1, 2, 3, respectively.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Figure 2: Optimal solution for the H-KMPHN

3.4. Relaxing the assumptions of the problem: The H-KMPN

In this subsection, we analyze the di�erences between the H-KMPHN and the H-KMPN, where it is

allowed that rectilinear paths joining a source neighbourhood with a target neighbourhood may exist.

The main di�erence lies in the description of the edges of the graph induced by the neighbourhoods and

the endpoints of the barriers, as shown in Subsection 2.2.

By taking the same approach as before, the sets that describe the graph in the new case are VKMPN

and EKMPN, as described in Subsection 3.3. The formulation for the H-KMPN is as follows:

minimize αE

∑

(P,Q)∈EKMPN

∑

S∈S

∑

T∈T
d(PQ)f(PQ|ST ) +

αL

2

∑

(P,Q)∈EKMPN

∑

S∈S

∑

T∈T
f(PQ|ST ) (H-KMPN)

subject to
∑

S∈S
y(S) = k,

x(ST ) ≤ y(S), ∀S ∈ S, ∀T ∈ T ,

∑

S∈S
x(ST ) = 1, ∀T ∈ T ,

∑

{Q∈VKMPN:(P,Q)∈EKMPN}
f(PQ|ST ) −

∑

{Q∈VKMPN:(Q,P )∈EKMPN}
f(PQ|ST ) =





x(ST ), if P ∈ S,

0, if P ∈ VB,

−x(ST ), if P ∈ T.

∀S ∈ S, ∀T ∈ T ,

(α-C), (β-C), (γ-C), (δ-C) ∀P,Q ∈ VKMPN, ∀P
1
B, P

2
B ∈ VB,

(ε-C), (f-C), (d-C) ∀P,Q ∈ VKMPN,

(N-C) ∀P ∈ VS ∪ VT .

The di�erence between the set of edges in the H-KMPHN with respect to the graph in H-KMPN is

that, in the former case, the edges that join each pair of neighbourhoods must be considered. This

fact leads to include product of continuous variables in the α constraints of the model that represent the

determinants. These products make the problem to become non-convex. Alternatively, in the H-KMPHN,

since two of the three arguments of the determinant are �xed, the α constraints become linear.

Again, the problem data in Figure 1, with a smaller number of barriers, is used to illustrate the

solutions of the H-KMPN for k = 1, 2, 3, respectively.
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Figure 3: Optimal solution for the H-KMPN

4. Matheuristic Algorithm

The two considered problems are computationally very hard, and, at times, �nding even feasible

solutions becomes a challenge for large-size instances. In order to provide initial solutions to our algo-

rithms, we have developed an easy procedure based on a reduction to the classical K-median problem

with barriers.

In this section, we describe a matheuristic approach based on the formulations presented above, which

is able to handle larger instances of the problem. This matheuristic provides solutions of H-KMPHN or

H-KMPN, that can be used to initialise the solver for any of the formulations of these models proposed

above.

The basic idea of this procedure is to consider only the centres of each neighbourhood as the points

chosen in each of them. By �xing those points, the graphs GKMPHN and GKMPN induced in our con-

struction are also �xed, their respective edges can be preprocessed, and the resulting problems become

mixed-integer linear. This reduction allows us to obtain feasible solutions for them using any of the avail-

able solvers for mixed-integer programming. Furthermore, since the sizes we can handle for the general

problems H-KMPHN and H-KMPN are in the range of 50 to 80 neighbourhoods, solving the point-wise

versions takes a short time.

5. Computational Experiments

This section is dedicated to evaluating the performance of the formulations H-KMPHN and H-KMPN

and the behaviour of the matheuristic applied to the two problems considered. First, we present details

of the data generation. Second, the design of the experiments is stated. Finally, we report the results

obtained in our computational experiments.

5.1. Data generation

Assumptions A1-A4 stated in Section 2 are assumed to generate the instances of the experiments.

In this case, w.l.o.g., the neighbourhoods generated are circles. The sketch of the procedure is as follows.

1. Random sampling of points in a square.
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2. Generation of bisectors that separate any pair of points.

3. Generation of neighbourhoods that satisfy A4.

The following pseudocode describes the details of the construction of the instances.

Algorithm 1: Generation of instances of H-KMPHN

Initialization: Let |N | be the number of neighbourhoods to generate. Let rinit = 10 be half of

the initial length of the barriers. Set N = {}; points = {};
B = {(0, 0)(100, 0), (100, 0)(100, 100), (100, 100)(0, 100), (0, 100)(0, 0)}.

1 Generate |N | points uniformly distributed in the square [0, 100]2 and include them in points.

2 for P, P ′ ∈ points do

3 if PP ′ ∩B = ∅, ∀B ∈ B then

4 Compute
−→
d =

−−→
PP ′.

5 Compute M = P + 1
2

−→
d .

6 Compute the unitary vector −→nu perpendicular to
−→
d .

7 Set r = rinit.

8 Generate the barrier B(r) = P+
B P−

B where P±
B = M ± r−→nu.

9 while B(r) ∩B′ ̸= ∅ for some B′ ∈ B do

10 Set r := r/2.

11 Generate the barrier B(r).

12 Include B(r) in B.

13 for P ∈ points do

14 Set rmax = min{PB∈B:B∈B} d(P, PB).

15 Generate a random radii uniformly distributed in the interval
[
1
2rmax, rmax

]
.

16 Set the ball N whose centre is P and radii is radii.

17 Include N in N .

Lines 9-11 ensure that neighbourhoods are not enclosed inside of the bisectors so that paths can exit

from any neighbourhood to visit another one. Lines 13-17 set a maximum radii for the balls that ensure

that they are hidden behind barriers.

Note that, since H-KMPN does not assume A4, it is only required to remove some bisectors for the

instances generated before to ensure that it is possible to go directly from one neighbourhood to another.

5.2. Con�guration of the experiments

To explore the behaviour of the formulations described in the paper, we report on a series of experi-

ments that vary most of the parameters that describe the models. Once they are solved, it is important to

give some measures that make them comparable with any others that may be available in the literature.

First, the experimental parameters are reported. Then, the computer framework where the experiments

were performed is described. Finally, the reported solution values are explained in detail.

Since there are no benchmark instances available for this problem in the literature, �ve instances

for each |N | ∈ {10, 20, 30, 50, 80} have been generated following Algorithm 1. For each instance, both
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sources and targets are the whole N set, i.e., each neighbourhood can be chosen as a source and each

one must be associated with a facility. Furthermore, the number of neighbourhood facilities k, for each

problem, is 1 and a percentage perck, for perck ∈ {10, 25} of the whole set N . To avoid A4, a percentage

perc|B| of all barriers is selected for perc|B| ∈ {10, 20, 50}. Finally, we set αE = 1 and αL = 50 to take

into account both terms of the distances considered in the objective function.

For each combination of the above factors, both H-KMPHN and H-KMPN formulations are tested

without and with the initial solution provided by the matheuristic described in Section 4. A time limit

of 3600 seconds was set in the experiments for the formulation and 100 seconds for the matheuristic.

Formulations were coded in Python 3.9.2 (G. van Rossum (Guido) (1995)) and solved in Gurobi 9.1.2

(Gurobi Optimization LLC (2022)) on an AMD® Epyc 7402p 8-core processor.

The values obtained by Gurobi that are reported in our tables are:

� #Found: number of instances in which the solver could �nd a solution.

� Gap: gap between the best incumbent solution with respect to the best bound found by the solver.

� Runtime: time spent by the solver to obtain the best solution found.

� Gapmath: relative gap between the best incumbent solution given by the matheuristic and the best

solution found by the solver after the time limit.

� Runtimemath: time spent by the matheuristic to obtain the best solution.

� Gapbuild: relative gap between the value of the �rst incumbent solution built by the solver and the

solution provided by the matheuristic.

� Runtimebuild: time spent by the solver to build the initial solution provided by the matheuristic.

The above information allows us to compare the di�culty of the problem, and, in addition, to test

the matheuristic performance to obtain solutions for instances generated as stated in Subsection 5.1.

5.3. Results of the experiments

Analysing the results in Tables 2 and 3, we �rst note that the solver is capable of �nding feasible

solutions up to 80 neighbourhoods when the formulation H-KMPHN is considered. Furthermore, these

solutions are optimal up to a number of 30 neighbourhoods. Moreover, the solver reports maximum gaps

of 14, 46% and 31, 4% for a number of 50 and 80 neighbourhoods, respectively. It is noteworthy that these

gaps are obtained when a 10% of the entire set must be chosen as facilities. For k = 1, the maximum

gap reported by the solver is 7, 84% after the time limit. In addition, this case is considerably the fastest

(and the easiest) one to obtain the optimal solution with Gurobi, whenever it is found. Finally, one can

remark that the initial solution found by the matheuristic helps to certify optimality in less time and

also to get better gaps whenever the optimal solution is not found within the time limit. Note that the

maximum gap between the best incumbent solution obtained by the matheuristic in a time limit of 100

seconds and the best by the exact formulation after an hour is 5.96%. This is an indication that the

mathheuristic is a good alternative to the exact method whenever the problem size grows.
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With regard to the more general problem modelled with formulation H-KMPN, the non-convex nature

of the model makes the problem even harder. This can be seen in terms of the resulting gap after the time

limit (see Figure 4). The solver starts to not close this gap already for 20 neighbourhoods and half of the

original barriers considered. In addition, for instances with 50 and 80 neighbourhoods, the solver cannot

�nd even a feasible solution when it is not initialised. Moreover, Gurobi cannot even build, in some

cases, the solution provided by the matheuristic. The case where only one neighbourhood is selected

(k = 1, e.g., the single facility case) is the hardest one to be solved. This is counterintuitive and is the

opposite of the behaviour shown by the formulation H-KMPHN. This case has become the hardest, in

our computational experience, because choosing only one point to serve all the required neighbourhoods

implies to jointly satisfy a large bunch of non-convex constraints with the same point. This seems to be

very di�cult for the solver. Another remarkable fact is that the higher the percentage of barriers that are

set, the greater the di�culty of the problem, taking into account that the location of the neighbourhood

remains the same for all cases. It can be explained in terms of constraints and variables that depend on

the number of barriers that are considered. Finally, we can conclude that the matheuristic works well

for medium to large-size instances. For those, the matheuristic algorithm always �nds a feasible solution

that can not be improved by the solver, as can be observed in terms of the relative gap. In addition, in

all cases the feasible solutions given by the matheuristic are obtained in a maximum computing time of

100 seconds. This makes the matheuristic an e�cient method to provide good-quality solutions in short

computing time.
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Figure 4: Gap and Runtime reported by Gurobi when the model is initialised by the matheuristic

6. Concluding remarks

This paper has dealt with the H-KMPHN and its general version called H-KMPN, in which the

assumption that neighbourhoods are not visible to one another is removed. This last version leads

to non-convex mixed-integer problems whereas the �rst one results in second-order cone mixed-integer

problems. The two problems, beyond its similarity, show deep di�erences in terms of computational

di�culty, as explained in Section 5. However, the proposed mathematical programming approaches

allow a formal treatment that allows one to optimally solve small to medium-size instances. For larger
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size instances, this approach also inspires a matheuristic algorithm providing good quality solutions, in

short computing time, by exploiting the structure of the problem. It is still an open question whether

there is some kind of �nite dominating set with polynomial cardinality for the version H-KMPHN, which

certainly will simplify the underlying graph structures and the solution of the problem. Moreover, given

the complexity of the problem, studying valid inequalities that reduce the space of feasible solutions will

be instrumental in solving larger instances e�ciently.

In addition, one can consider an extension of these problems assuming limited lengths for the paths

between the source and its associated target. It would also be interesting to combine in the same model

di�erent typologies of barriers such as piecewise linear and second-order cone-representable sets. Besides,

it will deserve some attention to study three-dimensional barriers that simulate buildings that planar

paths cannot traverse, thus approaching even more real-life applications in the drone delivery industry.

All of the problems mentioned above are natural extensions of those considered in this paper and

may attract the attention of researchers in the future.
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|N | A4 perc|B| Initialization k #Found Gap Runtime Gapmath Runtimemath Gapbuild Runtimebuild

10

no

10

no
1 5 0 362,95 - - - -

25% 5 0 6,97 - - - -

yes
1 5 0 2,94 40,72 0,01 27,94 0,61

25% 5 0 9,54 54,76 0,01 39,15 0,88

20

no
1 5 0 387,67 - - - -

25% 5 0 27,96 - - - -

yes
1 5 0,01 440,19 32,44 0,01 18,99 10,14

25% 5 0 27,92 46,2 0,02 13,09 17,97

50

no
1 5 0,02 452,6 - - - -

25% 5 0 103,53 - - - -

yes
1 5 0,01 783,8 28,97 0,02 13,19 70,59

25% 5 0,01 114 37,36 0,04 29,09 19,08

yes 100

no
1 5 0 6,16 - - - -

25% 5 0 25,72 - - - -

yes
1 5 0 4,19 5,28 0,03 2,97 0,8

25% 5 0 21,99 4,7 0,26 1,83 1,01

20

no

10

no

1 5 0 127,18 - - - -

10% 5 0,01 132,99 - - - -

25% 5 0 175,68 - - - -

yes

1 5 0,02 775,61 36,23 0,04 8,82 57,03

10% 5 0 173,2 42,66 0,18 28,25 18,98

25% 5 0 150,86 56,08 0,03 24,36 60,94

20

no

1 5 0 740,64 - - - -

10% 5 0 659,85 - - - -

25% 5 0 370,03 - - - -

yes

1 5 0 776,45 25,36 0,06 20,65 42,9

10% 5 0 1039,52 37,39 0,65 28,61 268,46

25% 5 0 667,29 50,57 0,15 20,16 257,77

50

no

1 5 0,19 3044,11 - - - -

10% 5 0,13 2804,13 - - - -

25% 5 0,01 1747,37 - - - -

yes

1 5 9,73 3387,96 12,4 0,12 12,4 62,52

10% 5 20,07 2852,9 21,62 1,32 20,11 87,53

25% 5 40 2570,65 25,72 1,06 25,4 41,2

yes 100

no

1 5 0 66,27 - - - -

10% 5 0 310,58 - - - -

25% 5 0 151,38 - - - -

yes

1 5 0 38,96 5,31 0,16 4,45 3,79

10% 5 0 164,02 5,96 3,03 4,64 2,92

25% 5 0 124,26 3,97 4,5 1,77 3,05

30

no

10

no

1 5 0 611,18 - - - -

10% 5 0 560,1 - - - -

25% 5 0 454,2 - - - -

yes

1 5 0 552 30,3 0,2 28,55 35,12

10% 5 0 718,61 43,19 0,43 33,02 172,55

25% 5 0 444,33 54,66 0,03 37,28 113,71

20

no

1 3 0,01 3472,27 - - - -

10% 3 0 3024,87 - - - -

25% 4 0 2208,42 - - - -

yes

1 5 23,01 3240,75 15,44 0,25 13,11 104,78

10% 5 21,24 3023,67 29,52 7,01 25,05 230,37

25% 5 0 1933,3 47,09 0,58 47,09 194,12

50

no

1 1 27,7 3600 - - - -

10% 1 10,59 3600 - - - -

25% 1 0 3451,41 - - - -

yes

1 5 100 3600 0 0,37 0 -

10% 5 80,75 3600 5,6 22,04 5,6 -

25% 5 40,85 3536,92 22,57 3,98 22,57 -

yes 100

no

1 5 0 324,44 - - - -

10% 5 0 1572,14 - - - -

25% 5 0,6 1606,06 - - - -

yes

1 5 0 181,53 2,54 0,37 2,26 8,01

10% 5 0 902,58 2,93 69,94 2,29 11,44

25% 5 0 1197,54 2,76 46,68 2,08 12,13

Table 2: Computational results for 10, 20 and 30 neighbourhoods
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|N | A4 perc|B| Initialization k #Found Gap Runtime Gapmath Runtimemath Gapbuild Runtimebuild

50

no

10

no

1 1 0 3559,43 - - - -

10% 1 0 3429,18 - - - -

25% 4 0 2914,82 - - - -

yes

1 5 100 3600 0 1,43 0 -

10% 5 80,01 3600 8,78 7,16 8,78 -

25% 5 40,07 3461,54 32,39 0,12 32,39 -

20

no

1 0 - 3600 - - - -

10% 0 - 3600 - - - -

25% 2 0,99 3305,34 - - - -

yes

1 5 100 3600 0 1,67 0 -

10% 5 100 3600 0 100 0 -

25% 5 100 3600 0 3,76 0 -

50

no

1 0 - 3600 - - - -

10% 0 - 3600 - - - -

25% 0 - 3600 - - - -

yes

1 5 100 3600 0 1,94 0 -

10% 5 100 3600 0 100 0 -

25% 5 100 3600 0 56,46 0 -

yes 100

no

1 5 0,03 2041 - - - -

10% 5 14,46 3600 - - - -

25% 5 1,39 3600 - - - -

yes

1 5 0,03 1174,67 2,73 2,54 2,67 26,62

10% 5 12,22 3600 5,15 100 4,77 16,7

25% 5 1,32 3189,1 1,44 100 1 26,51

80

no

10

no

1 0 - 3600 - - - -

10% 0 - 3600 - - - -

25% 0 - 3600 - - - -

yes

1 5 100 3600 0 8,55 0 -

10% 5 100 3600 0 82,05 0 -

25% 5 100 3600 0 0,42 0 -

20

no

1 0 - 3600 - - - -

10% 0 - 3600 - - - -

25% 0 - 3600 - - - -

yes

1 5 100 3600 0 8,43 0 -

10% 5 100 3600 0 100 0 -

25% 5 100 3600 0 16,16 0 -

50

no

1 0 - 3600 - - - -

10% 0 - 3600 - - - -

25% 0 - 3600 - - - -

yes

1 5 100 3600 0 10,52 0 -

10% 5 100 3600 0 100 0 -

25% 5 100 3600 0 61,43 0 -

yes 100

no

1 5 7,84 3600 - - - -

10% 5 31,4 3600 - - - -

25% 5 7,67 3600 - - - -

yes

1 5 0,19 3600 2,07 5,48 2,01 60,36

10% 5 23,38 3600 0,64 100 0,46 33,48

25% 5 2,93 3600 1,8 100 1,36 30,58

Table 3: Computational results for 50 and 80 neighbourhoods

18



Chapter 9

Coordinating drones with

mothership vehicles: The

mothership and drone routing

problem with graphs

121





Computers & Operations Research 136 (2021) 105445

Available online 10 July 2021
0305-0548/© 2021 Elsevier Ltd. All rights reserved.

Coordinating drones with mothership vehicles: The mothership and drone 
routing problem with graphs 

Lavinia Amorosi a,*,1, Justo Puerto b,1, Carlos Valverde b,1 

a Department of Statistics, Sapienza, University of Rome, Rome 00185, Italy 
b Department of Statistics and Operations Research, University of Seville, Seville 41012, Spain   

A R T I C L E  I N F O   

Keywords: 
Arc routing problems 
Networks 
Drones 
Conic programming 

A B S T R A C T   

This paper addresses the optimization of routing problems with drones. It analyzes the coordination of one 
mothership with one drone to obtain optimal routes that have to visit some target objects modeled as general 
graphs. The goal is to minimize the overall weighted distance traveled by both vehicles while satisfying the 
requirements in terms of percentages of visits to targets. We discuss different approaches depending on the 
assumption made on the route followed by the mothership: i) the mothership can move on a continuous 
framework (the Euclidean plane), ii) on a connected piecewise linear polygonal chain or iii) on a general graph. 
In all cases, we develop exact formulations resorting to mixed integer second order cone programs that are 
compared on a testbed of instances to assess their performance. The high complexity of the exact methods makes 
it difficult to find optimal solutions in short computing time. For that reason, besides the exact formulations we 
also provide a tailored matheuristic algorithm that allows one to obtain high quality solutions in reasonable time. 
Computational experiments show the usefulness of our methods in different scenarios.   

1. Introduction 

In recent years the progress in the field of automation has led to the 
increasingly widespread use of drone technology in many sectors (see 
Otto et al. (2018) and Chung et al. (2020) for a survey in civil applica
tions). Depending on the application, these devices are used to support 
or replace humans in carrying out operations, and also in the cases of 
lack of infrastructures (see Poikonen and Campbell (2020) also for 
future applications and research directions). We can find several ex
amples of this trend in the telecommunication field, where drones can be 
used to provide connectivity in rural areas without antennas (see for 
example Amorosi et al. (2019); Chiaraviglio et al. (2019b); Chiaraviglio 
et al. (2018); Jiménez et al. (2018) and Amorosi et al. (2018)) or in areas 
affected by natural disasters which have compromised the existing in
frastructures (see for example Chiaraviglio et al. (2019a)). In goods 
delivery activities, especially in the last mile, drones represent a valid 
tool to support or replace the tasks of drivers by speeding up the service 
and relieving traffic from big cities or cities with particular configura
tions where standard vehicles cannot proceed (see for example Pugliese 
et al. (2017) and Amorosi et al. (2020)). This technology allows to 
provide a faster and safer response even in emergency contexts, for 

example for the delivery of medicines or blood bags, Wen et al. (2016). 
Other uses are also for achieving safer and faster activities of inspection 
and monitoring, both of networks (such as electricity, gas, telecommu
nications, railways, roads, etc.) and areas or their portions, depending 
on the application context. Indeed drones can reach quickly sections of a 
network that have suffered damage to verify the actual conditions (for 
example road networks after a storm, electrical or telecommunication 
networks that have suffered a breakdown, etc.), or allow, for example, to 
check the state and progress of a fire or an oil spill at sea. The use of this 
technology in all these different contexts is made advantageous by the 
fact that, compared to traditional means of transportation (trucks, ships, 
helicopters), Unmanned Aerial Vehicles (UAVs) have a lower cost per 
mile, produce less CO2 emissions and can arrive in places that cannot be 
reached with traditional means. On the other hand, their main limitation 
is the limited flight time which does not make them usable in full 
endurance in a number of contexts. For this reason, for some applica
tions, hybrid systems that involve the combined use of drones with other 
means of transport may represent a more efficient alternative. In this 
system configurations it is necessary to coordinate and synchronize the 
operations of drones and other means of transport, taking into account 
the constraints of limited endurance of the drones and the movement of 
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the other involved vehicles. The different configurations from which 
these hybrid systems can be characterized have given rise in the litera
ture to different combinatorial optimization problems. Most of the 
works in the literature have focused on approaches that involve a dis
cretization of the movement space of all the vehicles involved in the 
system. This provides the advantage of being able to mathematically 
model the problem more easily and obtain linear or linearizable for
mulations. However, on the other hand, it does not allow to fully exploit 
the freedom of movement of the drone which, unlike other means of 
transport which are constrained to road networks, can move from a 
point to any other in the continuous space. This paper studies the 
problem of coordinating a system composed of a mothership (the base 
vehicle) which supports the operations of one drone which have to visit 
a set of targets represented by graphs, with the goal of minimizing the 
total distance travelled by both vehicles. This system configuration can 
model, for example, monitoring and inspection activities on portions of 
networks where traditional vehicles cannot arrive, due, for example, to 
the presence of narrow streets, or because of a natural disaster or a 
terrorist attack that caused damages on the network. In all these cases, 
the inspection or monitoring of the drone consists in traversing edges of 
the network to perform a reconnaissance activity. For this reason we 
model the targets, to be visited by the drone, as graphs. Differently from 
previous works in the literature, we assume that the base vehicle and the 
drone can move freely on the continuous space and we present new 
Mixed Integer Non-Linear Programming (MINLP) formulations for this 
problem and a heuristic algorithm derived from the formulation to deal 
with larger instances. In particular, we consider three variants of the 
problem, depending on the assumptions made on the route followed by 
the mothership: i) the case in which it can move on a continuous 
framework (the Euclidean plane), ii) the case in which it is constrained 
to move on a polygonal, and ii) the case of a general undirected network. 
Also for these cases we propose alternative MINLP formulations that 
exploit the specific characteristics of these models. 

The rest of the paper is structured as follows: Section 2 provides a 
detailed description of the problem under consideration. Section 3 re
ports the state of the art on routing problems with drones, mainly 
focusing on hybrid systems involving different transportation means. 
Section 4 presents alternative MINLP formulations proposed to model 
the different variants of the problem. At the end of this section, Sub
section 4.3 provides upper and lower bounds on the big-M constants 
introduced in the proposed formulations to tighten them. Section 5 
presents the details of the matheuristic algorithm designed to handle 
large instances. In Section 6 we report the results obtained testing the 
formulations presented in Section 5 on different classes of planar graphs 
and the comparison with the ones provided by the matheuristic pro
cedure in order to evaluate its effectiveness. Finally, Section 6 concludes 
the paper. For the sake of presentation, we have included an Appendix at 
the end of the paper including some details on some of the formulations 
and also on how to strengthen them. 

2. Description of the problem 

In the Mothership and Drone Routing Problem with Graphs 
(MDRPG), there is one mothership (the base vehicle) and one drone that 
must operate in coordination to visit a set of targets, represented by 
graphs, located in a continuous framework that can be modeled as the 
Euclidean 2-or-3 dimension space. The goal is the minimization of the 
total distance travelled by both vehicles. The mothership and the drone 
begin at a common starting location denoted orig and they have to co
ordinate their movements so that the drone visits the set G of graphs 
(target objects) whose locations are given. These assumptions allow to 
model several real situations like inspections and monitoring of roads or 
wired networks, that can be performed by the drone more easily and 
safely than standard vehicles. 

For each graph g ∈ {1,…, |G |}, we require that the drone performs a 
task consisting in the following four operations: (i) it is launched from 
the current mothership location (to be determined), (ii) it flies to the 
graph g that has to be visited, (iii) it traverses the required edges of graph 
g and then (iv) it returns to the current position of the mothership (to be 
determined), that most likely is different from the launching point. 
Indeed, what makes the problem more challenging is that we assume 
that the mothership can move while the drone visits the targets and thus 
coordination is a very important issue. Once all target graphs have been 
visited, the mothership and the drone return to a final location (depot), 
denoted by dest. In all its movements, the drone flies following straight 
lines. 

Fig. 1 shows an example of the problem framework, where the black 
square represents the origin and destination of the mothership tour. The 
three blue graphs represent the targets to be visited by the drone, located 
in the plane. 

We assume wlog that the mothership and the drone do not need to 
arrive at each rendezvous location at the same time: the fastest arriving 
vehicle may wait for the other at the rendezvous point. In addition, we 
also assume that vehicles move at constant speeds, although this hy
pothesis could be relaxed. The mothership and the drone travel at speeds 
vM and vD, respectively. The mothership and the drone must travel 
together from orig to the first launching point. Similarly, after the drone 
visits the last target graph, the mothership and the drone must meet at 
the final rendezvous point before traveling together back to dest. The 
first launching and final rendezvous points are allowed to be orig and 
dest, respectively, but it is not mandatory. For the ease of presentation, 
in this paper we will assume that orig and dest are at the same location. 
However, all results extend easily to the case that orig and dest are at 
different locations. 

Summarizing, the MDRPG consists in coordinating the drone with 
the mothership to minimize the overall distance travelled imposing that 
the drone has to visit a set of target graphs. In order to do that, it is 
required to determine: (i) the tour of the mothership starting at orig, 
deciding the different launching and rendezvous points, and returning to 
dest; (ii) the order of visits of the target graphs followed by the drone, 
determining the corresponding launching and rendezvous points of the 
drone on each visited graph; and (iii) the tour followed by the drone on 
each target graph g ∈ G . The reader should observe that, since we as
sume constant velocities, the minimization of the travel distances is a 
natural proxy for the minimization of the overall time, that is the sum of 
traveling time of the mothership and traveling time of the drone, needed 
to complete the visits to all target graphs. Indeed, differently from a 
scheduling problem, we are not minimizing the makespan of the system. 
In fact, in this context, the length travelled by the drone, and implicitly 
the travelled time of the drone, has a cost that must be considered in 
addition to the one associated with the mothership. 

Depending on the assumptions made on the movements of the 
mothership vehicle, this problem gives rise to three different versions: a) 
the mothership vehicle can move freely on the continuous space (all 
terrain ground vehicle, boat on the water or aircraft vehicle); b) the 
mothership can move on a connected piecewise linear polygonal chain; 

Fig. 1. Example of problem framework.  
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and c) the mothership can move on a road network (that is, it is a normal 
truck or van). In the former case, that we will call All terrain Mothership- 
Drone Routing Problem with Graphs (AMDRPG), each launching and 
rendezvous location may be chosen from a continuous space (the 
Euclidean 2-or-3 dimension space). In the latter case, that we will call 
Network Mothership-Drone Routing Problem with Graphs (NMDRPG), 
each launching and rendezvous locations must be chosen on a given 
graph embedded in the considered space. For the sake of presentation 
and due to the length of the paper, we will mainly focus, on the first 
model (AMDRPG) and second model (PMDRPG). The third model, 
namely NMDRPG, is addressed using similar techniques but providing 
slightly less details reported in the Appendix. Moreover, we consider two 
different ways for visiting the target graphs: (i) visiting a percentage of 
each edge of a graph, (ii) visiting a percentage of each graph. These 
variants derive, for example, from monitoring activities in which it is 
sufficient a partial visit of the targets. This is the case, for example, of 
traffic flows monitoring, where, in order to verify if the traffic pro
gression is not disrupted, only inspecting a portion of edge provides a 
valuable information. 

In addition, for the sake of simplicity, we restrict ourselves to the 
case where there are no obstacles to prevent the drone travelling in 
straight line. Extensions of this problem with obstacles are very inter
esting to be further considered although they require different tech
niques which are beyond the scope of this paper. 

3. State of the art 

In this section we focus mainly on the previous works in literature 
related to systems where UAVs are assisted by a vehicle in order to serve 
a set of targets. In these configurations the vehicle represents a 
launching and a recharging station for the UAVs and the main problem 
consists in coordinating the operations performed by one or multiple 
drones and the mothership. Most of the previous works in literature on 
this subject focus on node routing problems (NRPs), where the vehicle 
moves on a road network and the drone is used to visit target points 
outside the road network. Many of them are related to applications in 
the delivery sector where the set of targets to be visited is represented by 
a set of customers. For example, Mathew et al. (2015) studies a delivery 
system consisting in one drone and one truck. The UAV visits one 
customer for each trip and the truck can wait at the launching node for 
the drone to come back or move to a different rendezvous node. In 
Carlsson and Song (2018) the authors study a continuous approximation 
on the Horse Fly Problem, where the truck is used as a mobile depot for 
the drone. In Campbell et al. (2017) the authors evaluate the economic 
impact of truck-and-drone hybrid models for deliveries by means of a 
continuous approximation model, considering different model parame
ters and customer densities. The paper Mourelo Ferrandez et al. (2016) 
focuses on a delivery system where one truck supports the operations of 
multiple drones. The authors first clusterize the customers demand by 
adopting a K-means algorithm to find truck stops that represent hubs for 
drone deliveries. Then, they determine a TSP of the truck among cen
troids of these clusters, by means of a genetic algorithm, assuming that 
drones are not constrained by flight range. In Moshref-Javadi and Lee 
(2017) the authors consider a similar delivery system where at each stop 
site the truck waits until all drones come back before moving to the next 
site. The goal is the minimization of the latency in a customer-oriented 
distribution system. In Poikonen and Golden (2020) the authors 
formalize the k-Multi-visit Drone Routing Problem (k-MVDRP) consid
ering a tandem between a truck and a fleet of k drones. The authors 
assumed that each drone can deliver one or more packages to customers 
in a single mission. Each drone may return to the truck to swap/recharge 
batteries, pick up a new set of packages, and depart again to customer 
locations. The article presents a mathematical formulation including a 
drone energy drain function that takes into account each package 
weight, but the problem is then solved by means of a heuristic algorithm. 
The paper Amorosi et al. (2020) presents a multi-objective mixed integer 

linear programming model for the management of a hybrid delivery 
system consisting in one base vehicle and a fleet of drones. The problem 
consists in determining the tour of the base vehicle and the assignments 
of the customers to the UAVs simultaneously optimizing the distance 
travelled by the vehicle, the one travelled by the drones and the 
maximum completion time. The model is solved on two realistic urban 
scenarios providing a partial exploration of the Pareto frontier of the 
problem by means of the weighted sum method. 

Other examples of similar configurations in which a base vehicle 
supports the operations of one or multiple drones can be found also in 
other sectors. Trotta et al. (2018) studies, for example, the city-scale 
video monitoring of a set of points of interest performed by a fleet of 
UAVs whose operations are supported by buses. However, in all the 
works mentioned so far, the combined operations of vehicles and drones 
examine routing for a set of locations and these configurations exploit 
only part of the advantages of the use of drones. Indeed, UAVs can move 
between any two points in the space not following the road network. 
Thus, they can be used also for other kind of services in which the targets 
are represented by edges or part of them. This leads to another class of 
models, that is arc routing problems (ARPs). 

Differently from NRPs, there are relatively few papers on ARP with 
drones. In Oh et al. (2011) and Oh et al. (2014) the authors study a 
coordinated road network search problem with multiple UAVs and they 
formulate it as a Multi-choice Multi-dimensional Knapsack Problem 
minimizing the flight time. This is a modified Chinese Postman Problem 
taking into account the UAVs energy capacity constraints. The authors 
solve the problem by means of a greedy insertion heuristic that models 
drone travel distance between the road components as a Dubins path. 
Dille and Singh (2013) faces the area coverage problem in sparse envi
ronments with multiple UAVs. Also in this case the UAVs motion is 
modeled using Dubins paths and it is assumed that they are equipped 
with a coverage sensor of a given radius. The edge covering problem is 
solved by discretizing the network in orbits and then solving a TSP 
among this set of orbits. 

In Chow (2016) the authors deal with the problem of dynamically 
allocate a finite set of UAVs to links in a network that need monitoring, 
over multiple time periods. The need of drone monitoring is based on 
data related to traffic conditions. Another work related to multiple- 
period real-time monitoring of road traffic, adopting UAVs, is Li et al. 
(2018). The authors propose a mixed integer programming model 
combining a capacitated arc routing with an inventory routing problem 
and design a local branching based method to deal with large instances. 
The ARPs with one UAV, have common characteristics with problems 
arising in path generation for laser cutting machines or drawing plotters. 
In particular, the authors of Campbell et al. (2018) study the Drone 
Rural Postman Problem (DRPP) showing the relation with the Inter
mittent Cutting Problem (ICP). They present a solution algorithm based 
on the approximation of curves in the plane by polygonal chains that 
sequentially increases the number of points in the polygonal where the 
UAV can enter or leave. Thus, they solve the problem as a discrete 
optimization problem trying to better define the line by increasing the 
number of points. 

As mentioned above, the number of references about ARPs with 
drones is limited as compared with the one on Drone NRPs. Moreover, as 
far as we know, the number of contributions in literature on arc routing 
problems involving a hybrid system consisting in one vehicle and one or 
multiple drones is simply reduced to Tokekar et al. (2016) and Garone 
et al. (2010). 

In Tokekar et al. (2016) the authors study the path planning problem 
of a system composed by a ground robot and one drone in precision 
agriculture and solved it by applying orienteering algorithms. On the 
other hand, Garone et al. (2010) studies the paths planning problem for 
systems consisting in a carrier vehicle and a carried one to visit a set of 
target points and assuming that the carrier vehicle moves in the 
continuous space. Heuristic approaches have been proposed to deal with 
these problems. 
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To the best of our knowledge none of the previous papers deals with a 
drone arc routing problem combined with a node routing problem for a 
hybrid system consisting of one mothership vehicle and one drone. 

In this paper we present new Mixed Integer Non-Linear Program
ming (MINLP) formulations for the problem of coordinating a system 
composed by one mothership (the base vehicle) which supports the 
operations of one drone which has to visit a set of targets represented by 
graphs, minimizing the total distance travelled by both vehicles. Indeed, 
differently from the previous works in literature, we assume that the 
drone can move freely on the continuous space, whereas for the moth
ership, we study two cases: 1) the base vehicle can move freely on the 
continuous space; and 2) it is constrained to move on a road network 
where launching and rendezvous points must be chosen. The main 
contributions of this article can be summarized as follows:  

• A formal analysis of the coordination problem of one base vehicle 
and one drone in the continuous space that combine several char
acteristics that have not been previously analyzed simultaneously;  

• First mathematical formalization of the problem by means of new 
second order cone MINLP formulations;  

• Development of a new matheuristic algorithm to deal with large 
instances able to provide high quality solutions in limited computing 
time;  

• Extensive experimental analysis comparing the exact solution of the 
formulations and the matheuristic on a set of generated instances 
involving different typologies of planar graphs. 

4. Mixed integer non linear programming formulations 

In this section we present alternative MINLP formulations for the 
MDRPG depending on the nature of the mothership that will be 
compared computationally in later sections. We start analyzing first the 
situation where the mothership moves in a continuous space, namely the 
AMDRPG. 

4.1. All terrain mothership-drone routing problem with graphs 

In this problem, we assume that the mothership is allowed to move 
freely in a continuous space: R2 or R3. In addition, distances are 
measured by the Euclidean norm, ‖⋅‖2, although this assumption can be 
extended to any lp norm, 1⩽p⩽∞ (see Blanco et al. (2017)). 

Our goal is to develop an exact mathematical programming formu
lation that can be used to solve instances of this problem. In the 
following, we introduce the elements that formally describe the problem 
and that are summarized in Table 1. 

Let g = (Vg,Eg) be a graph in G , where Vg denotes the set of nodes 
and Eg denotes the set of edges connecting pairs of nodes. Let eg be edge e 
of the graph g ∈ G and let L (eg) be its length. Each edge eg is parame
trized by its endpoints Beg = (Beg (x1),Beg (x2)) and Ceg = (Ceg (x1),Ceg (x2)

) and we indicate its length L (eg) =
⃦
⃦Ceg − Beg

⃦
⃦. Moreover, we denote 

with L (g) =
∑

eg∈Eg
L (eg) the total length of graph g. 

For each edge eg, with length L (eg), we assign a binary variable μeg 

that indicates whether or not the drone visits the segment eg and define 
entry and exit points Reg = (Beg ,Ceg , ρeg ) and Leg = (Beg ,Ceg , λeg ), respec
tively, that determine the portion of the edge visited by the drone. 
Indeed, the coordinates of the points Reg and Leg are given, respectively 
by 

Reg = (ρeg Beg (x1)+ (1 − ρeg )Ceg (x1), ρeg Beg (x2)+ (1 − ρeg )Ceg (x2))

and 

Leg = (λeg Beg (x1)+ (1 − λeg )Ceg (x1), λeg Beg (x2)+ (1 − λeg )Ceg (x2)),

where ρeg ∈ [0,1] and λeg ∈ [0,1] are variables to determine the position 
of the points on the segment. 

As mentioned in Section 2, we have considered two modes of visit to 
the target graphs g ∈ G that must be represented by their corresponding 
constraints:  

• Visiting a percentage αeg of each edge eg which can be modeled by: 

|λeg − ρeg |μeg ⩾αeg , ∀eg ∈ Eg.
(
α-E
)

• Visiting a percentage αg of the total length L (g) of the graph g 
modeled by: 

∑

eg∈Eg

μeg |λeg − ρeg |L

(

eg

)

⩾αgL

(

g

) (

α-G

)

In both cases the corresponding constraints are nonlinear. In order to 
linearize them, we need to introduce a binary variable entryeg that de
termines the traveling direction on the edge eg as well as the definition of 
the parameter values νeg

min and νeg
max of the access and exit points to that 

segment. Then, for each edge eg, the absolute value constraint (α-E) can 

Table 1 
Nomenclature for AMDRPG.  

Problem Parameters 

orig: coordinates of the point defining the origin of the mothership path (or tour).  
dest: coordinates of the point defining the destination of the mothership path (or tour).  
G : set of the target graphs.  
g = (Vg,Eg): set of nodes and edges of each target graph g ∈ G .  
L (eg): length of edge e of graph g ∈ G .  
Beg ,Ceg : coordinates of the endpoints of edge e of graph g ∈ G .  
αeg : percentage of edge e of graph g ∈ G that must be visited.  
αg: percentage of graph g ∈ G that must be visited.  
vD: drone speed.  
vM: mothership speed.  
M: big-M constant.   

Fig. 2. (a) Origin and target graphs, (b) Visit of αeg % of each edge, (c) Visit of αg% of each graph.  
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be represented by: 

μeg |ρeg − λeg |⩾αeg ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρeg − λeg = νeg
max − νeg

min,

νeg
max ⩽ 1 − entryeg , (α-E)

νeg
min ⩽ entryeg ,

μeg
(
νeg

max + νeg
min
)

⩾ αeg .

The linearization of (α-G) is similar to (α-E) and only requires 
changing the last inequality in (α-E)) for 

∑

eg∈Eg

μeg

(

νeg
max + νeg

min

)

L

(

eg

)

⩾αgL

(

g

) (

α-G

)

Fig. 2(a) shows an example of a configuration with three target 
graphs, each one with four nodes and four edges. The mothership begins 
at its starting point, denoted by the black square and it follows the black 
tour, like the ones in Figs. 2(b) and 2(c), where the red points represent 
launching and rendezvous points for the drone. Figs. 2(b) and 2(c) show, 
through red segments, respectively the visit of a percentage αeg of each 
edge of the target graphs and the visit of a percentage αg of each target 
graph. In this latter case we can observe that for each target graph one 
edge is not visited by the drone. 

4.1.1. A first formulation for AMDRPG based on stages 
Our first proposal to model this problem uses stages identified with 

the order in which the different elements in the problem are visited. We 
identify each visit to one of the target graphs with a stage of the process. 
Then, by using the notation below, we define the stages associated with 
graphs T := {1,…, |G |} and those associated with the launching and 
rendezvous points including orig and dest T′

= {0,…,|G | + 1}. For each 
stage t ∈ T, the drone follows a path starting from the mothership, 
visiting the required edges of g and returning to the mothership. Using 
the notation in Table 2 the sequence of points in the path are the 
following: 

xt
L→Reg →Leg →⋯→Re′g →Le′g →⋯→Re′′g →xt

R→xt+1
L .

This path calls in a natural way for the definition of binary variables 
that choose:  

• The optimal order to visit each graph g ∈ G . In other words, defining 
the sequence of the stages. 

• The optimal order to visit the edges of each graph in its corre
sponding stage. 

Thus, we can model the route that the drone follows by using the 

binary variables uegt , zege
′

g and vegt defined in Table 2. 
∑

g∈G

∑

eg∈Eg

uegt = 1, ∀t ∈ T, (1)  

∑

g∈G

∑

eg∈Eg

vegt = 1, ∀t ∈ T, (2)  

∑

eg∈Eg

∑

t∈T
uegt = 1, ∀g ∈ G , (3)  

∑

eg∈Eg

∑

t∈T
vegt = 1, ∀g ∈ G , (4)  

∑

eg∈Eg

uegt =
∑

eg∈Eg

vegt, ∀g ∈ G ,∀t ∈ T, (5)  

∑

e′g∈Eg

ze′geg
g +

∑

t∈T
uegt = μeg , ∀eg ∈ Eg : g ∈ G , (6)  

∑

e′g∈Eg

zege′g
g +

∑

t∈T
vegt = μeg , ∀eg ∈ Eg : g ∈ G . (7) 

Equations (1) and (2) state that in each stage the drone visits (enter 
and exit, respectively) only one graph. Constraints (3) and (4) assure 
that each graph is visited at some stage. Constraints (5) enforce that at 
stage t the drone enters and exits of exactly the same graph. Constraints 
(6) state that if edge e of graph g is visited by the drone, one of two 
alternative situations must occur: either e is the first edge of graph g 
visited by the drone at stage t, or edge e is visited by the drone after 
visiting another edge e′ of graph g. Similarly, constraints (7) state that if 
edge e of graph g is visited by the drone, either e is the last edge of graph 
g visited by the drone at stage t, or the drone must move to another edge 
e′ of graph g after visiting edge e. 

4.1.2. Elimination of subtours 
To prevent the existence of subtours within each graph g ∈ G that 

the drone must visit, one can include, among others, either a formulation 
that uses the Miller-Tucker-Zemlin constraints (MTZ) or another one 
that applies the subtour elimination constraints (SEC). 

For the MTZ formulation, we use the continuous variables seg , 
defined in Table 2, and establish the following constraints for each 
g ∈ G : 

Table 2 
Decision Variables for AMDRPG-ST.  

Binary and Integer Decision Variables 

μeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is 
visited by the drone, and 0 otherwise.  

entryeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variable used for linearizing 
expressions.  

ueg t ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone enters in graph g by eg at 
stage t, 0 otherwise.  

zege′g ∈ {0,1}, ∀eg, e
′

g ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g, 
0 otherwise.  

veg t ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone exits from graph g by eg at 
stage t, 0 otherwise.  

seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variable representing the order of visit of 
edge e of graph g.   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on eg.  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables used for linearizing 
expressions.  

xt
L , ∀t ∈ T: coordinates representing the point where the mothership launches the 
drone at stage t.  

xt
R , ∀t ∈ T: coordinates representing the point where the mothership retrieves the 
drone at stage t.  

Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point on edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point on edge e of graph g.  

deg t
L ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from 
the launching point xt

L on the mothership at stage t to the first visiting point Reg on 
eg.  

dege′g ⩾0, ∀eg ,e
′

g ∈ Eg(g ∈ G ): representing the distance travelled by the drone from the 

launching point Leg on eg to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the 

rendezvous point Reg to the launching point Leg on eg.  

deg t
R ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from 
the last visiting point Leg on eg to the rendezvous point xt

R on the mothership at stage 
t.  

dt
LR⩾0, ∀t ∈ T: representing the distance travelled by the mothership from the 
launching point xt

L to the rendezvous point xt
R at stage t.  

dt
RL⩾0, ∀t ∈ T: representing the distance travelled by the mothership from the 
rendezvous point xt

R at stage t to the launching point x(t+1)
L at the stage t + 1.   
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seg − se′g + |Eg|zege′g ⩽|Eg| − 1, ∀eg ∕= e′

g ∈ Eg,
(

MTZ1

)

0⩽seg ⩽|Eg| − 1, ∀eg ∈ Eg.
(
MTZ2

)

Alternatively, we can also use the family of subtour elimination con
straints: 

∑

eg ,e
′
g∈S

zege′g
g ⩽|S| − 1, ∀S⊂Eg : g ∈ G .

⎛

⎝SEC

⎞

⎠

Since there is an exponential number of SEC constraints, when we 
implement this formulation we need to perform a row generation pro
cedure including constraints whenever they are required by a separation 
oracle. To find SEC inequalities, as usual, we search for disconnected 
components in the current solution. Among them, we choose the 
shortest subtour found in the solution to be added as a lazy constraint to 
the model. 

The goal of the AMDRPG is to find a feasible solution that minimizes 
the total distance traveled by the drone and the mothership. To account 
for the different distances among the decision variables of the model we 

need to set the continuous variables degt
L , deg , dege

′

g , degt
R , dt

RL and dt
LR, 

defined in Table 2. This can be done by means of the following 
constraints: 

‖xt
L − Reg‖ ⩽degt

L , ∀eg ∈ Eg : g ∈ G ,∀t ∈ T (DIST1-t)

‖Reg − Leg‖ ⩽deg , ∀eg ∈ Eg : g ∈ G ,∀t ∈ T, (DIST2-t)

‖Reg − Le′g‖ ⩽dege′g , ∀eg ∕= e′

g ∈ Eg : g ∈ G , (DIST3-t)

‖Leg − xt
R‖ ⩽degt

R , ∀eg ∈ Eg : g ∈ G ,∀t ∈ T, (DIST4-t)

‖xt
R − xt+1

L ‖ ⩽dt
RL, ∀t ∈ T, (DIST5-t)

‖xt
L − xt

R‖ ⩽dt
LR, ∀t ∈ T. (DIST6-t)

To ensure that the time spent by the drone to visit graph g at stage t is less 
than or equal to the time that the mothership needs to move from the 
launching point to the rendezvous point at stage t, we need to define the 
following coordination constraint for each g ∈ G and t ∈ T: 

1
vD

⎛

⎝
∑

eg∈Eg

uegtdegt
L +

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

eg∈Eg

μeg deg

+
∑

eg∈Eg

vegtdegt
R

⎞

⎠⩽
dt

RL

vM
+M

⎛

⎝1 −
∑

eg∈Eg

uegt

⎞

⎠ (DCW-t)

Eventually, we have to impose that the tour of the mothership, together 
with the drone, starts from the origin orig and ends at the destination 
dest. To this end, we define the following constraints: 

x0
L = orig, (ORIG1)

x0
R = orig, (ORIG2)

x|G |+1
L = dest, (DEST1)

x|G |+1
R = dest. (DEST2)

Therefore, putting together all the constraints introduced before, the 
following formulation minimizes the overall distance traveled by the 
mothership and drone, coordinating their movements and ensuring the 
required coverage of the targets. 

∑

g∈G

∑

eg∈Eg

∑

t∈T

⎛

⎝uegtdegt
L + vegtdegt

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g   

+
∑

t∈T

⎛

⎝dt
RL + dt

LR

⎞

⎠

⎛

⎝AMDRPG − ST

⎞

⎠

s.t. (1)–(7) 
(MTZ1)–(MTZ2) or (SEC)
(α − E) or (α-G)
(DCW-t)
(DIST1-t)–(DIST6-t). 
(ORIG1)–(DEST2). 
The objective function has four terms: the first one computes the 

distances to go to and to return from the mothership to the target graph g 
visited at stage t, the second one accounts for the distance traveled by 
the drone on the edges of the target graph g between two consecutive 
jumps between edges, the third one computes the distances traveled by 
the drone while it jumps between two consecutive edges on the target 
graph g and the fourth term expresses the distances made by the 
mothership. Constraints (1)–(7) model the route followed by the drone, 
(MTZ1)-(MTZ2) or (SEC) ensure that the displacement of the drone in 
each visit to a target graph is a route, (α-E) or (α-G) define what is 
required in each visit to a target graph. Constraints (DIST1− t)-(DIST6− t) 

set the variables degt
L , deg , dege

′

g , degt
R , dt

RL and dt
LR, defined in Table 2, which 

represent Euclidean distances needed in the model. Note that, to deal 
with the bilinear terms of the objective function, we use McCormick’s 
envelopes to linearize these terms by adding variables p⩾0 that repre
sent these products, and by introducing the following constraints: 

p⩾mz, (8) 

Table 3 
Decision Variables for AMDRPG-MTZ.  

Binary and Integer Decision Variables 

μeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is 
visited by the drone, and 0 otherwise.  

entryeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variables for linearization.  
ueg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone enters in graph g by eg, 

0 otherwise.  

zege′g ∈ {0,1}, ∀eg, e
′

g ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g, 
0 otherwise.  

veg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone exits from graph g by eg, 
0 otherwise.  

wgg′ ∈ {0,1}, ∀g, g′

∈ G : equal to 1 if the mothership moves from xg
R to xg′

L , 
0 otherwise.  

seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variables representing the order of visit of 
edge e of graph g.   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on eg.  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables for linearization.  

xg
L , ∀g ∈ G : pairs of coordinates representing the point where the mothership launches 
the drone to visit graph g.  

xg
R , ∀g ∈ G : pairs of coordinates representing the point where the mothership retrieves 
the drone after visit graph g.  

Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point on edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point on edge e of graph g.  

deg
L ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the 
launching point on the mothership xg

L to the first visiting point Reg on edge eg.  

dege′g ⩾0, ∀eg ,e
′

g ∈ Eg(g ∈ G ): representing the distance travelled by the drone from 

launching point Leg on eg to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the 

rendezvous point Reg to the launching point Leg on eg.  

deg
R ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the last 
visiting point Leg on eg to the rendezvous point xg

R on the mothership.  

dg
LR⩾0, ∀g ∈ G : representing the distance travelled by the mothership from the 
launching point xg

L to the rendezvous point xg
R while the drone is visiting g.  

dgg′

RL ⩾0, ∀g, g′

∈ G : representing the distance travelled by the mothership from the 
rendezvous point xg

R for graph g to the launching point xg′
L for graph g′.   
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p⩽d − M(1 − z), (9)  

where m and M are, respectively, the lower and upper bounds of the 
distance variable d. These bounds will be adjusted for each bilinear term 
in Section 4.3. 

4.1.3. Alternative formulations for AMDRPG based on enforcing 
connectivity: MTZ-constraints and subtour elimination-constraints (SEC) 

In this family of formulations we replace the variables u⋅t, v⋅t and 
constraints that model the tour using stages, namely (1)–(7), by con
straints that ensure connectivity. We will distinguish two different ap
proaches. The first one is based on the rationale of Miller-Tucker-Zemlin 
(MTZ) whereas the second one uses an extended formulation based on 
SEC. 

We start presenting the formulation based on MTZ. It requires the 
definition of two families of binary variables that choose:  

• The optimal order to visit the graphs g ∈ G in the tour of the 
mothership.  

• The optimal order to visit the edges of each graph. 

The above concepts can be modeled with the binary variables ueg , zege
′

g , 
veg and wgg′ , summarized in Table 3. 

By using these binary variables, we can model the route that the 
drone follows in each particular graph g ∈ G : 
∑

eg∈Eg

ueg = 1, ∀g ∈ G , (10)  

∑

eg∈Eg

veg = 1, ∀g ∈ G , (11)  

∑

e′g∈Eg

ze′geg + ueg = μeg , ∀eg ∈ Eg : g ∈ G , (12)  

∑

e′g∈Eg

zege′g + veg = μeg , ∀eg ∈ Eg : g ∈ G . (13)  

On the other hand, to model the tour followed by the mothership, we 
have to include the following new constraints: 
∑

g∈G

wg0 = 0, (14)  

∑

g′ ∈G

w(nG+1)g′ = 0, (15)  

∑

g′ ∈G ⧹{g}

wgg′ = 1, ∀g ∈ G , (16)  

∑

g∈G ⧹{g′ }

wgg′ = 1, ∀g
′

∈ G , (17)  

sg − sg′ + |G |wgg′ ⩽|G | − 1, ∀g ∕= g′

∈ G , (MTZ3)

0 ⩽sg⩽|G | − 1, ∀g ∈ G , (MTZ4)

s0 = 0, (MTZ5)

snG+1 = nG + 1. (MTZ6)

The reader may note that constraints (16), (17) and (MTZ3)–(MTZ6) are 
of the type MTZ for the complete graph Ĝ = (N̂, Ê) induced by the 
graphs g ∈ G to be visited, where a node v̂g ∈ N̂ if g ∈ G . Thus, we 

enforce that the mothership route follows a tour on the graphs to be 
visited by the drone. Next, we have to connect the visits of the drone to 
the graphs with the tour followed by the mothership. To this end, we 
require to introduce variables defining the launching and rendezvous 
points to account for the distances traveled and to define the inner tour 
of the mothership. In a similar way, we need to set the continuous 

variables deg
L , dege

′

g , deg , deg
R , dg

LR and dgg′

RL , defined in Table 3, that account 
for the distances among distinguished points. Thus, we introduce the 
following constraints: 

‖xg
L − Reg‖ ⩽deg

L , ∀eg ∈ Eg : g ∈ G ,
(
DIST1-g

)

‖Reg − Leg‖ ⩽deg , ∀eg ∈ Eg : g ∈ G ,
(
DIST2-g

)

‖Reg − Le′g‖ ⩽dege′g , ∀eg ∕= e
′

g ∈ Eg : g ∈ G ,
(
DIST3-g

)

‖Leg − xg
R‖ ⩽deg

R , ∀eg ∈ Eg : g ∈ G ,
(
DIST4-g

)

‖xg
R − xg′

L ‖ ⩽dgg′

RL , ∀g, g′

∈ G ,
(
DIST5-g

)

‖xg
L − xg

R‖ ⩽dg
LR, ∀g ∈ G .

(
DIST6-g

)

In this formulation of AMDRPG the goal is again to find a feasible so
lution that minimizes the total distance traveled by the drone and the 
mothership but without using stages. Instead the model ensures the 
Hamiltonian nature of the routes using the rationale of connectivity by 
the MTZ or SEC family of constraints. 

Again, we need to be sure that the time spent by the drone to visit the 
graph g is less than or equal to the time that the mothership needs to 
move from the launching point to the rendezvous point associated to this 
graph g. Hence, by using the same argument, as the one used in (DCW-t), 
we define for each g ∈ G : 

1
vD

⎛

⎝
∑

eg∈Eg

ueg deg
L +

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

eg∈Eg

μeg deg +
∑

eg∈Eg

veg deg
R

⎞

⎠⩽
dg

RL

vM
, ∀g

∈ G .

⎛

⎝DCW-g

⎞

⎠

Therefore, modifying the previous formulation (AMDRPG-ST), replacing 
constraints based on stages, one obtains the following alternative valid 
formulation: 

∑

g∈G

∑

eg∈Eg

⎛

⎝ueg deg
L + veg deg

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

g∈G

dg
LR 

+
∑

g,g′ ∈G

dgg′

RL wgg′

⎛

⎝AMDRPG-MTZ

⎞

⎠

s.t. (10)–(17) 
(MTZ1)–(MTZ2) or (SEC)
(MTZ3)–(MTZ6)

(α − E) or (α-G)
(DCW-g)
(DIST1-g)–(DIST6-g). 
(ORIG1)–(ORIG2)The formulation above (AMDRPG-MTZ) can be 

slightly modified replacing constraints (MTZ3)-(MTZ6) by 

∑

g,g′ ∈G

wgg′ ⩽|S| − 1, ∀S⫅

{

1,…, |G |

}

. (18)  

In doing so we obtain another formulation for AMDRPG using SEC 
rather than MTZ constraints to represent the mothership tour. We will 
call this formulation (AMDRPG-SEC). Later, we will compare their 
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performance in Section 6. 

4.1.4. Comparing the formulations 
A straightforward analysis of the two types of formulations, namely 

by stages and based on connectivity, shows that (AMDRPG-MTZ) has 
much less variables and constraints than (AMDRPG-ST). Indeed, the 
latter requires definition of distance variables for each eg and t which is a 
quadratic function rather than a linear one as used by the former. In 
addition, to enforce coordination (AMDRPG-ST) needs constraints 
(DCW) for each g ∈ G , t ∈ T whereas (AMDRPG-MTZ) only uses (DCW) 
constraints for g ∈ G . This is an important reduction in the dimension of 
the problems to be solved. This observation is confirmed by its better 
performance as discussed in Section 6. 

4.2. Network Mothership-Drone Routing Problem on a Polygonal with 
Graphs (PMDRPG) 

The most significant difference between AMDRPG and NMDRPG is 
that, in the latter, the mothership cannot move freely in the framework 
space and instead it has to move on a network that models a road system 
where the base vehicle (for example a truck) is constrained to move. An 
intermediate situation between moving freely and moving on a general 
road network is to assume that the mothership moves on a closed 
polygonal, namely a piecewise linear, chain. Modeling this situation is a 
transition step to achieve the more general case of the mothership 
moving on general networks. We will present the formulations for the 
PMDRPG following a scheme similar to that of AMDRPG. First, we 
present a model by stages and then another one based on connectivity 
constraints. 

Let P denote a polygonal chain parametrized by its breakpoints V1,

…,Vp ordered in the direction of travel. Observe that we are assuming 
that there exists a pre-specified orientation that determines the direction 
of the mothership’s displacement. 

As in the previous section, we present a summary of the notation, 
parameters and variables of this model in Tables 4 and 5. 

We begin giving a formal description of the distance traveled by the 
mothership on the polygonal P , between two consecutive events 
induced by drone operations, either launching-retrieving or retrieving- 
launching. To this end, we use the variables γet

L and γet
R , defined in 

Table 5. Recall that γet
L and γet

R are the values of the parametrizations that 
define the points xt

L and xt
R on the edge e of P , respectively. Fig. 3 il

lustrates the meaning of the parameters γet
L and γet

R on a polygonal chain 

with 4 pieces. 
Then, the distance measured on the polygonal can be obtained by the 

following expressions for each t ∈ T and for each e, e′

∈ P : 

Table 4 
Nomenclature for PMDRPG.  

Problem Parameters 

V1,…,Vp: pairs of coordinates defining the breakpoints of the polygonal chain P 

representing the road system where the mothership can move.  
orig: pair of coordinates defining the origin of the mothership path (or tour).  
dest: pair of coordinates defining the destination of the mothership path (or tour).  
G : set of the target graphs.  
g = (Vg,Eg): set of nodes and edges of each target graph g ∈ G .  
L (eg): length of edge e of graph g ∈ G .  
Beg ,Ceg : endpoints of edge e of graph g ∈ G .  
αeg : percentage of edge e of graph g ∈ G that must be visited.  
αg: percentage of graph g ∈ G that must be visited.  
vD: drone speed.  
vM: mothership speed.  
M: big M.   

Table 5 
Decision Variables for PMDRPG-ST.  

Binary and Integer Decision Variables 

μeg ∈ {0,1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is 
visited by the drone, 0 otherwise.  

entryeg ∈ {0,1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variables for linearization.  
ueg t ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone enters in graph g by eg at 

stage t, 0 otherwise.  

zege′g ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g of graph g, 
0 otherwise.  

vegt ∈ {0,1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone exits from graph g by eg at 
stage t, 0 otherwise.  

seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variables representing the order of visit of 
edge e of graph g.  

zee′ t
LR ∈ {0,1}, ∀e,e′

∈ P , ∀t ∈ T: equal to 1 if the launching point xt
L is located on e and 

the rendezvous point xt
R is located on e′ at stage t.  

zee′ t
RL ∈ {0,1}, ∀e,e′

∈ P , ∀t ∈ T: equal to 1 if the rendezvous point xt
R is located on e at 

stage t and the launching point x(t+1)
L is located on e′ at stage t + 1.  

μet
L ∈ {0,1}, ∀e ∈ P , ∀t ∈ T: equal to 1 if the launching point xt

L is located on e at stage 
t.  

μet
R ∈ {0,1}, ∀e ∈ P , ∀t ∈ T: equal to 1 if the rendezvous point xt

R is located on e at 
stage t.   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on eg.  

γet
R ∈ [0,1] and γet

L ∈ [0,1], ∀e ∈ P , ∀t ∈ T: defining the launching and rendezvous 
points on edge e of the polygonal P at stage t.  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables for linearization.  
xt

L , ∀t ∈ T: coordinates representing the point where the mothership launches the 
drone at stage t.  

xt
R, ∀t ∈ T: coordinates representing the point where the mothership retrieves the 
drone at stage t.  

Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point on edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point on edge e of graph g.  

deg t
L ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from 
the launching point xt

L on the mothership at stage t to the first visiting point Reg on 
eg.  

dege′g ⩾0, ∀eg, e
′

g ∈ Eg(g ∈ G ): representing the distance travelled by the drone from 

launching point Leg on eg to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the 

rendezvous point Reg to the launching point Leg on eg.  

deg t
R ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from 
the last visiting point Leg on eg to the rendezvous point xt

R on the mothership at stage 
t.  

dee′ t
LR ⩾0, ∀e,e′

∈ P , ∀t ∈ T: representing the distance travelled by the mothership from 
the launching point xt

L on e to the rendezvous point xt
R on e′ at stage t.  

dee′ t
RL ⩾0, ∀e,e′

∈ P , ∀t ∈ T: representing the distance travelled by the mothership from 
the rendezvous point xt

R on e at stage t to the launching point x(t+1)
L on e′ at the stage 

t + 1.  

dt
LR⩾0, ∀t ∈ T: representing the total distance travelled by the mothership between the 
launching point xt

L and the rendezvous point xt
R at stage t.  

dt
RL⩾0, ∀t ∈ T: representing the total distance travelled by the mothership between the 
rendezvous point xt

R at stage t and the launching point x(t+1)
L at stage t + 1.  

λt
L⩾0, ∀t ∈ T: representing the absolute position of point xt

L in the polygonal P .  

λt
R⩾0, ∀t ∈ T: representing the absolute position of point xt

R in the polygonal P .   
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dee′ t
LR =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|γet
R − γet

L |L
(
e
)
, if e= e

′

,

(

1 − γet
L

)

L

(

e

)

+
∑e
′
− 1

e′′=e+1
L

(

e′′
)

+ γe′ t
R L

(

e
′

)

, if e< e
′

,
(
dtp

LR
)

γet
L L

(

e

)

+
∑e− 1

e′′=e′ +1

L

(

e′′
)

+

(

1 − γe′ t
R

)

L

(

e′

)

, if e> e′

.

dee′ t
RL =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|γet+1
L − γet

R |L
(
e
)
, if e=e′

,

(

1− γet
R

)

L

(

e

)

+
∑e
′
− 1

e′′=e+1

L

(

e′′
)

+γe′ t+1
L L

(

e′

)

, if e<e′

,
(
dtp

RL
)

γet
R L

(

e

)

+
∑e− 1

e′′=e′ +1

L

(

e′′
)

+

(

1− γe′ t+1
L

)

L

(

e′

)

, if e>e′

.

The reader should observe that, as described in Table 5, dee′ t
LR accounts for 

the distance traveled by the mothership on P between consecutive 

launching and rendezvous points, whereas dee′ t
RL does it for consecutive 

retrieving and next launching points. 
In order to actually include these expressions in a formulation one 

has to decide which one of the two definitions (e < e′ or e > e′ ) is to be 
used in the objective function. This is the goal of the binary variables zee′ t

LR 

that determines whether dee′

LR is defined by the first or the second 
expression in the formula: 

zee′ t
LR = 1 if μet

L = 1 and μe′ t
R = 1,

where μet
L and μet

R are indicator variables that attain the value one if the 
launching point (resp. rendezvous point) is placed in the segment e of P 

at the stage t. Similarly, we define zee′ t
RL : 

zee′ t
RL = 1 if μet

R = 1 and μe′ t+1
L = 1.

With all this, we can model the movement of the mothership on the 
polygonal. For each stage t ∈ T, we have 

xt
L =

∑

e=(i,i+1)∈P

μet
L

[
Vi + γet

L

(
Vi+1 − Vi)], (19)  

xt
R =

∑

e=(i,i+1)∈P

μet
R

[
Vi + γet

R

(
Vi+1 − Vi)], (20)  

zee′ t
LR = μet

L μe′ t
R , ∀e, e′

∈ P , (21)  

zee′ t
RL = μet

R μe′ t+1
L , ∀e, e′

∈ P , (22)  

∑

e∈P

μet
L = 1, (23)  

∑

e∈P

μet
R = 1, (24)  

dt
LR =

∑

e,e′ ∈P

zee′ t
LR dee′

LR , (25)  

dt
RL =

∑

e,e′ ∈P

zee′ t
RL dee′ t

RL , (26)  

where dee′

LR and dee′ t
RL are defined in (dtp

LR) and (dtp
RL). Constraints (19) and 

(20) parameterize the launching and rendezvous points on the polygonal 
chain. Constraints (21) and (22) set the variable z by means of the binary 
variables μet

L and μet
R . Constraints (23) and (24) state that, in each stage, 

the launching and rendezvous points can be only in one segment, not 
necessarily the same. Constraints (25) and (26) compute the total dis
tance between the launching and the rendezvous points in each stage. 

In addition, for each stage t ∈ T we can define continuous variables 
λt

R and λt
L that model the absolute position of the points xt

L and xt
R in the 

polygonal to ensure that the movement of the mothership goes always in 
the allowed direction of travel and never comes back when it traverses 
the polygonal chain. 

λt
L − i⩾μet

L −
(
p − 1

)(
1 − μet

L

)
, ∀e =

(
i, i+ 1

)
∈ P , (27)  

λt
L − i⩽μet

L −
(
p − 1

)(
1 − μet

L

)
, ∀e =

(
i, i+ 1

)
∈ P , (28)  

λt
R − i⩾μet

R −
(
p − 1

)(
1 − μet

R

)
, ∀e =

(
i, i+ 1

)
∈ P , (29)  

λt
R − i⩽μet

R +
(
p − 1

)(
1 − μet

R

)
, ∀e =

(
i, i+ 1

)
∈ P , (30)  

λt
R⩾λt

L, ∀t ∈ T, (31)  

λt+1
L ⩾λt

R, ∀t ∈ T. (32)  

Inequalities (27)–(30) link μet
L and λt

L (resp. μet
R and λt

R). Finally, con
straints (31) and (32) ensure that the mothership moves in the right 
direction on the polygonal. The goal of the (PMDRPG) is, once again, to 
find a feasible solution that minimizes the total distance covered by the 
mothership and the drone. Thus, gathering all the above constraints one 
gets the following valid formulation: 

min
∑

g∈G

∑

eg∈Eg

∑

t∈T

⎛

⎝uegtdegt
L + vegtdegt

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g 

+
∑

t∈T

⎛

⎝dt
RL + dt

LR

⎞

⎠

⎛

⎝PMDRPG

⎞

⎠

s.t. (1)–(7) 
(19)–(32) 
(MTZ1)–(MTZ2) or (SEC)
(α − E) or (α-G)
(DCW-t)
(dtp

LR), (d
tp
RL)

(DIST1-t)–(DIST6-t). 
(ORIG1)–(DEST2). 

4.2.1. Alternative formulation for PMDRPG based on MTZ-constraints 
Analogously to the case of AMDRPG one can also model PMDRPG 

without any explicit reference to stages. Here, we will follow a very 
similar approach to that in Section 4.1.3 to describe the formulation for 
PMDRPG based on MTZ-constraints. Table 6 reports a summary of the 
different sets of variables used for modelling this problem variant. Let P 

Fig. 3. An example of a parametrization of a mothership route that goes from 
V1 to xt

L to launching the drone, then moves to xt
R on the edge V1V2 to retrieve 

it, then it goes to xt
L on V2V3 to launching it again, and travels until xt

R on V3V4 

to retrieve the drone and returns to the starting point at V1. 
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denote, as before, the polygonal chain parameterized by its endpoints 
V1,…,Vp ordered in the direction of travel. In addition, let also γeg

L and 
γeg

R be the parameter values that define the points xg
L and xg

R on the line 
segment ViVi+1 in P , respectively. Then, the distance traveled on the 
polygonal, by the mothership, can be obtained by one of the following 
expressions. The first one refers to distances covered by the mothership 
between the launching and rendezvous points of a drone operation, 
whereas the second one models the distance traveled by the mothership 

between the rendezvous and launching points of two consecutive target 
graphs in its route. 

dee′ g
LR =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|γeg
L − γeg

R |L (e), if e= e′

,
(

1 − γeg
L

)

L

(

e

)

+
∑e
′
− 1

e′′=e+1
L

(

e′′
)

+ γe′ g
R L

(

e′

)

, if e< e′

, (dgp

LR)

γeg
L L

(

e

)

+
∑e
′
− 1

e′′=e+1
L

(

e′′
)

+

(

1 − γe′ g
R

)

L

(

e
′

)

, if e> e
′

.

dee′ gg′

RL =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|γeg
L − γeg′

R |L (e), if e=e
′

,
(

1 − γeg
R

)

L

(

e

)

+
∑e
′
− 1

e′′=e+1
L

(

e′′
)

+γe′ g′

L L

(

e′

)

, if e<e′

, (dgp

RL)

γeg
R L

(

e

)

+
∑e
′
− 1

e′′=e+1

L

(

e′′
)

+

(

1 − γe′ g′

L

)

L

(

e′

)

, if e>e′

.

This distance requires binary variables zee′ g
LR and zee′ gg′

RL that determines 

which of the expressions in (dgp

LR) and (dgp

RL) define dee′ g
LR and dee′ gg′

RL , 
respectively. 

zee′ g
LR = 1 iff μeg

L = 1 and μe′ g
R = 1, zee′ gg′

RL = 1 iff μeg
L = 1 and μe′ g′

R = 1,

where μeg
L and μeg

R are indicator variables that attain the value one if the 
launching point (resp. rendezvous point) associated with the graph g is 
placed in the segment ViVi+1 of the edge e = (i,i + 1) ∈ P . With all this, 
we can model the movement of the mothership on the polygonal as 
follows: 

xg
L =

∑

e=(i,i+1)∈P

μeg
L
[
Vi + γeg

L
(
Vi+1 − Vi)], ∀g ∈ G , (33)  

xg
R =

∑

e=(i,i+1)∈P

μeg
R
[
Vi + γeg

R
(
Vi+1 − Vi)], ∀g ∈ G , (34)  

zee′ g
LR = μeg

L μe′ g
R , ∀e, e′

∈ P , ∀g ∈ G , (35)  

zee′ gg′

RL = μeg
R μe′ g′

L , ∀e, e′

∈ P , ∀g, g′

∈ G , (36)  

∑

e
μeg

L = 1, ∀g ∈ G , (37)  

∑

e
μeg

R = 1, ∀g ∈ G , (38)  

dg
LR =

∑

e,e′ ∈P

zee′ g
LR dee′ g

LR , ∀g ∈ G , (39)  

dgg′

RL =
∑

e,e′ ∈P

zee′ gg′

RL dee′ gg′

RL , ∀g, g′

∈ G , (40)  

where dee′ g
LR and dee′ gg′

RL are defined in (dgp

LR) and (dgp

RL), respectively. Con
straints (33) and (34) parameterize the launching and rendezvous points 
on the polygonal chain. Constraints (35) and (36) set the binary vari

ables zee′ g
LR and zee′ gg′

RL by means of the binary variables μeg
L and μeg

R . Con
straints (37) and (38) state that, for each target graph, the launching and 
rendezvous points can be only in one segment, not necessarily the same. 
Constraints (39) and (40) compute the total distance between the 
launching and the rendezvous points for each pair of points. The reader 
may note that the above representation is similar to that given by (19)– 
(26) with the exception that constraints (33)–(40) are indexed in the set 
of graphs g ∈ G instead that on the stages. This allows a remarkable 

Table 6 
Decision Variables for PMDRPG-MTZ.  

Binary and Integer Decision Variables 

μeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is 
visited by the drone, and 0 otherwise.  

entryeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variables for linearization.  
ueg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone enters in graph g by eg, 

0 otherwise.  

zege′g ∈ {0,1}, ∀eg, e
′

g ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g of graph g, 
0 otherwise.  

veg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone exits from graph g by eg, 
0 otherwise.  

wgg′ ∈ {0,1}, ∀g,g′

∈ G : equal to 1 if the mothership moves from xg
R to xg′

L , 0 otherwise.  
seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variables representing the order of visit of 

edge e of graph g.  

zee′ g
LR ∈ {0,1}, ∀e,e′

∈ P , ∀g ∈ G : equal to 1 if the launching point xg
L, associated with 

graph g, is located on e and the rendezvous point xg
R is located on e′ .  

zee′ gg′

RL ∈ {0,1}, ∀e,e′

∈ P , ∀g,g′

∈ G : equal to 1 if the rendezvous point xg
R , associated 

with graph g, is located on e and the launching point xg′

L , associated with graph g′ , is 
located on e′ .  

μeg
L ∈ {0,1}, ∀e ∈ P , ∀g ∈ G : equal to 1 if the launching point xg

L, associated with 
graph g, is located on e.  

μeg
R ∈ {0,1}, ∀e ∈ P , ∀g ∈ G : equal to 1 if the rendezvous point xg

R, associated with 
graph g, is located on e.   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on edge 
eg.  

γeg
R ∈ [0,1] and γeg

L ∈ [0,1], ∀e ∈ P , ∀g ∈ G : defining the launching and rendezvous 
points, associated with graph g, on edge e.  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables for linearization.  

xg
L , ∀g ∈ G : coordinates representing the point where the mothership launches the 
drone to visit graph g.  

xg
R , ∀g ∈ G : coordinates representing the point where the mothership retrieves the 
drone to visit graph g.  

Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point on edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point on edge e of graph g.  

deg
L ⩾0, ∀eg ∈ Eg (g ∈ G ): distance travelled by drone from launching point xg

L to the 
first visiting point Reg on eg.  

dege′g ⩾0, ∀eg,e
′

g ∈ Eg(g ∈ G ): distance travelled by drone from launching point Leg on eg 

to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the 

rendezvous point Reg to the launching point Leg on eg.  

deg
R ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the last 
visiting point Leg on graph g to the rendezvous point xg

R on the mothership.  

dee′ g
LR ⩾0, ∀e, e′

∈ P , ∀g ∈ G : representing the distance travelled by the mothership 
from the launching point xg

L on e to the rendezvous point xg
R on e′ to visit graph g.  

dee′ gg′

RL ⩾0, ∀e,e′

∈ P , ∀g,g′

∈ G : representing the distance travelled by the mothership 

from the rendezvous point xg
R on e, for graph g, to the launching point xg′

L on e′ , for 
graph g′ .  

dg
LR⩾0, ∀g ∈ G : representing the total distance travelled by the mothership between 
the launching point xg

L and the rendezvous point xg
R to visit graph g.  

dgg′

RL ⩾0, ∀g,g′

∈ G : representing the total distance travelled by the mothership between 

the rendezvous point xg
R, for graph g, and the launching point xg′

L , for graph g′ .   
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reduction in the number of distance variables and constraints as already 
discussed in Section 4.1.4. The goal of the PMDRPG is to find a feasible 
solution that minimizes the total distance covered by the drone and the 
mothership, i.e.: 

min
∑

g∈G

∑

eg∈Eg

⎛

⎝ueg deg
L + veg deg

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

g∈G

dg
LR 

+
∑

g,g′ ∈G

dgg′

RL wgg′

⎛

⎝PMDRPG-MTZ

⎞

⎠

s.t. (10)–(17) 
(MTZ1)–(MTZ2) or (SEC)
(MTZ3)–(MTZ6) or (SEC)
(33)–(40) 
(α − E) or α-G 
DCW-g 
(dgp

LR), (d
gp

RL)

(DIST1-g)–(DIST6-g). 
(ORIG1)–(ORIG2). The reader may note that the above formulation 

actually encloses two different ones depending whether it includes 
constraints (MTZ1)-(MTZ2) or (SEC). However, for the sake of presen
tation we have preferred to present them in this compact form to reduce 
the length of the paper. 

As mentioned at the beginning of this section, the PMDRPG is an 
intermediate variant of the problem, between the case in which the 
mothership moves freely in the continuous space and the more general 
situation in which the mothership moves on a general network. For 
modelling details of this latter case we refer the reader to the Appendix. 

4.3. Strengthening the formulations of MDRPG 

The different models that we have proposed include in one way or 
another big-M constants. We have defined different big-M constants 
along this work. In order to strengthen the formulations we provide tight 
upper and lower bounds for those constants. The computation of these 
bounds is rather technical and may distract the reader from the main 
focus of the paper. Therefore, we have preferred to present in the Ap
pendix, at the end of the paper, all the details and results that adjust the 
different bounds for each one of the models studied in this paper. 

5. A Matheuristic for the Mothership-Drone Routing Problem 
with Graphs 

This section is devoted to present our matheuristic approach to 
address the solution of the MDRPG. Our motivation comes from the fact 
that the exact methods presented in the previous section are highly time 
demanding. Alternatively, the matheuristic provides good quality solu
tion in limited computing times. 

First, we focus on the case in which the mothership can move freely 
on the continuous space, namely AMDRPG. Since dealing with the exact 
model is a hard task for medium size instances, our strategy is to split the 

problem. The rationale of this algorithm rests on decomposing the 
problem in simpler subproblems decoupling the decisions made on the 
route followed by the mothership and the ones made on the drone. To do 
that, first we solve a TSP for the mothership over the neighborhoods of 
centroids of target graphs, that is an extension of the crossing postman 
problem where the Hamiltonian routes have to visit neighborhoods or 
polygonal chains rather than edges (XPPN, see Puerto and Valverde 
(2020)) and then we solve drone operations one at a time based on the 
order previously defined for the mothership. In this way each sub
problem is much simpler and once their solutions are found one can 
integrate them into a feasible solution of the whole problem. Specif
ically, the basic idea of the algorithm is to determine first the sequence 
of visits to the target graphs in G . This route is obtained replacing each 
graph in G by its centroid and then solving a TSP over the neighbor
hoods of those centroids, namely a XPPN. Then, given such an order of 
visits, the launching/rendezvous points where the mothership must 
stop, are determined by solving an AMDRPG problem, but limited to one 
single graph each time, following the sequence previously computed. 
Successively, the solution obtained is improved by providing it to the 
solver as initial partial solution and by solving, once more, another 
AMDRPG problem, where now we fix the launching/rendezvous points 
but leave free the variables w that give the sequence of visits to the 
targets graphs, i.e., without fixing the order of visits. If this solution 
induces a different order of visits to the graphs with respect to the 
previous one, the procedure is repeated to generate a new feasible so
lution. The stopping criterion is to find a solution that does not change 
with respect to the one obtained in the previous cycle of the algorithm. 
In the following, we present the pseudo-code of this algorithm: 

STEP 1 (Centroids of the graphs) 
- Let orig be the origin/destination of the mothership tour (orange 
point with label 0 in Fig. 4 [a]). For each graph g ∈ G : 
- identify its centroid cg and consider its neighborhood defined as 
the circle ρ(cg, 2) centered at cg and with radius 2 (red points in 
Fig. 4 [a]). 

STEP 2 (Order of visit of the graphs) Determine an order of visit for 
the graphs in G by solving the XPPN of the mothership over the set of 
the neighborhoods associated with the centroids of those graphs 
(blue tour 0, 1, 2, 3, 4, 0 in Fig. 4 [a]). 
STEP 3 (Determining the location of launching/rendezvous points) 
Let wgg′ , ∀g, g′

∈ G be the optimal values of the variables wgg′

generated by STEP 2. 
Following this order of visit, set the launching point for the first 

graph as the depot, then solve the resulting AMDRPG limited to the 
first graph. 

Repeat the same procedure for the remaining graphs to be visited, 
by solving AMDRPG on one single graph each time, by fixing as 
launching point of the current graph the rendezvous point of the 
previous graph. 
STEP 4 (Solution update) Let z be the solution obtained by STEP 3, 
consisting of the tour of the drone on each target (Fig. 4 [b]), and let 
xg

L, xg
R ∀g ∈ G be the associated launching/rendezvous points (green 

Fig. 4. Illustrative example.  
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and blue points in Fig. 4 [b]). 
Solve the model AMDRPG with these launching/rendezvous points 

but leaving free the wgg′ ∀g, g′

∈ G variables and providing to the 
solver z as initial partial solution. 
STEP 5 Let ẑ be the updated solution obtained by STEP 4 (see Fig. 4 
[b] for this illustrative example) and ŵgg′ the associated order of visit 
of the graphs. 

If the ŵgg′ ∕= wgg′ repeat from STEP 3, otherwise stop. 

Note that in the example shown in Fig. 4 we solved the AMDRPG model 
by imposing that at least a given percentage of each target graph must be 
visited. For this reason the solution consists in drone’s missions which 
visit only part of each graph, as represented by the red segments in Fig. 4 
[b]. Moreover, for this example, most of the launching/rendezvous 
points coincide. More specifically, considering Fig. 4 [b], the drone 
starts from the origin and visits part of the first target. The mothership 
retrieves it at the point labelled 1. From the same point the drone starts 
the second mission to visit part of the second target and then reaches the 
mothership at the point labelled 2. From that point the drone starts for 
visiting the third target meeting the mothership at the point labelled 3. 
From this latter point the last mission of the drone starts and ends on the 
mothership at the point labelled 4. Then the mothership with the drone 
go back to the origin. In this example the solution obtained at STEP 4, by 

fixing the launching/rendezvous points but not the order of visit, does 
not change with respect to the one obtained at STEP 3. Thus the pro
cedure stops after the first iteration and provides the solution shown in 
Fig. 4 [b]. We note in passing that the exact solution of AMDRPG on 
STEP 4 can still be hard, specially on large instances. For this reason the 
stopping criterion of each call of the solver within the heuristic pro
cedure is set to a maximum number of feasible solutions found. The 
procedure followed for the NMDRPG problem consists in the same steps 
of the matheuristic presented above for the AMDRPG problem but, at 
STEP 4, the partial solution, given as input to the solver, includes also 
the values of the variables modelling the routing of the mothership on 
the graph. 

6. Experimental results 

In this section we discuss the experimental results obtained testing 
the formulations presented in Section 4 and the matheuristic procedure 
proposed in Section 5 on different sets of instances. In particular, we 
generate two sets of instances of the AMDRPG problem. The first one 
consists of targets, to be visited by the drone, that are represented by 
grid graphs, while the second one involves a different typology of tar
gets, namely, Delaunay graphs. For both typologies we generate 5 in
stances of 10 graphs each, with different cardinality of the set of nodes. 
More precisely, each instance is composed of 3 graphs with 4 nodes, 3 
graphs with 6 nodes, 3 graphs with 8 nodes and 1 graph with 10 nodes. 
Moreover, we assume that the drone’s speed is twice that of the moth
ership and that a percentage equal to 80% of each target must be visited 
by the drone. 

Fig. 5. Example of generation of a grid graph.  

Table 7 
Comparison between formulations for grid instances.  

Gap % Average Min Max 

Solver Cplex Gurobi Cplex Gurobi Cplex Gurobi 

Formulation       
Stages 87 87 85 84 88 88 
MTZ 66 62 59 58 72 65 
SEC 65 61 59 57 70 64  

Table 8 
Comparison between formulations for Delauney instances.  

Gap % Average Min Max 

Solver Cplex Gurobi Cplex Gurobi Cplex Gurobi 

Formulation       
Stages 91 91 90 89 93 93 
MTZ 78 74 74 70 82 79 
SEC 77 75 73 69 82 81  

Table 9 
Heuristic performances.  

# Grid Delauney  

Best Obj Obj 
Heuristic 

CPU 
Time 

Best Obj Obj 
Heuristic 

CPU 
Time 

0 1087,87 1117,83 50,99 947,01 934,46 52,49 
1 1100,38 1319,64 24,64 986,22 938,68 72,73 
2 1350,67 1126,35 46,06 888,48 865,66 1073,80 
3 1218,66 1476,36 27,18 1249,69 1154,62 1703,33 
4 1297,77 1424,37 40,91 1239,93 1184,67 81,15  

Table 10 
Comparison between exact resolution with and without initialization.    

Grid Delauney 

List %  % Gap 
(i)  

Time h  % Gap 
(wi)  

% Gap 
(i)  

Time h  % Gap 
(wi)  

0 e 72 105.12 73 78 154.92 74  
g 55 58.92 54 62 92.64 67 

1 e 76 241.99 76 80 314.69 79  
g 71 182.61 70 74 353.04 75 

2 e 76 367.69 76 80 447.61 80  
g 71 326.49 72 76 429.16 76 

3 e 75 481.68 74 80 514.98 76*  
g 71 492.27 70 77 582.90 77  

Fig. 6. Matheuristic running time.  
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In order to place the 10 graphs of a single instance, we consider a 
square of side 100 units. Then we divide the original square in sub
squares of side 5 and we randomly select among them the locations for 
the ten target graphs of the instance. The generation procedure of the 
single graph in a selected square, depends on the graph typology. As 
regards grid graphs, the single subsquare, like the one represented in 
Fig. 5, is further partitioned in subsquares of side 5n where n is the car
dinality of the set of nodes of the graph to build. Two opposite corner 
subsquares are considered (like V1 and V2 in Fig. 5) and one point inside 
each of them is randomly selected (black points in the subsquares V1 and 
V2 in Fig. 5). Then, a rectangle whose diagonal joins these two points is 
built (the black dotted one in Fig. 5). A grid of n points is identified by 
locating n

m equally spaced points on the two sides square (the red ones 
and the two original points in black in Fig. 5), where m is randomly 
selected in the set of divisors of the number of points of the graph. The 
links of the graphs connect each point to its adjacent ones lying on the 
same side and with the one located on the opposite side of the square. Let 
widthx and widthy be the lengths of these edges as show in Fig. 5. In order 
to perturb the coordinates of these points, we randomly add a value, 
ranging between − widthx

3 and widthx
3 to the x coordinate and between 

−
widthy

3 and widthy
3 to the y coordinate, always imposing that the perturbed 

point still belongs to the square. The resulting grid graph is obtained 
connecting the same pairs of points but with perturbed coordinates (blue 
graph in Fig. 5). 

As regards the instances related to Delaunay graphs, we select their 
locations following the same procedure as for the grid ones. Then, for 
each randomly chosen subsquare, given the set of n nodes of the graph to 
be generated, a Delaunay triangulation of them is computed by using the 
Python class scipy.spatial.Delaunay (see Virtanen et al. (2020) for 
further details). 

We run the three formulations proposed in Section 4 for the 
AMDRPG problem (Stages, MTZ and SEC) with two different commer
cial solvers, Cplex 12.8 and Gurobi 9.03, called by means of Python, by 
setting a time limit for each run equal to 3600 s. In Table 7 we report the 
results obtained, in terms of average, minimum and maximum per
centage gap with both solvers, on the instances consisting of grid graphs. 
First, we can observe that Gurobi has better performances with respect 
to Cplex for all the instances. Moreover, for this set of instances, the SEC 
formulation is the best one among the three proposed, as the associated 

average gap is equal to 61% and also the minimum and the maximum 
percentage gap are smaller than the ones associated with formulations 
Stages and MTZ. 

Similarly, Table 8 summarizes the results obtained on the instances 
with Delaunay graphs. Also in this case the Gurobi performance is better 
than Cplex. However, among the three formulations, the MTZ one pro
vides the best results in terms of average and maximum percentage gap. 

In order to test the performance of the matheuristic proposed in 
Section 5, we code it in Python and we run it on the same sets of in
stances (Grid and Delaunay) on which the three exact formulations were 
solved. Table 9 reports for each of the five instances, numbered from 0 to 
4, distinguishing between Grid and Delauney, respectively, the best 
objective function provided by the best formulation, the objective 
function provided by the matheuristic and the associated CPU time. As 
already noticed from Table 8, for grid graph instances, SEC formulation 
has the best behaviour, with the exception of the instance number 3 for 
which the MTZ provides a smaller value of the objective function. As for 
the Delaunay graph instances, MTZ is the best formulation, but also in 
this case there is an exception on the instance number 2 for which SEC 
formulation returns a smaller value of the objective function. 

The results show that the matheuristic returns a solution with value 
of the objective function that is higher than the one provided by the SEC 
formulation on grid instances. However, these values are smaller than 
the ones provided by the Stages and the MTZ formulations. Moreover, 
the saving in terms of solution time is very significant as the maximum 
CPU time is less than 1 min. As regards the Delaunay instances, the 
matheuristic performance is even better, as it finds a solution that is 
better than the best one provided by the MTZ formulation and in a so
lution time that is at most 28 min. 

We perform a second set of experiments by observing that, even if 
there are small differences between the SEC and the MTZ formulations 
depending on the type of instances, their performances are comparable. 
Thus, in the rest of the tests we focus on the MTZ formulation. We 
compare its performance, with or without providing the initial solution 
found by the matheuristic, on a set of larger instances. More precisely, 
we generate 20 instances with targets represented by grid graphs and 20 
instances with targets represented by Delauney graphs. The instances of 
each typology are split in 4 groups of 5 instances each, consisting 
respectively of 5, 10, 15 and 20 targets to be visited. In each instance the 
same percentage of graphs (20%) has respectively 4, 6, 8, 10 and 12 
nodes. Moreover, we assume that the origin coincides with the desti
nation in all instances and we randomly generate with uniform distri
bution between 0 and 1, two values representing the percentage of each 
edge and of each graph to be visited. As regards the speeds, we set the 
speed of the drone three times the one of the mothership. We run the 
MTZ formulation using Gurobi and setting a time limit of 7200 s. for 
each instance. On the same instances also the matheuristic is applied. 
Note that, in order to define a stopping rule for the exact solution of the 
AMDRPG model within the matheuristic procedure (STEP 3 and STEP 
4), we set a maximum number of solutions generated by the solver equal 
to five. For each instance, the solution provided by the matheuristic is 
then used to initialize the exact application of the MTZ formulation in 
order to try to speed up the solution process. Table 10 shows the results 
of the comparison between the exact formulation with and without 

Fig. 8. Improved gap of MTZ formulation with and without initialization.  

Table 11 
Comparison between formulations of NMDRPG.   

Net Struct 1 2 3 

List %  Stages MTZ Stages MTZ Stages MTZ 

0 e 89 33 88 24 87 39  
g 86 29 89 18 90 42 

1 e 92 43 92 33 92 46  
g 91 36 92 23 92 39  

Fig. 7. Matheuristic improved gap.  
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initialization. In the first column, named List, we report the size of the 
instances in terms of number of targets to be visited (0, 1, 2 and 3 
identifies instances respectively with 5, 10, 15 and 20 graphs). The 
second column refers to the two variants of the model, that is, a given 
percentage of each edge of the targets (e) or a given percentage of each 
target (g) must be visited by the drone. The other columns report 
respectively the average percentage gap of the solutions found within 
the time limit starting from the initial solution provided by the math
euristic (% Gap (i)), the average running time of the matheuristic (Time 
h) and the average percentage gap of the solutions found within the time 
limit without initialization (% Gap (wi)). This information is reported 
for both Grid and Delauney instances. 

From Table 10 we can notice that in most of the cases the average 
gaps associated with the solution found within the time limit, with and 
without initialization by the solution found by the matheuristic, are the 
same or very close (note that in the last column the ∗ indicates that only 
one instance has been solved within the time limit). As regards the 
running time of the matheuristic, we can see also from the boxplots in 
Fig. 6, that it increases with the number of targets to be visited both for 
Grid and Delaunay instances. Considering the model variants based on 
the minimum percentage of each edge or each graph to visit, we can 
observe that for Grid instances the average running time of the model 
imposing a minimum percentage of each edge to be visited, is greater 
than the one associated with the other variant, with the exception of the 
instances of biggest size (List = 3). 

The boxplots in Fig. 7 represent the percentage gap of the solution 
provided by the matheuristic with respect to the one provided by the 
exact resolution of the MTZ model within the time limit, with initiali
zation by the solution found by the matheuristic. From them we can 
notice that the gap increases with the size both for Grid and Delaunay 
instances but it is always less than 50%. Fig. 8 shows the percentage gap 

of the solution provided by the exact solution of the MTZ formulation 
within the time limit without the initialization, with respect to the one 
found with the initialization. These observations suggest that, even if the 
initialization of the model by the solution provided by the matheuristic 
does not speed up the convergence to the optimal solution, the math
euristic provides solutions of very good quality. Indeed, it generates in 
less than 10 min solutions that are very close to the ones provided by the 
model within 2 h. 

As regards the NMDRPG problem, we generate three sets of instances 
with targets represented by grid graphs considering different structures 
of the network where the mothership can move. In particular, we define 
a first set of instances where the mothership network is represented by a 
graph of 6 nodes with a tree structure with origin of the path of the base 
vehicle different from the destination. A second set of instances 
involving a mothership network consisting of a complete graph of 4 
vertices with origin of the path of the base vehicle different from the 
destination. A third set of instances characterized by star graphs of 7 
nodes representing the mothership network, where the origin coincides 
with the destination and it is located at the centre of the star. We 
generate 10 instances for each of these three classes, 5 of them with 5 
targets and 5 with 10 targets to be visited. Moreover, as for the 
AMDRPG, for each of these 10 instances we randomly generate two 
values representing the percentage of each edge and of each graph that 
must be visited by the drone. We run on these sets of instances both 
Stages and MTZ formulations. Table 11 summarizes the results obtained 
comparing them. The first column identifies the size of the instances, 
similarly to Table 10, (0 for instances with 5 targets and 1 for instances 
with 10 targets). The second column distinguishes between minimum 
percentage of each edge (e) or of each graph (g) to be visited by the 
drone. The remaining columns refer to the three different classes of in
stances described above (1 for the networks with a tree structure, 2 for 

Fig. 9. Matheuristic improved gap for NMDRPG.  

Table 12 
Comparison between exact resolution with and without initialization of NMDRPG.   

Net Struct 1 2 3 

List %  % Gap (i)  T h  % Gap (wi)  % Gap (i)  T h  % Gap (wi)  % Gap (i)  T h  % Gap (wi)  

0 e 32 109.96 33 24 207 24 39 177.57 39  
g 30 1192 29 18 163.36 18 45 149.68 42 

1 e 48 1030.64 43 39 802.3 33 53 770.05 46  
g 33 479.36 36 35 639.09 23 42 689.51 39  
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complete networks and 3 for start networks). For each of these sets of 
instances the average percentage gap of the solutions found within the 
time limit of 7200 s. by the two formulations (Stages and MTZ) is 
reported. 

We can observe that for each class of instances and model variants, 
based on the percentage of each edge or each graph to be visited, the 
MTZ formulation performs better than the Stages one. In all the cases the 
percentage average gap associated with the MTZ formulation is one 
third or half of that associated with the Stages formulation. For this 
reason, in the following tests, related to the comparison between the 
exact solution of the NMDRPG model with and without the initialization 
by the solution found by the matheuristic, we focus only on the MTZ 
formulation. 

Table 12 summarizes the results of this comparison distinguishing 
again between the different network structures (columns labelled 1, 2 
and 3), the different size (rows labelled 0 and 1) characterizing the in
stances and model variants (minimum percentage of each edge (e) or 
each graph (g) to be visited). For each combination of network structure, 
size and model variant we report the average percentage gap with 
initialization (% Gap (i)), the solution time of the matheuristic (T h) and 
the average percentage gap without initialization by the solution found 
by the matheuristic (% Gap (wi)). 

We can observe that, similarly to the AMDRPG problem, the average 
gaps associated with the solution found within the time limit, with and 
without initialization by the solution found by the matheuristic, are very 
close. Considering the average running time we can notice that the 
NMDRPG problem is more challenging to be solved than the AMDRPG. 
The solution time increases very fast with the size of the instances 
especially for the case in which the network where the mothership 
moves has a tree structure. Moreover, as for the Grid instances in the 
continuous case, the model variant imposing a minimum percentage of 
each edge to be visited takes more time to be solved. 

The boxplots showed in Fig. 9 report the percentage gap of the so
lution provided by the matheuristic with respect to the one provided by 
the exact solution of the MTZ model within the time limit, with 
initialization by the solution found by the matheuristic. We can notice 
that, excluding the outliers, this gap ranges between 0% and 60% and its 
lowest values are observed for the instances in which the network where 
the mothership moves has a star structure (green boxplots). From the 
previous observations, similarly to the AMDRPG, we can conclude that 
the behaviour of the matheuristic is very good in terms of quality of the 

solutions provided, even if used as initialization for the MTZ model does 
not help in speeding up the convergence to the optimal solution. 

7. Concluding remarks 

This papers has analyzed the coordination problem that arises be
tween a mothership vehicle and a drone that must adjust their routes to 
minimize travel distances while visiting a set of targets modeled by 
graphs. We have presented exact formulations for different versions of 
the problem depending on the constraints imposed to the mothership 
movement (free on a continuous space or on a given network). Our 
computational results show that the considered problem is rather hard 
and only small to medium size problems can be solved to optimality. 
Additionally, we have proposed a matheuristic algorithm, applicable to 
all the versions of the problem with minimum changes, that provides 
acceptable feasible solutions in short computing time; so that it is a good 
alternative to the exact methods. 

Further research in this topic includes the coordination of the oper
ations of several drones with a mothership, the possibility of visiting 
more than one target per operation and combinations of both cases. 
These problems being very interesting are beyond the scope of this paper 
and will be the focus of a follow up paper. 
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equipos de investigación cientóifica 2019, Ministerio de Ciencia e 
Innovación PID2020-114594GB-C21 and by University of Rome, Sapi
enza Grant No.: RM11916B7F962975.  

Appendix A 

A.1. Strengthening the formulations of MDRPG 

A.1.1. Big-M constants bounding the distance from the launching/ rendezvous point on the path followed by the mothership to the rendezvous/ launching point 
on the target graph g ∈ G  

• AMDRPG. To linearize the first term of the objective function in AMDRPG, we define the auxiliar non-negative continuous variables pegt
L (resp. pegt

R ) 
to model the product deg

L uegt and include the constraints (8) and (9), namely: 

pegt
L ⩾meg

L uegt, pegt
L ⩽deg

L − Megt
L
(
1 − uegt). (41)  

The best upper bound Megt
R or Megt

L that we can consider is the full diameter of the data, that is the maximum distance between every pair of vertices 
of the graphs g ∈ G . every launching or rendezvous point is inside the circle whose diametrically opposite points are determined by the following 
expression. 

Megt
R = max

{v∈Vg ,v
′
∈V

g′
:g,g′ ∈G }

‖v − v′

‖ = Megt
L .

On the other hand, the minimum distance in this case can be zero. This bound is attainable whenever the launching or the rendezvous points of the 
mothership is the same that the rendezvous or launching point on the target graph g ∈ G . 
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Table 13 
Nomenclature for NMDRPG.  

Problem Parameters 

N = (V,E): set of nodes and edges of the network representing the road system where the mothership can move.  

e = (i, j),e′

= (i′ , j′ ): starting edge and ending edge of the mothership tour.  
G : set of the target graphs.  
g = (Vg,Eg): set of nodes and edges of each target graph g ∈ G .  
L (eg): length of edge e of graph g ∈ G .  
Beg ,Ceg : endpoints of edge e of graph g ∈ G .  
αeg : percentage of edge e of graph g ∈ G that must be visited.  
αg: percentage of graph g ∈ G that must be visited.  
vD: drone speed.  
vM: mothership speed.  
M: big M.   

Fig. 10. An example of a parameterization of a mothership route for a stage t. In the first picture, the mothership launches the drone at the point xt
L on the edge V1V2, 

then traverses the edge V2V3 and finally moves to xt
R on the edge V4V5 to retrieve it. In the second one, the mothership retrieves the drone at the point xt

R on the edge 
V4V5, then traverses the edge V3V6, the edge V3V4 and finally moves to xt+1

L on the edge V1V4 to launch the drone for the next stage. 

Table 14 
Decision Variables for NMDRPG-ST.  

Binary and Integer Decision Variables 

μeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is visited by the drone, and 0 otherwise.  
entryeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variables for linearization.  

ueg t ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone enters in graph g by eg at stage t, 0 otherwise.  

zege′g ∈ {0,1}, ∀eg, e
′

g ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g, 0 otherwise.  

veg t ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: equal to 1 if the drone exits from graph g by eg at stage t, 0 otherwise.  
seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variable representing the order of visit of edge e of graph g.  
μet

L ∈ {0,1}, ∀e ∈ E, ∀t ∈ T: equal to 1 if the launching point xt
L is located on e at stage t.  

μet
R ∈ {0,1}, ∀e ∈ E, ∀t ∈ T: equal to 1 if the rendezvous point xt

R is located on e at stage t.  

zee′ t
LR ∈ {0,1}, ∀e, e′

∈ E, ∀t ∈ T: equal to 1 if the launching point xt
L is located on e and the rendezvous point xt

R is located on e′ at stage t.  

bit
LR ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀t ∈ T: equal to 1 if the mothership exits from xt

L by the vertex Vi of the edge e.  

cit
LR ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀t ∈ T: equal to 1 if the mothership enters in xt

R by the vertex Vi of the edge e.  

qet
LR⩾0, ∀e ∈ E, ∀t ∈ T: integer variable counting the number of times the mothership fully traverses edge e to move between the launching point xt

L on e to the rendezvous point xt
R on e′

at stage t.  

zee′ t
RL ∈ {0,1}, ∀e, e′

∈ E, ∀t ∈ T: equal to 1 if the rendezvous point xt
R is located on e at stage t and the launching point x(t+1)

L is located on e′ at stage t + 1.  

bit
RL ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀t ∈ T: equal to 1 if the mothership exits from xt

R by the vertex Vi of the edge e.  

cit
RL ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀t ∈ T: equal to 1 if the mothership enters in xt+1

L by the vertex Vi of the edge e.  
qet

RL⩾0, ∀e ∈ E, ∀t ∈ T: integer variable counting the number of times the mothership fully traverses edge e to move between the rendezvous point xt
R on e to the launch point for the 

next stage x(t+1)
L .   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on edge eg.  
γet

L ∈ [0,1] and γet
R ∈ [0,1], ∀e ∈ E, ∀t ∈ T: defining the launching and rendezvous points on edge e of the network N at stage t.  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables for linearization.  
xt

L , ∀t ∈ T: coordinates representing the point where the mothership launches the drone at stage t.  
xt

R , ∀t ∈ T: coordinates representing the point where the mothership retrieves the drone at stage t.  
Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point in edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point from edge e of graph g.  

(continued on next page) 
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• NMDRPG. In this case, the best upper bounds for Megt
R or Megt

L is the maximum distance between the polygonal chain P or the graph N and any of 
the target graphs g ∈ G : 

Megt
R = max

{v∈Vg ,w∈N }
‖v − w‖ = Migt

L .

Table 14 (continued ) 

deg t
L ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from the launching point xt

L on the mothership at stage t to the first visiting point Reg on eg.  

dege′g ⩾0, ∀eg ,e
′

g ∈ Eg(g ∈ G ): representing the distance travelled by the drone from launching point Leg on eg to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the rendezvous point Reg to the launching point Leg on eg.  

deg t
R ⩾0, ∀eg ∈ Eg (g ∈ G ), ∀t ∈ T: representing the distance travelled by the drone from the last visiting point Leg to the rendezvous point xt

R on the mothership at stage t.  

dee′ t
LR ⩾0, ∀e, e′

∈ E, ∀t ∈ T: representing the distance travelled by the mothership from the launching point xt
L on e to the rendezvous point xt

R on e′ at stage t.  

dee′ t
RL ⩾0, ∀e, e′

∈ E, ∀t ∈ T: representing the distance travelled by the mothership from the rendezvous point xt
R on e at stage t to the launching point x(t+1)

L on e′ at stage t + 1.  

dt
LR⩾0, ∀t ∈ T: representing the total distance travelled by the mothership between the launching point xt

L and the rendezvous point xt
R at stage t.  

dt
RL⩾0, ∀t ∈ T, representing the total distance travelled by the mothership between the rendezvous point xt

R at stage t and the launching point x(t+1)
L at stage t + 1.   

Table 15 
Decision Variables for NMDRPG-MTZ.  

Binary and Integer Decision Variables 

μeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if edge e of graph g (or a portion of it) is visited by the drone, and 0 otherwise.  
entryeg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): auxiliary binary variables for linearization.  
ueg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone enter in graph g by edge eg, 0 otherwise.  

zege′g ∈ {0,1}, ∀eg, e
′

g ∈ Eg (g ∈ G ): equal to 1 if the drone goes from eg to e′

g, 0 otherwise.  
veg ∈ {0, 1}, ∀eg ∈ Eg (g ∈ G ): equal to 1 if the drone exits from graph g by eg, 0 otherwise.  

wgg′ ∈ {0,1}, ∀g, g′

∈ G : equal to 1 if the mothership moves from xg
R to xg′

L , 0 otherwise.  
seg , ∀eg ∈ Eg (g ∈ G ): integer non negative variables representing the order of visit of edge e of graph g.  

μeg
L ∈ {0,1}, ∀e ∈ E, ∀g ∈ G : equal to 1 if the launching point xg

L to visit graph g is located on e.  

μeg
R ∈ {0,1}, ∀e ∈ E, ∀g ∈ G : equal to 1 if the rendezvous point to visit graph g is located on e.  

zee′ g
LR ∈ {0,1}, ∀e, e′

∈ E, ∀g ∈ G : equal to 1 if the launching point xg
L to visit graph g is located on e and the rendezvous point xg

R is located on e′ .  

big
LR ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀g ∈ G : equal to 1 if the mothership exits from xg

L by the vertex Vi of the edge e.  

cig
LR ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀g ∈ G : equal to 1 if the mothership enters in xg

R by the vertex Vi of the edge e.  

qeg
LR⩾0, ∀e ∈ E, ∀g ∈ G : integer variable counting the number of times the mothership fully traverses edge e to move between the launching point xg

L on e to the rendezvous point xg
R on 

e′ for graph g.  

zee′ gg′

RL ∈ {0,1}, ∀e, e′

∈ E, ∀g, g′

∈ G : equal to 1 if the rendezvous point xg
R, for graph g, is located on e and the launching point xg′

L , for graph g′ , is located on e′ .  

big
RL ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀g ∈ G : equal to 1 if the mothership exits from xg

R by the vertex Vi of the edge e.  

cig
RL ∈ {0,1}, ∀i : e = (i, j) ∈ E, ∀g ∈ G : equal to 1 if the mothership enters in xg

L by the vertex Vi of the edge e.  

qegg′

RL ⩾0, ∀e ∈ E, ∀g ∈ G : integer variable counting the number of times the mothership fully traverses edge e to move between the rendezvous point xg
R to the launching point xg′

L for 
graph g.   

Continuous Decision Variables 

ρeg ∈ [0,1] and λeg ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): defining the entry and exit points on edge eg.  

γeg
R ∈ [0,1] and γeg

L ∈ [0,1], ∀e ∈ E, ∀g ∈ G : defining the launching and rendezvous points, associated with graph g, located on edge e of the network N .  

νeg
min and νeg

max ∈ [0,1], ∀eg ∈ Eg (g ∈ G ): auxiliary variables for linearization.  

xg
L , g ∈ G : coordinates representing the point where the mothership launches the drone to visit graph g.  

xg
R , g ∈ G : coordinates representing the point where the mothership retrieves the drone to visit graph g.  

Reg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the entry point on edge e of graph g.  
Leg , ∀eg ∈ Eg (g ∈ G ): coordinates representing the exit point on edge e of graph g.  

deg
L ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the launching point xg

L on the mothership to the first visiting point Reg on eg.  

dege′g ⩾0, ∀eg ,e
′

g ∈ Eg(g ∈ G ): representing the distance travelled by the drone from launching point Leg on eg to the rendezvous point Re′g on e′

g.  
deg ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the rendezvous point Reg to the launching point Leg on eg.  

deg
R ⩾0, ∀eg ∈ Eg (g ∈ G ): representing the distance travelled by the drone from the last visiting point for graph g Leg to the rendezvous point xg

R on the mothership.  

dee′ g
LR ⩾0, ∀e, e′

∈ E, ∀g ∈ G : representing the distance travelled by the mothership from the launching point xg
L on e and the rendezvous point xg

R on e′ to visit graph g.  

dee′ gg′

RL ⩾0, ∀e, e′

∈ E, ∀g, g′

∈ G : representing the distance travelled by the mothership from the rendezvous point xg
R , for graph g, on e to the launching point xg′

L , for graph g′ , on e′ .  

dg
LR⩾0, ∀g ∈ G : representing the total distance travelled by the mothership between the launching point xg

L and the rendezvous point xg
R to visit graph g.  

dgg′

RL ⩾0, ∀g, g′

∈ G : representing the total distance travelled by the mothership between the rendezvous point xg
R , for graph g, and the launching point xg′

L , for graph g′ .   
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On the other hand, the minimum distance can be computed by taking the closest points between the graph g and the network N : 

megt
R = min

{v∈Vg ,w∈N }
‖v − w‖ = megt

L .

A.1.2. Bounds on big-M constants for distances from the launching to the rendezvous points for the MTZ/SEC formulations in AMDRPG 

To linearize the product of dgg′

RL wgg′ we use the constraints: 

pgg′ ⩾mgg′

RL dgg′

RL ,

pgg′ ⩽dgg′

RL − Mgg′

RL (1 − wgg′ ).

The upper bound on Mgg′

RL is given by the diameter of g ∪ g′ , namely Mgg′

RL = max{v∈Vg ,v′ ∈Vg′ }

⃦
⃦v − v′

⃦
⃦.

A.1.3. Bounds on big-M constants for distances from launching to rendezvous points on target graph g ∈ G . 

When the drone visits a graph g, it has to go from one edge eg to another edge e′

g depending on the order given by zege
′

g . This fact produces another 
product of variables linearized by the following constraints: 

pege′g ⩾mege′g dgg′

RL ,

pege′g ⩽dege′g − Mege′g (1 − zege′g ).

Since we are taking into account the distance between two edges e = (Beg ,Ceg ),e′

= (Be′g ,Ce′g ) ∈ Eg, the maximum and minimum distances between their 
vertices give us the upper and lower bounds: 

Mege′g = max
{⃦
⃦Beg − Ce′g

⃦
⃦,
⃦
⃦Beg − Be′g

⃦
⃦,
⃦
⃦Ceg − Be′g

⃦
⃦,
⃦
⃦Ceg − Cjg

⃦
⃦
}
,

mege′g = min{‖Beg − Ce′g‖, ‖Beg − Be′g‖, ‖Ceg − Be′g‖, ‖Ceg − Ce′g‖}.

A.1.4. Bounds on big-M constants for distances covered by the mothership on the polygonal for the PMDRPG model during one drone operation. 
In the case of PMDRPG, we can also set tighter upper bounds for the distance covered by the drone inside the polygonal during an operation that 

starts in e and finishes at e′ (or vice versa) (see (25) and (26)). This is clearly bounded above by the total length of the line segments where the 
mothership is located. 

Mee′ t
LR = Mee′ t

RL =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L (e), if e = e′

,

∑

e<e′′<e′
L

(

e′′
)

, if e < e
′

,

∑

e′<e′′<e

L

(

e′′
)

, if e > e′

.

A.1.5. Bounds on big-M constants for distances covered by the drone during an operation in models by stages. 
To link the drone operation with the mothership travel in the models by stages, we have defined the constraint (DCW-t) that includes the M: 

⎛

⎝
∑

eg∈Eg

uegtdegt
L +

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

eg∈Eg

μeg deg +
∑

eg∈Eg

vegtdegt
R

⎞

⎠

/

vD⩽dt
RL

/

vM +M

⎛

⎝1 −
∑

eg∈Eg

uegt

⎞

⎠.

To obtain this upper bound M we add to the length of the graph L (g) the big-Ms. computed for uegt and vegt, that is, Megt
L and Megt

R , and the upper bounds 
on the distances traveled by the drone to move between edges on g. Thus,: 

M = L

⎛

⎝g

⎞

⎠+Megt
L +Megt

R +
∑

eg ,e
′
g∈Eg

Mege′g .

A.2. Network Mothership-Drone Routing Problem with Graphs (NMDRPG) 

This model is a refinement of the one presented in Section 4.2. Indeed, in this case the mothership has to move on a general undirected network 
rather than on a polygonal chain. Even though the model in Section 4.2, namely PMDRPG, can be seen as a particular case of NMDRPG, for the sake of 
presentation, we have preferred to include it first to ease the understanding of the more advanced NMDRPG model. 
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As before, we start with an approach that models the problem by stages. Later, we shall extend the analysis using the rationale of connectivity, as 
already done in the previous models AMDRPG and PMDRPG. Table 13 summarizes all the parameters for this problem variant. 

Let N = (V,E) be the network that models the space of movement for the mothership. For each stage t ∈ T := {1,…,|G |}, the mothership can start 
from an edge e = (i, j) ∈ E and end in another one e′

= (i′ ,j′ ) ∈ E, moving between each other following a route on N . Thus, it must follow a route from 
the launching to the rendezvous point and vice versa, determined by a sequence of intermediate points as shown in Fig. 10. All the decision variables of 
this formulation proposed for the NMDRPG model are reported in Table 14. As already explained before in previous sections, the distance traveled by 
the mothership, between two consecutive launching and rendezvous points in two edges, not necessarily distinct, of the graph can be represented as: 

dee′ t
LR =

⎧
⎪⎨

⎪⎩

|γet
L − γet

R |L
(
e
)
, if e = e

′

,

[
bit

LRγet
L + bjt

LR
(
1 − γet

L

)]
L

(

e

)

+
∑

e′′∈N

qe′′ t
LR L

(

e′′
)

+
[
ci′ t

LRγe′ t
R + cj′ t

LR
(
1 − γe′ t

R

)]
L

(

e′

)

, ife ∕= e′

,

⎛

⎜
⎝dtN

LR

⎞

⎟
⎠

where bit
LR (resp. cit

LR) are binary variables that determine from which of the end-points of e (respectively e′ ) one has to account for the distance and qet
LR 

is an integer variable that counts how many times the mothership fully traverses the edge e. Furthermore, we need to define another binary variable 
zee′ t

LR that models the correct definition of the distance in (dtN
LR ). With the above definition one can account for the movement of the mothership at each 

stage t ∈ T from a launching to a rendezvous point: 

xt
L =

∑

e=(i,j)∈E

μet
L

[
Vi + γet

L

(
Vj − Vi)], ∀t ∈ T, (42)  

xt
R =

∑

e=(i,j)∈E

μet
R

[
Vi + γet

R

(
Vj − Vi)], ∀t ∈ T, (43)  

zee′ t
LR = μet

L μe′ t
R , ∀e, e

′

∈ E, ∀t ∈ T, (44)  

bit
LR⩽

∑

e∈δ(i)

μet
L , ∀i ∈ V, ∀t ∈ T, (45)  

cit
LR⩽

∑

e∈δ(i)

μet
R , ∀i ∈ V, ∀t ∈ T, (46)  

bit
LR + bjt

LR⩾μet
L , ∀e =

(
i, j
)
∈ E, ∀t ∈ T, (47)  

cit
LR + cjt

LR⩾μet
R , ∀e =

(
i, j
)
∈ E, ∀t ∈ T, (48)  

bit
LR +

∑

{j:(i,j)∈E}

qjit
LR =

∑

{j:(i,j)∈E}

qijt
LR + cit

LR, ∀i ∈ V, ∀t ∈ T, (49)  

∑

e∈E
μet

L = 1, ∀t ∈ T, (50)  

∑

e∈E
μet

R = 1, ∀t ∈ T, (51)  

dt
LR =

∑

e,e′ ∈E

zee′ t
LR dee′ t

LR , ∀t ∈ T. (52)  

Constraints (42) and (43) parameterize the launching and rendezvous points in the network N at stage t. Constraints (44) set the binary variables zee′ t
LR 

by means of the binary variables μet
L and μe′ t

R . Constraints (45) and (46) state that if the launching point (resp. rendezvous point) is not on the edge e, the 
mothership cannot go (resp. exit) to the vertex that is incident to e. Constraints (47) state that if the mothership leaves the edge e to go to e′ , it must exit 
from one of the incident vertices to e. In the same way, constraints (48) express that if the mothership leaves the edge e′ to go to e, it must enter to the 
edge e from one of its incident vertices. Flow conservation constraints (49) ensure that the number of incoming edges to each vertex i is equal to the 
number of outgoing edges in the route followed by the mothership. Constraints (50) and (51) state that, in each stage, the selected points can be 
located only on one edge. Finally, constraints (52) define the total distance between the launching and the rendezvous points at stage t. 

Similarly, the distance covered by the mothership along the path on the network from the rendezvous point xt
R to the next launching point xt+1

L can 
be modeled using the following definition of distance: 

dee′ t
RL =

⎧
⎪⎨

⎪⎩

|γet
R − γet+1

L |L
(
e
)
, if e = e′

,

[
bit

RLγet
R + bjt

RL
(
1 − γet

R

)]
L
(
e
)
+
∑

e′′∈N

qe′′ t
RL L

(
e′′
)
+
[
ci′ t

RLγe′ t+1
L + cj′ t

RL
(
1 − γe′ t+1

L

)]
L
(
e′)

, if e ∕= e′

.
(
dtN

RL

)
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In this case, the binary variable zee′ t
RL links the rendezvous point at stage t with the launching point at stage t + 1. Then, we can use a set of constraints 

similar to those used above and the distance from xt
R to xt+1

L can be computed by means of the following additional constraints: 

zee′ t
RL = μet

R μe′ t+1
L , ∀e, e′

∈ E, ∀t ∈ T, (53)  

bit
RL⩽

∑

e∈δ(i)

μet
R , ∀i ∈ V, ∀t ∈ T, (54)  

cit
RL⩽

∑

e∈δ(i)

μet
L , ∀i ∈ V, ∀t ∈ T, (55)  

bit
RL + bjt

RL⩾μet
R , ∀e =

(
i, j
)
∈ E, ∀t ∈ T, (56)  

cit
RL + cjt

RL⩾μet+1
L , ∀e =

(
i, j
)
∈ E, ∀t ∈ T, (57)  

bit
RL +

∑

{j:(i,j)∈E}

qjit
RL =

∑

{j:(i,j)∈E}

qijt
RL + cit

RL, ∀i ∈ V, ∀t ∈ T, (58)  

∑

e∈E
μet

L = 1, ∀t ∈ T, (59)  

∑

e∈E
μet

R = 1, ∀t ∈ T, (60)  

dt
RL =

∑

e,e′ ∈E

zee′ t
RL dee′ t

RL , ∀t ∈ T. (61)  

Constraints (53) set the binary variables zee′ t
RL by means of the binary variables μet

R and μe′ t+1
L . Constraints (54) and (55) state that if the rendezvous point 

(resp. launching point) is not on the edge e, the mothership cannot go (resp. exit) to the end vertices of the edge e. Constraints (56) state that if the 
mothership leaves the edge e, it must exit via one of the end vertices of e. In the same way, constraints (57) state that if the mothership goes to the edge 
e, it necessarily must enter to e from one incident vertex of e. Flow conservation constraints (58) ensure that in the route followed by the mothership 
the number of used incoming edges to each vertex i is equal to the number of used outgoing edges. Constraints (59) and (60) state that, in each stage, 
the selected points can be only on one edge. Constraints (61) express the total distance between the rendezvous and the launching points at stage t. 

Hence, once the distances inside the graph are set with the above two families of constraints, we can state the mathematical programming 
formulation of the problem as: 

min
∑

g∈G

∑

eg∈Eg

∑

t∈T

⎛

⎝uegtdegt
L + vegtdegt

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

t∈T

⎛

⎝dt
RL + dt

LR

⎞

⎠

⎛

⎝NMDRPG-ST

⎞

⎠

s.t. (1)–(7) 
(42)–(61) 
(MTZ1)–(MTZ2) or (SEC)
(α − E) or (α-G)
(DCW-t)
(dtN

LR ), (d
tN
RL )

(ORIG1)–(DEST2)

Again, the objective function has four terms: the first three compute the distances traveled by the drone, while the last one computes the distances 
traveled by the mothership. Constraints (1)–(7) model the tour made by the drone. Constraints (42)–(61) model the path followed by the mothership in 
the graph. The rest of the constraints are similar to those explained in the formulation (AMDRPG-ST). 

A.2.1. MTZ formulation for the Network Mothership-Drone Routing Problem with Graphs 
In order to apply this type of constraints to model connectivity of the routes we have to reformulate the expressions for the distances so that they 

are not related to stages. Table 15 summarizes the variables required to formulate this model. In this case, we observe that the distance between 
launching and rendezvous points in two edges e = (i, j), e′

= (i′ , j′ ) ∈ E, not necessarily distinct, of the graph can be represented as: 

dee′ g
LR =

⎧
⎨

⎩

|γeg
L − γeg

R |L (e), ife = e′

,

[
big

LRγeg
L + bjg

LR
(
1 − γeg

L
)]

L

(

e

)

+
∑

e′′∈N

qe′′g
LR L

(

e′′
)

+
[
ci′ g

LRγe′ g
R + cj′ g

LR
(
1 − γe′ g

R
)]

L

(

e
′

)

, ife ∕= e
′

,

⎛

⎝dgN

LR

⎞

⎠

where big
LR (resp. cig

LR) are binary variables that determine from which of the end-points of e (respectively e′ ) one has to account for the distance and qeg
LR 

is a binary variable that is equal to one when the mothership fully traverses the edge e. Furthermore, we need to define binary variables zee′ g
LR that model 

the choice of the model for right definition (first or second formulas of the distance in (dgN

LR ). All the above arguments give the necessary elements to 
account for the movement of the mothership on the network N = (V,E): 
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xg
L =

∑

e=(i,j)∈E

μeg
L
[
Vi + γeg

L
(
Vj − Vi)], ∀g ∈ G , (62)  

xg
R =

∑

e=(i,j)∈E

μeg
R
[
Vi + γeg

R
(
Vj − Vi)], ∀g ∈ G , (63)  

zee′ g
LR = μeg

L μe′ g
R , ∀e, e

′

∈ E, ∀g ∈ G , (64)  

big
LR⩽

∑

e∈δ(i)

μeg
L , ∀i ∈ V, ∀g ∈ G , (65)  

cig
LR⩽

∑

e∈δ(i)

μeg
R , ∀i ∈ V, ∀g ∈ G , (66)  

big
LR + bjg

LR⩾μeg
L , ∀e =

(
i, j
)
∈ E, ∀g ∈ G , (67)  

cig
LR + cjg

LR⩾μeg
R , ∀e =

(
i, j
)
∈ E, ∀g ∈ G , (68)  

big
LR +

∑

{j:(i,j)∈E}

qjig
LR =

∑

{j:(i,j)∈E}

qijg
LR + cig

LR, ∀i ∈ V, ∀g ∈ G , (69)  

∑

e∈E
μeg

L = 1, ∀g ∈ G , (70)  

∑

e∈E
μeg

R = 1, ∀g ∈ G , (71)  

dg
LR =

∑

e,e′ ∈E

zee′ g
LR dee′ g

LR , ∀g ∈ G . (72)  

Constraints (62) and (63) parameterize the launching and rendezvous points in the network N induced by the visit to the graph g ∈ G . Constraints 

(64) set the binary variables zee′ g
LR by means of the binary variables μeg

L and μe′ g
R . Constraints (65) and (66) state that if the launching point (resp. 

rendezvous point) is not on the edge e, the mothership cannot go (resp. exit) to the vertices of the edge e. Constraints (67) state that if the mothership 
leaves the edge e, it must exit from one of the incident vertices to e. In the same way, constraints (68) state that if the mothership leaves the edge e′ , it 
necessarily must enter to e from one incident vertex of e. Flow conservation constraints (69) ensure that, in the route to be defined, the number of 
incoming edges to each vertex i is equal to the number of outgoing edges. Constraints (70) and (71) state that, for the visit to the graph g ∈ G , 
launching and rendezvous points can be only on one edge. Constraints (72) returns the total distance traveled by the drone on the graph g ∈ G . 

Similarly, the distance covered by the mothership along the path on the network N , from the rendezvous point xg
R ∈ e, after the visit to g ∈ G to the 

next launching point xg′

L ∈ e′ (to go to the graph g′

∈ G ), can be modeled using the following definition of distance: 

dee′ gg′

RL =

⎧
⎨

⎩

|γeg
R − γeg′

L |L (e), if e = e′

,

[
big

RLγeg
R + bjg

RL
(
1 − γeg

R
)]

L

(

e

)

+
∑

e′′∈N

qe′′gg′

RL L

(

e′′
)

+
[
ci′ g′

RL γe′ g′

L + cj′ g′

RL
(
1 − γe′ g′

L
)]

L

(

e′

)

, if e ∕= e′

.

⎛

⎝dgN

RL

⎞

⎠

In this case, the binary variable zee′ gg′

RL links the rendezvous point at g with the launching point at g′ . Then, we can use a set of constraints similar to those 

used above and the distance from xg
R to xg′

L can be computed by means of the following additional constraints: 

zee′ gg′

RL = μeg
R μe′ g′

L , ∀e, e′

∈ E, ∀g, g′

∈ G , (73)  

big
RL⩽

∑

e∈δ(i)

μeg
R , ∀i ∈ V, ∀g ∈ G , (74)  

cig
RL⩽

∑

e∈δ(i)

μeg
L , ∀i ∈ V, ∀g ∈ G , (75)  

big
RL + bjg

RL⩾μeg
R , ∀e =

(
i, j
)
∈ E, ∀g ∈ G , (76)  

cig
RL + cjg

RL⩾μeg
L , ∀e =

(
i, j
)
∈ E, ∀g ∈ G , (77)  

big
RL +

∑

{j:(i,j)∈E}

qjigg′

RL =
∑

{j:(i,j)∈E}

qijgg′

RL + cig′

RL, ∀i ∈ V, ∀g, g′

∈ G , (78)  

dgg′

RL =
∑

e,e′ ∈E

zee′ gg′

RL dee′ gg′

RL , ∀g, g′

∈ G . (79)  
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Hence, once the distances inside the graph are set with the above two families of constraints, we can state the mathematical programming formulation 
of the problem as: 

∑

g∈G

∑

eg∈Eg

⎛

⎝ueg deg
L + veg deg

R

⎞

⎠+
∑

g∈G

∑

eg∈Eg

μeg deg +
∑

g∈G

∑

eg ,e
′
g∈Eg

zege′g dege′g +
∑

g∈G

dg
LR +

∑

g,g′ ∈G

dgg′

RL wgg′

⎛

⎝NMDRPG-MTZ

⎞

⎠

s.t. (10)–(17) 
(62)–(79) 
(MTZ1)–(MTZ2) or (SEC)
(MTZ3)–(MTZ6) or (SEC)
(α − E) or (α-G)
(DCW-g)
(dgN

LR ), (dgN

RL )

(DIST1− g)–(DIST6− g) 
(ORIG1)–(DEST2)
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Abstract

In this paper, a model that combines the movement of a multivisit drone with a limited endurance and a
base vehicle that can move freely in the continuous space is considered. The mothership is used to charge
the battery of the drone, whereas the drone performs the task of visiting multiple targets of distinct shapes:
points and polygonal chains. For polygonal chains, it is required to traverse a given fraction of its lengths
that represent surveillance/inspection activities. The goal of the problem is to minimize the overall weighted
distance traveled by both vehicles. A mixed integer second-order cone program is developed and strengthened
using valid inequalities and giving good bounds for the Big-M constants that appear in the model. A refined
matheuristic that provides reasonable solutions in short computing time is also established. The quality of
the solutions provided by both approaches is compared and analyzed on an extensive battery of instances
with different number and shapes of targets, which shows the usefulness of our approach and its applicability
in different situations.

Keywords: routing; networks; logistics; drones; mixed integer conic programming

1. Introduction

Increasingly frequent new technologies, such as robots, self-driving vehicles, and drones, are used
to replace humans in some activities, especially the most repetitive or dangerous ones (Chui
et al., 2016), or to create infrastructures and service networks alternative to traditional ones (see,
e.g., Amorosi et al., 2019; Chiaraviglio et al., 2019). In this context, many management and co-
ordination problems arise, which can also be addressed and solved by means of optimization
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models. The variety of problems and applications in this area has already led to a wide scien-
tific production and to the development of extensions of existing combinatorial optimization mod-
els (see, e.g., Di Puglia Pugliese and Guerriero, 2017) or to the formalization of new classes of
problems, also by resorting to nonlinear programming as in Amorosi et al. (2021a) and Amorosi
et al. (2021b). In Cavani et al. (2021), Roberti and Ruthmair (2021), and Coindreau et al. (2021),
the authors study exact methods for the traveling salesman problem with one or multiple drones.
An interesting literature review on drone routing problems is presented in Macrina et al. (2020).
In particular, the use of drone technology in various sectors is a well-studied topic that contin-
ues to receive growing interest (see, e.g., Vidal et al., 2020; Coindreau et al., 2021; Dell’Amico
et al., 2022; Mbiadou Saleu et al., 2021; Wang et al., 2022). Indeed, in a context where the ur-
gency of sustainable solutions with low environmental impact is growing, this technology repre-
sents a valid alternative to the use of traditional means of transport. Furthermore, drones can
also reach areas that are difficult to be reached by people and in a faster and safer way. Ex-
amples of this can be found both in parcel delivery and in many inspection and monitoring ac-
tivities also in postdisaster contexts (for extensive surveys, see Otto et al., 2018; Chung et al.,
2020; Rojas Viloria et al., 2021). In this work, we refer to these latter activities, resorting to
the use of one drone supported by a mothership vehicle working as a mobile recharging sta-
tion to manage its limited endurance. Such a system requires coordination and synchronization
of the vehicles involved. In Amorosi et al. (2021a), the authors studied the mothership drone
routing problem with graphs (AMDRPG) where one drone is supported by a mothership, and
they formulated the coordination problem to visit a set of target graphs by minimizing the to-
tal distance traveled by both vehicles. In Amorosi et al. (2021b), an extension of this problem
with multiple drones, called the mothership and multiple drones routing problem with graphs
has been investigated. In this paper, we face the case in which one drone, supported by a moth-
ership vehicle, must visit a set of targets but, differently with respect to the previously men-
tioned works, in each mission, the drone can visit more than one target or a portion of it. We
assume that the mothership can move freely in the continuous space and we consider two pos-
sible shapes of the target to be visited: (i) the targets are points or (ii) the targets are polygonal
chains. This is an important contribution of this work as compared with recent papers in the lit-
erature where launching and retrieving points are forced to be nodes of a given network and the
targets are always points (Cavani et al., 2021; Coindreau et al., 2021; Dell’Amico et al., 2022).
We mathematically formulate the problem as a mixed integer nonlinear programming (MINLP)
model for which we also derive valid inequalities to reinforce it. Moreover, to deal with larger
sized instances, we design alternative matheuristic procedures. Extensive computational experi-
ments are performed reporting the usefulness of our exact and heuristic methods to solve the
problem.

The rest of this paper is structured as follows. Section 2 describes the problem details and the
proposed mathematical programming formulation. Section 3 discusses a strengthening of the for-
mulation also by resorting to valid inequalities. Section 4 presents (alternative) matheuristic proce-
dures to deal with larger sized instances of the problem. Section 5 reports the experimental results
obtained by testing the model on different instances of points and polygonal chains and the com-
parison with the ones provided by the matheuristic algorithms to evaluate their usefulness. Finally,
Section 6 concludes the paper.

© 2022 The Authors.
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2. Problem description and valid formulation

2.1. Problem description

In the multitarget mothership and drone routing problem (Multitarget-MDRP), there exists one
drone that has to be coordinated with one mothership (that plays the role of the base vehicle)
to complete a number of operations consisting on visiting some targets. All these targets must
be visited by the drone before finishing the complete tour. Both vehicles start at a known loca-
tion, denoted orig, then they depart to perform all the operations and, once all the targets are
visited, they must return together to a final location, called dest. We refer to an operation as
the sequence of launching the drone from the mothership, visiting one or more targets and re-
turning to the mothership. The shapes of the targets that are considered in this paper are points
and polygonal chains. A similar analysis allows to extend the model from points to convex sets
as well as from polygonal chains to general graphs (see Amorosi et al., 2021a, 2021b). Neverthe-
less, for the sake of simplicity and to improve the readability of this paper, we restrict ourselves
to the abovementioned cases that already capture the essence of the problem. The operation of
visiting a point consists in getting to it and coming back, whereas for polygonal chains the drone
has to traverse a given fraction of its length for considering a successful visit. In Amorosi et al.
(2021a) and Puerto and Valverde (2021), the idea of traversing a polygonal chain is discussed, and
the authors consider two different modes: (1) visiting a fraction of the total length of the graph
and (2) traversing a given fraction of the length of each one of its segments. From an applica-
tion point of view, the reader may understand these operations as reliability inspections so that
testing a given fraction of the target suffices to certify a correct operation. Looking at the diffi-
culty of these operation modes, the computational results reported in those works suggest that
there is not a meaningful difference in terms of the difficulty induced by the considered mode of
visit. Hence, for the sake of simplicity, in this paper we consider only a simpler form of the first
case where the drone, once it enters the polygonal chain, has to traverse the entire required frac-
tion before leaving the target. In other words, no preemption is allowed. We also assume that the
mothership and the drone travel at constant velocities νM and νD, respectively, although it can be
extended to more general cases where these velocities can be modeled as a time-dependent func-
tion. Moreover, the drone has a limited time N (endurance) to complete each operation and return
to the base vehicle to recharge batteries. We assume that the drone and the base vehicle move-
ments follow straight lines on a continuous space. This assumption can model the case where the
base vehicle is a helicopter or a boat, so that there are no obstacles or restrictions to its move-
ment. Nowadays, this type of system consisting of a boat and a fleet of drones is used, for ex-
ample, by coast guards to perform surveillance activities to identify immigrants that need help in
the sea (see AltiGator, 2015). This implies that Euclidean distance is used to measure displace-
ments.

Figure 1 shows an example of the problem framework, where the black squares represent the
origin and the destination of the mothership tour.

Moreover, at each operation, the drone must be launched from the base vehicle (the launching
points have to be determined) and it must be retrieved when its battery needs to be recharged (the
rendezvous points also have to be determined). It is assumed that the time spent by the drone to visit
the targets associated with an operation must be lower than or equal to the time that the mothership

© 2022 The Authors.
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4 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

Fig. 1. Example of problem instance with polygonal targets.

needs to move from the launching point to the rendezvous point for this operation. Furthermore, it
is supposed that the cost produced by the drone’s trip is lower compared to that incurred by the base
vehicle. Therefore, the goal is to minimize the weighted total distance traveled by the mothership
and the drone. Some works assume that this cost is negligible in comparison with the mothership
(Amorosi et al., 2021a). The reader may note that the extension not including the distances trav-
eled by the drone in the objective function is straightforward by setting the corresponding weight
to zero.

The goal of the Multitarget-MDRP is to find the launching and rendezvous points of the drone
satisfying the visit requirements for the targets in T and minimizing the weighted length of the
paths traveled by the mothership and the drone.

2.2. Mixed Integer Nonlinear Programming Formulations

The purpose of this section is to present an MINLP formulation for the Multitarget-MDRP that
can be applied to solve instances of this problem.

© 2022 The Authors.
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Table 1
Nomenclature for the Multitarget-MDRP

Problem parameters

Parameter name Range Description

orig R2 Coordinates of the point defining the origin of the
mothership path (or tour).

dest R2 Coordinates of the point defining the destination of the
mothership path (or tour).

B {b1, . . . , b|B|} Set of points.
b = (b(x1), b(x2)) R2 Coordinates of the point b ∈ B.
P {p1, . . . , p|P|} Set of polygonal chains.
p = (Vp, Sp) R2 Set of breakpoints and segments of each polygonal chain

p ∈ P .
V = B ∪ (

⋃
p∈P Vp) R2 Set of target points and set of breakpoints of polygonal

targets/
L(p) R+ Total length of the polygonal chain p ∈ P .
L(sp) R+ Length of the segment sp of the polygonal chain p ∈ P .
Bvp R2 Coordinates of the point vp of the polygonal p ∈ P .
T = B ∪ P {b1, . . . , b|B|, p1, . . . , p|P|} Set of targets.
O {o1, . . . , o|O|} Set of operations.
αt [0, 1] Fraction of the target that must be visited. If t is a point,

αt = 0.
νδ R+ Drone speed.
νM R+ Mothership speed.
ωδ R+ Weighting factor for the distance covered by the drone.
ωM R+ Weighting factor for the distance covered by the mothership.
N R+ Drone endurance.
M R+ Big-M constant.
m R+ Small-M constant.

In Section 2.1, we mention that the mothership can move without any restriction in a continuous
space that for simplicity is supposed to be R2. Although it is possible to measure distances with any
lτ -norm, 1 ≤ τ ≤ ∞ (see Blanco et al., 2017), for the sake of presentation, in this work the distances
are measured by the Euclidean norm (τ = 2).

First of all, we introduce the parameters or initial data that formally describe the problem and
that are summarized in Table 1.

Tables 2 and 3 detail the set of binary and continuous decision variables that appear in the for-
mulation, respectively.

To represent the movement of the drone within a polygonal p ∈ P , we proceed to introduce some
notation related to p. Let p = (Vp, Sp) be a polygonal chain in P whose total length is denoted by
L(p). Here, Vp denotes the set of vertices and Sp denotes the set of segments connecting pairs of
consecutive vertices whose cardinality is |Sp|. Let sp = vp(v + 1)p be the segment s of the polygonal
p ∈ P and let L(sp) be its length. Since we need to refer to interior points of the segment sp, these
continuum of points is parameterized by the two endpoints Bvp = (Bvp (x1), Bvp (x2)) and B(v+1)p =
(B(v+1)p (x1), B(v+1)p (x2)) of the segment: x ∈ [Bvp, B(v+1)p] if and only if ∃ γ ∈ [0, 1] such that x =
γ Bvp + (1 − γ )B(v+1)p. Hence, the length of the segment sp is L(sp) = ‖Bvp − B(v+1)p‖.

© 2022 The Authors.
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6 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

Table 2
Summary of binary variables used in the mathematical programming model

Binary decision variables

Name Set Domain Description

μ
sp
A sp ∈ Sp : p ∈ P Binary 1, if the arrival point on the polygonal chain is located in the line

segment sp, 0, otherwise.
μ

sp
D sp ∈ Sp : p ∈ P Binary 1, if the departure point on the polygonal chain is located in the

line segment sp, 0, otherwise.

z
sps′p
p sp, s′

p ∈ Sp : p ∈ P Binary 1, if the arrival and departure points are located in the line
segments sp and s′

p, respectively, 0, otherwise.
uto

L t ∈ T , o ∈ O Binary 1, if the drone starts the operation o in the target t, 0, otherwise.
uto

R t ∈ T , o ∈ O Binary 1, if the drone finishes the operation o in the target t, 0, otherwise.
χ to t ∈ T , o ∈ O Binary 1, if the drone visits the target t in the operation o, 0, otherwise.
ytt′o t, t′ ∈ T , o ∈ O Binary 1, if the drone goes from the target t to the target t′ in the

operation o, 0, otherwise.

Next, we need to determine the placement of the arrival point, Ap, on the polygonal chain p
introducing the following inequalities for each p ∈ P :

Ap ∈ p ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
1p

A ≤ μ
1p

A ,

γ
sp

A ≤ μ
sp−1
A + μ

sp

A , sp ∈ Sp \ {1},
γ

|Vp|p

A ≤ μ
|Sp|p

A ,∑
sp∈Sp

μ
sp

A = 1,

∑
vp∈Vp

γ
vp

A = 1,

Ap =
∑

vp∈Vp

γ
vp

A Bvp.

(P-C)

The first, second, and third inequalities link μ
sp

A and γ
sp

A variables: they state that the variable γ
sp

A
that gives the representation of a point Ap on the line segment sp is active (nonnull) only if this line
segment is chosen to enter in polygonal p, that is, μ

sp

A = 1. The fourth equation sets that only one
line segment is chosen for entering each polygonal chain. Finally, the fifth and sixth equations set
the representation of Ap as a convex combination of the extreme points of the selected line segment.
In the same way, we can model the location of the departure point, Dp, by using the variables Dp,
μ

sp

D , and γ
sp

D explained in Tables 2 and 3, respectively.
In our approach to model the Multitarget-MDRP we use operations identified with the order in

which the different elements in the problem are visited. Let us denote by O the set of operations
that the mothership and the drone have to carry out. An operation o ∈ O is referred to as the one in
which the mothership launches a drone from a taking-off location, denoted by xo

L and later it takes it
back on a rendezvous location xo

R. Each operation consists in the drone visit to one or more targets

© 2022 The Authors.
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Table 3
Summary of continuous variables used in the mathematical programming model

Continuous decision variables

Name Set Domain Description

At t ∈ T R2 Coordinates representing the arrival point on the target t. If the
target is a point, it coincides with Dt .

γ
vp
A vp ∈ Vp : p ∈ P [0, 1] Parameterization of the arrival point Ap on the segment

sp = vp(v + 1)p of the polygonal chain.
Dt t ∈ T R2 Coordinates representing the departure point on each target. If the

target is a point, it coincides with At .
γ

vp
D vp ∈ Vp : p ∈ P [0, 1] Parameterization of the departure point Dp on the segment

sp = vp(v + 1)p of the polygonal chain.
xo

L o ∈ O R2 Coordinates representing the point where the mothership launches
the drone at operation o.

xo
R o ∈ O R2 Coordinates representing the point where the mothership retrieves

the drone at operation o.
dto

L t ∈ T , o ∈ O R+ Distance traveled by the drone from the launching point xo
L on the

mothership to the first target point At associated to the operation
o.

dtt′
out t, t′ ∈ T R+ Distance traveled by the drone from the departure point Dt on one

target to the arrival point At′ on another one.
dto

R t ∈ T , o ∈ O R+ Distance traveled by the drone from the departure point of the last
visited target Dt to the rendezvous point xo

R associated to the
operation o.

do
LR o ∈ O R+ Distance traveled by the drone from the launching point xo

L to the
rendezvous point xo

R at operation o.
do

RL o ∈ O \ {|O|} R+ Distance traveled by the mothership and the drone from the
rendezvous point xo

R at operation o to the launching point xo+1
L at

the operation o + 1.

d
sps′p
p sp, s′

p ∈ Sp : p ∈ P R+ Distance traveled by the drone from the departure point on the
segment sp on one polygonal to the arrival point on the segment
s′

p of the same polygonal.
dt

in t ∈ T R+ Distance traveled by the drone from the arrival point At to the
departure point Dt on the same target. If the target is a point, this
distance is 0.

in T with the required constraints. At this point, it is relevant to note that the pair of locations
xo

L and xo
R must be selected in the plane where the mothership is presumed to move. Observe that

|O| ≤ |T | because of the assumption that at least one target is visited for each operation.
Figure 1 shows an example of a problem instance with four polygonal targets. The point orig

from where the mothership together with the drone must start their tour, is located in the origin,
while the destination point dest is the point (100,100).

To include the definition of the paths followed by the drone in our mathematical programming
formulation, we need to make decisions to choose:

• the optimal assignment of targets to each operation o;
• the optimal order to visit targets for its corresponding operation o.

© 2022 The Authors.
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8 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

We can model the route followed by the drone using the binary variables uto
L , ytt′o, χ to, and uto

R
defined in Table 2:∑

t∈T
uto

L ≤ 1, ∀o ∈ O, (1)

∑
t∈T

uto
R ≤ 1, ∀o ∈ O, (2)

∑
o∈O

χ to = 1, ∀t ∈ T , (3)

χ to − uto
L =

∑
t′ 
=t

yt′to, ∀t ∈ T , ∀o ∈ O, (4)

χ to − uto
R =

∑
t′ 
=t

ytt′o, ∀t ∈ T , ∀o ∈ O, (5)

∑
t,t′∈S

ytt′o ≤ |S| − 1, ∀S � T , ∀o ∈ O. (6)

Constraints (1) and (2) state that for each operation the drone can only enter and exit, respec-
tively, by one target. Constraints (3) ensure that every target will be visited in some operation.
Constraints (4) assure that if target t is visited by the drone for the operation o, one of two alterna-
tive conditions must take place: either t is the first target for the operation o or target t is visited by
the drone after visiting another target t′ for the operation o. Similarly, constraints (5) state that if the
target t for the operation o is visited by the drone, either t is the last target of the operation, or the
drone must move to another target t′ of the operation o after visiting target t. Finally, inequalities
(6) are the subtour elimination constraints (SEC) applied to each operation. Note that the complete
family of SEC constraints cannot be included in the model when we implement this formulation,
because there is an exponential number of them and it can induce a memory problem on-the-shelf
solvers. This problem can be solved by performing a row generation procedure that includes the
constraints whenever they are needed by a separation oracle. To detect these SEC inequalities, as
usual, we look for disconnected components in the current solution. Among them, we choose the
shortest subtour found in the solution to be added as a lazy constraint to the model to make the
formulation easier to be solved.

To take into account the different distances among the decision variables of the model, we need
to set the continuous variables dto

L , dtt′
out, dt

in, dto
R , do

RL, and do
LR, defined in Table 3. This can be done

by means of the following constraints:

‖xo
L − At‖ ≤ dto

L , ∀t ∈ T , ∀o ∈ O, (DIST1)

‖At − Dt′‖ ≤ dtt′
out, ∀t, t′ ∈ T , (DIST2)

‖Dt − xo
R‖ ≤ dto

R , ∀t ∈ T , ∀o ∈ O, (DIST3)

‖xo
L − xo

R‖ ≤ do
LR, ∀o ∈ O. (DIST4)

‖xo
R − xo+1

L ‖ ≤ do
RL, ∀o ∈ O \ {|O|}. (DIST5)

© 2022 The Authors.
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L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27 9

Note that dt
in is zero when the target is a point. However, to compute the distance inside the

polygonal, we need to set the following expressions for each p ∈ P :

d
sps′

p
p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|γ sp

A − γ
s′

p

D |L(sp), if sp = s′
p,

(1 − γ
sp

D )L(sp) + ∑s′
p−1

s′′=sp+1 L(s′′) + γ
s′

p

A L(s′
p), if sp < s′

p,

γ
sp

D L(sp) + ∑sp−1
s′′=s′

p+1 L(s′′) + (1 − γ
s′

p

A )L(s′
p), if sp > s′

p.

(dP)

This expression needs to define a binary variable zp that determines whether dp is defined by the
first, the second or the third expression in the formula:

z
sps′

p
p = μ

sp

A μ
s′

p

D .

Finally, we can compute the total distance between the departure and the arrival points in each
polygonal p ∈ P :

d p
in =

∑
sp,s′

p∈Sp

d
sps′

p
p z

sps′
p

p . (DIST6)

Moreover, to include the requirement of visiting a fraction αp of each polygonal chain p, we need
to impose that

d p
in ≥ αpL(p). (α − P)

There exists a special case of the above condition, when all segments of the polygonal chain have
the same length, which enables a simplified representation. We refer the interested reader to the
Appendix A for further details of these constraints.

The coordination between the drone and the mothership must ensure that the time spent by the
drone to do the operation o is less than or equal to the time that the mothership needs to move
from the launching point to the rendezvous point during this operation. To this end, we include the
following coordination constraint for each operation o ∈ O:

1
vδ

⎛
⎝∑

t∈T
uto

L dto
L +

∑
t,t′∈T

ytt′odtt′
out +

∑
t∈T

χ todt
in +

∑
t∈T

uto
R dto

R

⎞
⎠ ≤ do

LR

vM
. (DCW)

Eventually, we have to impose that the tour of the mothership, together with the drone, starts
from the origin orig and ends at the destination dest. This is ensured by including the following
constraints:

x0
L = orig, (ORIG1)

x0
R = orig, (ORIG2)

© 2022 The Authors.
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10 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

x|O|+1
L = dest, (DEST1)

x|O|+1
R = dest. (DEST2)

Observe that one of the addends of the objective function of this problem minimizes the right-
hand side of (DCW). Thus, this constraint will become an equality and thus, it is able to model the
time endurance restriction for a particular operation o ∈ O by limiting the space traveled by the
mothership for this operation:

do
LR ≤ N. (Endurance)

The goal of the Multitarget-MDRP is to find a feasible solution that minimizes the total weighted
distance traveled by the mothership and the drone. The following formulation, which includes all
the constraints explained before, gives an exact model for this problem:

min ωδ

⎛
⎝∑

t∈T

∑
o∈O

uto
L dto

L +
∑
t∈T

∑
o∈O

χ todt
in +

∑
t 
=t′∈T

∑
o∈O

ytt′odtt′
out +

∑
t∈T

∑
o∈O

uto
R dto

R

⎞
⎠

(Multitarget − MDRP)

+ ωM

⎛
⎝∑

o∈O
do

LR +
∑

o∈O\{|O|}
do

RL

⎞
⎠

s.t. (1) − (6),

(P-C), (α-P ),

(DCW ),

(Endurance),

(dP ),

(DIST 1) − (DIST 6),

(ORIG1) − (DEST 2).

The objective function describes the weighted distances traveled by the drone and the mothership,
respectively. Constraints (1)–(6) model the path made by the drone; (P-C) and (α − P) describe the
location of the arrival and departure points and the requirement of visiting an α fraction for the
polygonal chain p ∈ P , respectively. Constraint (dP) computes the distance between each pair of
segments in the polygonal chain. Constraints (DIST1)–(DIST6) set the variables dto

L , dtt′
out, dto

R , do
LR,

do
RL, and dt

in, defined in Table 3, which set the Euclidean distances required in the model.
Note that, to handle the bilinear terms that appear in the objective function and in the (DCW)

constraint, we use McCormick’s envelope to linearize these terms by including variables q ≥ 0

© 2022 The Authors.
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L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27 11

Fig. 2. Optimal solution obtained for the data of the example.

representing the products and introducing the following constraints:

q ≤ Mz,

q ≤ d,

q ≥ mz,

q ≥ d − M(1 − z),

where m and M are, respectively, the lower and upper bounds of the distance variable d . These
bounds will be tightened for each bilinear term in Section 3.

Figure 2 shows an example of the solution obtained by means of the exact method solving the
formulation. We run the model on the same example of Fig. 1 and we obtained the optimal solu-
tion consisting in the mothership tour, represented by the bold polygonal chain starting from the
origin orig, ending at the destination dest, and with drone movements represented with the dotted
segments. The mothership launches the drone for its first operation from x1

L. The drone flies to the
arrival point A1 for visiting a portion (50%) of the first target. It leaves the first target at point D1

and meets the mothership at point x1
R. This point is also the launching point from where the drone

© 2022 The Authors.
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12 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

Fig. 3. Binary decision variables associated to each target.

starts its second operation by visiting the second target. From that point, it flies to point A2 and
traverses the portion of the second target from A2 to D2. Then, the drone flies to point x2

R where it
meets again the mothership. From this point, the drone starts its last operation by visiting the third
and the fourth targets. Indeed, after visiting the third target from point A3 to point D3, it directly
flies to point A4 of the last target. It visits the required portion of this last target from point A4

to D4 and then meets the mothership at point x3
R. The mothership and the drone complete their

service at the destination dest.
Figure 3 shows a zoom on the last two targets of the example of the solution reported in Fig. 2.

We can visualize in detail the values of the different binary variables introduced in the formula-
tion to define the order of visit of the targets, the launching and rendezvous points and thus the
mothership and drone tours. In particular, variable u33

L = 1 indicates that the third operation of
the drone starts in the third target from point A3. This point is located on the line segment 2
of the polygonal target 3, μ

23
A = 1, and it is also the rendezvous point x2

R of the second opera-
tion. The visit on the third target ends at the departure point D3 that is located on the line seg-
ment 4 of the polygonal target 3, μ

43
A = 1. Indeed, the visit of target 3 starts in segment 2 and

ends in segment 4, z24
3 = 1. From this point, always during the third operation, the drone directly

flies to the last target, that is, target 4, y343 = 1. The visit of the target 4 starts from the point
A4, located on the line segment 2, μ

24
A = 1, and ends at the departure point D4, located on the

line segment 4, μ
44
A = 1. Eventually, the third and last operations of the drone finish on target 4,

u43
R = 1.

© 2022 The Authors.
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L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27 13

3. Strengthening the formulation of Multitarget-MDRP

3.1. Preprocessing

In this subsection, we explore the nature of the problem to fix a priori some variables and to increase
the efficiency of the model. Particularly, the following proposition allows to fix ytt′o binary variables
to zero.

Proposition 1. Let t, t′ ∈ T be two targets. Let dmin(t, t′) denote the minimum distance between them
and length(t), the length of the target t. If t, t′ verify that

αt length(t) + dmin(t, t′) + αt′
length(t′) >

vδ

vM
N, (7)

then the drone cannot visit in a single operation t and t′.

Proof. Let us assume that the drone can go from t to t′ in the operation o. Then it must satisfy
(Endurance) and (DCW) constraints:∑

t∈T
uto

L dto
L +

∑
t,t′∈T

ytt′odtt′
out +

∑
t∈T

χ todt
in +

∑
t∈T

uto
R dto

R ≤ vδ

vM
N.

Since dto
L , dto

R ≥ 0, the left-hand side of this inequality can be bounded from below by the left-
hand side of (7):

αt length(t) + dmin(t, t′) + αt′
length(t′) ≤

∑
t∈T

uto
L dto

L +
∑

t,t′∈T
ytt′odtt′

out +
∑
t∈T

χ todt
in +

∑
t∈T

uto
R dto

R ,

which is impossible because each side is lower (resp., upper) bounded by vδ

vM
N. �

3.2. Valid inequalities for the Multitarget-MDRP

In this subsection, we introduce some valid inequalities for Multitarget-MDRP that strengthen the
formulation presented in Section 2.2. In addition, the constraint that coordinates the movement of
the drone and the mothership, namely (DCW), and the objective function of the model hold the
products of binary and continuous variables. Each of these products generates Big-M constants
that must be tightened when they are linearized. The present section provides some bounds for
these constants.

For this problem, we are assuming that the drone endurance suffices to visit more than one target
in the same operation because, otherwise, the problem is similar to (AMDRPG) that has been
already considered in Amorosi et al. (2021a). Hence, provided that there exists an operation in
which the drone visits two or more targets, the mothership does not need to perform |T | different
operations. This idea can be used to compactify all operations made by the drone for the first
operations, avoiding void tasks in O.

Let βo be a binary variable that attains the value 1 if the entire set of targets is visited when the
operation o starts, and 0, otherwise. Observe that, if the drone has traversed all targets before the

© 2022 The Authors.
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14 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

operation o then they are also traversed before starting the operation o + 1. Therefore, β variables
must fulfill the following constraints:

βo ≤ βo+1, for all o = 1, . . . , |O| − 1. (Monotonicity)

Let ko represent the number of targets that are visited at the operation o. χ variables can be used to
compute this number because χ to attains the value one when the target t is visited in the operation
o. Thus:

ko =
∑
t∈T

χ to.

Thus, if βo is one, the full set T must have been visited before the operation o:

o−1∑
o′=1

ko′ ≥ |T |βo, (VI-1)

where |T | stands for the cardinality of T .
To reduce the space of feasible solutions, it is possible to assume, without loss of generality, that

it is not allowed to have an operation o without any visit if the drone still has to visit some targets.
To enforce that, we can set the following constraints:

ko ≥ 1 − βo. (VI-2)

Following the idea given in Proposition 1 of the previous subsection, we can set some valid
inequalities that indicate that the drone cannot visit a subset S ⊂ T of targets because of the (En-
durance) constraint. Let S be the collection of subsets of T that do not verify (Endurance), then:∑

t∈S

χ to ≤ |S| − 1, ∀S ∈ S, ∀o ∈ O. (VI-3)

We can construct S by fixing the χ variables and partially solving (Multitarget-MDRP) for each
subset of T , which is computationally expensive. However, it is sufficient to find sets of targets of
minimum cardinality such that the drone endurance does not permit to visit all their elements.
Indeed, any other subset of targets that contains these minimal sets cannot be visited in a single
drone operation.

The different models that we have proposed include in one way or another Big-M constants. We
have defined different Big-M constants along this work. To strengthen formulations, we provide
tight upper and lower bounds for those constants.

3.2.1. Big M constants bounding the distance from the launching/rendezvous point on the path fol-
lowed by the mothership to the arrival/departure point on the target t ∈ T

To linearize the first addend of the objective function in Multitarget-MDRP, we set the auxiliary
nonnegative continuous variables qto

L (resp. qto
R ) to model the product by inserting the following

© 2022 The Authors.
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L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27 15

inequalities:

qto
L ≥ mto

L uto
L ,

qto
L ≥ dto

L − Mto
L (1 − uto

L ).

The best upper bound Mto
L or Mto

R is the full diameter of the data, that is, the maximum distance
between every pair of vertices of the targets in T , that is, every point that must be determined is
inside the circle whose diametrically opposite points are explained below:

Mto
L = max

{v,v′∈V }
‖v − v′‖ = Mto

R .

Conversely, the minimum distance in this problem can be zero. This bound is attainable whenever
the launching or rendezvous points of the mothership are the same that the arrival or departure
point on a given target.

3.2.2. Bounds on the big M constants for the distance from the departure to the arrival points on the
operation o ∈ O

When the drone travels in the operation o, it has to go from one target t to another target t′ de-
pending on the order given by ytt′o. This fact produces another product of variables linearized by
the following constraints:

qtt′o ≥ mtt′
ytt′o,

qtt′o ≥ dtt′
out − Mtt′

(1 − ytt′o).

The evaluation of the bounds appearing in these constraints presents three cases depending on the
structure of the targets:

• If both targets t, t′ are points, then the distance is fixed and we can set

Mtt′ = ‖At − At′‖ = mtt′
.

• If one target t is a point and the other t′ is a polygonal chain, we can compute the minimum
distance as a minimum distance point-to-set problem:

mtt′ = min‖At − x‖
s.t.x verifies (P − C).

On the other hand, the maximum distance between these targets can be obtained by taking the
maximum of the distance between the point t and the breakpoints of the polygonal chain t′:

Mtt′ = max
v∈Vt′

‖v − At‖.

© 2022 The Authors.
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16 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

• If both targets t, t′ are polygonal chains, it is also possible to compute exactly the minimum
distance:

mtt′ = min‖x′ − x‖
s.t.x, x′ verifies (P − C).

On the other hand, to estimate the maximum distance we can repeat the procedure described
in the previous case, but now for each breakpoint of the first polygonal chain. Then, taking the
maximum of the maximum distances for each breakpoint, we get an upper bound for Mtt‘:

Mtt′ = max
v∈Vt ,v′∈Vt′

‖v − v′‖.

4. A matheuristic for the Multitarget-MDRP

This section is devoted to present our matheuristic approach to provide good feasible solutions
of the Multitarget-MDRP. Our motivation comes from the fact that the exact method based on
the mathematical programming formulation presented in the previous section can be highly time
demanding. Alternatively, the matheuristic provides a good quality solution in limited comput-
ing times.

Assuming that the drone has enough endurance to visit every target, the basic idea of the al-
gorithm is to associate each target to one operation by solving a crossing postman problem with
neighbors (XPPN) (see Puerto and Valverde, 2021) for the targets including orig and dest. Recall
that the XPPN consists in finding a minimum total route that visits all the neighborhoods and tra-
verses some fractions of the polygonal chains considered in the problem. In Puerto and Valverde
(2021), a mathematical programming formulation that uses connectivity properties is used to de-
velop a branch-and-bound procedure to solve this problem. The motivation of this approach comes
from the results in Puerto and Valverde (2021), which show that the XPPN is easily solvable for
medium-sized instances provided that the neighbors are points or polygonal chains. In the follow-
ing, we present the pseudocode of this algorithm:

STEP 1 (Order of visit targets)
Compute the order of visits by solving the XPPN for the targets of the problem including
orig as the first point in the tour and dest as the last one and associate each target t ∈ T to
one operation o ∈ O in the given order.

STEP 2 (Solution of the Multitarget-MDRP model by fixing an initial partial solution)
Set the values of the binary variables uto

L , uto
R , χ to and ytt′o provided by the solution of STEP

1 and solve the resulting Multitarget-MDRP model to obtain a complete feasible solution.

It is possible to refine the previous algorithm by slightly modifying STEP 2. Indeed, after STEP
1, starting from the first visited target, according to the order provided by the XPPN solution, we
can iteratively append the next target to the same operation, if the drone endurance allows it. In this
way, the number of operations can be reduced and a better initial partial solution can be provided
to start STEP 2.

© 2022 The Authors.
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Fig. 4. Solution provided by the matheuristic.

Figure 4 shows the solution obtained by means of the matheuristic, for the same example of
Fig. 1. In particular, the upper subfigure reports the solution after STEP 2 in its original form. We
can observe that the solution consists in the mothership tour, represented with the bold polygonal
chain starting from the origin and ending at the destination, and in four operations of the drone.
Indeed, the drone first visits the 50% of the target with label 4 (u41

L = u41
R = 1), then flies to meet

the mothership at the retrieve point x1
R and from there starts its second operation to visit a 50%

of the target with label 3 (u32
L = u32

R = 1). After that, the drone flies to the retrieve point x2
R, it

visits another 50% of the target with label 2 and then, from the launching point x4
L it starts its last

operation to visit also another 50% of the target with label 1 (u14
L = u14

R = 1). Then, it flies to the
last retrieve point x4

R and moves to the destination point together with the mothership. In the lower
subfigure of Fig. 4, we can observe the solution obtained with the modified version of STEP 2.
Different from the upper one, the number of drone operations is equal to 2. Indeed, thanks to the
refinement of STEP 2, the drone endurance permits to visit the two targets with labels 4 and 3 in the
first operation (u41

L = u31
R = 1 and y431 = 1). Similarly, the drone can also visit two targets, namely

2 and 1, in its second operation (u22
L = u12

R = 1 and y212 = 1).
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In terms of objective function values, in this example, the refinement of STEP 2 does not pro-
vide an improved solution. Indeed, its value is equal to 888.01 without refinement and equal to
920.4 with the refinement of STEP 2. However, the length of the mothership tour, when STEP 2
is implemented in its original form, is equal to 189.72, while with the refinement of STEP 2 it is
equal to 180.39. Moreover, we point out that the total time associated with the mothership tour is
shorter in the solution without refinement of STEP 2. This is due to the different number of stops
performed by the mothership in the two solutions. Indeed, in the solution obtained by the refine-
ment, the number of mothership stops is 4 instead of 5 and, in some of them, the mothership waits
for the drone. Summing up, in this example, the refinement of STEP 2 generates a solution with a
shorter tour of the mothership but with a weighted sum of the distances traveled by both the drone
and mothership, which is worse than the one obtained without refinement. In general, depending
on the instance and the weighting factor of the two terms in the objective function, the refinement
of STEP 2 can provide better solutions. For this reason, in the implementation we compared the
solutions obtained with and without this refinement, and we select the best one to be provided as
the initial solution for the exact model.

5. Experimental results

In this section, we discuss the experimental results obtained testing the formulation presented in
Section 2.2 and the matheuristic procedure proposed in Section 4 on a testbed of instances.

In particular, we consider instances of three typologies: the first one in which the targets to be vis-
ited are represented by points randomly located in a square of side 100 units, the second one where
the targets are represented by polygonals and the last one with heterogeneous targets, represented
by points and polygonals.

More in details, to build polygonals, we set the cardinality of the set of points of the polygonal
equal to 4 (this is for guaranteeing that the drone endurance is sufficient for traversing the whole
polygonal) and we generate a random value r in the interval (5, 10). This value is used to generate
a point P = (Px, Py) inside the subsquare [r, 100 − r]2.

Next, sequentially, we generate a random angle α ∈ (0, 2π ) and from the current point P,
we generate a new point Q = (Px + r ∗ cos(α), Py + r ∗ sin(α)). If point Q belongs to the square
[r, 100 − r]2, then we connect point Q to point P with a segment. Otherwise, we update α by
adding π/6 to it until we obtain a point Q

′ = (Px + r ∗ cos(α), Py + r ∗ sin(α)) that belongs to the
square [r, 100 − r]2. Then, the same procedure is repeated to generate the remaining break points
of the polygonal.

For each of the three typologies, we generate instances of increasing size (number of targets)
ranging between 5 and 15. For each size, we consider the values of the drone endurance in the set
{30, 40, 50, 60, 70}. For each combination of size and endurance value, we generate five instances.

We run the formulation on these instances by adopting the commercial solver Cplex, setting a
time limit of two hours. Moreover, we run the matheuristic on the same sets of instances and we
use the solutions obtained to initialize the exact solution method provided by the mathematical
programming formulation. Specifically, in Table 4, for each size (column 1), for each endurance
value (column 2) and for each typology of instances (Type 1 for points, Type 2 for polygonals,
and Type 3 for points and polygonals), we report the average gaps. The first one is the average
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Table 4
Average gaps

Type 1 Type 2 Type 3

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

30 0 0 0.2 0.2 0 0 0.14 0.14 0 0 0.14 0.14
40 0 0 0.22 0.22 0 0 0.17 0.17 0 0 0.16 0.16

5 50 0 0 0.23 0.23 0 0 0.17 0.17 0 0 0.17 0.17
60 0 0 0.23 0.23 0 0 0.17 0.17 0 0 0.17 0.17
70 0 0 0.23 0.23 0 0 0.17 0.17 0 0 0.17 0.17
30 0 0 0.16 0.16 0 0 0.19 0.19 0 0 0.12 0.12
40 0 0 0.21 0.21 0 0 0.22 0.22 0 0 0.14 0.14

6 50 0 0 0.21 0.21 0 0 0.24 0.24 0 0 0.15 0.15
60 0 0 0.21 0.21 0 0 0.24 0.24 0 0 0.15 0.15
70 0 0 0.21 0.21 0 0 0.24 0.24 0 0 0.15 0.15
30 0 0 0.2 0.2 0 0 0.19 0.19 0 0 0.15 0.15
40 0 0 0.24 0.24 0.06 0.03 0.24 0.22 0 0 0.19 0.19

7 50 0 0 0.25 0.25 0.05 0.15 0.34 0.23 0 0 0.2 0.2
60 0 0 0.25 0.25 0 0.12 0.33 0.24 0 0 0.2 0.2
70 0 0 0.25 0.25 0 0.06 0.29 0.24 0 0 0.2 0.2
30 0 0 0.23 0.23 0.42 0.5 0.59 0.17 0.12 0.04 0.16 0.13
40 0 0 0.26 0.26 0.48 0.52 0.61 0.18 0.12 0.08 0.22 0.16

8 50 0 0 0.27 0.27 0.51 0.5 0.6 0.19 0.29 0.17 0.3 0.16
60 0 0 0.28 0.28 0.44 0.47 0.59 0.21 0.3 0.25 0.37 0.16
70 0 0 0.28 0.28 0.49 0.49 0.6 0.21 0.28 0.2 0.34 0.17
30 0.36 0.27 0.43 0.22 0.68 0.65 0.69 0.11 0.62 0.54 0.59 0.1
40 0.35 0.33 0.5 0.24 0.66 0.66 0.71 0.14 0.63 0.58 0.62 0.11

9 50 0.37 0.29 0.48 0.27 0.67 0.66 0.71 0.12 0.62 0.54 0.61 0.13
60 0.36 0.36 0.52 0.26 0.66 0.66 0.71 0.14 0.59 0.55 0.61 0.14
70 0.33 0.31 0.5 0.27 0.64 0.63 0.69 0.15 0.58 0.55 0.61 0.13
30 0.5 0.45 0.54 0.17 0.69 0.66 0.69 0.08 0.72 0.7 0.71 0.06
40 0.48 0.48 0.56 0.16 0.7 0.64 0.68 0.11 0.76 0.7 0.71 0.07

10 50 0.63 0.44 0.55 0.2 0.7 0.68 0.7 0.08 0.74 0.73 0.75 0.07
60 0.51 0.49 0.59 0.2 0.69 0.66 0.69 0.09 0.75 0.7 0.73 0.1
70 0.47 0.46 0.57 0.21 0.71 0.67 0.69 0.08 0.74 0.72 0.74 0.08
30 0.61 0.54 0.62 0.17 0.71 0.67 0.68 0.01 0.81 0.78 0.78 0.01
40 0.65 0.55 0.64 0.19 0.7 0.67 0.68 0.01 0.82 0.77 0.77 0.02

11 50 0.65 0.54 0.64 0.22 0.69 0.68 0.68 0.01 0.79 0.75 0.76 0.08
60 0.64 0.58 0.67 0.21 0.71 0.68 0.68 0.02 0.81 0.79 0.79 0.03
70 0.6 0.56 0.65 0.2 0.72 0.68 0.69 0.01 0.78 0.77 0.78 0.03
30 0.76 0.66 0.71 0.14 0.72 0.68 0.69 0.05 0.81 0.77 0.77 0.01
40 0.75 0.67 0.72 0.17 0.72 0.68 0.69 0.03 0.82 0.77 0.77 0

12 50 0.72 0.74 0.78 0.18 0.72 0.69 0.7 0.03 0.81 0.78 0.78 0
60 0.74 0.72 0.77 0.19 0.71 0.68 0.69 0.03 0.82 0.79 0.8 0.01
70 0.71 0.71 0.77 0.23 0.71 0.68 0.69 0.04 0.81 0.78 0.78 0

Continued
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Table 4
(Continued)

Type 1 Type 2 Type 3

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

Gap
(wi)

Gap
(i)

Rel.
Gap
(LB)

Rel.
Gap

30 0.85 0.81 0.83 0.11 0.76 0.72 0.72 0 0.84 0.79 0.79 0
40 0.84 0.8 0.83 0.16 0.75 0.72 0.73 0.02 0.84 0.81 0.81 0

13 50 0.82 0.83 0.86 0.16 0.75 0.72 0.72 0 0.84 0.81 0.81 0
60 0.82 0.81 0.84 0.14 0.74 0.72 0.72 0 0.84 0.81 0.81 0
70 0.83 0.82 0.86 0.18 0.75 0.72 0.72 0.02 0.84 0.81 0.81 0
30 0.91 0.85 0.85 0.02 0.73 0.67 0.67 0.01 0.83 0.79 0.79 0
40 0.9 0.84 0.85 0.07 0.72 0.67 0.67 0.01 0.83 0.79 0.79 0

14 50 0.89 0.87 0.87 0.03 0.72 0.67 0.67 0 0.83 0.79 0.79 0
60 0.89 0.85 0.87 0.07 0.73 0.67 0.67 0 0.83 0.79 0.79 0
70 0.91 0.84 0.86 0.1 0.71 0.67 0.67 0.01 0.84 0.79 0.79 0
30 0.92 0.87 0.87 0 0.72 0.64 0.64 0 0.83 0.78 0.78 0
40 0.9 0.87 0.88 0.01 0.7 0.64 0.64 0 0.83 0.78 0.78 0

15 50 0.91 0.88 0.88 0.02 0.72 0.63 0.63 0 0.83 0.78 0.78 0
60 0.92 0.88 0.88 0.02 0.73 0.63 0.63 0 0.83 0.78 0.78 0
70 0.93 0.88 0.88 0 0.71 0.64 0.64 0 0.83 0.78 0.78 0

gap, provided by the solver, computed as the relative gap between the best solution and the best
lower bound found within the time limit (Gap (wi)), the second one is the average gap, provided
by the solver, with initialization with the solution found by the matheuristic (Gap (i)), the third
one is the average relative gap between the solution found by the matheuristic and the best lower
bound provided by the solver (Rel.Gap (LB)), and the last one is the average relative gap between
the solution found by the matheuristic and the best solution provided by the solver (Rel. Gap).
From this table, we can see that Cplex is always able to find feasible solutions for all instances of
all types and sizes. The average gap associated with the solutions provided by the solver, without
initialization, ranges between 0 and 0.93, and it increases with the instance size.

Moreover, we can observe that Cplex is able to optimally solve instances of Type 1 up to size
8, instances of Type 2 up to size 6, and instances of Type 3 up to size 7, within the time limit.
The values of the gaps associated with the exact solution method without initialization show that
instances with polygonal targets up to size 9 appear to be more challenging than the ones with
only point targets. The instances with mixed targets are in between and thus they represent an
intermediate level of difficulty. However, when the size is between 10 and 12, the greatest values
of the gap are associated with the instances consisting of mixed targets. Moreover, for size greater
than or equal to 12, the average gap associated with instances of Type 1 is always greater than the
one associated with instances of Type 2, while the instances of Type 3 have again values of the
average gap in between the ones related to the other two typologies. Moreover, when the solution
provided by the matheuristic algorithm is used to initialize the solver, in most of the cases the final
average gap slightly decreases after the time limit is reached. The most significant reduction in the
average gap can be observed for the largest sized instances of Type 2, for which the average gap
with initialization is up to 13% lower than the one without initialization. As regards the relative
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gap associated with the solution provided by the matheuristic with respect to the best lower bound
found by the solver, we can observe that, for instances that are not solved at optimality by the solver,
its values range between 0.43 and 0.88. For instances of Type 1, its values become much closer to
the average gap associated with the exact resolution with initialization, when the size increases.
For instances of Types 2 and 3, the values of both gaps are equal almost for all sizes. This shows
that, in most of the cases, the solver is not able to improve the quality of the solution provided
by the matheuristic. Moreover, for the biggest sized instances of all typologies we can see that the
average relative gap of the solution provided by the matheuristic is lower than the one associated
with the exact resolution without initialization. Thus, in these cases, the solution provided by the
matheuristic, in few seconds or minutes, is even of better quality than the solution provided by the
solver after two hours. Considering the average relative gap associated with the solution provided
by the matheuristic with respect to the best solution found by the solver, we can see that it is always
less than 0.3 and that it decreases with the size for all typologies of instances. In particular, it is
equal to 0 or very close to 0, for instances of Types 2 and 3 with a number of targets greater than
or equal to 12.

Table 5 reports for each typology of instance, for each size and for each endurance value, the
average running times related to the exact solution with the solver (Time (wi)), the solution via
the matheuristic (Time_h) and the exact solution via the solver with initialization provided by the
matheuristic (Time (i)). In particular, we can observe that Cplex is able to solve, in average, in less
than 6 seconds instances of size 5, in at most 15 minutes instances of size 6, and in at most 1 hour
and a half instances of size 7. The average solution time increases by an order of magnitude with
respect to the instance size, up to size 8 for Type 1, up to size 7 for Types 2 and 3. For larger sized
instances, it reaches the time limit of two hours.

We can also observe that the matheuristic provides a solution of the problem in less than 1 second
for instances with point targets (Type 1) up to size 9 and in less than 10 seconds for sizes between
10 and 15. The polygonal instances (Type 2) are more challenging to be solved with solution times
of the matheuristic ranging between 1.42 seconds and 2.4 minutes. As for the instances of Type 3
(mixed targets), the solution time of the matheuristic is between a minimum of 1.82 seconds and a
maximum of 4 minutes. However, comparing these times with those required by the exact solution
of the formulation and considering the small values of the average relative gaps reported in Table 4,
we can conclude that the matheuristic algorithm is a very good alternative to the exact solver.

As regards the computation times for the exact solution method initialized with the solution
provided by the matheuristic, we can also observe that the convergence to the optimal solution for
instances of Type 1 up to eight targets is significantly improved.

In Fig. 5, we show the boxplots representing the gap values for the different instance sizes, dis-
tinguishing between the three typologies. In particular, the left subfigure refers to the gap values
obtained by solving the formulation without initialization, while the right subfigure, refers to the
ones obtained by providing to the solver the initial solution generated by the matheuristic algo-
rithm. Specifically, we can visualize that the gap values for instances with point targets increase
with the problem size in the exact solution both without and with initialization. As regards the
polygonal instances, we can observe a different behavior with respect to the gap, which increases
with the instances size up to nine targets. For instances of size greater than or equal to 10, its gap,
excluding outliers, always ranges in the interval [0.6, 0.8]. This can be still observed also by ini-
tializing the exact solution of the formulation even if, as already mentioned, in this latter case the

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13179 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 L. Amorosi et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27

Table 5
Average running times (in seconds)

Type 1 Type 2 Type 3

Time (wi) Time_h Time (i) Time (wi) Time_h Time (i) Time (wi) Time_h Time (i)

30 5.33 0.29 4.04 13.41 1.42 16.83 4.86 1.9 4.51
40 5.08 0.21 3.88 10.9 1.47 17.17 5.5 1.95 5.26

5 50 4.73 0.25 4.05 13.05 1.45 20.31 5.4 1.91 6.19
60 5.27 0.32 4.72 19.07 1.42 20.75 5.96 2.05 6.38
70 5.27 0.25 4.13 16.36 1.46 25.54 5.65 1.82 5.91
30 21.95 0.2 18.66 148.69 2.41 286.12 49.68 2.17 51.97
40 30.5 0.17 17.92 238.77 2.55 394.29 71.12 2.54 52.68

6 50 34.08 0.12 19.35 193.8 2.35 383.94 69.35 2.34 86.55
60 33.39 0.16 19.72 185.92 2.24 322.92 85.89 2.55 82.53
70 36.3 0.18 23.35 264.39 2.69 413.62 69.9 2.41 61.44
30 229.75 0.21 201.92 3063.24 4.25 2806.77 709.57 4.22 621.96
40 268.47 0.46 204.39 3420.54 4.07 4651.65 1127.66 3.81 1139.36

7 50 255.35 0.35 213.41 4034.04 3.87 5409.26 901.86 4.3 960.31
60 348.62 0.46 208.24 4787.98 4.58 6281.02 986.83 4.61 940.26
70 301.47 0.39 243.37 3986.24 4.48 6103.81 1053.51 4.16 790.63
30 2265.56 0.7 1619.37 7200 7.61 7200 5549.54 5.3 4800.82
40 2820.11 0.47 2333.97 7200 7.65 7200 6876.95 5.61 6487.69

8 50 2877.69 0.48 2020.92 7200 7.45 7200 7200 5.67 6769.41
60 3159.62 0.63 2484.49 7200 7.02 7200 7200 5.68 7176.09
70 3188.16 0.62 2724.14 7200 7.8 7200 7200 5.46 7123.6
30 7200 0.94 7200 7200 13.64 7200 7200 12.08 7200
40 7200 0.91 7200 7200 12.31 7200 7200 12.28 7200

9 50 7200 0.9 7200 7200 14.88 7200 7200 10.23 7200
60 7200 0.72 7200 7200 14.63 7200 7200 12.53 7200
70 7200 0.68 7200 7200 13.37 7200 7200 10.18 7200
30 7200 1.43 7200 7200 22.58 7200 7200 18.01 7200
40 7200 1.68 7200 7200 20.89 7200 7200 16.95 7200

10 50 7200 1.61 7200 7200 21.31 7200 7200 16.4 7200
60 7200 1.74 7200 7200 22.1 7200 7200 17.25 7200
70 7200 1.8 7200 7200 23.62 7200 7200 20.59 7200
30 7200 1.8 7200 7200 34.72 7200 7200 31.71 7200
40 7200 2.1 7200 7200 34.9 7200 7200 26.86 7200

11 50 7200 2.12 7200 7200 34.31 7200 7200 24.99 7200
60 7200 2 7200 7200 34.9 7200 7200 27.88 7200
70 7200 2.11 7200 7200 35.02 7200 7200 27.19 7200
30 7200 3.14 7200 7200 51.52 7200 7200 34.51 7200
40 7200 3.43 7200 7200 53.85 7200 7200 52.46 7200

12 50 7200 3.04 7200 7200 53.02 7200 7200 32.36 7200
60 7200 2.97 7200 7200 53.83 7200 7200 41.66 7200
70 7200 3.12 7200 7200 58.29 7200 7200 27.77 7200
30 7200 5.42 7200 7200 78.7 7200 7200 120.74 7200
40 7200 4.3 7200 7200 83.12 7200 7200 138.35 7200

13 50 7200 5.46 7200 7200 79.63 7200 7200 119.08 7200
60 7200 4.16 7200 7200 86.79 7200 7200 151.91 7200
70 7200 4.28 7200 7200 83.36 7200 7200 120.16 7200
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Table 5
(Continued)

Type 1 Type 2 Type 3

Time (wi) Time_h Time (i) Time (wi) Time_h Time (i) Time (wi) Time_h Time (i)

30 7200 6.75 7200 7200 107.31 7200 7200 143.91 7200
40 7200 5.88 7200 7200 110.38 7200 7200 163.42 7200

14 50 7200 6.07 7200 7200 107.14 7200 7200 132.36 7200
60 7200 5.71 7200 7200 112.05 7200 7200 111.87 7200
70 7200 6.4 7200 7200 111.62 7200 7200 99.63 7200
30 7200 7.1 7200 7200 141.05 7200 7200 185.87 7200
40 7200 7 7200 7200 146.34 7200 7200 237.79 7200

15 50 7200 9.47 7200 7200 132.54 7200 7200 130.69 7200
60 7200 6.31 7200 7200 144.69 7200 7200 158.09 7200
70 7200 7.15 7200 7200 140.05 7200 7200 143.95 7200

Fig. 5. Final gap with and without initialization by using Cplex.

gap values decrease and in most of the cases they belong to the interval [0.6,0.7], always excluding
outliers. Thus, the polygonal instances are more difficult than the point instances for sizes up to
10. For bigger sized instances, the gap value for polygonal instances consistently belongs to a fixed
interval, while the gap for point instances increases with the size. As regards the mixed instances,
we can see that the behavior of the gap is similar to the one of the instances of Type 2. It increases
with the size up to 11 targets. Then, always excluding outliers, it belongs to the interval [0.8, 0.9],
without initialization, and to the interval [0.7, 0.8] with initialization.

To further investigate this behavior, we run the mathematical programming formulation with
Cplex on one of the biggest sized instances with 15 targets and endurance equal to 40, for both
Types 1 and 2 and setting a time limit of 24 hours. Figure 6 reports the objective function value and
the lower bound value obtained over time, respectively, for the point and polygonal target versions
of this instance. We can observe that the initial value of the lower bound for the point targets
instance is equal to 0 while the one for the polygonal targets instance is equal to 331. This difference
is due to the different structure of the targets. Indeed, for the polygonal targets, the formulation
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Fig. 6. Evolution of objective function and lower bound values of one instance with 15 pointwise targets and drone
endurance equal to 40 in 24 hours of CPU time.

includes the constraint imposing the visit of a given minimum fraction of each polygonal. This
implies that the first value of the lower bound is greater than 0. Thus, while the solution process for
the point targets instance starts from a gap equal to 1, the one for the polygonal targets instance
starts from a gap equal to 0.80, as we can also observe in Fig. 6. This different initial gap allows the
solver to slowly improve it in the first case but not in the second case. Actually, only after around
15 hours of CPU, we can observe that the two gaps (for the instance of Type 1 and 2) are equal
and then the value of the gap for the point targets instance continues to decrease, whereas the one
related to the polygonal targets instance does not change in the remaining time. This is explained
because the lower bound of the point targets instance improves over time, see Fig. 6, but it does not
change at all for the polygonal targets instance.

This behavior shows that the instances of Type 2 (polygonal targets) are still more difficult to
be solved than the instances of Type 1 (point targets). However, the different structure of the tar-
gets provides an initial advantage in the lower bound of the polygonal target instances, due to the
constraint related to the minimum fraction of each polygonal to be visited, which can be exploited
by the solver for the biggest sizes. For the same reason, also the instances of Type 3, consisting of
mixed targets, have an initial advantage in the lower bound that explains lower values of the gap
after two hours, with respect to the one related to the instances of Type 1, when the number of
targets is greater than 12. Indeed, among the mixed targets, the polygonal ones imply the presence
of the constraint imposing the visit of a given minimum fraction of each of them. This makes the
formulation more restrictive and the solver is able to find an initial lower bound greater than 0,
from which it takes an advantage, with respect to instances of Type 1.

6. Concluding remarks

This paper has analyzed a coordination problem that arises between a mothership vehicle and a
drone that is allowed to visit more than one target per operation, synchronizing their displacements
to minimize the travel distance. The mothership can move freely in a continuous space so that
the drone can be launched and recovered at any point that is convenient to optimize the problem
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goal. We present an exact model that can be adapted to deal with pointwise and graph-like targets.
This model is a mixed integer second-order cone problem and it can be solved by most of the
current nowadays solvers. Our computational results show that the considered problem is rather
hard and only small- to medium-sized problems can be solved to optimality. For that reason, we
also developed a matheuristic algorithm as a fast alternative to exact methods, which provides
acceptable feasible solutions in short computing time.

An interesting problem related to the one in this paper is the coordination of the operations of
one or several motherships with several drones, each one of them allowed to visit more than one
target per operation. This is a realistic, challenging problem that models actual situations in drone’s
delivery situations, but although it is very interesting and deserves to be studied, it is beyond the
scope of this paper and will be the topic of a follow-up paper.
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Appendix

The special case of polygonal chains with equal-length segments

This section shows a simplification of the constraints modeling traversing a given fraction of the
polygonal targets provided that all their segments are of the same length. In that case, we can model
the arrival point Ap and the departure point Dp associated with the polygonal chain p ∈ P by means
of a parameter ρ p ∈ [1, |Vp|] (resp. λp ∈ [1, |Vp|]) that determines the absolute position in p.

To compute the value of these parameters, we can link them to the variables that model the
location of the points inside the polygonal by including the following inequalities for each sp ∈ Sp:

ρ p − sp ≥ γ
sp

A − |Vp|(1 − μ
sp

A ),

ρ p − sp ≤ γ
sp

A + |Vp|(1 − μ
sp

A ),

λp − sp ≥ γ
sp

D − |Vp|(1 − μ
sp

D ),

λp − sp ≤ γ
sp

D + |Vp|(1 − μ
sp

D ).

The first and second inequalities determine the upper and lower limits for the parameterization
of each segment of p. If μ

sp

A = 0 the inequalities are always fulfilled and there is no arrival point
in the spth segment of the polygonal. Conversely, if μ

sp

A = 1 then ρ p = γ
sp

A + sp meaning that the
corresponding arrival or departure point is in the spth segment of the polygonal and its value is
equals to the number of segments plus the part of the segment sp that has been already traversed.
The same idea is applied in the third and fourth inequalities for the λp parameter.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.
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Finally, we can model the condition of traversing a fraction αp of the polygonal p by the standard
trick of the absolute value constraint:

|ρ p − λp| ≥ αp|Sp| ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ p − λp = ν
p
max − ν

p
min

ν
p
max ≤ 1 − entryp,

ν
p
min ≤ entryp,

ν
p
max + ν

p
min ≥ αp|Sp|.

(α − P)

Here ν
p
max and ν

p
min are auxiliary variables used for linearizing the absolute value and the binary

variable entryp represents the traveling direction in the polygonal chain p.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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A B S T R A C T

This paper considers the optimisation problems that arise in coordinating a tandem between a mothership
vehicle and a fleet of drones. Each drone can be launched from the mothership to perform a task. After
completing their tasks, the drones return to the mothership to recharge their batteries and be ready for a new
task. Tasks consist of (partially) visiting graphs of a given length to provide some services or to carry out
a surveillance/inspection activity. The goal is to minimise the overall time of travelling carried out by the
mothership (makespan) while satisfying some requirements in terms of fractions of visits to the target graphs.
In all cases, we develop exact formulations resorting to mixed-integer second-order cone programmes that are
compared on a testbed of instances to assess their performance. We also develop a matheuristic algorithm that
provides reasonable solutions. Computational experiments show the usefulness of our methodology in different
scenarios.

1. Introduction

In recent years, the growth of potential business opportunities re-
lated to the use of drone technology has motivated the appearance of
an interesting body of methodological literature on optimising the use
of this technology. Examples may be found in many different sectors,
such as telecommunications, where drones can be adopted in place
of traditional infrastructures to provide connectivity (see, for exam-
ple, Amorosi et al. (2018), Chiaraviglio et al. (2018), Jiménez et al.
(2018), Amorosi et al. (2019), and Chiaraviglio et al. (2019a)), or to
temporarily deal with damage caused by a disaster (Chiaraviglio et al.,
2019b; Dönmez et al., 2021), deliveries (see, for example, Mathew et al.
(2015), Ferrandez et al. (2016), Poikonen and Golden (2020b), Amorosi
et al. (2020), and Pei et al. (2021)), also in emergency (Wen et al.,
2016), inspection (Trotta et al., 2018) and other contexts. The reader
is referred to the recent surveys (Otto et al., 2018; Chung et al., 2020;
Dönmez et al., 2021) for further details. In this context, depending
on the specific application, we can distinguish three main different
systems: one or multiple drones that, starting from a depot, provide a
given service, one or multiple drones supported by a traditional vehicle
that works only as a mobile depot (and/or recharging station), and one
or multiple drones that cooperate with one or more traditional vehicles.
In the latter case, the vehicles are also responsible for providing the
service.

In the rest of this section, we review the related literature, limiting
ourselves to articles that focus on truck-and-drone systems. After the

∗ Corresponding author.
E-mail addresses: lavinia.amorosi@uniroma1.it (L. Amorosi), puerto@us.es (J. Puerto), cvalverde@us.es (C. Valverde).

1 Equally contributing authors.

seminal paper (Murray and Chu, 2015) that introduces the Flying Side-
kick Travelling Salesman Problem (FSTSP), in which a truck and a drone
cooperate to make deliveries, Ulmer and Thomas (2018) considers
another model in which a fleet of trucks and drones is dispatched when
orders are placed and analyses the effect of different policies to decide
whether an order must be delivered by a drone or by a vehicle. Other
articles, such as Campbell et al. (2017) and Carlsson and Song (2018),
also study hybrid truck-and-drone models to mitigate the limited deliv-
ery range of drones. Dayarian et al. (2020) focuses on a delivery system
in which traditional vehicles are resupplied by drones. Dell’Amico et al.
(2021) presents a branch-and-bound algorithm and heuristics based on
it to solve large-sized instances of the FSTSP. In Poikonen and Golden
(2020b), the authors study the k-Multi-Visit Drone Routing Problem (k-
MVDRP) in which a truck acts as a mobile depot. The truck is allowed
to stop at a predefined set of points and launches drones that can
deliver more than one package to their designated destination points
(customers). The model also includes a drone energy drain function that
takes into account each package weight.

Many of the articles cited assume that the set of allowable locations
to launch/retrieve a drone is fixed and known a priori, the operations
carried out by the drone consist of delivering to a single point, and
coordination is between a truck and a single drone. These assumptions
may be appropriate in some contexts, but in other cases it would be
better to relax them. In Poikonen and Golden (2020a) the authors
progress on the coordination problem by introducing the Mothership

https://doi.org/10.1016/j.cor.2023.106322
Received 10 August 2022; Received in revised form 6 April 2023; Accepted 18 June 2023
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and Drone Routing Problem (MDRP) in which a two-vehicle tandem
is used to design a route that visits a set of points that allow the
mothership (which may be a ship or an aircraft) to launch and recover
the drone in a continuous space. However, only a few articles in the
literature focus on drone operations that consist of traversing graphs
rather than visiting single points. In Campbell et al. (2018) the authors
introduce the Drone Rural Postman Problem (DRPP). The paper presents
a solution algorithm based on the approximation of curves in the plane
by polygonal chains that iteratively increases the number of points
in the polygonal chain where the UAV can enter or leave. Thus, the
problem is solved as a discrete optimisation problem trying to better
define the curve by increasing the number of points. The authors also
consider the case in which the drone has limited endurance and thus
cannot serve all lines. To deal with the latter case, they assume to have
a fleet of drones and the problem consists of finding a set of routes, each
of limited length. In Campbell et al. (2021) this problem is defined as
the Length Constrained K-Drones Rural Postman Problem (LC K-DRPP),
a continuous optimisation problem in which a fleet of homogeneous
drones has to jointly service (traverse) a set of (curved or straight)
lines of a network. The authors design and implement a branch-and-
cut algorithm for its solution and a matheuristic algorithm capable of
providing good solutions for large-scale instances of the problem.

Scanning the literature on arc routing problems involving hybrid
systems consisting of one vehicle and one or multiple drones, the
number of contributions is rather limited. In Tokekar et al. (2016)
the authors study the path planning problem of a system composed of
a ground robot and a drone in precision agriculture and solve it by
applying orienteering algorithms. Furthermore, the paper Garone et al.
(2010) studies the problem of path planning for systems consisting of
a carrier vehicle and a carried one to visit a set of target points and
assumes that the carrier vehicle moves in continuous space.

To the best of our knowledge, the papers Amorosi et al. (2021,
2022) are the only that deal with the coordination of a mothership with
a drone to visit targets represented by graphs. In particular, in Amorosi
et al. (2021) the authors make different assumptions on the route
followed by the mothership: (i) it can move on the Euclidean plane, (ii)
on a connected piecewise linear polygonal chain, or (iii) on a general
graph. In all cases, the authors develop exact formulations using mixed-
integer second-order cone programmes and propose a matheuristic
algorithm capable of obtaining high-quality solutions in short comput-
ing time. The set of target graphs to be visited permits one to model
real situations like monitoring or inspection activities on fractions of
networks (roads or wires) where traditional vehicles cannot arrive, due
to, for example, the presence of narrow streets, or because of a natural
disaster or a terrorist attack that causes damage to the network. In all
these cases, drone inspection or monitoring consists of traversing the
edges of the network to perform a reconnaissance activity. For this
reason, the targets that the drone will visit are modelled as graphs.
Note that, in general, the shape of the graph edges may be a straight
line or a curve. In this paper, we limit the discussion to the case
of straight lines. However, as shown in Campbell et al. (2018), it is
possible to deal with curved edges by approximating them through
polygonal chains. Thus, this paper represents a first building block in
the study of coordination models between a mothership and a fleet of
drones that embed drone arc routing problems. The investigation on
different edges shape is out of the scope of this paper and it is left for
future research. The action of visiting a graph can be of two different
types: (i) traversing a given fraction of the length of each one of its
edges or (ii) visiting a fraction of the total length of the network. Other
types of inspection activities, such as, for example, video surveillance
of urban areas in large cities, can also be modelled by adopting the
formulations presented in this paper. In this context, the request to visit
a certain fraction of the target graphs (e.g., borders of a neighbourhood)
may be due to the necessity of ‘‘covering’’ different areas in a limited
time interval. Another example that we can mention is traffic flow
monitoring. In this case, to verify whether traffic progression is not

disrupted, only inspecting a fraction of the edge provides valuable
information.

In this article, we deal with an extension of the problem studied
in Amorosi et al. (2021), for which we propose a novel mothership-
and-multi-drone coordination model. We consider a system in which a
base vehicle (mothership) travels in continuous space and must support
the launch/retrieval of several drones that must visit graphs. Indeed,
depending on the specific application, the tandem system may require
the adoption of multiple drones to perform surveillance/monitoring
activities, for example, to accelerate data collection in emergency
contexts. The presence of several drones opens up different possible
working principles of the tandem system that can be more or less
appropriate depending on the specific application. In particular, we
focus on two different versions.

The contributions of this article to the existing literature can be
summarised as follows:

(i) it extends the mothership-drone coordination problem to the
more cumbersome case of several drones;

(ii) it focuses on drone arc routing problems in which drone op-
erations consist of traversing graphs rather than visiting single
points;

(iii) it studies two versions of the problem that make the presented
mathematical programming approach flexible with respect to
different working principles of the tandem system;

(iv) it presents matheuristic algorithms able to handle large-sized
instances;

(v) it includes in the Appendix the model extension for dealing also
with a non-homogeneous fleet of drones.

The rest of the paper is structured as follows. Section 2 provides
a detailed description of the problem under consideration. Section 3
develops valid Mixed-Integer Non-Linear Programming (MINLP) for-
mulations for the two versions of the problem considered. Here, we
also show the relationship between the two models and prove that
the second model is a relaxation of the first. Section 4 provides some
valid inequalities that strengthen the formulations and derive upper
and lower bounds on the bigM constants introduced in the proposed
formulations. Section 5 presents details of the matheuristic algorithms
designed to handle large-sized instances. In Section 6, we report the
results obtained by testing the formulations and the matheuristic algo-
rithm on different classes of planar graphs to assess their effectiveness.
In Section 7, we present an illustrative example that applies the coordi-
nation models for the Cordoba Courtyard Festival. Section 8 concludes
the paper. Finally, for the sake of completeness, we include an Ap-
pendix with an extension of the model of complete overlapping where
the drones are not assumed to be homogeneous.

2. Problem description

In the All Terrain Mothership and Multiple-Drone Routing Problem with
Graphs (AMMDRPG), there is one mothership (the base vehicle) and
a fleet of homogeneous drones  that have to coordinate between
each other and with the mothership to perform a number of operations
consisting of visiting given fractions of the length of a set of graphs .
The mothership and the drones travel at constant speeds 𝑣𝑀 and 𝑣𝐷,
respectively. We also assume that it is not necessary for the mothership
to be stopped to launch and retrieve the drones and that the time
spent by the mothership to launch and retrieve them is negligible.
Furthermore, it is assumed that each drone has a limited endurance
𝑁𝐷, so once launched, it must complete the operation and return to the
base vehicle to recharge its batteries before the time limit. In addition,
the base vehicle freely moves in the continuous space. This assumption
can model the case where the base vehicle is a helicopter or a boat, so
that there are no obstacles or restrictions on its movement. Nowadays,
this type of system consisting of a boat and a fleet of drones is used, for
example, by coast guards to carry out surveillance activities to identify
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Fig. 1. Model with complete overlapping.

Fig. 2. Model with partial overlapping.

immigrants who need help on the sea (see AltiGator (2015)). The
mothership starts at a known location, denoted 𝑜𝑟𝑖𝑔 where the entire
system is ready to depart. Once all operations are completed, the moth-
ership and drones must return together to a final location called 𝑑𝑒𝑠𝑡.
Moreover, without loss of generality, we assume that the endurance of
the drone does not allow it to visit all target graphs in a single trip,
starting from the origin and ending at the destination. Otherwise, the
problem becomes trivial, and coordination is not required.

In this problem, it is assumed that each graph must be visited by
one drone: once the drone is assigned to this action, it visits the graph
and has to complete the entire action of traversing this target before
returning to the base. We assume that the time each drone spends
visiting the graph must be less than or equal to the time the mothership
takes to move from the launching point to the retrieval point. Note
also that each drone in the fleet cannot be launched from the same
base vehicle location to carry out all tasks due to its limited endurance.
Additionally, the costs induced by the drone trips are negligible com-
pared to those incurred by the base vehicle. Therefore, the goal is to
minimise the makespan, which in this case coincides with the overall
time travelled by the mothership. Despite that, the reader may note
that from a theoretical point of view, the extension to include in the
objective function the times travelled by drones is straightforward and
does not increase the complexity of the models or formulations.

The goal of the AMMDRPG is to find the launch and retrieval points
of the drone fleet  that meet the visit requirements of the graphs in 
and minimise the makespan (total time travelled by the mothership).

In this paper, we focus on two different versions of AMMDRPG.
In the first, called AMMDRPG with complete overlapping model
(AMMDRPG-CO), operations consisting of the launch and retrieval of
a set of drones are carried out sequentially so that no two consecutive
launches are possible without the retrieval of previously launched
drones (see Fig. 1). The second version, called AMMDRPG with par-
tial overlapping model (AMMDRPG-PO), allows consecutive launch or

retrieval actions so that the visits of several drones to their target
graphs are allowed to partially overlap over time (see Fig. 2). This
second version is more difficult to model. Indeed, the possibility for the
mothership to retrieve one drone in a different phase from that in which
it has been launched implies the introduction of additional concepts
and decision variables to properly formulate the problem. Moreover,
additional constraints must be included to model the mothership route
and its relationship with one of the drones. For both variants of the
problem, we present mathematical programming formulations, valid
inequalities to strengthen them, and ad hoc matheuristics to deal with
medium-sized instances of the problem.

Note that the partial overlapping variant is an extension of the
complete overlapping case. In fact, we allow one drone to be launched
and retrieved before another different drone is launched to visit another
target graph. Therefore, when applicable, the partial overlapping ver-
sion can provide smaller values of the makespan. This can be observed
in Figs. 1 and 2, showing the Gantt diagram of a feasible solution for
the two versions of the problem, involving two drones and four target
graphs. In particular, in Fig. 1, the visit of Graph 3 starts at 6 and the
makespan is equal to 11. This fact is due to the constraint that the
mothership must wait for the retrieval of both drones before launching
Drone 1 again. In Fig. 2, the possibility to launch both drones in an
asynchronous way allows us to move the visit of Graph 3 up, with a
makespan equal to 10.

3. Mixed-integer non-linear programming formulations

In this section, we present a MINLP formulation for the AMMDRPG
that can be used to solve medium-sized instances of this problem. As
mentioned in Section 2, we assume that the mothership is allowed to
move freely in a continuous space that, for the sake of presentation,
we assume to be R2. Here, distances are measured by the Euclidean
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Table 1
Nomenclature for AMMDRPG.
Problem parameters

𝑜𝑟𝑖𝑔: coordinates of the point defining the origin of the mothership path (or tour).
𝑑𝑒𝑠𝑡: coordinates of the point defining the destination of the mothership path (or tour).
: set of the target graphs.
𝑔 = (𝑉𝑔 , 𝐸𝑔 ): set of nodes and edges of each target graph 𝑔 ∈ .
(𝑒𝑔 ): length of edge 𝑒 of graph 𝑔 ∈ .
(𝑔) =

∑

𝑒𝑔∈𝐸𝑔 (𝑒𝑔 ): total length of the graph 𝑔 ∈ .
𝐵𝑒𝑔 , 𝐶𝑒𝑔 : coordinates of the endpoints of edge 𝑒 of graph 𝑔 ∈ .
𝛼𝑒𝑔 : fraction of length of edge 𝑒 of graph 𝑔 ∈  that must be visited. It ranges from 0 to 1.
𝛼𝑔 : fraction of length of graph 𝑔 ∈  that must be visited. It ranges from 0 to 1.
𝑣𝑀 : mothership speed.
||: number of drones.
𝑣𝐷 : drone speed.
𝑁𝐷 : drone endurance.
: set of drone operations to perform visits to the target graphs.  = {1,… , ||}.
𝑀 : big-M constant.

Table 2
Decision variables for AMMDRPG-CO.
Binary decision variables

𝜇𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if edge 𝑒 of graph 𝑔 (or a fraction of it) is visited by the drone, 0 otherwise.
entry𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary binary variable used for linearising expressions.
𝑢𝑒𝑔 𝑜 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : equal to 1 if one drone enters graph 𝑔 through the edge 𝑒𝑔 at operation 𝑜, 0 otherwise.
𝑧𝑒𝑔 𝑒

′
𝑔 ∈ {0, 1}, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if one drone goes from 𝑒𝑔 to 𝑒′𝑔 , 0 otherwise.

𝑣𝑒𝑔 𝑜 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : equal to 1 if one drone exits graph 𝑔 by 𝑒𝑔 at operation 𝑜, 0 otherwise.

Continuous decision variables

𝑠𝑒𝑔 ∈ [0, |𝐸𝑔 | − 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): continuous non-negative variable representing the order of visits to the edge 𝑒 of graph 𝑔.
𝜌𝑒𝑔 ∈ [0, 1] and 𝜆𝑒𝑔 ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): defining the entry and exit points on 𝑒𝑔 .
𝜈𝑒𝑔min and 𝜈𝑒𝑔max ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variables used for linearising expressions.
𝑥𝑜𝐿 ∈ R2 , ∀𝑜 ∈ : coordinates representing the point where the mothership launches the drones at operation 𝑜.
𝑥𝑜𝑅 ∈ R2 , ∀𝑜 ∈ : coordinates representing the point where the mothership retrieves the drones at operation 𝑜.
𝑅𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the entry point on edge 𝑒𝑔 of graph 𝑔.
𝐿𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the exit point on edge 𝑒𝑔 of graph 𝑔.
𝑑𝑜𝑟𝑖𝑔 ≥ 0: that represents distance from the origin 𝑜𝑟𝑖𝑔 to the first launching point 𝑥1𝐿.
𝑑𝑒𝑔 𝑜
𝐿 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : representing the distance travelled by one drone from the launching

point 𝑥𝑜𝐿 on the mothership at operation 𝑜 to the first visiting point 𝑅𝑒𝑔 on 𝑒𝑔 .
𝑝𝑒𝑔 𝑜𝐿 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑜

𝐿 and 𝑢𝑒𝑔 𝑜.
𝑑𝑒𝑔 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the retrieval point 𝑅𝑒𝑔 to the

launching point 𝐿𝑒𝑔 on 𝑒𝑔 .
𝑝𝑒𝑔 ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variable used for modelling the product of 𝜇𝑒𝑔 and |𝜆𝑒𝑔 − 𝜌𝑒𝑔 |.
𝑑𝑒𝑔 𝑒′𝑔 ≥ 0, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the launching point 𝐿𝑒𝑔 on 𝑒𝑔 to

the retrieval point 𝑅𝑒′𝑔 on 𝑒′𝑔 .
𝑝𝑒𝑔 𝑒

′
𝑔 ≥ 0, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑒′𝑔 and 𝑧𝑒𝑔 𝑒

′
𝑔 .

𝑑𝑒𝑔 𝑜
𝑅 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : representing the distance travelled by one drone from the last visiting point

𝐿𝑒𝑔 on 𝑒𝑔 to the retrieval point 𝑥𝑜𝑅 on the mothership at operation 𝑜.
𝑝𝑒𝑔 𝑜𝑅 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ : auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑜

𝑅 and 𝑣𝑒𝑔 𝑜.
𝑑𝑜
𝐿𝑅 ≥ 0, ∀𝑜 ∈ : representing the distance travelled by the mothership from the launching point 𝑥𝑜𝐿 to the retrieval

point 𝑥𝑜𝑅 at operation 𝑜.
𝑑𝑜
𝑅𝐿 ≥ 0, ∀𝑜 ∈  ⧵ ||: representing the distance travelled by the mothership from the retrieval point 𝑥𝑜𝑅 at operation 𝑜 to the

launching point 𝑥(𝑜+1)𝐿 at operation 𝑜 + 1.
𝑑𝑑𝑒𝑠𝑡 ≥ 0: that represents distance from the last retrieval point 𝑥||𝑅 to the destination 𝑑𝑒𝑠𝑡.
𝑡𝑖𝑚𝑒𝑜𝐷 ≥ 0, ∀𝑜 ∈ : maximum time spent by a drone during operation 𝑜.
𝑡𝑖𝑚𝑒𝑜𝑀 ≥ 0, ∀𝑜 ∈ : time spent by the mothership to go from the launching point 𝑥𝑜𝐿 to the retrieval point 𝑥𝑜𝑅 of operation 𝑜.
𝑡𝑖𝑚𝑒𝑀 ≥ 0: total time spent by the mothership to go from the origin to the destination (makespan).

norm, ‖ ⋅ ‖2, although this assumption can be extended to any 𝑙𝑝 norm,
1 ≤ 𝑝 ≤ ∞ (see Blanco et al. (2017)).

Table 1 summarises the parameters or input data that formally
describe the problem.

In the following, we describe all the constraints required to formu-
late the AMMDRPG-CO model. Table 2 summarises the set of decision
variables that appear in that formulation.

Visits to graphs

To represent the movement of the drone within a graph 𝑔 ∈ , we
now introduce some notations related to 𝑔. Let 𝑔 = (𝑉𝑔 , 𝐸𝑔) be a graph
in  whose total length is denoted by (𝑔). Here, 𝑉𝑔 denotes the set of
nodes and 𝐸𝑔 denotes the set of edges connecting pairs of nodes. Let
𝑒𝑔 be the edge 𝑒 of graph 𝑔 ∈ 𝐺 and let (𝑒𝑔) be its length. Each edge
𝑒𝑔 is parameterised by its endpoints 𝐵𝑒𝑔 = (𝐵𝑒𝑔 (𝑥1), 𝐵

𝑒𝑔 (𝑥2)) and 𝐶𝑒𝑔 =
(𝐶𝑒𝑔 (𝑥1), 𝐶

𝑒𝑔 (𝑥2)) and we can compute its length (𝑒𝑔) = ‖𝐶𝑒𝑔 − 𝐵𝑒𝑔
‖.

For each edge 𝑒𝑔 an indicator binary variable 𝜇𝑒𝑔 is associated,
assuming the value one if the drone visits the segment 𝑒𝑔 . Furthermore,
we define the entry and exit points 𝑅𝑒𝑔 = (𝐵𝑒𝑔 , 𝐶𝑒𝑔 , 𝜌𝑒𝑔 ) and 𝐿𝑒𝑔 =
(𝐵𝑒𝑔 , 𝐶𝑒𝑔 , 𝜆𝑒𝑔 ) that determine the fraction of the edge visited by the
drone. The coordinates of the points 𝑅𝑒𝑔 and 𝐿𝑒𝑔 are given, respectively
by

𝑅𝑒𝑔 = 𝜌𝑒𝑔𝐵𝑒𝑔 + (1 − 𝜌𝑒𝑔 )𝐶𝑒𝑔 and 𝐿𝑒𝑔 = 𝜆𝑒𝑔𝐵𝑒𝑔 + (1 − 𝜆𝑒𝑔 )𝐶𝑒𝑔 ,

where 𝜌𝑒𝑔 ∈ [0, 1] and 𝜆𝑒𝑔 ∈ [0, 1] are variables to determine the position
of the points in the segment.

As discussed in Section 2, we consider two modes of visit to the
target graphs 𝑔 ∈ :

(i) Visiting a fraction 𝛼𝑒𝑔 of each edge 𝑒𝑔 which can be modelled by
using the following constraints:

|𝜆𝑒𝑔 − 𝜌𝑒𝑔 | ≥ 𝛼𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 . (𝛼-E)
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These inequalities state that the difference between the parame-
terisations of the entry and exit points associated with each edge
𝑒𝑔 must be greater than or equal to the fraction of the length of
𝑒𝑔 required to be traversed.

(ii) Visiting a fraction 𝛼𝑔 of the total length of the graph:
∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔
|𝜆𝑒𝑔 − 𝜌𝑒𝑔 |(𝑒𝑔) ≥ 𝛼𝑔(𝑔). (𝛼-G)

This constraint ensures that the sum of the length fractions of
the edges chosen to be crossed must be greater than or equal to
the length fraction of 𝑔 required to be traversed.

In both cases, the corresponding constraints are non-linear. To
linearise them, we need to introduce a binary variable entry𝑒𝑔 that
determines the direction of travel on the edge 𝑒𝑔 and the definition
of the auxiliary variables 𝜈

𝑒𝑔
min and 𝜈

𝑒𝑔
max of the access and exit points

on that segment. Then, for each edge 𝑒𝑔 , the absolute value constraint
(𝛼-E) can be represented by:

|𝜌𝑒𝑔 − 𝜆𝑒𝑔 | ≥ 𝛼𝑒𝑔 ⟺

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌𝑒𝑔 − 𝜆𝑒𝑔 = 𝜈
𝑒𝑔
max − 𝜈

𝑒𝑔
min,

𝜈
𝑒𝑔
max ≤ 1 − entry𝑒𝑔 ,

𝜈
𝑒𝑔
min ≤ entry𝑒𝑔 ,

𝜈
𝑒𝑔
min, 𝜈

𝑒𝑔
max ≥ 0,

𝜈
𝑒𝑔
max + 𝜈

𝑒𝑔
min ≥ 𝛼𝑒𝑔 .

(𝛼-E)

The first four inequalities model the standard trick of linearisation of
the absolute value. The last constraint ensures that the value of the
linear expression of the absolute value is higher than the required
fraction 𝛼𝑒𝑔 .

Similarly, (𝛼-G) can be linearised as follows:
∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔
|𝜌𝑒𝑔 − 𝜆𝑒𝑔 |(𝑒𝑔) ≥ 𝛼𝑔(𝑔).

⟺

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜌𝑒𝑔 − 𝜆𝑒𝑔 = 𝜈
𝑒𝑔
max − 𝜈

𝑒𝑔
min,

𝜈
𝑒𝑔
max ≤ 1 − entry𝑒𝑔 ,

𝜈
𝑒𝑔
min ≤ entry𝑒𝑔 ,

𝜈
𝑒𝑔
min, 𝜈

𝑒𝑔
max ≥ 0,

𝑝𝑒𝑔 ≤ 𝜈
𝑒𝑔
max + 𝜈

𝑒𝑔
min,

𝑝𝑒𝑔 ≤ 𝜇𝑒𝑔 ,
𝑝𝑒𝑔 ≥ 𝜈

𝑒𝑔
max + 𝜈

𝑒𝑔
min + 𝜇𝑒𝑔 − 1,

∑

𝑒𝑔∈𝐸𝑔
𝑝𝑒𝑔(𝑒𝑔) ≥ 𝛼𝑔(𝑔),

(𝛼-G)

where 𝑝𝑒𝑔 is the auxiliary variable that represents the product of the
binary variable 𝜇𝑒𝑔 and the difference in absolute value |𝜌𝑒𝑔 − 𝜆𝑒𝑔 |. The
first four inequalities linearise the expression of the absolute value. The
following three constraints model the product of the expression of the
absolute value and the binary variable 𝜇𝑒𝑔 . The last inequality ensures
that the fraction of the length of those edges chosen to be crossed must
be greater than the fraction of the length of 𝑔 required to be traversed.

Elimination of subtours

To represent the actual routes of drones on the target graph, sub-
tours are not allowed. The reader may note that the subtour elimination
constraints are needed to avoid the presence of disconnected paths on
the edges of the graph. To prevent the existence of subtours within each
graph 𝑔 ∈  that the drone must visit, we can include, among others,
the compact formulation that uses Miller-Tucker-Zemlin constraints
(MTZ) or subtour elimination constraints (SEC).

For the MTZ formulation, we use the continuous variables 𝑠𝑒𝑔 ,
defined in Table 2, which state the order of visit to the edge 𝑒𝑔 and
set the following constraints for each 𝑔 ∈ :

𝑠𝑒𝑔 − 𝑠𝑒
′
𝑔 + |𝐸𝑔|𝑧

𝑒𝑔𝑒′𝑔 ≤ |𝐸𝑔| − 1, ∀𝑒𝑔 ≠ 𝑒′𝑔 ∈ 𝐸𝑔 , (MTZ1)

0 ≤ 𝑠𝑒𝑔 ≤ |𝐸𝑔| − 1, ∀𝑒𝑔 ∈ 𝐸𝑔 . (MTZ2)

Alternatively, we can also use the family of subtour elimination
constraints for each 𝑔 ∈ :
∑

𝑒𝑔 ,𝑒′𝑔∈𝑆

𝑧
𝑒𝑔𝑒′𝑔
𝑔 ≤ |𝑆| − 1, ∀𝑆 ⊂ 𝐸𝑔 . (SEC)

Since there is an exponential number of SEC constraints, when
we implement this formulation, we need to perform a row genera-
tion procedure including constraints whenever they are required by
a separation oracle. To find SEC inequalities, as usual, we search for
disconnected components in the current solution. Among them, we
choose the shortest subtour found in the solution to be added as a lazy
constraint to the model.

3.1. AMMDRPG with complete overlapping

To model this problem, we use operations identified with the order
in which the different target graphs in the problem are visited. Let us
denote by  the set of operations that the mothership and the drone
fleet have to perform. These operations are visits to different graphs in
 with the required constraints. An operation 𝑜 ∈  is referred to as the
actions in which the mothership launches some drones from a take-off
location, denoted by 𝑥𝑜𝐿 and then takes them back to a retrieval location
𝑥𝑜𝑅. Here, it is important to realise that both the locations 𝑥𝑜𝐿 and 𝑥𝑜𝑅
must be determined in the continuous space in which the mothership
is assumed to move. Note that || ≤ ||, since it is assumed that, for
each operation, at least one drone must be launched.

For each operation 𝑜 ∈ , each of the drones launched from the
mothership must follow a path starting from and returning to the
mothership, while visiting the required edges of one of the graphs
𝑔 ∈ . According to the notation introduced above, we write this
generic path in the following form:

𝑥𝑜𝐿 → 𝑅𝑒𝑔 → 𝐿𝑒𝑔 → … → 𝑅𝑒′𝑔 → 𝐿𝑒′𝑔 → … → 𝑅𝑒′′𝑔 → 𝐿𝑒′′𝑔 → 𝑥𝑜𝑅.

Fig. 3 shows an example of the notation in a configuration with four
target graphs that have four nodes and four edges. Here, it is assumed
that the number of drones available is equal to two. In particular,
Fig. 3(a) represents a feasible solution to the problem for this configu-
ration. The mothership, whose path is represented in black, begins at
its starting point 𝑜𝑟𝑖𝑔, which coincides with the first launch point 𝑥1𝐿,
where two drones are launched to visit two graphs. There, each drone
follows a route (represented by the orange and the green paths) that
ensures coverage of one-half of the length of each edge of the graph.
The smaller red dots in the visited graphs are the intermediate points
𝑅𝑒𝑔 and 𝐿𝑒𝑔 used by the drones in their visit to the edges of the different
graphs. After finishing the visit of the first two graphs, the drones return
to the point 𝑥1𝑅. The mothership moves from this point to the second
launch point 𝑥2𝐿 from where only one drone is launched to visit the
third graph. Once this graph has been visited, the drone returns to the
mothership at the retrieval point 𝑥2𝑅. Finally, the mothership moves to
the point 𝑥3𝐿 from where a drone is launched for the last visit to the
fourth graph. The drone is then retrieved by the mothership at the point
𝑥3𝑅, and then the mothership ends its route at the destination point 𝑑𝑒𝑠𝑡.

Fig. 3(b) represents an optimal solution for the same instance of the
problem. We can observe that, in this case, from the first launch point
𝑥1𝐿 only one drone is launched, while from the second 𝑥2𝐿 two drones
are launched to visit the second and third graphs. The different position
in space of this last point, with respect to the feasible solution reported
in Fig. 3(a) whose makespan is 158.36, ensures that the makespan of
the optimal solution is equal to 152.39, which is shorter.

To include the definition of these paths in our mathematical pro-
gramming formulation, we need to make decisions to choose:

(i) The optimal assignment of drones to visit graphs in a given
operation 𝑜.

(ii) The order to visit the edges of each graph in its corresponding
operation.
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Fig. 3. Problem instance with 4 graphs and 2 drones to visit 50% of each target graph: (a) A feasible solution; and (b) an optimal solution for this case..

Drone constraints
We model the route that the drone follows using the binary variables

𝑢𝑒𝑔𝑜, 𝑧𝑒𝑔𝑒
′
𝑔 and 𝑣𝑒𝑔𝑜 defined in Table 2.

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜 ≤ ||, ∀𝑜 ∈ ,

(Drone ROUTE1-CO)
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜 ≤ ||, ∀𝑜 ∈ ,

(Drone ROUTE2-CO)
∑

𝑒𝑔∈𝐸𝑔

∑

𝑜∈
𝑢𝑒𝑔𝑜 = 1, ∀𝑔 ∈ ,

(Drone ROUTE3-CO)
∑

𝑒𝑔∈𝐸𝑔

∑

𝑜∈
𝑣𝑒𝑔𝑜 = 1, ∀𝑔 ∈ ,

(Drone ROUTE4-CO)
∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜 =
∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜, ∀𝑔 ∈ ,∀𝑜 ∈ ,

(Drone ROUTE5-CO)
∑

𝑜∈
𝑢𝑒𝑔𝑜 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧
𝑒′𝑔𝑒𝑔
𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone ROUTE6-CO)
∑

𝑜∈
𝑣𝑒𝑔𝑜 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧
𝑒𝑔𝑒′𝑔
𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ .

(Drone ROUTE7-CO)
The inequalities (Drone ROUTE1-CO) and (Drone ROUTE2-CO) state

that it is not possible to use a number of drones larger than the one
available in each operation 𝑜. Constraints (Drone ROUTE3-CO) and
(Drone ROUTE4-CO) ensure that each graph is visited by a drone in an
operation 𝑜. Eqs. (Drone ROUTE5-CO) ensure that the action of entering
and exiting the graph 𝑔 occurs in the same operation 𝑜. Constraints
(Drone ROUTE6-CO) state that if a drone visits an edge 𝑒 of the graph
𝑔, one of two alternative situations must occur: 𝑒 is the first edge of the
graph 𝑔 visited by the drone during operation 𝑜, or the edge 𝑒 is visited
by the drone after visiting another edge 𝑒′ of the graph 𝑔. Similarly,
the constraints (Drone ROUTE7-CO) state that if a drone visits an edge
𝑒 of the graph 𝑔, 𝑒 is the last edge of the graph 𝑔 visited by the drone
during operation 𝑜, or the drone must move to another edge 𝑒′ of the
graph 𝑔 after visiting the edge 𝑒.

Distance and time constraints
The goal of the AMMDRPG-CO is to find a feasible solution that

minimises the makespan. To account for the different distances between

the decision variables of the model, we need to set the continuous
variables 𝑑

𝑒𝑔𝑜
𝐿 , 𝑑𝑒𝑔 , 𝑑𝑒𝑔𝑒

′
𝑔 , 𝑑

𝑒𝑔𝑜
𝑅 , 𝑑𝑜𝑟𝑖𝑔 , 𝑑𝑜𝑅𝐿, 𝑑𝑜𝐿𝑅 and 𝑑𝑑𝑒𝑠𝑡 defined in

Table 2 (Blanco et al., 2013). This can be done by means of the
following constraints:

‖𝑥𝑜𝐿 − 𝑅𝑒𝑔
‖ ≤ 𝑑

𝑒𝑔𝑜
𝐿 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , ∀𝑜 ∈ , (Drone DIST1-CO)

‖𝑅𝑒𝑔 − 𝐿𝑒𝑔
‖ ≤ 𝑑𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , (Drone DIST2-CO)

‖𝑅𝑒𝑔 − 𝐿𝑒′𝑔
‖ ≤ 𝑑𝑒𝑔𝑒

′
𝑔 , ∀𝑒𝑔 ≠ 𝑒′𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , (Drone DIST3-CO)

‖𝐿𝑒𝑔 − 𝑥𝑜𝑅‖ ≤ 𝑑𝑒𝑜𝑅 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , ∀𝑜 ∈ . (Drone DIST4-CO)

‖𝑜𝑟𝑖𝑔 − 𝑥1𝐿‖ ≤ 𝑑𝑜𝑟𝑖𝑔 , (Mothership DIST1-CO)
‖𝑥𝑜𝐿 − 𝑥𝑜𝑅‖ ≤ 𝑑𝑜𝐿𝑅, ∀𝑜 ∈ ,

(Mothership DIST2-CO)
‖𝑥𝑜𝑅 − 𝑥𝑜+1𝐿 ‖ ≤ 𝑑𝑜𝑅𝐿, ∀𝑜 ∈  ∶ 𝑜 < ||,

(Mothership DIST3-CO)

‖𝑥||𝑅 − 𝑑𝑒𝑠𝑡‖ ≤ 𝑑𝑑𝑒𝑠𝑡. (Mothership DIST4-CO)

All variables that model the distances covered by drones, namely
𝑑
𝑒𝑔𝑜
𝐿 , 𝑑𝑒𝑔 , 𝑑𝑒

′
𝑔𝑒𝑔 and 𝑑

𝑒𝑔𝑜
𝑅 , as well as those modelling the distance trav-

elled by the mothership, namely 𝑑𝑜𝑟𝑖𝑔 , 𝑑𝑜𝐿𝑅, 𝑑𝑜𝑅𝐿 and 𝑑𝑑𝑒𝑠𝑡, are defined
in Table 2.

In order to compute the maximum time a drone spends visiting a
graph 𝑔 ∈  associated with the operation 𝑜,∀𝑜 ∈ , we introduce the
following constraints:

𝑡𝑖𝑚𝑒𝑜𝐷 ≥ 1
𝑣𝐷

⎛

⎜

⎜

⎝

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜𝑑
𝑒𝑔𝑜
𝐿 +

∑

𝑒𝑔 ,𝑒′𝑔∈𝐸𝑔

𝑧𝑒𝑔𝑒
′
𝑔𝑑𝑒𝑔𝑒

′
𝑔 +

∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔𝑑𝑒𝑔

+
∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜𝑑
𝑒𝑔𝑜
𝑅

⎞

⎟

⎟

⎠

−𝑁𝐷(1 −
∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜).

(Drone TIME𝑜-CO)

The first addend in the brackets represents the time that the drone
spends transferring from the launch point 𝑥𝑜𝐿 to the first retrieval point
in the graph 𝑅𝑒𝑔 . The second addend considers the time consumed
by the drone to go from edge 𝑒𝑔 to edge 𝑒′𝑔 on graph 𝑔. The third
computes the time required to traverse the required edges in 𝑔. The
fourth measures the time taken to travel from the last launching point
𝐿𝑒′′𝑔 to the retrieval point 𝑥𝑜𝑅. Note that, in the special case where all
edges must be visited, the third sum on the right-hand side of the
constraint (Drone TIME𝑜-CO) reduces to ∑

𝑒𝑔∈𝐸𝑔
𝑑𝑒𝑔 setting all variables

𝜇𝑒𝑔 equal to one.
The endurance term in the constraint (Drone TIME𝑜-CO) ensures

that the constraint becomes active only when a graph 𝑔 is visited during
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the operation 𝑜. The reader may observe that the endurance constraint
(Endurance-CO) restricts the time the drone spends performing the
operation 𝑜 to be less than the endurance 𝑁𝐷. Therefore, the constant
𝑁𝐷 can be taken as the bigM term in the constraint (Drone TIME𝑜-CO).

Note that, to deal with the bilinear terms of the constraint (Drone
TIME𝑜-CO), we use McCormick’s envelope to linearise them by adding
variables 𝑝 ≥ 0 representing the products and introducing the following
constraints:

𝑝 ≤ 𝑀𝑧,

𝑝 ≤ 𝑑,

𝑝 ≥ 𝑚𝑧,

𝑝 ≥ 𝑑 −𝑀(1 − 𝑧),

where 𝑚 and 𝑀 are, respectively, the lower and upper bounds of the
distance variable 𝑑. These bounds will be adjusted for each bilinear
term in Section 4.

The constraint (Mothership TIME𝑜-CO) defines the time the moth-
ership must spend to go from the launch point 𝑥𝑜𝐿 to the retrieval point
𝑥𝑜𝑅 associated with the operation 𝑜:

𝑡𝑖𝑚𝑒𝑜𝑀 =
𝑑𝑜𝐿𝑅
𝑣𝑀

, ∀𝑜 ∈ . (Mothership TIME𝑜-CO)

Thus, the overall time spent by the mothership to move from the
origin to the destination (makespan) can be expressed as follows:

𝑡𝑖𝑚𝑒𝑀 = 1
𝑣𝑀

(𝑑𝑜𝑟𝑖𝑔 +
∑

𝑜∈
𝑑𝑜𝐿𝑅 +

∑

𝑜∈∶𝑜<||
𝑑𝑜𝑅𝐿 + 𝑑𝑑𝑒𝑠𝑡).

(Mothership TIME-CO)

Coordination and endurance constraints
The coordination between the drones and the mothership must

ensure that the maximum time 𝑡𝑖𝑚𝑒𝑜𝐷 spent by a drone to visit a graph
𝑔 at operation 𝑜 is less than or equal to the time that the mothership
needs to move from the launching point to the retrieval point during
operation 𝑜. To this end, we need to define the following coordination
constraint for each operation 𝑜 ∈ :

𝑡𝑖𝑚𝑒𝑜𝐷 ≤ 𝑡𝑖𝑚𝑒𝑜𝑀 . (DCW-CO)

We can model the time endurance constraint for a particular opera-
tion 𝑜 ∈  by limiting the time travelled by the drone for this operation
𝑜:

𝑡𝑖𝑚𝑒𝑜𝐷 ≤ 𝑁𝐷. (Endurance-CO)

AMMDRPG-complete overlapping formulation
Combining all the constraints introduced hitherto, the following

formulation minimises the makespan, ensuring coordination with the
drone fleet while guaranteeing the required coverage of the target
graphs.

min 𝑡𝑖𝑚𝑒𝑀 (AMMDRPG-CO)

s.t. (𝛼-E) or (𝛼-G),

(MTZ1)–(MTZ2) or (SEC),

(Drone ROUTE1-CO)–(Drone ROUTE7-CO),

(Drone DIST1-CO)–(Drone DIST4-CO),

(Mothership DIST1-CO)–(Mothership DIST4-CO),

(Drone TIME𝑜-CO), (Mothership TIME𝑜-CO), (Mothership TIME-CO),

(DCW-CO), (Endurance-CO).

The objective function accounts for the makespan. Constraints
(Drone ROUTE1-CO)–(Drone ROUTE7-CO) model the route followed by
the drones, (MTZ1)–(MTZ2) or (SEC) ensure that the displacement
of a drone assigned to the target graph 𝑔 ∈  is a route, (𝛼-E)
or (𝛼-G) define what is required in each visit to a target graph.

Constraints (Drone DIST1-CO)–(Drone DIST4-CO) set the variables 𝑑𝑒𝑔𝑜𝐿 ,
𝑑𝑒𝑔 , 𝑑𝑒𝑔𝑒

′
𝑔 , 𝑑𝑒𝑔𝑜𝑅 . The mothership distances 𝑑𝑜𝑅𝐿 and 𝑑𝑜𝐿𝑅, are defined by

means of constraints (Mothership DIST1-CO)–(Mothership DIST4-CO).
Constraints (Drone TIME𝑜-CO), (Mothership TIME𝑜-CO) and (Mother-
ship TIME-CO) define times travelled by the drones and the moth-
ership. Finally, constraints (DCW-CO)–(Endurance-CO) guarantee that
coordination and drone endurance are satisfied.

3.2. The AMMDRPG with partial overlapping

In the AMMDRPG-CO version of the problem, we assume that
every drone is launched and retrieved in the same operation. In this
subsection, we show how this assumption can be relaxed. We consider
a variant of the model presented in Section 3.1, in which we assume
that the mothership can retrieve one drone in a different phase from
that in which it has been launched. That is, the mothership can move
to another point to launch a new drone without having retrieved all
the drones that were launched previously.

In the following formulation, we use the concept of stage to refer to
the action of launching or receiving a drone by the mothership. Each
graph must be visited by a drone so that each operation gives rise to
two stages: one when the drone is launched and another one, once
the same drone has been retrieved by the mothership. We denote by
 the set of stages. It is clear that | | = 2||. Using the concept of
stage, we can substitute the set of operations with the set of stages to
model the coordination between drones and mothership in the partial
overlapping version of the problem. Indeed, in this case, different from
the complete overlapping version of the problem, the launch of a drone
is not necessarily followed by its retrieval but, for example, by the
launch of a different drone to visit another target graph, as shown in
Fig. 5. We notice that when the fleet of drones consists of only one
drone, the two versions of the problem coincide. Table 3 summarises
all the variables used in our formulation for the AMMDRPG-PO model.

Drone constraints
Similarly to the complete overlapping version of the problem, we

model the route followed by the drone using the binary variables
𝑢𝑒𝑔 𝑡, 𝑣𝑒𝑔 𝑡 and 𝑧𝑒𝑔𝑒

′
𝑔 . However, in this case, the variables 𝑢𝑒𝑔 𝑡 and 𝑣𝑒𝑔 𝑡

are associated with the stage 𝑡 and due to the assumptions of the
problem, we need to introduce additional binary variables 𝛾𝑔𝑡. Thus,
the following constraints model the route followed by the drone while
operating on a graph 𝑔 ∈ :

∑

𝑡∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡 = 1, ∀𝑔 ∈ ,

(Drone ROUTE1)
∑

𝑡∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡 = 1, ∀𝑔 ∈ ,

(Drone ROUTE2)
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡 ≤ (𝑡), ∀𝑡 ∈  ,

(Drone ROUTE3)
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

(𝑢𝑒𝑔 𝑡 + 𝑣𝑒𝑔 𝑡) ≤ 1, ∀𝑡 ∈  ,

(Drone ROUTE4)
∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡 ≤
∑

𝑒𝑔∈𝐸𝑔

∑

𝑡′∈ ∶𝑡′>𝑡
𝑣𝑒𝑔 𝑡′ , ∀𝑔 ∈ , ∀𝑡 ∈  ,

(Drone ROUTE5)
∑

𝑡∈
𝑢𝑒𝑔 𝑡 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧𝑒
′
𝑔𝑒𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone ROUTE6)
∑

𝑡∈
𝑣𝑒𝑔 𝑡 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧𝑒𝑔𝑒
′
𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone ROUTE7)
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Table 3
Decision variables for AMMDRPG-PO.
Binary and integer decision variables

𝜇𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if edge 𝑒 of graph 𝑔 (or a portion of it) is visited by the drone, 0 otherwise.
entry𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary binary variable used for linearising expressions.
𝑢𝑒𝑔 𝑡 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑡 ∈  : equal to 1 if the visit of graph 𝑔 starts in stage 𝑡 from edge 𝑒𝑔 , 0 otherwise.
𝑧𝑒𝑔 𝑒

′
𝑔 ∈ {0, 1}, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if the drone goes from 𝑒𝑔 to 𝑒′𝑔 , 0 otherwise.

𝛾𝑔𝑡 ∈ {0, 1}, ∀𝑔 ∈ , ∀𝑡 ∈  : equal to 1 if the operation of visiting graph 𝑔 continues when stage 𝑡 occurs, 0 otherwise.
𝑣𝑒𝑔 𝑡 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑡 ∈  : equal to 1 if the visit of graph 𝑔 ends in stage 𝑡 on edge 𝑒𝑔 , 0 otherwise.
𝑦𝑡𝐿𝐿 ∈ {0, 1}, ∀𝑡 ∈  ∶ 𝑡 < | |: equal to 1 if the mothership moves from a launching point to a launching point between stage 𝑡

and stage 𝑡 + 1, 0 otherwise.
𝑦𝑡𝐿𝑅 ∈ {0, 1}, ∀𝑡 ∈  ∶ 𝑡 < | |: equal to 1 if the mothership moves from a launching point to a retrieval point between stage 𝑡

and stage 𝑡 + 1, 0 otherwise.
𝑦𝑡𝑅𝐿 ∈ {0, 1}, ∀𝑡 ∈  ∶ 𝑡 < | |: equal to 1 if the mothership moves from a retrieval point to a launching point between stage 𝑡

and stage 𝑡 + 1, 0 otherwise.
𝑦𝑡𝑅𝑅 ∈ {0, 1}, ∀𝑡 ∈  ∶ 𝑡 < | |: equal to 1 if the mothership moves from a retrieval point to a retrieval point between stage 𝑡

and stage 𝑡 + 1, 0 otherwise.
(𝑡) ∈ {0, 1, 2,… , ||}, ∀𝑡 ∈  : integer non-negative variable representing the number of available drones at stage 𝑡.

Continuous decision variables

𝑠𝑒𝑔 ∈ [0, |𝐸𝑔 | − 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): continuous non-negative variable representing the order of visit of the edge 𝑒 of graph 𝑔.
𝑥𝑡𝐿 ∈ R2 , ∀𝑡 ∈  : coordinates representing the launching point visited by the mothership at stage 𝑡.
𝑥𝑡𝑅 ∈ R2 , ∀𝑡 ∈  : coordinates representing the retrieval point visited by the mothership at stage 𝑡.
𝑅𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the entry point on edge 𝑒𝑔 of graph 𝑔.
𝐿𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the exit point on edge 𝑒𝑔 of graph 𝑔.
𝑑𝑒𝑔 𝑡
𝐿 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑡 ∈  : representing the distance travelled by the drone from the launching

point 𝑥𝑡𝐿 on the mothership at stage 𝑡 to the first visiting point 𝑅𝑒𝑔 on 𝑒𝑔 .
𝑑𝑒𝑔 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the retrieval point 𝑅𝑒𝑔 to the

launching point 𝐿𝑒𝑔 on 𝑒𝑔 .
𝑑𝑒𝑔 𝑒′𝑔 ≥ 0, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the launching point 𝐿𝑒𝑔 on 𝑒𝑔 to

the retrieval point 𝑅𝑒′𝑔 on 𝑒′𝑔 .
𝑑𝑒𝑔 𝑡
𝑅 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑡 ∈  : representing the distance travelled by the drone from the last visiting point

𝐿𝑒𝑔 on 𝑒𝑔 to the retrieval point 𝑥𝑜𝑅 on the mothership at stage 𝑡.
𝑑𝑜𝑟𝑖𝑔 ≥ 0: distance from the origin 𝑜𝑟𝑖𝑔 to the first launching point 𝑥1𝐿.
𝑑𝑡
𝐿𝐿 ≥ 0, ∀𝑡 ∈  ∶ 𝑡 < | |: distance from the launching point 𝑥𝑡𝐿 to the launching point 𝑥𝑡+1𝐿 .

𝑑𝑡
𝐿𝑅 ≥ 0, ∀𝑡 ∈  ∶ 𝑡 < | |: distance from the launching point 𝑥𝑡𝐿 to the retrieval point 𝑥𝑡+1𝑅 .

𝑑𝑡
𝑅𝐿 ≥ 0, ∀𝑡 ∈  ∶ 𝑡 < | |: distance from the retrieval point 𝑥𝑡𝑅 to the launching point 𝑥𝑡+1𝐿 .

𝑑𝑡
𝑅𝑅 ≥ 0, ∀𝑡 ∈  ∶ 𝑡 < | |: distance from the retrieval point 𝑥𝑡𝑅 to the retrieval point 𝑥𝑡+1𝑅 .

𝑑𝑑𝑒𝑠𝑡 ≥ 0: distance from the last retrieval point 𝑥| |

𝑅 to the destination 𝑑𝑒𝑠𝑡.
𝑑𝑔
𝐿𝑅 ≥ 0, ∀𝑔 ∈ : representing the distance travelled by the mothership from the launching point 𝑥𝑡𝐿 to the retrieval

point 𝑥𝑡′𝑅 associated with graph 𝑔 for some 𝑡, 𝑡′ ∈  .
𝑡𝑖𝑚𝑒𝑔𝑀 ≥ 0, ∀𝑔 ∈ : time spent by the mothership while graph 𝑔 is visited by a drone.
𝑡𝑖𝑚𝑒𝑔𝐷 ≥ 0, ∀𝑔 ∈ : time spent by a drone to visit graph 𝑔.
𝑡𝑖𝑚𝑒𝑀 ≥ 0: total time spent by the mothership to go from the origin to the destination (makespan).

𝛾𝑔𝑡 ≥
∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡, ∀𝑔 ∈ , ∀𝑡 ∈  ,

(Drone ROUTE8)
𝛾𝑔(𝑡+1) ≥ 𝛾𝑔𝑡 −

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1), ∀𝑔 ∈ , ∀𝑡 ∈  ∶ 𝑡 < | |,

(Drone ROUTE9)
∑

𝑡′∈ ∶𝑡′<𝑡
𝛾𝑔𝑡′ ≤ (𝑡 − 1)(1 −

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡), ∀𝑔 ∈ , ∀𝑡 ∈  ,

(Drone ROUTE10)
∑

𝑡′∈ ∶𝑡′≥𝑡
𝛾𝑔𝑡′ ≤ (| | − 𝑡 + 1) (1 −

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡), ∀𝑔 ∈ , ∀𝑡 ∈  ,

(Drone ROUTE11)

(1) = ||, (Drone ROUTE12)
(𝑡 + 1) = (𝑡) +

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡 −
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡, ∀𝑡 ∈  ∶ 𝑡 < | |.

(Drone ROUTE13)

The constraints (Drone ROUTE1) and (Drone ROUTE2) ensure that
a launch point and a retrieval point are associated with each graph
𝑔. The restrictions (Drone ROUTE3) allow the mothership to launch
a drone in stage 𝑡 only if a drone is available when stage 𝑡 occurs.
Constraints (Drone ROUTE4) guarantee that a launch or a retrieval
occurs at each stage 𝑡 ∈  . Constraints (Drone ROUTE5) indicate that
the retrieval stage associated with the graph 𝑔 occurs after the launch
stage associated with the same graph 𝑔. Eqs. (Drone ROUTE6) state that

if a drone visits an edge 𝑒 of the graph 𝑔, either 𝑒 is the first edge of
the graph 𝑔 visited by the drone at stage 𝑡, or the drone visits the edge
𝑒 after visiting another edge 𝑒′ of the graph 𝑔. Similarly, constraints
(Drone ROUTE7) state that if a drone visits an edge 𝑒 of the graph 𝑔, 𝑒 is
the last edge of the graph 𝑔 visited by the drone at stage 𝑡, or the drone
must move to another edge 𝑒′ of the graph 𝑔 after visiting the edge
𝑒. Constraints (Drone ROUTE8) ensure that the operation associated
with graph 𝑔 starts when the drone is launched during the stage 𝑡.
Inequalities (Drone ROUTE9) state that the drone is still operating in
the graph 𝑔 for successive stages until it is retrieved at the stage 𝑡.
Constraints (Drone ROUTE10) ensure that drone does not operate in 𝑔
until launch stage occurs. Constraints (Drone ROUTE11) guarantee that
the drone finishes operating in graph 𝑔 when retrieval stage occurs.
Finally, the constraints (Drone ROUTE12) and (Drone ROUTE13) model
the number of drones available at the stage 𝑡.

Mothership constraints
This subsection models all possible sequences of stages in terms

of launching and retrieval that can be followed by the mothership:
launching-launching, launching-retrieval, retrieval-launching, and
retrieval-retrieval.

𝑦1𝐿𝐿 + 𝑦1𝐿𝑅 = 1, (Mothership ROUTE1)

𝑦𝑡+1𝐿𝐿 + 𝑦𝑡+1𝐿𝑅 ≥ 𝑦𝑡𝑅𝐿 + 𝑦𝑡𝐿𝐿, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership ROUTE2)

𝑦𝑡+1𝑅𝑅 + 𝑦𝑡+1𝑅𝐿 ≥ 𝑦𝑡𝐿𝑅 + 𝑦𝑡𝑅𝑅, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership ROUTE3)
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𝑦| |−1
𝐿𝑅 + 𝑦| |−1

𝑅𝑅 = 1. (Mothership ROUTE4)

The constraints (Mothership ROUTE1) state that at stage 1 the
mothership must depart from the launch point 𝑥1𝐿. Constraints
(Mothership ROUTE2) (resp. (Mothership ROUTE3)) ensure that if the
mothership goes to the launching point (resp. retrieval) 𝑥𝑡+1𝐿 (resp.
𝑥𝑡+1𝑅 ) then in the next stage it must depart from 𝑥𝑡+1𝐿 (resp. 𝑥𝑡+1𝑅 ). The
constraint (Mothership ROUTE4) guarantees that the path followed by
the mothership ends at the retrieval point 𝑥| |

𝑅 .

Distance and time constraints
This subsection considers the second-order cone constraints that

model the distances covered by the drones and the mothership:

‖𝑥𝑡𝐿 − 𝑅𝑒𝑔
‖ ≤ 𝑑

𝑒𝑔 𝑡
𝐿 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , ∀𝑡 ∈  , (Drone DIST1)

‖𝑅𝑒𝑔 − 𝐿𝑒𝑔
‖ ≤ 𝑑𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , (Drone DIST2)

‖𝑅𝑒𝑔 − 𝐿𝑒′𝑔
‖ ≤ 𝑑𝑒𝑔 𝑒′𝑔 , ∀𝑒𝑔 ≠ 𝑒′𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , (Drone DIST3)

‖𝐿𝑒𝑔 − 𝑥𝑡𝑅‖ ≤ 𝑑
𝑒𝑔 𝑡
𝑅 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ , ∀𝑡 ∈  . (Drone DIST4)

‖𝑜𝑟𝑖𝑔 − 𝑥1𝐿‖ ≤ 𝑑𝑜𝑟𝑖𝑔 , (Mothership DIST1)

‖𝑥𝑡𝐿 − 𝑥𝑡+1𝐿 ‖ ≤ 𝑑𝑡
𝐿𝐿, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership DIST2)

‖𝑥𝑡𝐿 − 𝑥𝑡+1𝑅 ‖ ≤ 𝑑𝑡
𝐿𝑅, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership DIST3)

‖𝑥𝑡𝑅 − 𝑥𝑡+1𝐿 ‖ ≤ 𝑑𝑡
𝑅𝐿, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership DIST4)

‖𝑥𝑡𝑅 − 𝑥𝑡+1𝑅 ‖ ≤ 𝑑𝑡
𝑅𝑅, ∀𝑡 ∈  ∶ 𝑡 < | |, (Mothership DIST5)

‖𝑥| |

𝑅 − 𝑑𝑒𝑠𝑡‖ ≤ 𝑑𝑑𝑒𝑠𝑡. (Mothership DIST6)

All variables that model the distances covered by drones, namely
𝑑
𝑒𝑔 𝑡
𝐿 , 𝑑𝑒𝑔 , 𝑑𝑒

′
𝑔𝑒𝑔 , and 𝑑

𝑒𝑔 𝑡
𝑅 , as well as those that model the distances

travelled by the mothership, namely 𝑑𝑜𝑟𝑖𝑔 , 𝑑𝑡𝐿𝐿, 𝑑𝑡𝐿𝑅, 𝑑𝑡𝑅𝐿, 𝑑𝑡𝑅𝑅 and 𝑑𝑑𝑒𝑠𝑡,
are defined in Table 3.

The time that the drone spends performing the operation of visiting
the graph 𝑔 is given by:

𝑡𝑖𝑚𝑒𝑔𝐷 = 1
𝑣𝐷

⎛

⎜

⎜

⎝

∑

𝑡∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡𝑑
𝑒𝑔 𝑡
𝐿 +

∑

𝑒𝑔 ,𝑒′𝑔∈𝐸𝑔

𝑧𝑒𝑔𝑒
′
𝑔𝑑𝑒𝑔𝑒

′
𝑔 +

∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔𝑑𝑒𝑔

+
∑

𝑡∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡𝑑
𝑒𝑔 𝑡
𝑅

⎞

⎟

⎟

⎠

.

(Drone TIME𝑔)

The time spent by the mothership while the drone is operating in
graph 𝑔 is given by:

𝑡𝑖𝑚𝑒𝑔𝑀 = 1
𝑣𝑀

𝑑𝑔𝐿𝑅 = 1
𝑣𝑀

∑

𝑡∈ ∶𝑡<| |

(‖𝑥𝑡𝐿 − 𝑥𝑡+1𝐿 ‖𝑦𝑡𝐿𝐿 + ‖𝑥𝑡𝐿 − 𝑥𝑡+1𝑅 ‖𝑦𝑡𝐿𝑅

+ ‖𝑥𝑡𝑅 − 𝑥𝑡+1𝐿 ‖𝑦𝑡𝑅𝐿 + ‖𝑥𝑡𝑅 − 𝑥𝑡+1𝑅 ‖𝑦𝑡𝑅𝑅)𝛾
𝑔𝑡, ∀𝑔 ∈ .

(Mothership TIME𝑔)

Finally, the overall time spent by the mothership (makespan) can
be described as follows:

𝑡𝑖𝑚𝑒𝑀 = 1
𝑣𝑀

(

𝑑𝑜𝑟𝑖𝑔 +
∑

𝑡∈ ∶𝑡<| |

(

‖𝑥𝑡𝐿 − 𝑥𝑡+1𝐿 ‖𝑦𝑡𝐿𝐿 + ‖𝑥𝑡𝐿 − 𝑥𝑡+1𝑅 ‖𝑦𝑡𝐿𝑅

+‖𝑥𝑡𝑅 − 𝑥𝑡+1𝐿 ‖𝑦𝑡𝑅𝐿 + ‖𝑥𝑡𝑅 − 𝑥𝑡+1𝑅 ‖𝑦𝑡𝑅𝑅
)

+ 𝑑𝑑𝑒𝑠𝑡

)

.

(Mothership TIME)

Coordination and endurance constraints

Once having defined the time the drone spends to visit 𝑔 and the
time spent by the mothership while the drone is visiting this graph 𝑔,

we can model the coordination constraint simply as follows:

𝑡𝑖𝑚𝑒𝑔𝐷 ≤ 𝑡𝑖𝑚𝑒𝑔𝑀 , ∀𝑔 ∈ . (DCW)

In addition, the time the drone spends to operate on the graph 𝑔
must not exceed its endurance:

𝑡𝑖𝑚𝑒𝑔𝐷 ≤ 𝑁𝐷 (Endurance)

Linearisation constraints

This subsection is devoted to linearising the relationship between
the decision variables that model the route of the mothership and the
drones. The relationship of these variables is given by the following
non-linear expressions:

𝑦𝑡𝐿𝐿 =
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

𝑦𝑡𝐿𝑅 =
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

𝑦𝑡𝑅𝐿 =
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

𝑦𝑡𝑅𝑅 =
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1) ∀𝑡 ∈  ∶ 𝑡 < | |.

The products above can be linearised, respectively, by means of the
following constraints:

𝑦𝑡𝐿𝐿 ≤
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization1)
𝑦𝑡𝐿𝐿 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization2)
𝑦𝑡𝐿𝐿 ≥

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡 +
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1) − 1, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization3)
𝑦𝑡𝐿𝑅 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization4)
𝑦𝑡𝐿𝑅 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization5)
𝑦𝑡𝐿𝑅 ≥

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 𝑡 +
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1) − 1, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization6)
𝑦𝑡𝑅𝐿 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization7)
𝑦𝑡𝑅𝐿 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization8)
𝑦𝑡𝑅𝐿 ≥

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡 +
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔 (𝑡+1) − 1, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization9)
𝑦𝑡𝑅𝑅 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡, ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization10)
𝑦𝑡𝑅𝑅 ≤

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1), ∀𝑡 ∈  ∶ 𝑡 < | |,

(Linearization11)
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𝑦𝑡𝑅𝑅 ≥
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 𝑡 +
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔 (𝑡+1) − 1, ∀𝑡 ∈  ∶ 𝑡 < | |.

(Linearization12)

AMMDRPG-Partial overlapping formulation

Hence, the formulation of the AMMDRPG with partial overlapping
operations is as follows:

min 𝑡𝑖𝑚𝑒𝑀 (AMMDRPG-PO)

s.t. (𝛼-E) or (𝛼-G),

(MTZ1)–(MTZ2) or (SEC),

(Drone ROUTE1)–(Drone ROUTE13),

(Mothership ROUTE1)–(Mothership ROUTE4),

(Drone DIST1)–(Drone DIST1),

(Mothership DIST1)–(Mothership DIST6),

(Drone TIME𝑔), (Mothership TIME𝑔), (Mothership TIME),

(DCW), (Endurance),

(Linearization1)–(Linearization12)

3.3. Relationship between problem variants

In this section, we present two results that link the two models
presented above. Note that the only difference between the solutions of
these models is that, for the partial overlapping case, the mothership
can launch a second drone sequentially before retrieving those that
were launched previously. Fig. 5 shows a solution that is not possible
for the model with complete overlapping. In fact, we can see that the
first drone is launched at 𝑥1𝐿 to visit 𝑃1 and retrieved at 𝑥1𝑅. However,
the mothership has launched another drone at 𝑥2𝐿 that goes to visit 𝑃2
before retrieved the first drone. Clearly, this solution does not satisfy
the assumptions of the complete overlapping model.

Theorem 3.1. Let 𝑋𝐶𝑂 be the feasible set of the AMMDRPG with
complete overlapping operations, and let 𝑋𝑃𝑂 be the feasible set of the
AMMDRPG with partial overlapping operations, then:

𝑋𝐶𝑂 ⊊ 𝑋𝑃𝑂 .

Proof. To prove the theorem, we first show that a feasible solution
𝜔̄ ∈ 𝑋𝐶𝑂 is also feasible for the AMMDRPG-PO. We can notice that
all the discrete decision variables of the AMMDRPG-PO model can
be obtained directly once the variables 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡 are set through
the constraints (Drone ROUTE8)–(Drone ROUTE13). Thus, we can limit
ourselves to showing how their values can be derived from those of 𝜔̄
to obtain a feasible solution 𝜔̂ ∈ 𝑋𝑃𝑂. We consider 𝑢̄𝑒𝑔𝑜 and 𝑣̄𝑒𝑔𝑜 equal
to 1. Let ̄ = {𝑜 ∈  ∶ 𝑢̄𝑒𝑔𝑜 = 1}. Let ̄(𝑜) be the set of graphs visited
in operation 𝑜 ∈ ̄. We can compute for each 𝑜 ∈ ̄ the corresponding
set  (𝑜), that is, the set of stages that define the launch and retrieval
actions that occur in operation 𝑜. More in detail, we can identify the
first element 𝑡(𝑜) of this set as follows:

𝑡(0) = 1;

𝑡(𝑜 + 1) = 𝑡(𝑜) +
∑

𝑔∈̄(𝑜)

∑

𝑒𝑔∈𝐸𝑔

(𝑢̄𝑒𝑔𝑜 + 𝑣̄𝑒𝑔𝑜).

Given its first element 𝑡(𝑜), we can split  (𝑜) into two subsets of the
indexes 𝑢(𝑜) and 𝑣(𝑜) as follows:

𝑢(𝑜) = {𝑡 ∈  ∶ 𝑡(𝑜) ≤ 𝑡 ≤ 𝑡(𝑜) + |̄(𝑜)| − 1},

𝑣(𝑜) = {𝑡 ∈  ∶ 𝑡(𝑜) ≤ 𝑡 − |̄(𝑜)| ≤ 𝑡(𝑜) + |̄(𝑜)| − 1}.

Since the cardinality of the set 𝑢(𝑜) is equal to the cardinality of
the set ̄(𝑜), we can define a bijective function 𝜑̄𝑢(𝑜) ∶ 𝑢(𝑜) → ̄(𝑜) and

Fig. 4. Feasible solution with partial overlapping that is not feasible for the complete
overlapping model.

similarly we can define a bijective function 𝜑̄𝑣(𝑜) ∶ 𝑣(𝑜) → ̄(𝑜). These
functions define the assignment between the graphs and stages. Note
that any assignment defined by the functions 𝜑̄𝑢(𝑜) and 𝜑̄𝑣(𝑜) is feasible.

Using these two functions, we can set the values of the 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡

variables. Indeed, by resorting to the Graph of the functions 𝜑̄𝑢(𝑜) and
𝜑̄𝑣(𝑜) we can define, respectively, the variables 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡 that must
be equal to 1:

𝑢̂𝑒𝑔 𝑡 = 1, (𝑡, 𝑔) ∈ Graph(𝜑̄𝑢(𝑜)) ∧ (𝑢̄𝑒𝑔𝑜 = 1)

𝑣̂𝑒𝑔 𝑡 = 1, (𝑡, 𝑔) ∈ Graph(𝜑̄𝑣(𝑜)) ∧ (𝑣̄𝑒𝑔𝑜 = 1)

The remaining 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡 variables are set equal to 0. To show that
binary variables 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡 are feasible for the AMMDRPG-PO model,
it can be easily checked they satisfy the constraints (Drone ROUTE1)–
(Drone ROUTE7).

Moreover, it is easy to show that the mothership constraints are
also satisfied by the variables 𝑦̂𝑡 = (𝑦̂𝑡𝐿𝐿, 𝑦̂

𝑡
𝐿𝑅, 𝑦̂

𝑡
𝑅𝐿, 𝑦̂

𝑡
𝑅𝑅), induced by the

variables 𝑢̂𝑒𝑔 𝑡 and 𝑣̂𝑒𝑔 𝑡.
With regard to continuous variables, they can be directly derived

from the setting of variables 𝑥̂𝑡𝐿 and 𝑥̂𝑡𝑅 which can be obtained as
follows:

𝑥̂𝑡𝐿 = 𝑥̄𝑜𝐿, ∀𝑡 ∈ 𝑢(𝑜) ∶ 𝑜 ∈ ̄,

𝑥̂𝑡𝑅 = 𝑥̄𝑜𝑅, ∀𝑡 ∈ 𝑣(𝑜) ∶ 𝑜 ∈ ̄.

We can see that the distances between two consecutive launch
points or two consecutive retrieval points are equal to 0 by the defi-
nition of the variables 𝑥̂𝑡𝐿 and 𝑥̂𝑡𝑅. Consequently, the time 𝑡𝑖𝑚𝑒

𝑔
𝑀 spent

by the mothership while the drone visits the graph 𝑔 ∈ ̄(𝑜) ∶ 𝑜 ∈ ̄ is
equal to 𝑡𝑖𝑚𝑒

𝑜
𝑀 .

To complete the proof, it suffices to notice that, in contrast, there
exist feasible solutions of the AMMDRPG-PO characterised by partial
overlaps between operations, as shown, for example, in Fig. 4, which
are not feasible for the AMMDRPG-CO. □

To present our next result, wlog, we restrict ourselves to the degen-
erate case where the graphs are reduced to points. The reader may note
that it is possible to reduce the visit of graphs to the visit of points by
assuming that the drone is stopped at the point which is at the same
time as the one required to traverse the edges of the graph. We simplify
the proof by considering a generic solution between two consecutive
target points.

Theorem 3.2. Let 𝑥1𝐿, 𝑥
2
𝐿 (resp. 𝑥1𝑅, 𝑥

2
𝑅) be the launch (resp. retrieval)

points associated with the visit to the target points 𝑃1 and 𝑃2. If there exist
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Fig. 5. The mothership launches two drones sequentially.

two points 𝑥𝐿 and 𝑥𝑅 verifying

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

‖𝑥𝐿 − 𝑥𝑅‖
𝑣𝑀

≤
‖𝑥𝐿 − 𝑃1‖ + ‖𝑃1 − 𝑥𝑅‖

𝑣𝐷
,

‖𝑥𝐿 − 𝑥𝑅‖
𝑣𝑀

≤
‖𝑥𝐿 − 𝑃2‖ + ‖𝑃2 − 𝑥𝑅‖

𝑣𝐷
,

‖𝑥𝐿 − 𝑥𝑅‖
𝑣𝑀

≤ 𝑁𝐷,

‖𝑥𝐿 − 𝑥𝑅‖ ≤ ‖𝑥1𝐿 − 𝑥2𝐿‖ + ‖𝑥2𝐿 − 𝑥1𝑅‖ + ‖𝑥1𝑅 − 𝑥2𝑅‖,

then the contribution of this partial route to the optimal objective value will
be the same in both models.

Proof. Note that, in the configuration considered, the order of visits to
the points 𝑃1 and 𝑃2 is fixed, and then the binary variables in the model
are fixed in this case. Thus, the only differences that the two models can
have are the location of the launch and retrieval points. Therefore, the
only constraints involved are those related to these points. These are the
conditions in the following statement: The first two are the (DCW-CO)
inequalities. The third is the constraint (Endurance-CO) and the last
ensures that the distance travelled by the mothership in the complete
overlapping model is smaller than or equal to the distance assumed in
the partial overlapping solution described in the statement. Therefore,
the conclusion follows. □

Note that this result states sufficient conditions to obtain the same
solution for the two models.

4. Strengthening the formulations

In this section, we present some valid inequalities for (AMMDRPG-
CO) that reinforce the formulation given in Section 3.1. Moreover,
constraints (DCW-CO) and (DCW) have products of binary and con-
tinuous variables that, when linearised, produce bigM constants that
must be tightened. This section also provides some bounds for these
constants when it is possible.

4.1. Valid inequalities for the (AMMDRPG-CO)

In this problem, we assume that the fleet has more than one drone,
since otherwise the problem reduces to the All Terrain Mothership and
Drone Routing Problem with Graphs that was already studied in Amorosi
et al. (2021). Therefore, if there exists an operation in which more than
one drone is launched, the mothership does not need to perform ||
different operations. Therefore, most likely, the model does not need to
deal with those operations that are numbered at the end. By exploiting
this idea, it is possible to concentrate all drone activities on the first
operations, avoiding empty operations in .

Let 𝛽𝑜 be a binary variable that assumes the value of 1 if all target
graphs are visited when the operation 𝑜 begins, and zero otherwise.
Note that if all graphs have already been visited before operation 𝑜

then they were also completed before operation 𝑜 + 1. Therefore, the
variables 𝛽 must satisfy the following constraints:

𝛽𝑜 ≤ 𝛽𝑜+1, for all 𝑜 = 1,… , || − 1. (Monotonicity)

Let 𝑘𝑜 denote the number of graphs visited in operation 𝑜. This
number can be computed using variables 𝑢 since 𝑢𝑒𝑔𝑜 takes the value
of 1 if the graph 𝑔 is visited in operation 𝑜. Thus:

𝑘𝑜 =
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜.

Hence, if 𝛽𝑜 is equal to one, the entire set of graphs in  must have
been visited before operation 𝑜:
𝑜−1
∑

𝑜′=1
𝑘𝑜

′ ≥ ||𝛽𝑜, ∀𝑜 ∈ , (VI-1)

where || denotes the number of graphs of .
To reduce the space of feasible solutions, we can assume without

loss of generality that it is not allowed to have an operation 𝑜 without
visiting graphs if some of them are still to be visited. This can be
enforced by the following constraints:

𝑘𝑜 ≥ 1 − 𝛽𝑜, ∀𝑜 ∈ . (VI-2)

The model we propose includes bigM constants. In this work, we
define different bigM constants. To strengthen the formulations, we
provide tight upper and lower bounds for these constants. In this
section, we present some results that adjust them for each of the
models. The reader may note that the same bounds can be used for both
models. Therefore, wlog, we focus on the bigM constants that appear
in (AMMDRPG-CO).

Big 𝑀 constants bounding the distance from the launch/retrieval point on
the path followed by the mothership to the retrieval/launch point on the
target graph 𝑔 ∈ 

To linearise the first addend in (DCW-CO), we define the non-
negative continuous auxiliary variables 𝑝

𝑒𝑔𝑜
𝐿 (resp. 𝑝𝑒𝑔𝑜𝑅 ) and we model

the product by including the following constraints:

𝑝
𝑒𝑔𝑜
𝐿 ≤ 𝑀

𝑒𝑔𝑜
𝐿 𝑢𝑒𝑔𝑜,

𝑝
𝑒𝑔𝑜
𝐿 ≤ 𝑑

𝑒𝑔𝑜
𝐿 ,

𝑝
𝑒𝑔𝑜
𝐿 ≥ 𝑚

𝑒𝑔𝑜
𝐿 𝑢𝑒𝑔𝑜,

𝑝
𝑒𝑔𝑜
𝐿 ≥ 𝑑

𝑒𝑔𝑜
𝐿 −𝑀

𝑒𝑔𝑜
𝐿 (1 − 𝑢𝑒𝑔𝑜).

Note that, among all graph nodes and the origin and destination points,
it is possible to identify the pair of points at the maximum distance.
From this pair of points, we can build a circle whose diameter is the
segment that joins them. Hence, because we minimise the distance
travelled by the mothership, every launch or retrieval point is inside
this circle, and the best upper bound 𝑀

𝑒𝑔𝑜
𝐿 or 𝑀

𝑒𝑔𝑜
𝑅 can be described

as:

𝑀
𝑒𝑔𝑜
𝑅 = max

{𝑣∈𝑉𝑔∪{orig,dest},𝑣′∈𝑉𝑔′∪{orig,dest}∶𝑔,𝑔′∈}
‖𝑣 − 𝑣′‖ = 𝑀

𝑒𝑔𝑜
𝐿 .

On the other hand, the minimum distance in this case can be zero.
This bound is attainable whenever the launch or the retrieval points of
the mothership are the same as the retrieval or launching point on the
target graph 𝑔 ∈ .

Bounds on the big𝑀 constants for the distance from the launch to the
retrieval points on the target graph 𝑔 ∈ 

When the drone visits a graph 𝑔, it has to go from one edge 𝑒𝑔
to another edge 𝑒′𝑔 depending on the order given by 𝑧𝑒𝑔𝑒

′
𝑔 . This fact

produces a product of variables linearised by the following constraints:

𝑝𝑒𝑔𝑒
′
𝑔 ≤ 𝑀𝑒𝑔𝑒′𝑔 𝑧𝑒𝑔𝑒

′
𝑔 ,

𝑝𝑒𝑔𝑒
′
𝑔 ≤ 𝑑𝑒𝑔𝑒

′
𝑔 ,
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Fig. 6. Illustrative example.

𝑝𝑒𝑔𝑒
′
𝑔 ≥ 𝑚𝑒𝑔𝑒′𝑔𝑑𝑒𝑔𝑒

′
𝑔 ,

𝑝𝑒𝑔𝑒
′
𝑔 ≥ 𝑑𝑒𝑔𝑒

′
𝑔 −𝑀𝑒𝑔𝑒′𝑔 (1 − 𝑧𝑒𝑔𝑒

′
𝑔 ).

Since we take into account the distance between two edges 𝑒𝑔 =
(𝐵𝑒𝑔 , 𝐶𝑒𝑔 ), 𝑒′𝑔 = (𝐵𝑒′𝑔 , 𝐶𝑒′𝑔 ) ∈ 𝐸𝑔 , the maximum distance between their
vertices gives us the upper bound:

𝑀𝑒𝑔𝑒′𝑔 = max{‖𝐵𝑒𝑔 − 𝐶𝑒′𝑔
‖, ‖𝐵𝑒𝑔 − 𝐵𝑒′𝑔

‖, ‖𝐶𝑒𝑔 − 𝐵𝑒′𝑔
‖, ‖𝐶𝑒𝑔 − 𝐶𝑒′𝑔

‖}.

We observe that the minimum distance between edges 𝑚𝑒𝑔𝑒′𝑔 can
easily be obtained by computing the minimum distance between two
edges, which results in a simple second-order cone program.

5. A matheuristic for the All Terrain Mothership and Multiple-
Drone Routing Problem with Graphs

This section is devoted to presenting our matheuristic approach to
address the solution of the AMMDRPG. Our motivation comes from the
fact that the exact solution of the models presented in Section 3 is time-
consuming. Alternatively, the matheuristic provides a good quality
solution in limited computing times.

The basic idea of the algorithm is to determine the route that a
drone should take to visit each graph 𝑔 ∈ , and thus the entry
and exit points 𝐿𝑒𝑔 and 𝑅𝑒′𝑔 for each graph. Sequentially, a clustering
procedure on the target graphs is applied to compute the route of
the mothership via their reference points and the origin/destination
points. The clustering procedure is based on a random selection of
the initial target graphs, and, for this reason, it is repeated several
times to consider different cluster structures. At each iteration, the
new clusters are evaluated by computing the cost of the route that
visits their reference points and the origin/destination points. The route
of minimum length, computed on the reference points of the cluster
generated by this iterative procedure, is used to set the values of the
binary variables 𝑢𝑒𝑔𝑜 and 𝑣𝑒𝑔𝑜 which determine the order of visits to
the graphs. Finally, these variables are provided as an initial partial
solution to the AMMDRPG-CO model to produce a complete feasible
solution.

Algorithm 1 reports the pseudocode of this algorithm.
Fig. 6 shows an illustrative example consisting of four target planar

graphs (𝑔1, 𝑔2, 𝑔3 and 𝑔4) to be visited. We assume that their visits
must be carried out by a fleet of two drones supported by a mothership
whose path starts from the origin (0, 0) and ends at the destination point
(100, 0).

Algorithm 1 Matheuristic algorithm for AMMDRPG-CO
Data: , ||, 𝑁𝐷, 𝑣𝐷, 𝑚𝑎𝑥𝑖𝑡 (maximum number of iterations to perform

the clustering procedure), 𝑚𝑎𝑥𝑠𝑒𝑒𝑑 (maximum number of the
clustering procedure repetitions)

STEP 1 (First entry and last exit points for each target graph)

For each target graph 𝑔 ∈ , compute the route:
𝐿𝑒𝑔 ← entry point on 𝑔 closest to the origin
𝑅𝑒′𝑔 ← exit point from 𝑔 closest to the origin
(𝑒𝑔 , 𝑒

′
𝑔) ← route length

STEP 2 (Clustering procedure)
𝑖𝑡 ← 1
𝑛𝑖𝑡 ← 1
For each target graph 𝑔 ∈ : 𝐾𝑔 ← 𝑔 ⊳ one cluster for each target
graph
while 𝑛𝑖𝑡 < 𝑚𝑎𝑥𝑖𝑡 do

Select randomly two clusters 𝐾𝑖 and 𝐾𝑗 (𝑖 < 𝑗)
if |𝐾𝑖 ∪𝐾𝑗 | < || then

Search for point 𝑃 satisfying the following endurance con-
straint:

𝑑(𝑃 ,𝑅𝑒𝑔 ) + (𝑒𝑔 , 𝑒
′
𝑔) + 𝑑(𝐿𝑒′𝑔 , 𝑃 )

𝑣𝐷
≤ 𝑁𝐷, ∀𝑅𝑒𝑔 , 𝐿𝑒′𝑔 ∈ 𝐾𝑖, 𝐾𝑗 . (1)

if 𝑃 ∃ then
𝐾𝑖 ← 𝐾𝑖 ∪𝐾𝑗
end

end
𝑛𝑖𝑡 ← 𝑛𝑖𝑡 + 1
end
 ← set of clusters

STEP 3 (Computation of Reference Points)
For each cluster 𝐾𝑖 ∈  compute a reference point 𝑃𝑖 by solving the
following minimisation problem:

min
∑

𝐾𝑖∈
(‖𝑃𝑖 − 𝑜𝑟𝑖𝑔‖ + ‖𝑃𝑖 − 𝑑𝑒𝑠𝑡‖) +

∑

𝑔∈𝐾𝑖∶𝐾𝑖∈
(‖𝑃𝑖 − 𝑅𝑒𝑔

‖ + ‖𝑃𝑖 − 𝐿𝑒′𝑔
‖)

+
∑

𝐾𝑖 ,𝐾𝑗∈∶𝑖≠𝑗
‖𝑃𝑖 − 𝑃𝑗‖

subject to (1).
STEP 4 (Order of visits to the graphs: route via the reference points and
the origin/destination points)
Compute the TSP of the mothership among the reference points 𝑃𝑖 of
the clusters

(𝑇𝑆𝑃 ) ← TSP length [This update is performed only if (𝑇𝑆𝑃 )
decreases with respect to the previous iteration 𝑖𝑡 − 1]
𝑖𝑡 ← 𝑖𝑡 + 1
if 𝑖𝑡 < 𝑚𝑎𝑥𝑠𝑒𝑒𝑑 then

go to STEP 2
else

go to STEP 5
end

STEP 5 (Solution of the AMMDRPG model by fixing an initial partial
solution)
Set the initial values of the binary variables 𝑢𝑒𝑔𝑜 and 𝑣𝑒𝑔𝑜 and solve
the model AMMDRPG to obtain a feasible solution.

Result: Feasible solution for AMMDRPG-CO

Fig. 7 illustrates a zoom in on each target graph, showing the tours
generated by STEP 1 of the matheuristic procedure. A pair of points
representing the launch and retrieval points, together with an arrow
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Fig. 7. STEP 1 for the illustrative example.

that points the direction followed by the drone according to the order
in which the edges are visited, is depicted on each edge.

Applying STEP 2 to this illustrative example, we obtain three clus-
ters, as shown in Fig. 8(a). One cluster contains graphs 𝑔1 and 𝑔3 (in
lilac), while graphs 𝑔2 and 𝑔4 represent distinct clusters. The compu-
tation of the reference points of these clusters, according to STEP 3,
produces the points 𝑃1, 𝑃2 and 𝑃3, as shown in Fig. 8(b).

STEP 4 of the matheuristic procedure generates the tour of the
mothership along the origin point, 𝑃1, 𝑃2, 𝑃3 and the destination point,
as shown in Fig. 9(a). This tour also returns the order in which the
clusters are visited (and thus also the order of visits to the target
graphs), and this allows us to set the values of the variables 𝑢𝑒𝑔𝑜 and
𝑣𝑒𝑔𝑜 of the AMMDRPG-CO model.

By providing the initial partial solution obtained from the values of
the variables 𝑢𝑒𝑔𝑜 and 𝑣𝑒𝑔𝑜, STEP 5 solves the AMMDRPG-CO model
and returns the final feasible solution shown in Fig. 9(b). From it, we
can observe that the sequence of visits of the target graphs does not
change with respect to that provided by STEP 4. The two-drone fleet
first visits the graphs 𝑔1 and 𝑔3 starting from the launch point 𝑥1𝐿.
Then, both drones are retrieved by the mothership at point 𝑥1𝑅. The
mothership moves to the point 𝑥2𝐿 where a drone is launched to visit
graph 𝑔2. The mothership then reaches the point 𝑥2𝑅 to retrieve the
drone, and from the same point it launches the other drone to visit
graph 𝑔4. Then, the mothership retrieves this drone at the point 𝑥3𝑅
before moving to the final destination point.

Focussing on each target graph, Fig. 10 shows the zoom in on
the tours followed by the drones. For example, Fig. 10[a] reports the
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Fig. 8. (a) STEP 2, (b) STEP 3 for the illustrative example.

Fig. 9. (a) STEP 4, (b) STEP 5 for the illustrative example.

tour performed by the drone that visits the graph 𝑔1 (the dashed pink
segments) and the drone that visits the graph 𝑔3 (the dashed light blue
segments). Both drones start from the mothership at the point 𝑥1𝐿, that
is, the 𝑜𝑟𝑖𝑔. One drone first visits the segment 𝑅1

1𝐿
1
1 of the graph 𝑔1,

while the other starts the visit to graph 𝑔3 by traversing the segment
𝑅3
1𝐿

3
1. From point 𝐿1

1 the first drone moves to the second visited edge
of the graph 𝑔1 traversing the segment 𝑅2

1𝐿
2
1. Then, it moves to the

third visited edge of the graph 𝑔1, flying over the segment 𝑅3
1𝐿

3
1. From

point 𝑅4
1 the drone starts the visit to the last edge of the graph 𝑔1 up to

point 𝐿4
1. Finally, the drone leaves the graph 𝑔1 at this last point and

is retrieved by the mothership at the point 𝑥1𝑅. Similarly, the second
drone, which visits the graph 𝑔3, after traversing the segment 𝑅1

3𝐿
1
3,

moves to the second visited edge of the same graph and traverses the
segment 𝑅2

3𝐿
2
3. Then, it flies to the third visited edge, traversing the

segment 𝑅3
3𝐿

3
3. Finally, it moves to the last visited edge of the graph

𝑔3, flying over the segment 𝑅4
3𝐿

4
3. The drone leaves the graph 𝑔3 at the

point 𝐿4
3 and reaches the mothership at the point 𝑥1𝑅. Note that, in this

example, the drones do not visit the full 100% of each graph edge, but
only half of each of them.

The reader may notice that the algorithm above can also be used
to generate solutions for the partial overlapping model presented in
Section 3.2 as any solution of the model AMMDRPG-CO is also feasible
for the model AMMDRPG-PO one, as shown in Theorem 3.1.

6. Experimental results

In this section, we discuss the experimental results obtained testing
the formulations presented in Section 3 and the matheuristic procedure
proposed in Section 5 on a testbed of instances. In particular, we

consider instances such as those used in Amorosi et al. (2021), where
the targets to be visited are represented by grid graphs. More precisely,
we generate a set of five instances each with five graphs having 4, 6,
8, 10, and 12 nodes, respectively. Similarly, we generate a set of five
instances each with ten graphs, equally distributed with respect to the
number of nodes (which always ranges between 4 and 12).

In order to place the graphs of a single instance, we follow the
same procedure described in Amorosi et al. (2021). This is based on
the division of an initial square of side 100 units in sub-squares and on
the random selection of the graph locations among them. Then, in order
to build the single graph, each of the randomly selected sub-squares is
further partitioned in a number of sub-squares equal to the cardinality
𝑛 of the set of nodes of the graph to build. Successively, two opposite
corner sub-squares are considered to randomly select two points and
build a rectangle whose diagonal joins these two points. Finally, a grid
of 𝑛 points is identified by locating 𝑛

𝑚 equally spaced points on the
two sides square, where 𝑚 is randomly selected in the set of divisors
of 𝑛. A perturbation on the coordinates of the points so obtained is
applied, imposing that the perturbed points still belong to the original
square. The resulting grid graph is obtained connecting each point to
its adjacent ones lying on the same side and with the one located on
the opposite side of the square. The reader can find and download
all the instances used in this paper from Puerto and Valverde (2021).
Moreover, we assume that the speed of the drones is twice that of the
mothership and that the fleet of drones must visit a random fraction of
each target graph or of each of its edges. These fractions are uniformly
randomly sampled in the interval (0, 1).

In our experiments, we consider that the number of drones varies
between 1 and 3 and that the endurance of the drone (expressed as
the maximum time the drone can operate when fully recharged) ranges
between 20 and 60. Note that the case of a single drone is also included
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Fig. 10. Zoom on the tour on each target graph provided by STEP 5.

Table 4
Instance parameter values.
|| (5,10)
|| (1,2,3)
|𝑉𝑔 | (4,6,8,10,12)
𝑁𝐷 (20,30,40,50,60)
Fraction target (edge) Uniformly randomly sampled in (0, 1).

in our experiments to compare the results and complexity of using one
or more than one drone. The interested reader is referred to Amorosi
et al. (2021) to analyse the complexity in terms of the gap of the model
with a single drone. Table 4 reports a summary of the characteristics
of our instances.

We code the matheuristic and the exact resolution of the model in
Python 3.8.10. The mathematical programming formulation is imple-
mented in Gurobi 9.1.2. All tests are run on an AMD® Epyc 7402p with
24-core processor × 8. Table 5 reports the results obtained by solving

both variants of the AMMDRPG model on instances described above,
by adopting Gurobi commercial solver. We consider the exact solution,
setting a time limit of one hour, providing and not providing to the
solver an initial solution computed by the matheuristic described in
Section 5. More precisely, the first row of Table 5 indicates the variant
of the model, and the second row reports the number of target graphs
to be visited by the drone fleet (5 or 10). From the third row, we
split each column into three sub-columns. The first three subcolumns
report, respectively, the endurance of the drones, the size of the fleet of
drones, and an indication of the visit of a fraction of each edge (e) or a
fraction of each target graph (g). From subcolumn 4 to subcolumn 15,
we report, for each combination of the listed parameters characterising
the instances, respectively, the average gap of the best solution found
by Gurobi in one hour without initialisation by the solution provided
by the matheuristic (wi), the average gap of the best solution found by
Gurobi in one hour with initialisation by the solution obtained by the
matheuristic (i), and the solution time, in seconds, of the matheuristic
(TimeH).
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Table 5
Comparison between partial and complete overlapping models.

Model Complete overlapping Partial overlapping

|| 5 10 5 10

𝑁𝐷 || 𝛼 Gap (wi) Gap (i) TimeH Gap (wi) Gap (i) TimeH Gap (wi) Gap (i) TimeH Gap (wi) Gap (i) TimeH

20

1 g 0.78 0.79 6.01 0.91 (2) 0.86 177.69 0.65 0.63 16.53 1 1 215.59
e 0.81 0.81 15.41 0.89 (2) 0.84 148.95 0.84 0.83 52.36 0.88 (3) 0.87 440.93

2 g 0.81 0.87 5.76 0.96 (3) 0.96 139.24 0.97 0.96 13.91 1 (3) 1 76.77
e 0.93 0.92 33.99 0.97 (3) 0.97 163.41 0.86 (2) 0.85 66.38 0.89 (4) 0.85 578.31

3 g 0.88 0.89 4.83 0.95 (3) 0.94 67.76 0.97 0.97 17.87 1 (2) 1 18.88
e 0.92 0.91 14.08 0.97 (2) 0.97 125.89 0.81 (3) 0.84 61.83 – (5) 0.82 237.33

30

1 g 0.71 0.7 9.66 0.82 (4) 0.82 87.4 0.77 0.75 15.43 1 1 39.83
e 0.79 0.8 14.16 0.8 (4) 0.83 122.23 0.84 0.82 38.94 0.83 (4) 0.81 289.74

2 g 0.82 0.82 4.98 0.95 (3) 0.92 174.64 0.97 0.96 12.94 1 1 45.37
e 0.84 0.84 14.73 0.96 (3) 0.97 133.75 0.78 0.79 31.82 0.82 0.77 171.16

3 g 0.82 0.81 4.63 0.93 (3) 0.95 105.54 0.96 0.96 16.22 1 1 33.95
e 0.88 0.89 12.08 – (5) 0.97 127.78 0.83 0.82 35.38 0.79 (3) 0.8 213.06

40

1 g 0.68 0.68 5.79 0.81 (2) 0.82 93.21 0.73 0.71 11.46 1 1 48.85
e 0.76 0.77 37.55 0.78 (4) 0.81 160.24 0.8 0.79 57.28 0.79 (1) 0.8 403.72

2 g 0.72 0.66 5.14 0.91 (2) 0.92 131.26 0.96 0.95 11.48 1 1 35.71
e 0.83 0.78 19.46 0.91 (2) 0.95 141.6 0.79 0.79 35.79 0.79 (1) 0.79 576.75

3 g 0.61 0.62 3.91 0.91 0.91 115.48 0.95 0.95 15.13 1 1 17.98
e 0.85 0.83 15.36 0.93 0.94 85.9 0.81 0.81 40.37 0.81 (1) 0.8 309.09

50

1 g 0.65 0.64 5.52 0.82 (3) 0.84 101.24 0.82 0.78 9.53 1 1 32.54
e 0.74 0.73 16.63 0.81 (3) 0.83 118.67 0.78 0.77 58.95 0.82 (2) 0.82 311.02

2 g 0.7 0.7 6.37 0.9 (1) 0.93 206.87 0.97 0.97 14.68 1 1 39.5
e 0.67 0.73 12.07 0.92 (2) 0.93 168.57 0.77 0.77 36.46 0.8 (1) 0.81 265.16

3 g 0.65 0.64 4.27 0.9 (1) 0.93 26.68 0.94 0.92 19.08 1 1 15.97
e 0.74 0.74 12.95 0.9 0.94 90.14 0.8 0.79 40.77 0.76 (3) 0.79 195.68

60

1 g 0.69 0.7 5.58 0.8 (4) 0.81 83.02 0.78 0.76 11.18 1 1 36.78
e 0.74 0.74 16.53 0.85 (2) 0.86 145.06 0.76 0.76 37.73 0.84 (2) 0.83 359.68

2 g 0.67 0.72 4.09 0.94 (2) 0.94 81.69 0.95 0.94 13.33 1 1 17.04
e 0.76 0.73 15.58 0.94 (2) 0.92 108.17 0.78 0.78 33.28 0.78 0.79 237.38

3 g 0.58 0.53 7 0.89 (2) 0.9 60.99 0.91 0.94 20.15 1 1 33.93
e 0.72 0.7 15.39 0.91 (2) 0.96 96.52 0.78 0.78 49.39 0.81 0.81 259.34

We can observe that the value of the average gap ranges between a
minimum of 0.58 and a maximum of 1. This shows that the model is
difficult to solve even with small-sized instances. Moreover, we can see
that for the complete overlapping version of the model, in most cases,
the average gap associated with the variant of the model consisting of
visiting a given fraction of each edge is greater than that associated
with the variant obligating visiting a given fraction of each target
graph. Another thing we can observe is that the average gap increases
with the number of target graphs for both variants of the problem.

Furthermore, the reader may note that the partial overlapping
version of the problem is harder to solve than the complete overlapping
version by looking at the values of the average gap. This is an expected
behaviour due to the fact that the feasible region of the partial over-
lapping variant contains that associated with the complete overlapping
variant, as proven in Theorem 3.1. We can see that for both versions of
the problem, by increasing the number of target graphs from 5 to 10,
the exact method without initialisation of the solution obtained with
the matheuristic becomes even harder. Indeed, the red entries of the
table mean that some instances could not find a feasible solution within
the time limit (note that in the brackets we indicate the number of
these instances). Furthermore, for the minimum level of endurance, the
exact solution of the partial overlapping model without initialisation
provided by the matheuristic does not find any solution within the
time limit for instances with 10 graphs, 3 drones and a given fraction
of each edge to be visited. The same can be observed also for the
exact solution of the complete overlapping model without initialisation
provided by the matheuristic, for a level of endurance equal to 30, a
fleet of 3 drones, and a given fraction of each edge to be visited. Taking
into account the comparison with the exact method starting from the

solution provided by the matheuristic, we can note that the values of
the average gap are very close to those related to the exact solution
method without initialisation. Thus, initialisation does not speed up the
convergence of the solver. However, we can see that the matheuristic
is always able to find a feasible solution to the problem, even for the
cases where the solver is not.

Furthermore, the average solution times of the matheuristic range
between a minimum of 4 s and a maximum of 9.5 min. In particular, we
can observe that, in most cases, for the complete overlapping version of
the problem, the matheuristic running time is shorter for the instances
where a fraction of the length of each graph is required to be visited.
The same behaviour can be observed for the partial overlapping version
of the problem, for which the difference in terms of running time is
even greater. Indeed, when a given fraction of the length of each edge
is required, STEP 1 of the matheuristic (computation of the TSP over
the graph edges) takes more time. By increasing the number of target
graphs from 5 to 10, the average solution times of the matheuristic
increase for both model variants. Summing up, the results obtained
show that the exact solution method given by solving the formulation is
very challenging even for small-sized instances. However, by exploiting
this, the matheuristic is able to provide solutions for all instances
quite quickly. Moreover, the quality of the solutions found by the
matheuristic algorithm in a few seconds (or minutes) is comparable
with the one of the solutions provided by Gurobi solver in one hour.
Indeed, there are no significant differences between the average gaps
associated with the solutions obtained with and without initialisation.

The boxplots in Fig. 11 represent the percentage relative gap of the
solution provided by the matheuristic for the complete overlapping ver-
sion of the problem, with respect to that provided by the exact solution
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Fig. 11. Relative gap boxplots for AMMDRPG-CO.

Fig. 12. Relative gap boxplots for AMMDRPG-PO.

of the mathematical programming model within the time limit, with
the initialisation of the solution found by the matheuristic. Similarly,
Fig. 12 reports the same information for the partial overlapping version
of the problem.

From Fig. 11, we can see that for the complete overlapping ver-
sion of the problem, the relative gap of the solution provided by
the matheuristic tends to be greater when a given fraction of each
graph must be visited, independently of the size of the drone fleet.
Additionally, its values decrease with the number of target graphs.
A similar behaviour can also be observed for the partial overlapping
variant of the problem, from Fig. 12. In the latter case, we can notice a
larger difference between the relative gap values related to the case
in which a given fraction of each graph must be visited, and that
in which a given fraction of each edge must be visited. Indeed, in
the first case, the relative gap ranges between 0 and 50, while in
the second case, between 0 and 20. Thus, we can conclude that the
matheuristic provides very good quality solutions in a short computing
times, especially for the version of the problem in which a given
fraction of each edge must be visited.

For illustrative purposes, Fig. 13 shows one of the instances with
five graphs and two drones adopted for the experimental results. Fig. 14
reports the solution of the partial overlapping version of the problem
for this instance and a zoom on the mothership tour. We can observe
that the origin (the black square) is the first launching point for the
first drone (whose path is represented with green dotted lines) to visit
the graph 𝑔3. Then, the mothership moves to point 𝑥2𝐿 for launching
the second drone (whose path is represented with red dotted lines)
that visits the graph 𝑔5. Successively, the mothership moves to point 𝑥3𝑅
for retrieving the same drone. From point 𝑥4𝐿 the mothership launches
again the second drone to visit the graph 𝑔2. We can notice that this
latter launching point coincides also with the entering point in the first

Table 6
Instance parameter values.
|| (1,2,3)
|𝑉𝑔 | (4,6,8)
𝑁𝑑 (10,20,30,40,50,60)
Fraction target (edge) Uniformly randomly sampled in (0, 1).

visited edge of the graph 𝑔2. From point 𝑥5𝑅 the mothership retrieves
the first drone that is launched again from point 𝑥6𝐿 to visit the graph
𝑔4. From the same point the mothership also retrieves the second drone
(𝑥6𝐿 = 𝑥7𝑅). Then, it moves to point 𝑥8𝐿 for launching again the second
drone for visiting the graph 𝑔1. From point 𝑥9𝑅 the mothership retrieves
the first drone and, eventually, from point 𝑥10𝑅 it retrieves also the
second drone. We can notice that the retrieving point 𝑥10𝑅 coincides
with the exiting point for the drone at the end of its visit of the graph
𝑔3. The mothership tours ends at the destination, that for this example
coincides with the origin.

In Fig. 15 we show also the zoom on the tour on each target graph.
The blue point represents the entering point in the graph and the yellow
one represents the exiting point from the graph. The dotted arrows
shows the path followed by the drones to visit each target graph.

6.1. Comparing the solutions for different configurations of the problem

In this subsection, we compare the relationship between the number
of drones available and their endurance and the value of the objective
function obtained with the exact algorithm of the problem. In this
experiment, we have generated a single instance with three target
graphs for each combination of the parameters listed in Table 6.
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Fig. 13. Example of instance with 5 graphs.

Fig. 14. Solution for the instance of Fig. 13 and zoom on the mothership tour.

Fig. 16 reports the objective value that depends on these param-
eters. The darker the intensity of the colour, the lower the objective
value. As expected, our experiment confirms that both the larger num-
ber of drones and the greater endurance reduce the makespan of the
mothership route.

7. Case study

In this section, we describe a realistic application of the system
studied in this paper to perform surveillance operations. Considering
the experienced COVID-19 restrictions, we focus on the problem of
preventing and identifying possible concentrations of people during
events such as popular or religious festivals. In particular, we consider
the Cordoba Courtyards Festival (https://patios.cordoba.es/es/). This is
a social event that takes place every year in the city of Cordoba, Spain,
during the first two weeks of May. The owners of the courts decorate

their houses with many flowers trying to win the award offered by
the Municipality. During this competition, a festival is run in parallel
with several artistic performances along six different paths located
in different areas of the city, as shown in Fig. 17. In context of the
pandemic, to monitor the situation to avoid concentration of people,
we propose applying a system consisting of a helicopter and a fleet
of two drones. This kind of system has been tested successfully and
has already been applied in the military field by the US Army to leave
the helicopter at the edge of dangerous airspace and release drones,
which will then penetrate enemy territory and send back intelligence,
surveillance, and reconnaissance information (see Reim (2020)). In our
application, the reason for adopting a similar system is the possibility
of simultaneously inspecting different paths in real-time, also reducing
the risk of flying the helicopter over populated areas and the cost of
moving the helicopter by minimising the total length of its tour.
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Fig. 15. Zoom on the tour on each target graphs.

Fig. 16. Heatmap of the values of the objective function depending on the the number of drones and drone endurances. The darker the colour intensity, the lower the objective
value.

We run the models presented in Section 3 in this scenario starting
from the initial solution provided by the matheuristic, where the 6
coloured paths reported on the map of Fig. 17 represent the 6 target
graphs to be visited, in this case, inspected, by the drone fleet. In
addition, we assume that the drone speed is 43 km/h, while that of
the helicopter is 30 km/h with the aim to minimise costs. Furthermore,
we assume that the fleet consists of two drones with endurance equal
to 7.5 min, and we impose that each target graph must be fully

visited (inspected). As we can see in Figs. 18 and 19, the origin of the
mothership tour coincides with the destination and is located in an area
of the city where it is possible to take off and land the helicopter. Fig. 18
reports the tour followed by the helicopter in solving the complete
overlapping version of the problem, after 4 h of running time. We can
observe that the helicopter, starting from the origin, flies to the point 𝑥1𝑅
which is the first retrieval point, coinciding with the second launching
point 𝑥2𝐿. Then it flies along the edge connecting 𝑥1𝑅 with 𝑥2𝑅, that is, the
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Fig. 17. Map of the Courtyards Festival in Cordoba.

second retrieval point, which coincides with the third launching point
𝑥3𝐿. The helicopter then flies to 𝑥3𝑅 to retrieve the drone completing
the third mission. From the same point, the fourth and last mission
starts and ends at the point 𝑥4𝑅, which is also the final destination of
the helicopter tour.

Fig. 18 also shows the tour (the violet and the red dotted paths)
followed by the two drones to inspect the six paths. In particular,
one drone starts from the origin (𝑜𝑟𝑖𝑔 = 𝑥1𝐿) to visit the path of
‘‘Alcazar Viejo’’. It is retrieved by the helicopter at the point 𝑥1𝑅 and
from the same point both drones are launched to visit, respectively,
the paths of ‘‘Juderia-San Francisco’’ and ‘‘Santa Maria-San Agustin’’.
Both drones end their mission at the point 𝑥2𝑅. From this last point, they
are launched to perform the visits to the paths of ‘‘San Lorenzo’’ and
‘‘Regina-Realejo’’. Then, both drones are retrieved by the helicopter at
the point 𝑥3𝑅 where only one drone starts its last mission to visit the path
of ‘‘Santiago-San Pedro’’. Meanwhile, the helicopter, which contains the
other drone, flies to the point 𝑥4𝑅 = 𝑑𝑒𝑠𝑡 where it retrieves the other and
ends its tour. Total time taken by helicopter is approximately 21 min.
We can observe that in the drone tour on the graphs ‘‘San Lorenzo’’ and
‘‘Regina-Realejo’’, there are two edges whose duplicate is represented
by a dotted segment in Fig. 18. They are associated with edges of
the graph that are visited once, but travelled twice by the drone, in
order to perform the inspection of the entire graph. Fig. 19 shows
the solution of the partial overlapping version of the problem, always
obtained by setting a time limit of 4 h. In this case, we can observe
that the helicopter follows a different tour and that there are more
launch and retrieval points due to the possibility of launching the drone
before retrieving the other. From Fig. 19 we can also see that, unlike
the complete overlapping version, both drones start their first mission
from the origin 𝑜𝑟𝑖𝑔 = 𝑥1𝐿 = 𝑥2𝐿. One drone visits the path of ‘‘Alcazar
Viejo’’, while the other visits the path of ‘‘Santiago-San Pedro’’. The
first is retrieved by the helicopter at the point 𝑥3𝑅 and is launched again
from the point 𝑥4𝐿. From this latter point, this drone starts its second
mission to visit the path of ‘‘Juderia-San Francisco’’. Meanwhile, the

helicopter flies to the point 𝑥5𝑅 where the other drone is retrieved. From
the same point 𝑥5𝑅 = 𝑥6𝐿 this latter drone is then launched to inspect
the path of ‘‘Santa Maria-San Agustin’’. Both drones are retrieved by
the helicopter at the point 𝑥7𝑅 = 𝑥8𝑅. From this latter point 𝑥8𝑅 = 𝑥9𝐿
one drone is launched to visit the path of ‘‘Regina-Realejo’’. Then, the
helicopter flies to the point 𝑥10𝐿 from where the other drone starts its
last visit to the path of ‘‘San Lorenzo’’. Finally, the helicopter flies to
the destination 𝑑𝑒𝑠𝑡 and along its path, it retrieves the first drone at
the point 𝑥11𝑅 and then the other at the point 𝑥12𝑅 . In this case, as in the
solution of the complete overlapping version of the problem, we have
one edge of the graph associated with the path of ‘‘Regina-Realejo’’ and
one edge of the graph representing the path of ‘‘San Lorenzo’’, which
are traversed twice represented with dotted segments in Fig. 19. The
total travel time of the helicopter is 19 min. It is slightly lower than
that associated with the solution of the complete overlapping version
of the problem. Therefore, even if in this scenario we cannot observe
significant changes in terms of the objective function value, we can
see how the different assumptions associated with the two versions of
the problem can influence the structure of the solution, by producing
a different schedule of drone missions and a different location of the
launch and retrieval points.

All details of this case study, including map coordinates, .lp models
and solutions can be found in Puerto and Valverde (2021).

8. Concluding remarks

This paper has analysed the coordination problem that arises be-
tween a mothership vehicle and a fleet of drones that must coordinate
their routes to minimise the makespan while visiting a set of targets
modelled by graphs. We have presented exact mixed-integer non-linear
programming formulations of the problem for its complete and partial
overlapping versions. Furthermore, we strengthen the models with
some valid inequalities for them.
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Fig. 18. The complete overlapping solution (CO).

Fig. 19. The partial overlapping solution (PO).

Our computational results show that problem considered is very
challenging to solve even in small and medium-sized instances. For

that reason, additionally, we have proposed a matheuristic algorithm
that provides good quality feasible solutions in a short computing
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time; so that it is a good alternative to the exact method. We report
extensive computational experiments on randomly generated instances.
Furthermore, we present a case study related to inspection activities
in the context of COVID-19 restrictions. We show the application of
the system described in this article in the framework of the Courtyards
Festival in the city of Cordoba, illustrating the solution obtained by
adopting the formulation of the problem, in both versions of the model,
and its solution by means of the initialisation provided by the proposed
matheuristic.

The formulation and algorithms proposed in this paper can be seen
as the first building block for coordination systems composed of a
base vehicle and several drones. Further research on this topic must
focus on finding faster and more accurate algorithms capable of solving
larger instances. Other extensions that may be considered can take into
account that the time the mothership takes to launch and retrieve the
drones is not negligible, as well as handle the speed of the mothership
and the drones as decision variables. Eventually, it is also possible to
consider different shape of the graphs edges, like curve lines instead
of straight lines. These problems are very interesting and beyond the
scope of this paper and will be the focus of a follow-up research line.
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Appendix

In this section, we report an extension of the MINLP formulation
presented in Section 3 to deal with the case of non-homogeneous fleets
of drones. We introduce the parameters or input data that formally
describe the problem and are summarised in Table 7.

The formulation in this appendix is quite similar to the one in
Section 3.1 but, due to the assumption of non-homogeneous drones,
it needs to keep track of the drones used in each action. This implies
including an extra index 𝛿 in most variables. For the sake of complete-
ness, we include the complete set of constraints of these formulations,
although some of them are similar to those in Section 3.1. Table 8
summarises all the decision variables used in this formulation.

Visits to graphs

Regarding the case of a homogeneous fleet of drones presented in
Section 3, to represent the movement of the drone within a graph 𝑔 ∈ ,
we proceed to introduce some notations related to 𝑔. Let 𝑔 = (𝑉𝑔 , 𝐸𝑔) be
a graph in  whose total length is denoted by (𝑔). Here, 𝑉𝑔 denotes the
set of nodes and 𝐸𝑔 denotes the set of edges connecting pairs of nodes.
Let 𝑒𝑔 be the edge 𝑒 of the graph 𝑔 ∈ 𝐺 and let (𝑒𝑔) be its length.

Table 7
Nomenclature for AMMDRPG with a non-homogeneous fleet of drones.

Problem parameters

𝑜𝑟𝑖𝑔: coordinates of the point defining the origin of the mothership path (or tour).

𝑑𝑒𝑠𝑡: coordinates of the point defining the destination of the mothership path (or
tour).

: set of the target graphs.
𝑔 = (𝑉𝑔 , 𝐸𝑔 ): set of nodes and edges of each target graph 𝑔 ∈ .
(𝑒𝑔 ): length of edge 𝑒 of graph 𝑔 ∈ .
(𝑔) =

∑

𝑒𝑔∈𝐸𝑔
(𝑒𝑔 ): total length of the graph 𝑔 ∈ .

𝐵𝑒𝑔 , 𝐶𝑒𝑔 : coordinates of the endpoints of edge 𝑒 of graph 𝑔 ∈ .
𝛼𝑒𝑔 : fraction of edge 𝑒 of graph 𝑔 ∈  that must be visited.
𝛼𝑔 : fraction of graph 𝑔 ∈  that must be visited.
𝑣𝑀 : mothership speed.
: set of drones.
𝑣𝛿 : drone 𝛿 speed.
𝑁𝛿 : drone 𝛿 endurance.
: set of drone operations to perform visits to the target graphs
𝑀 : big-M constant.

Each edge 𝑒𝑔 is parameterised by its endpoints 𝐵𝑒𝑔 = (𝐵𝑒𝑔 (𝑥1), 𝐵
𝑒𝑔 (𝑥2))

and 𝐶𝑒𝑔 = (𝐶𝑒𝑔 (𝑥1), 𝐶
𝑒𝑔 (𝑥2)) and we can compute its length (𝑒𝑔) =

‖𝐶𝑒𝑔 − 𝐵𝑒𝑔
‖.

For each edge 𝑒𝑔 an indicator binary variable 𝜇𝑒𝑔 is associated that
is, one if the drone visits the segment 𝑒𝑔 . Furthermore, we define the
entry and exit points 𝑅𝑒𝑔 = (𝐵𝑒𝑔 , 𝐶𝑒𝑔 , 𝜌𝑒𝑔 ) and 𝐿𝑒𝑔 = (𝐵𝑒𝑔 , 𝐶𝑒𝑔 , 𝜆𝑒𝑔 ) that
determine the fraction of the edge visited by the drone. The coordinates
of the points 𝑅𝑒𝑔 and 𝐿𝑒𝑔 are given, respectively by

𝑅𝑒𝑔 = 𝜌𝑒𝑔𝐵𝑒𝑔 + (1 − 𝜌𝑒𝑔 )𝐶𝑒𝑔 and 𝐿𝑒𝑔 = 𝜆𝑒𝑔𝐵𝑒𝑔 + (1 − 𝜆𝑒𝑔 )𝐶𝑒𝑔 ,

where 𝜌𝑒𝑔 ∈ [0, 1] and 𝜆𝑒𝑔 ∈ [0, 1] are variables to determine the position
of the points in the segment.

As discussed in Section 2, we consider two modes of visit to the
target graphs 𝑔 ∈ :

(i) Visiting a fraction 𝛼𝑒𝑔 of each edge 𝑒𝑔 which can be modelled by
using the following constraints:

|𝜆𝑒𝑔 − 𝜌𝑒𝑔 | ≥ 𝛼𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 . (𝛼-E)

These inequalities state that the difference between the parame-
terisations of the entry and exit points associated with with each
edge 𝑒𝑔 must be greater than the fraction of the length of 𝑒𝑔
required for traverse.

(ii) Visit a fraction 𝛼𝑔 of the total length of the graph:
∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔
|𝜆𝑒𝑔 − 𝜌𝑒𝑔 |(𝑒𝑔) ≥ 𝛼𝑔(𝑔). (𝛼-G)

This constraint ensures that the sum of the fractions of the length
of the edges chosen to be crossed must be greater than the
fraction of the length of 𝑔 that must be traversed.

In both cases, the corresponding constraints are non-linear. To
linearise them, we need to introduce a binary variable entry𝑒𝑔 that de-
termines the direction of travel at the edge 𝑒𝑔 , as well as the definition
of the auxiliary variables 𝜈

𝑒𝑔
min and 𝜈

𝑒𝑔
max of the access and exit points

in that segment. Then, for each edge 𝑒𝑔 , the absolute value constraint
(𝛼-E) can be represented by:

|𝜌𝑒𝑔 − 𝜆𝑒𝑔 | ≥ 𝛼𝑒𝑔 ⟺

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌𝑒𝑔 − 𝜆𝑒𝑔 = 𝜈
𝑒𝑔
max − 𝜈

𝑒𝑔
min,

𝜈
𝑒𝑔
max ≤ 1 − entry𝑒𝑔 ,

𝜈
𝑒𝑔
min ≤ entry𝑒𝑔 ,

𝜈
𝑒𝑔
min, 𝜈

𝑒𝑔
max ≥ 0,

𝜈
𝑒𝑔
max + 𝜈

𝑒𝑔
min ≥ 𝛼𝑒𝑔 .

(𝛼-E)

The first four inequalities model the standard trick of linearisation
of the absolute value. The last constraint ensures that the value of
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Table 8
Decision variables for AMMDRPG with a non-homogeneous fleet of drones.
Binary and integer decision variables

𝜇𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if edge 𝑒 of graph 𝑔 (or a fraction of it) is visited by the drone, 0 otherwise.
entry𝑒𝑔 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary binary variable used for linearising expressions.
𝑢𝑒𝑔 𝑜𝛿 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : equal to 1 if the drone 𝛿 enters in graph 𝑔 by the edge 𝑒𝑔 at operation 𝑜,

0 otherwise.
𝑧𝑒𝑔 𝑒

′
𝑔 ∈ {0, 1}, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): equal to 1 if the drone goes from 𝑒𝑔 to 𝑒′𝑔 , 0 otherwise.

𝑣𝑒𝑔 𝑜𝛿 ∈ {0, 1}, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : equal to 1 if the drone 𝛿 exits from graph 𝑔 by 𝑒𝑔 at operation 𝑜,
0 otherwise.

Continuous decision variables

𝑠𝑒𝑔 ∈ [0, |𝐸𝑔 | − 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): continuous non-negative variable representing the order of visit to the edge 𝑒 of graph 𝑔.
𝜌𝑒𝑔 ∈ [0, 1] and 𝜆𝑒𝑔 ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): defining the entry and exit points on 𝑒𝑔 .
𝜈𝑒𝑔min and 𝜈𝑒𝑔max ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variables used for linearising expressions.
𝑝𝑒𝑔 ∈ [0, 1], ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variable used for modelling the product of 𝜇𝑒𝑔 and |𝜆𝑒𝑔 − 𝜌𝑒𝑔 |.
𝑥𝑜𝐿 ∈ R2 , ∀𝑜 ∈ : coordinates representing the point where the mothership launches the drones at operation 𝑜.
𝑥𝑜𝑅 ∈ R2 , ∀𝑜 ∈ : coordinates representing the point where the mothership retrieves the drones at operation 𝑜.
𝑅𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the entry point on edge 𝑒𝑔 of graph 𝑔.
𝐿𝑒𝑔 ∈ R2 , ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): coordinates representing the exit point on edge 𝑒𝑔 of graph 𝑔.
𝑑𝑒𝑔 𝑜𝛿
𝐿 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : representing the distance travelled by the drone 𝛿 from the launching

point 𝑥𝑜𝐿 on the mothership at operation 𝑜 to the first visiting point 𝑅𝑒𝑔 on 𝑒𝑔 .
𝑝𝑒𝑔 𝑜𝛿𝐿 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑜𝛿

𝐿 and 𝑢𝑒𝑔 𝑜𝛿 .
𝑑𝑒𝑔 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the retrieval point 𝑅𝑒𝑔 to the

launching point 𝐿𝑒𝑔 on 𝑒𝑔 .
𝑑𝑒𝑔 𝑒′𝑔 ≥ 0, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): representing the distance travelled by the drone from the launching point 𝐿𝑒𝑔 on 𝑒𝑔 to

the retrieval point 𝑅𝑒′𝑔 on 𝑒′𝑔 .
𝑝𝑒𝑔 𝑒

′
𝑔 ≥ 0, ∀𝑒𝑔 , 𝑒′𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ): auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑒′𝑔 and 𝑧𝑒𝑔 𝑒

′
𝑔 .

𝑑𝑒𝑔 𝑜𝛿
𝑅 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : representing the distance travelled by the drone 𝛿 from the last visiting point

𝐿𝑒𝑔 on 𝑒𝑔 to the retrieval point 𝑥𝑜𝑅 on the mothership at operation 𝑜.
𝑝𝑒𝑔 𝑜𝛿𝑅 ≥ 0, ∀𝑒𝑔 ∈ 𝐸𝑔 (𝑔 ∈ ), ∀𝑜 ∈ , ∀𝛿 ∈ : auxiliary variable used for modelling the product of 𝑑𝑒𝑔 𝑜𝛿

𝑅 and 𝑣𝑒𝑔 𝑜𝛿 .
𝑑𝑜𝑟𝑖𝑔 ≥ 0: distance from the origin 𝑜𝑟𝑖𝑔 to the first launching point 𝑥1𝐿.
𝑑𝑜
𝐿𝑅 ≥ 0, ∀𝑜 ∈ : representing the distance travelled by the mothership from the launching point 𝑥𝑜𝐿 to the retrieval

point 𝑥𝑜𝑅 at operation 𝑜.
𝑑𝑜
𝑅𝐿 ≥ 0, ∀𝑜 ∈  ⧵ ||: representing the distance travelled by the mothership from the retrieval point 𝑥𝑜𝑅 at operation 𝑜 to the

launching point 𝑥(𝑜+1)𝐿 at operation 𝑜 + 1.
𝑑𝑑𝑒𝑠𝑡 ≥ 0: distance from the last retrieval point 𝑥||𝑅 to the destination 𝑑𝑒𝑠𝑡.
𝑡𝑖𝑚𝑒𝑜𝐷 ≥ 0, ∀𝑜 ∈ : maximum time spent by a drone during operation 𝑜.
𝑡𝑖𝑚𝑒𝑜𝑀 ≥ 0, ∀𝑜 ∈ : time spent by the mothership to go from the launching point 𝑥𝑜𝐿 to the retrieval point 𝑥𝑜𝑅 of operation 𝑜.
𝑡𝑖𝑚𝑒𝑀 ≥ 0: total time spent by the mothership to go from the origin to the destination (makespan).

the linear expression of the absolute value is higher than the required
fraction 𝛼𝑒𝑔 .

Similarly, (𝛼-G) can be linearised as follows:

∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔
|𝜌𝑒𝑔 − 𝜆𝑒𝑔 |(𝑒𝑔) ≥ 𝛼𝑔(𝑔).

⟺

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜌𝑒𝑔 − 𝜆𝑒𝑔 = 𝜈
𝑒𝑔
max − 𝜈

𝑒𝑔
min,

𝜈
𝑒𝑔
max ≤ 1 − entry𝑒𝑔 ,

𝜈
𝑒𝑔
min ≤ entry𝑒𝑔 ,

𝜈
𝑒𝑔
min, 𝜈

𝑒𝑔
max ≥ 0,

𝑝𝑒𝑔 ≤ 𝜈
𝑒𝑔
max + 𝜈

𝑒𝑔
min,

𝑝𝑒𝑔 ≤ 𝜇𝑒𝑔 ,
𝑝𝑒𝑔 ≥ 𝜈

𝑒𝑔
max + 𝜈

𝑒𝑔
min + 𝜇𝑒𝑔 − 1,

∑

𝑒𝑔∈𝐸𝑔
𝑝𝑒𝑔(𝑒𝑔) ≥ 𝛼𝑔(𝑔),

(𝛼-G)

where 𝑝𝑒𝑔 is the auxiliary variable that represents the product of the
binary variable 𝜇𝑒𝑔 and the difference in absolute values |𝜌𝑒𝑔 − 𝜆𝑒𝑔 |. The
first four inequalities again linearise the absolute value expression. The
following three constraints model the product of the expression of the
absolute value and the binary variable 𝜇𝑒𝑔 . The last inequality ensures
that the fraction of the length of those edges chosen to be crossed must
be greater than the fraction of the length of 𝑔 required to be traversed.

Elimination of subtours

As already presented in Section 3, to prevent the existence of
subtours within each graph 𝑔 ∈  that the drone must visit, one
can include, among others, the compact formulation that uses Miller-
Tucker-Zemlin constraints (MTZ) or subtour elimination constraints
(SEC).

For the MTZ formulation, we use continuous variables 𝑠𝑒𝑔 , defined
in Table 8, which state the order to visit the edge 𝑒𝑔 and set the
following constraints for each 𝑔 ∈ :

𝑠𝑒𝑔 − 𝑠𝑒
′
𝑔 + |𝐸𝑔|𝑧

𝑒𝑔𝑒′𝑔 ≤ |𝐸𝑔| − 1, ∀𝑒𝑔 ≠ 𝑒′𝑔 ∈ 𝐸𝑔 , (MTZ1)

0 ≤ 𝑠𝑒𝑔 ≤ |𝐸𝑔| − 1, ∀𝑒𝑔 ∈ 𝐸𝑔 . (MTZ2)

Alternatively, we can also use the family of subtour elimination
constraints for each 𝑔 ∈ :
∑

𝑒𝑔 ,𝑒′𝑔∈𝑆

𝑧
𝑒𝑔𝑒′𝑔
𝑔 ≤ |𝑆| − 1, ∀𝑆 ⊂ 𝐸𝑔 . (SEC)

To find the SEC inequalities, as usual, we search for disconnected
components in the current solution. Among them, we choose the short-
est subtour found in the solution to be added as a lazy constraint to the
model.

Drone constraints

To model this problem, as described in Section 3.1, we adopt the
concept of operation. Let us denote by  the set of operations that the
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mothership and drone fleet have to perform. These operations are visits
to the different graphs in  with the required constraints. An operation
𝑜 ∈  refers to the event in which the mothership launches some drones
from a take-off location, denoted by 𝑥𝑜𝐿 and then takes them back to a
retrieval location 𝑥𝑜𝑅.

For each operation 𝑜 ∈ , each of the drones launched from the
mothership must follow a path that starts from and returns to the
mothership, while visiting the required edges of 𝑔.

To include the definition of these paths in our mathematical pro-
gramming formulation, we need to make decisions to choose:

(i) The optimal assignment of drones to visit graphs in a given
operation 𝑜.

(ii) The order to visit the edges of each graph in its corresponding
operation.

We model the route that the drone follows using the binary variables
𝑢𝑒𝑔𝑜𝛿 , 𝑧𝑒𝑔𝑒

′
𝑔 and 𝑣𝑒𝑔𝑜𝛿 defined in Table 8.
∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜𝛿 ≤ 1, ∀𝑜 ∈ ,∀𝛿 ∈ .

(Drone ROUTE𝛥
1 -CO)

∑

𝑔∈

∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜𝛿 ≤ 1, ∀𝑜 ∈ ,∀𝛿 ∈ .

(Drone ROUTE𝛥
2 -CO)

∑

𝑒𝑔∈𝐸𝑔

∑

𝑜∈

∑

𝛿∈
𝑢𝑒𝑔𝑜𝛿 = 1, ∀𝑔 ∈ ,

(Drone ROUTE𝛥
3 -CO)

∑

𝑒𝑔∈𝐸𝑔

∑

𝑜∈

∑

𝛿∈
𝑣𝑒𝑔𝑜𝛿 = 1, ∀𝑔 ∈ ,

(Drone ROUTE𝛥
4 -CO)

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜𝛿 =
∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜𝛿 , ∀𝑔 ∈ ,∀𝑜 ∈ ,∀𝛿 ∈ ,

(Drone ROUTE𝛥
5 -CO)

∑

𝑜∈

∑

𝛿∈
𝑢𝑒𝑔𝑜𝛿 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧
𝑒′𝑔𝑒𝑔
𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone ROUTE𝛥
6 -CO)

∑

𝑜∈

∑

𝛿∈
𝑣𝑒𝑔𝑜𝛿 +

∑

𝑒′𝑔∈𝐸𝑔

𝑧
𝑒𝑔𝑒′𝑔
𝑔 = 𝜇𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ .

(Drone ROUTE𝛥
7 -CO)

The inequalities (Drone ROUTE𝛥
1 -CO) and (Drone ROUTE𝛥

2 -CO)
state that a drone 𝛿 visits at most one graph 𝑔 at operation 𝑜. Const-
raints (Drone ROUTE𝛥

3 -CO) and (Drone ROUTE𝛥
4 -CO) ensure that each

graph is visited at some operation 𝑜 by some drone 𝛿. Eqs.
(Drone ROUTE𝛥

5 -CO) ensure that the operation of entering and exiting
the graph 𝑔 occurs in the same operation 𝑜 and is performed by the
same drone 𝛿. Constraints (Drone ROUTE𝛥

6 -CO) state that if an edge 𝑒
of graph 𝑔 is visited by the drone 𝛿, one of two alternative situations
must occur: either 𝑒 is the first edge of graph 𝑔 visited by the drone 𝛿
at operation 𝑜, or edge 𝑒 is visited by the drone 𝛿 after visiting another
edge 𝑒′ of graph 𝑔. Similarly, constraints (Drone ROUTE𝛥

7 -CO) state that
if an edge 𝑒 of graph 𝑔 is visited by the drone 𝛿, either 𝑒 is the last edge
of graph 𝑔 visited by the drone at operation 𝑜, or the drone 𝛿 must move
to another edge 𝑒′ of graph 𝑔 after visiting edge 𝑒.

Distance and time constraints
The goal of the AMMDRPG is to find a feasible solution that min-

imises the total time taken by the mothership (makespan). To account
for the different distances between the decision variables of the model,
we need to set the continuous variables 𝑑

𝑒𝑔𝑜𝛿
𝐿 , 𝑑𝑒𝑔 , 𝑑𝑒𝑔𝑒

′
𝑔 , 𝑑

𝑒𝑔𝑜𝛿
𝑅 , 𝑑𝑜𝑟𝑖𝑔 ,

𝑑𝑜𝑅𝐿, 𝑑𝑜𝐿𝑅 and 𝑑𝑑𝑒𝑠𝑡 defined in Table 8. This can be done by means of

the following constraints:

‖𝑥𝑜𝐿 − 𝑅𝑒𝑔
‖ ≤ 𝑑

𝑒𝑔 𝑜𝛿
𝐿 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,∀𝑜 ∈ ,∀𝛿 ∈ ,

(Drone DIST𝛥
1 -CO)

‖𝑅𝑒𝑔 − 𝐿𝑒𝑔
‖ ≤ 𝑑𝑒𝑔 , ∀𝑒𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone DIST𝛥
2 -CO)

‖𝑅𝑒𝑔 − 𝐿𝑒′𝑔
‖ ≤ 𝑑𝑒𝑔 𝑒′𝑔 , ∀𝑒𝑔 ≠ 𝑒′𝑔 ∈ 𝐸𝑔 ∶ 𝑔 ∈ ,

(Drone DIST𝛥
3 -CO)

‖𝐿𝑒𝑔 − 𝑥𝑜𝑅‖ ≤ 𝑑
𝑒𝑔 𝑜𝛿
𝑅 , ∀𝑒𝑔 ∶ 𝑔 ∈ ,∀𝑜 ∈ ,∀𝛿 ∈ ,

(Drone DIST𝛥
4 -CO)

‖𝑜𝑟𝑖𝑔 − 𝑥1𝐿‖ ≤ 𝑑𝑜𝑟𝑖𝑔 , (Mothership DIST𝛥
1 -CO)

‖𝑥𝑜𝐿 − 𝑥𝑜𝑅‖ ≤ 𝑑𝑜
𝐿𝑅, ∀𝑜 ∈ .

(Mothership DIST𝛥
2 -CO)

‖𝑥𝑜𝑅 − 𝑥𝑜+1𝐿 ‖ ≤ 𝑑𝑜
𝑅𝐿, ∀𝑜 ∈  ∶ 𝑜 < ||,

(Mothership DIST𝛥
3 -CO)

‖𝑥||𝑅 − 𝑑𝑒𝑠𝑡‖ ≤ 𝑑𝑑𝑒𝑠𝑡, (Mothership DIST𝛥
4 -CO)

Thus, we can express the time that a drone 𝛿 ∈  takes to visit a
graph 𝑔 ∈  during operation 𝑜 ∈  as follows:

𝑡𝑖𝑚𝑒𝑜𝛿 ≥
1
𝑣𝛿

⎛

⎜

⎜

⎝

∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜𝛿𝑑
𝑒𝑔𝑜𝛿
𝐿 +

∑

𝑒𝑔 ,𝑒′𝑔∈𝐸𝑔

𝑧𝑒𝑔𝑒
′
𝑔𝑑𝑒𝑔𝑒

′
𝑔 +

∑

𝑒𝑔∈𝐸𝑔

𝜇𝑒𝑔𝑑𝑒𝑔

+
∑

𝑒𝑔∈𝐸𝑔

𝑣𝑒𝑔𝑜𝛿𝑑
𝑒𝑔𝑜𝛿
𝑅

⎞

⎟

⎟

⎠

−𝑁𝛿(1 −
∑

𝑒𝑔∈𝐸𝑔

𝑢𝑒𝑔𝑜𝛿) (Drone TIME𝛥
𝑜 -CO)

The first addend within the brackets in the RHS of the constraint
(Drone TIME𝛥

𝑜 -CO), accounts for the time spent by the drone 𝛿 to depart
from the launch point 𝑥𝑜𝐿 to the first retrieval point on the graph 𝑅𝑒𝑔 .
The second addend considers the time consumed by the drone to go
from the edge 𝑒𝑔 to 𝑒′𝑔 on the graph 𝑔. The third computes the time
required to traverse the required edges in 𝑔. The fourth measures the
time taken to travel from the last launching point 𝐿𝑒′′𝑔 to the retrieval
point 𝑥𝑜𝑅. The bigM term ensures that the constraint becomes active
only when a graph 𝑔 is visited during the operation 𝑜 by the drone
𝛿. The reader may observe that the endurance constraint (Endurance𝛥-
CO) restricts the time the drone spends performing the operation 𝑜 to
be less than its endurance 𝑁𝛿 . Hence, it is possible to take 𝑁𝛿 as the
bigM constant in (Drone TIME𝛥

𝑜 -CO).
In order to compute the maximum time a drone can spend visiting

a graph 𝑔 ∈  associated with the operation 𝑜 ∀𝑜 ∈ , we introduce
the following constraints:

𝑡𝑖𝑚𝑒𝑜𝐷 ≥ 𝑡𝑖𝑚𝑒𝑜𝛿 ∀𝛿 ∈  (Drone MAX TIME𝛥
𝑜 -CO)

Constraints (Mothership TIME𝛥
𝑜 -CO) define the time that the moth-

ership takes to go from the launch point 𝑥𝑜𝐿 to the retrieval point 𝑥𝑜𝑅
associated with the operation 𝑜.

𝑡𝑖𝑚𝑒𝑜𝑀 =
𝑑𝑜𝐿𝑅
𝑣𝑀

∀𝑜 ∈  (Mothership TIME𝛥
𝑜 -CO)

Thus, the overall time spent by the mothership to move from the
origin to the destination (makespan) can be expressed as follows:

𝑡𝑖𝑚𝑒𝑀 = 1
𝑣𝑀

(𝑑𝑜𝑟𝑖𝑔 +
∑

𝑜∈
(𝑑𝑜𝐿𝑅 + 𝑑𝑜𝑅𝐿) + 𝑑𝑑𝑒𝑠𝑡) (Mothership TIME𝛥-CO)

Coordination and endurance constraints
The coordination between the drones and the mothership must

ensure that the maximum time 𝑡𝑖𝑚𝑒𝑜𝐷 spent by a drone to visit a graph
𝑔 at operation 𝑜 is less than or equal to the time that the mothership
needs to move from the launching point to the retrieval point during
operation 𝑜. To this end, we need to define the following coordination
constraint for each operation 𝑜 ∈ :

𝑡𝑖𝑚𝑒𝑜𝐷 ≤ 𝑡𝑖𝑚𝑒𝑜𝑀 . (DCW𝛥-CO)
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We can model the time endurance constraint for a particular oper-
ation 𝑜 ∈  and the drone 𝛿 ∈  by limiting the time travelled by the
drone 𝛿 for this operation 𝑜:

𝑡𝑖𝑚𝑒𝑜𝛿 ≤ 𝑁𝛿 . (Endurance𝛥-CO)

AMMDRPG-complete overlapping formulation (with non-homogeneous fleet
of drones)

Putting together all the constraints introduced before, the follow-
ing formulation minimises the total time travelled by the mother-
ship (makespan), ensuring coordination with the drone fleet while
guaranteeing the required coverage of the target graphs.

min 𝑡𝑖𝑚𝑒𝑀

(AMMDRPG-CO with a non-homogeneous fleet of drones)
s.t. (𝛼-E) or (𝛼-G),

(MTZ1)–(MTZ2) or (SEC),
(Drone ROUTE𝛥

1 -CO)–(Drone ROUTE𝛥
7 -CO),

(Drone DIST𝛥
1 -CO)–(Drone DIST𝛥

4 -CO),
(Mothership DIST𝛥

1 -CO)–(Mothership DIST𝛥
4 -CO),

(Drone TIME𝛥
𝑜 -CO), (Drone MAX TIME𝛥

𝑜 -CO),
(Mothership TIME𝛥

𝑜 -CO), (Mothership TIME𝛥-CO),
(DCW𝛥-CO), (Endurance𝛥-CO)

The objective function accounts for the time travelled by
the mothership (makespan). Constraints (Drone ROUTE𝛥

1 -CO)–
(Drone ROUTE𝛥

7 -CO) model the route followed by the drone 𝛿 ∈ ,
(MTZ1)–(MTZ2) or (SEC) ensure that the displacement of the drone
𝛿 ∈  assigned to the target graph 𝑔 ∈  is a route, (𝛼-E) or (𝛼-
G) define what is required in each visit to a target graph. Finally,
constraints (Drone DIST𝛥

1 -CO)–(Mothership DIST𝛥
4 -CO) set the variables

𝑑
𝑒𝑔𝑜𝛿
𝐿 , 𝑑𝑒𝑔 , 𝑑𝑒𝑔𝑒

′
𝑔 , 𝑑

𝑒𝑔𝑜𝛿
𝑅 , 𝑑𝑜𝑟𝑖𝑔 , 𝑑𝑜𝑅𝐿, 𝑑𝑜𝐿𝑅 and 𝑑𝑑𝑒𝑠𝑡, defined in Table 8,

which represent the Euclidean distances needed in the model.

Strengthening the formulations

In this section, we present some results that adjust the bigM con-
stants for each of the models. These constants appear when we linearise
the bilinear terms of (Drone TIME𝛥

𝑜 -CO). We use the McCormick’s
envelopes by adding variables 𝑝 ≥ 0 representing the products. To
strengthen the formulations, we provide tight upper and lower bounds
for these constants. The reader may note that the same bounds can
be used for both models. Therefore, wlog, we focus on the bigM
constants that appear in (AMMDRPG-CO with a non-homogeneous fleet
of drones).

Big 𝑀 constants bounding the distance from the launch/retrieval point on
the path followed by the mothership to the retrieval/launch point on the
target graph 𝑔 ∈ 

To linearise the first addend in (DCW-CO), we define the auxiliary
non-negative continuous variables 𝑝

𝑒𝑔𝑜𝛿
𝐿 (resp. 𝑝𝑒𝑔𝑜𝛿𝑅 ) and we model the

product by including the following constraints:

𝑝
𝑒𝑔𝑜𝛿
𝐿 ≤ 𝑀

𝑒𝑔𝑜𝛿
𝐿 𝑢𝑒𝑔𝑜𝛿 ,

𝑝
𝑒𝑔𝑜𝛿
𝐿 ≤ 𝑑

𝑒𝑔𝑜𝛿
𝐿 ,

𝑝
𝑒𝑔𝑜𝛿
𝐿 ≥ 𝑚

𝑒𝑔𝑜𝛿
𝐿 𝑢𝑒𝑔𝑜𝛿 ,

𝑝
𝑒𝑔𝑜𝛿
𝐿 ≥ 𝑑

𝑒𝑔𝑜𝛿
𝐿 −𝑀

𝑒𝑔𝑜𝛿
𝐿 (1 − 𝑢𝑒𝑔𝑜𝛿).

Note that, among all graph nodes and the origin and destination points,
it is possible to identify the pair of points at the maximum distance.
From this pair of points, we can build a circle whose diameter is
the segment that joins them. Hence, because we are minimising the

distance travelled by the mothership, every launch or retrieval point
is inside this circle, and the best upper bound 𝑀

𝑒𝑔𝑜𝛿
𝐿 or 𝑀

𝑒𝑔𝑜𝛿
𝑅 can be

described as:

𝑀
𝑒𝑔𝑜𝛿
𝑅 = max

{𝑣∈𝑉𝑔∪{orig,dest},𝑣′∈𝑉𝑔′∪{orig,dest}∶𝑔,𝑔′∈}
‖𝑣 − 𝑣′‖ = 𝑀

𝑒𝑔𝑜𝛿
𝐿 .

On the other hand, the minimum distance in this case can be zero.
This bound is attainable whenever the launch or retrieval points of the
mothership are the same as the retrieval or launch point on the target
graph 𝑔 ∈ .

Bounds on the big𝑀 constants for the distance from the launch to the
retrieval points on the target graph 𝑔 ∈ 

When the drone visits a graph 𝑔, it has to go from one edge 𝑒𝑔
to another edge 𝑒′𝑔 depending on the order given by 𝑧𝑒𝑔𝑒

′
𝑔 . This fact

produces a product of variables linearised by the following constraints:

𝑝𝑒𝑔𝑒
′
𝑔 ≤ 𝑀𝑒𝑔𝑒′𝑔 𝑧𝑒𝑔𝑒

′
𝑔 ,

𝑝𝑒𝑔𝑒
′
𝑔 ≤ 𝑑𝑒𝑔𝑒

′
𝑔 ,

𝑝𝑒𝑔𝑒
′
𝑔 ≥ 𝑚𝑒𝑔𝑒′𝑔𝑑𝑒𝑔𝑒

′
𝑔 ,

𝑝𝑒𝑔𝑒
′
𝑔 ≥ 𝑑𝑒𝑔𝑒

′
𝑔 −𝑀𝑒𝑔𝑒′𝑔 (1 − 𝑧𝑒𝑔𝑒

′
𝑔 ).

Since we take into account the distance between two edges 𝑒𝑔 =
(𝐵𝑒𝑔 , 𝐶𝑒𝑔 ), 𝑒𝑔 ′ = (𝐵𝑒′𝑔 , 𝐶𝑒′𝑔 ) ∈ 𝐸𝑔 , the maximum distance between their
vertices gives us the upper bound:

𝑀𝑒𝑔𝑒′𝑔 = max{‖𝐵𝑒𝑔 − 𝐶𝑒′𝑔
‖, ‖𝐵𝑒𝑔 − 𝐵𝑒′𝑔

‖, ‖𝐶𝑒𝑔 − 𝐵𝑒′𝑔
‖, ‖𝐶𝑒𝑔 − 𝐶𝑒′𝑔

‖}.

We observe that the minimum distance between edges 𝑚𝑒𝑔𝑒′𝑔 can easily
be obtained by computing the minimum distance between two edges,
which results in a simple second-order cone program.

Experimental results

In this section, we discuss the results obtained by testing the for-
mulation of AMMDRPG with a non-homogeneous fleet of drones,
presented in Appendix, on the same set of instances described in
Section 6.

Table 5 reports the results obtained by adopting the Gurobi com-
mercial solver. We consider the exact solution that provides and does
not provide an initial solution computed by the matheuristic described
in Section 5. More precisely, the first column of Table 9 indicates the
number of target graphs to be visited by the drone fleet, the second
column reports the endurance of the drones, and the third column
distinguishes between the visit of a fraction of each edge (e) and a
fraction of each target graph (g). The fourth column reports the size of
the drone fleet. This last column contains three subcolumns reporting,
for each cardinality of the set , respectively, the average gap without
initialisation (wi), the average gap with initialisation of the solution
provided by the matheuristic (i) and the solution time, in seconds, of
the matheuristic (TimeH) for each combination of the listed parameters.
The time limit for these experiments is set equal to 2 h.

We can observe that the value of the average gap ranges between a
minimum of 0.67 and a maximum of 0.97. This shows that the model
is hard to solve even with small-sized instances. Furthermore, we can
see that, in most cases, the average gap associated with the variant of
the model consisting of visiting a given fraction of each edge is greater
than the one associated with the variant that imposes visiting a given
fraction of each target graph. Another thing we can observe is that the
average gap increases with the number of drones and decreases with
the drone endurance.

Regarding the number of target graphs, we can see that, increasing
it from 5 to 10, the exact method without initialisation of the solution
obtained with the matheuristic is even harder. Indeed, the red entries
of the table mean that some instances could not find a feasible solution
within the time limit (note that in the brackets we indicate the number
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Table 9
Comparison between an exact solution with and without initialisation by the matheuristic solution.
|| 𝑁𝐷 v.t. ||

1 2 3

Gap (wi) Gap (i) TimeH Gap (wi) Gap (i) TimeH Gap (wi) Gap (i) TimeH

5

20 e 0.82 0.83 61.56 0.9 0.92 63.80 0.91 0.93 60.87
g 0.80 0.79 44.97 0.92 0.89 37.32 0.96 0.94 39.05

30 e 0.80 0.83 65.21 0.82 0.85 64.41 0.90 0.92 63.34
g 0.71 0.76 55.77 0.88 0.84 44.36 0.91 0.91 44.59

40 e 0.78 0.81 68.81 0.82 0.83 64.80 0.86 0.91 63.19
g 0.73 0.74 43.92 0.84 0.81 38.27 0.90 0.85 37.51

50 e 0.74 0.77 66.67 0.80 0.81 63.86 0.86 0.85 63.51
g 0.67 0.71 43.42 0.89 0.81 43.98 0.83 0.80 44.35

60 e 0.72 0.76 67.68 0.80 0.82 66.08 0.82 0.84 64.40
g 0.73 0.78 44.69 0.86 0.79 40.63 0.85 0.82 50.01

10

20 e 0.85 0.83 137.93 – 0.92 128.53 – 0.95 124.44
g 0.85 (2) 0.81 119.20 0.97 (2) 0.90 83.50 0.97 (3) 0.97 70.00

30 e 0.81 0.81 159.00 0.88 (3) 0.87 132.15 0.93 (2) 0.95 127.35
g 0.83 (1) 0.80 132.67 0.86 (3) 0.86 80.29 0.9 (1) 0.91 76.72

40 e 0.78 0.79 191.37 0.84 0.85 131.26 0.89 (1) 0.92 132.10
g 0.80 0.80 115.00 0.85 (3) 0.87 68.39 0.92 (1) 0.96 69.40

50 e 0.78 0.81 188.32 0.85 (1) 0.88 134.01 0.91 (3) 0.93 132.82
g 0.80 0.80 87.23 0.84 (3) 0.83 66.14 0.92 (2) 0.92 64.94

60 e 0.82 0.84 155.27 0.83 (2) 0.86 131.94 0.87 (3) 0.92 130.11
g 0.78 0.77 97.89 0.88 (2) 0.87 76.53 0.92 (3) 0.94 69.53

Fig. 20. Relative gap boxplots.

of these instances). The number of instances not solved increases with
the number of drones. Furthermore, for the minimum level of en-
durance, the exact solution of the model without initialisation provided
by the matheuristic does not provide any solution within the time limit
for instances with 10 graphs and 2 or 3 drones.

Considering the comparison with the exact method starting from
the solution provided by the matheuristic, we can note that the values
of the average gap are very close to those related to the exact solution
method without initialisation. Thus, initialisation does not speed up the
convergence of the solver. However, we can see that the matheuristic
is always able to find a feasible solution to the problem, even for the
cases in which the solver is not (instances with 10 graphs and 2 or 3
drones and minimum value of endurance).

Moreover, the average solution times of the matheuristic range
between a minimum of 37 s to a maximum of 3 min. They increase
with the drone endurance for the variant of the model in which a
given fraction of each edge must be visited, while they decrease by
increasing the number of drones for the variant of the model in which
a given fraction of each target graph must be visited. By increasing the
number of target graphs from 5 to 10, the average solution times of the
matheuristic become more than double for both model variants.

Summing up, the results obtained show that the exact solution
method given by solving the formulation is very challenging even for
small-sized instances. However, by exploiting this, the matheuristic is
able to provide solutions for all instances quite quickly.

The boxplots in Fig. 20 represent the relative gap of the solution
provided by the matheuristic concerning that provided by the exact
solution of the mathematical programming model within the time limit,
with the initialisation of the solution found by the matheuristic. We can
observe that the maximum value of the relative gap is equal to 40, but
it decreases when the number of target graphs increases from 5 to 10
and it tends to be smaller when a given fraction of each edge must
be visited concerning the other case, that is, when a given fraction of
each graph to be visited is imposed. In particular, for instances with
10 target graphs, the relative gap is not greater than 25, except an
outlier in the case with 1 drone and a given fraction of each graph
to be visited. When the number of drones is equal to 2, this maximum
value decreases further, and is reduced to 10 when the fleet consists of 3
drones. Furthermore, when a given fraction of each edge to be visited is
imposed, the relative gap is even smaller, around zero, in most of cases.
Thus, we can conclude that the matheuristic, even though it does not
speed up the convergence to the optimum, it provides solutions of good
quality, especially for instances of large size, both in terms of target
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graphs and drones, and for the most challenging variant of the problem
in which a given fraction of each edge must be visited.
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