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Abstract
This paper is the first of a two-part study aiming at building a low-cost visible-light eye tracker (ET) for people with amyo-
trophic lateral sclerosis (ALS). The whole study comprises several phases: (1) analysis of the scientific literature, (2) selec-
tion of the studies that better fit the main goal, (3) building the ET, and (4) testing with final users. This document basically 
contains the two first phases, in which more than 500 studies, from different scientific databases (IEEE Xplore, Scopus, 
SpringerLink, etc.), fulfilled the inclusion criteria, and were analyzed following the guidelines of a scoping review. Two 
researchers screened the searching results and selected 44 studies (-value = 0.86, Kappa Statistic). Three main methods 
(appearance-, feature- or model- based) were identified for visible-light ETs, but none significantly outperformed the oth-
ers according to the reported accuracy -p = 0.14, Kruskal–Wallis test (KW)-. The feature-based method is abundant in the 
literature, although the number of appearance-based studies is increasing due to the use of deep learning techniques. Head 
movements worsen the accuracy in ETs, and only a very few numbers of studies considered the use of algorithms to correct 
the head pose. Even though head movements seem not to be a big issue for people with ALS, some slight head movements 
might be enough to worsen the ET accuracy. For this reason, only studies that did not constrain the head movements with 
a chinrest were considered. Five studies fulfilled the selection criteria with accuracies less than 2◦ , and one of them is illu-
minance invariant.
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1 Introduction

Some diseases, like amyotrophic lateral sclerosis (ALS) or 
locked-in syndrome (LIS), confine people to a state in which 
it makes it hard for them to perform the simplest move-
ment apart from blinking or moving the eyes. Several aug-
mentative and alternative communication (AAC) solutions 
exist to facilitate the human-computer interaction (HCI) in 
these cases, of which, the ET is especially appropriate for 
people with good eye gaze control. ETs are mainly based 

on the use of cameras adapted to the type of scene illumi-
nation: infrared (IR) or visible light. Many ETs detect the 
position of the IR beam reflected by the surface of the eye. 
The camera tracks the pupil and the shiny IR spot in the eye 
(acting as reference point), so the relative position between 
them determines the eye gaze. An initial calibration process 
allows obtaining a mathematical function, or relationship, 
between the eye gaze (input variable) and the coordinates on 
a computer screen (output). The camera can be placed close 
to the eye (the eye camera), attached to a helmet through 
an articulated rod, to accurately capture the eye movements 
(Pasarica et al. 2016), or below the computer screen, face 
camera, embedded in a structure that can also host the IR 
emitters (Kim et al. 2014). Both camera placements are 
sensitive to head movements, so frequent calibrations are 
needed to correct the loss in accuracy. To avoid this problem, 
some authors have included a second camera, or field cam-
era, placed on the helmet, that records the scene the subject 
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sees. The ET software is then able to correct the eye-gaze 
according to the head position (Parada et al. 2015).

The main disadvantage of the IR-based ETs is the cost 
(Sharma and Jobanputra 2014), especially when several 
cameras and the helmet that supports them are needed. Nev-
ertheless, low-cost and open-source solutions have emerged 
for eye tracking (http:// wiki. cogain. org/ index. php/ Eye_ Track 
ers) with positioning accuracy similar to the proprietary 
counterparts (Dalmaijer 2014). The big inconvenience of 
open- source solutions, when they include the montage of 
hardware pieces, is that the setup may become difficult for 
people without the required knowledge, which severely lim-
its their use.

Low-cost solutions would potentially allow ‘democratiz-
ing’ this technology. In this sense, an ET that only needed 
a webcam, which is usually included in most laptops and 
tablets, and based exclusively on an application program 
might result very useful, even though its accuracy was not 
as good as that achieved by other more complex and expen-
sive ETs. Since many people are used to installing software, 
and there is no additional hardware to configure, this kind 
of solution may be very appealing for users, familiars, and 
caregivers. It has also been demonstrated that ETs based on 
a webcam have shown an accuracy similar to IR-based ETs 
when reasonably sized images are used, and the periphery 
of the screen is avoided (Burton et al. 2014).

This study looks for finding the best technologies and 
methods to build a visible-light low-cost eye tracker. To do 
that we need to find the answers to some research ques-
tions: The main one (RQ1) concern to the ET technology 
itself, its main features, the most employed algorithms, and 
their advantages and drawbacks. This question needs for a 
methodological review that was performed by applying the 
guidelines described in Tricco et al. (2018). Secondary ques-
tions are: Is there some method that outperforms or stands 
out from the rest? (RQ2); Which are the criteria to follow 
for the selection of the best webcam-based eye trackers? 
(RQ3). Sections 2 and 3 contain the literature review and the 
procedures followed to select the studies, while Sects. 4 and 
5 contain the discussion and the conclusions respectively.

2  Literature review

2.1  Searching methodology

To answer RQ1, we performed a search in the following 
databases: IEEE Xplore, ScienceDirect, SpringerLink, ACM 
and Scopus. In general, the search covered meta-data, title 
and abstract containing some of the following keywords: 
((webcam OR “low-cost camera” OR “consumer-grade cam-
era”) AND (eye OR gaze) AND (tracker OR tracking) AND 
(HCI OR “human- computer interaction”)). The search was 

performed in September 2022 and included documents since 
2005. After removing duplicates, an overall of 567 manu-
scripts satisfied the inclusion criteria. Searching phases and 
their results were sketched in the flowchart shown in Fig. 1.

Secondly, two researchers screened the manuscripts 
during an initial reviewing process that comprised the title 
and abstract, filtering out those that did not match with this 
study. To quantify the degree of agreement between the two 
researchers, the kappa statistic (Carletta 1996) was also 
obtained. Manuscripts that both researchers did not con-
sider appropriated for this study were excluded. We found 44 
documents fulfilling the reviewers’ criteria simultaneously, 
with a-value of 0.86, which means that the agreement level 
between them was ’very good’ (Ashby 1991).

2.2  Eye tracking algorithms

The ET algorithm works like a mathematical function that 
maps an input independent variable, x (i.e., a feature in the 
eye images) to a vector, y, with the gaze position coordinates 
on the screen (Fig. 2). The algorithm must learn the relation-
ship between the input and output vectors during the cali-
bration process. According to Ferhat and Vilariño (2016), 
three main types of visible light gaze estimation techniques 
can be found: 

(a) Appearance-based. These methods only use the eye 
image pixel intensities. The estimation is based on 
creating a mapping between the eye gaze and a vector 
(feature) representation of the image via raster scan-
ning.

(b) Feature-based. They are also based on using a mapping 
to estimate the eye gaze, nevertheless, here, a richer set 

Fig. 1  Flowchart showing the procedure followed, and the results 
obtained in each stop
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of features (not only pixels intensities) are used, such 
as the iris center, the canthus positions, some points of 
the eyelid border, etc.

(c) Model-based. In this method, the gaze is estimated geo-
metrically based on using model parameters. It is also 
called the geometric model.

The visible light eye tracker software algorithm comprises 
different steps: 

1. Eye location. The first task is to extract the eye area 
-region of interest (ROI)- from the video input stream. 
Here, different algorithms can be used at spatial (like 
Viola-Jones) or temporal dimensions (to keep tracking 
the ROI and reduce computational time).

2. Feature extraction or model fitting. The main goal of this 
step is to prepare the input, x, for gaze estimation. The 
specific operations to accomplish depend on the type of 
the eye tracking technique: 

(a) Appearance- or feature-based eye trackers. The 
vector x is the image itself.

(b) Model-based trackers. They search for the best fit-
ting between the ROI and 2D- or 3D- eye and/or 
contour models to estimate the eye position and 
orientation.

3. Gaze estimation. For model-based trackers, the coor-
dinates y are obtained by intersecting the eye gaze line 
(derived from the eye model) with the computer screen. 
The previous estimation of some parameters, such as 
the user-computer distance, is critical to ensure the cor-
rect operation. In general, ETs need to set a mapping 
between the output y and the input x vectors from N = 
(6, 9, 12,...) (Karamchandani et al. 2015) known screen 
positions. This can be accomplished by linear regression 

or using more sophisticated techniques such as corren-
tropy (Yang et al. 2019) or general regression neural 
network (GRNN) (Torricelli et al. 2008).

2.3  Full‑text analysis

Tables 1, 2 and 3 detail the relevant information from the 
selected studies. The two first columns show the type of the 
ET and the steps followed in detecting the eye gaze. They 
therefore pinpoint the algorithms used in each stage of the 
processing pipeline (Fig. 3). Some of the selected studies 
were only focused on a part of the processing pipeline and 
did not develop a ET itself (Skodras and Fakotakis 2015; 
Xiao et al. 2018; Vater and León 2016).

∙ Step 1: Eye location It is the first step in every eye track-
ing algorithm. Several approaches can be found to deal with 
it. One of the most applied algorithms found in the litera-
ture, covering more than one half of the ones collected in 
this work, is based on the VJD detector (Viola and Jones 
2001). Alternatively, in Zheng and Usagawa (2018), authors 
proposed the head detection with LBPs and the use of geo-
metrical rules to locate the eyes. The LBP operator processes 
a 3 × 3 pixel region by comparing its central pixel with its 
neighbors, setting them to 1 when their gray level is greater 
than the central pixel, or to 0 otherwise. The result is then 
arranged to build an 8-bit binary sequence. The face image 
is divided into N regions that are processed using the LBP 
transform and the LBP histogram. The N histograms are 
stitched into a new histogram creating a LBP feature that 
serves for training the head detection through the AdaBoost 
algorithm. A comparison between Haar-like features Viola-
Jones detector (VJD) and LBP has been accomplished by 
Guennouni et al. (2015), showing that latter is computation-
ally faster than Haar-like features with similar accuracy.

Other authors used facial landmark (FLs) (Xiao et al. 
2018; Wojke et  al. 2016; Solska and Kocejko 2022) to 
locate the eye position. This method usually needs for the 
VJD detector to find the head and delimit the region con-
taining the face. As a first approach, in Anwar et al. (2018) 
utilized the active shape model (ASM) (Cootes and Taylor 
1992), which derives from point distribution model (PDM), 
a method that defines a non-rigid object’s contour from a 
collection of images including annotated points of inter-
est. Scaling the principal components of the deformable 
model makes it possible its adaptation to the border of the 
object in a new image. In active appearance model (AAM) 
(Cootes et al. 2001; Wu et al. 2014) which can be consid-
ered as an extension of the ASM, both the grayscale image 
and the face shape are included in the model. constrained 
local model (CLM) (Asthana et al. 2014; Kim et al. 2016) 
utilizes an ensemble of local detectors, applied to a set of 
image patches cropped around the landmarks points, to find 
the optimal feature locations and maximize the responses of 

Fig. 2  Graphical description of the three main methods found for ET 
algorithms
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the PDM model. In subspace subspace constrained mean-
shifts (SCMS) (Mansanet et al. 2013; Saragih et al. 2009) 
the distribution of likely landmark locations was substituted 
with simpler parametric forms, reducing sensitivity to local 
minima and the detection of false outlying points.

The use of deep learning in detecting some eye landmarks 
was accomplished by Cheng et al. (2022). Authors obtained 
the landmarks associated to the iris and the eyelid through 
an hourglass network trained by a set of eye images obtained 
with UnityEyes (Wood et al. 2016). In that automatically 
generated dataset iris an eyelid coordinates are known.

The use of the histogram of oriented gradient (HOG) as 
feature descriptor is also common in image processing for 
simplifying the image information and, in this context, for 
delimiting the head position (Tősér et al. 2016). The task 
involves calculating the magnitude and direction of the gra-
dient operator within 8 × 8 patches, followed by the creation 
of a histogram containing 9 bins, typically corresponding to 
angles 0, 20, 40, 60, 80, 100, 120, 140, and 160 degrees. The 
histogram is then normalized by using 16 × 16 sequential 
blocks (to reduce illumination influence) and eventually all 
the histograms are stitched together.

As alternative to VJD and FL some authors have com-
bined the use of template matching (TM) with antropro-
metic rules (AR) (Magee et al. 2008) or geometric eye model 
(GEM) (Jariwala et al. 2015, 2016) to locate the eye in the 
image. Others have taken benefit from natural blinking to 
find the region of interest (ROI) by differentiating consecu-
tive frames and then thresholding for the highest values 
(Magee et al. 2008).

Applying the eye detection algorithms frame by frame 
may need important computational resources. To reduce 
it, some authors proposed the use of well-known tracking 

techniques such as Lucas–Kanade (LK) (Ferhat et al. 2015; 
Anwar et al. 2018).

∙ Step 2: Feature extraction or model fitting For appear-
ance-based methods, this step mainly contains the algo-
rithms that allow a reduction in data dimension through 
principal component analysis (PCA) (Liu et al. 2016), Kull-
back–Leibler divergence (KLD) (Yang et al. 2019) or gauss-
ian process latent variable model (GP-LVM) (Wojke et al. 
2016). Since these methods need to process a high amount 
of data, the use of small images will reduce the execution 
time. The effect of the image size on accuracy, by cropping 
the original image, has been studied in Liu et al. (2019). 
Namely, an image of 60 × 36 can be horizontally and verti-
cally cropped 10 times without a lost in accuracy.

Both feature- and model-based methods search for the 
iris/eye center position. Several techniques exploit the 
grayscale difference between the pupil/iris and the iris/
sclera along with their circularity. For example, authors in 
Wiśniewska et al. (2014) and Jariwala et al. (2016) obtained 
the image gradient (Jariwala et al. 2015), which shows a 
high magnitude in the sclera-iris interface, and a direction, 
which, in negative, points to the eye’s center. Namely, the 
iris center, p, is the point in the image that maximizes the 
cost function built with the dot product between the nor-
malized gradients and the vectors that join p to the gradient 
positions.

Similarly, Hammal et al. (2005) looked for the lower 
semi-circle that maximizes the sum of the dot products 
between the normal vectors of the contour and the image 
gradient. The use of RS (Loy and Zelinsky 2003) allows 
defining the most voted point of the gradient image (Skodras 
et al. 2015; Skodras and Fakotakis 2015). Other authors 
calculated the curvature of the isophote (a contour with 
identical gray scale) (Valenti et al. 2009; Vater and León 

Fig. 3  Illustration of the processing pipeline for feature-based ETs. The most used techniques in each step are also shown on a pie chart
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2016). The curvature depends on the second derivative of 
the isophote, that, combined with the normal vector, defines 
the position of the center. Alternatively, the detection of the 
circular contour of the iris can be accomplished by using 
the HT (Alva et al. 2017; Santos et al. 2014; Khilari 2010; 
Ray Sarkar et al. 2015), or by finding the best ellipse fitting 
(Jankó and Hajder 2012) (Fig. 3).

The use of template matching is a well-known technique 
in image processing that can be also applied to find the iris 
position. The template can be made of a simple binary pat-
tern for an initial rough detection (Jankó and Hajder 2012), 
or obtained during the calibration stage (Ferhat et al. 2015; 
Sewell and Komogortsev 2010). The snakuscule (SNK) 
(Snake + Minuscule) exploits the properties of the sclera-
iris interface to find the point that maximizes the difference 
between the average gray level of an outer annulus with 
respect to an inner disk. The use of color components of the 
YCbCr space allows locating the eye building on the fact that 
the Cr takes low values in the eye compared to the areas cov-
ered by skin (Kourkoutis et al. 2007). In Skodras and Fakota-
kis (2015) and Skodras et al. (2015) authors exploit the fact 
that CbCr components are different in eye and surrounding 
area. Furthermore, the eye iris and pupil have lower lumi-
nance than the sclera. By combining all these components 
through a mathematical model, an efficient eye map can be 
built for detecting the iris center.

Most authors use grayscale images in the processing 
pipeline. The iris center position can be obtained by search-
ing the center of mass (CoM) of the darkest pixels in the 
eye area (Rondio et al. 2012; Anwar et al. 2018). Bilateral 
filters (Zheng and Usagawa 2018), which preserve edge) 
can be applied to filter noisy points in low-quality images. 
Similar results can be obtained by eroding and then dilating 
the image (Ahmed et al. 2019). Eyelashes and shadows are 
sources of noise that can bias the pupil CoM. To deal with 
this, the image is firstly divided into six sections by applying 
a multi-level thresholding procedure (Karamchandani et al. 
2015). To remove regions that do not belong to the iris, the 
darkest candidates are convolved with a binary mask that has 
a size similar to the iris. The center of mass of the resulting 
image is the pupil’s center.

Although the iris or the pupil center position are used 
as a main feature in most studies, some authors have also 
included its relative position with respect to some reference 
or anchor points. Generally, both canthus (or eye corners) 
are selected as anchor points. In Torricelli et al. (2008), the 
outer corners are located by searching the most external 
points in a a binary image obtained by differentiating con-
secutive frames with blinks. The use of templates of the eye 
corners (Alva et al. 2017; Ferhat et al. 2015), the curvature 
of isophote (Valenti et al. 2009), the Gabor filter (Lee et al. 
2011), geometric rules (GR) (Valenti et al. 2009; Tősér et al. 
2016; Rosten et al. 2008) are also feasible procedures to find 

those corners. In Skodras et al. (2015) the points above and 
below the pupil’s center, in the border with the eyelids, are 
also included. These points can be obtained by IPROJ

Machine learning is an emerging technology that can be 
also used for the location of eye features. In Meng and Zhao 
(2017), Authors applied a CNN to detect five eye features 
(the pupil center, external and internal eye corners, and 
upper- and lower-middle eyelid points). Up to 12 number of 
relevant points were obtained in Cheng et al. (2022) using 
an hourglass CNN. Others have used SVM, based on FM 
(Wu et al. 2014) or the bidimensional fast Fourier transform 
(FFT2) (Lin et al. 2013) as features for detecting a reduced 
set of eye gestures or positions on the screen.

∙ Step 3: Gaze estimation The final mapping between the 
eye gesture and the cursor position on the screen can be 
mainly implemented in three different ways:

• Regression. This is the most used and probably the easi-
est method. Based on the use of an initial calibration grid, 
the gaze coordinates are then obtained by linear interpo-
lation of the features associated to each calibration point 
(Santos et al. 2014; Valenti et al. 2009; Dung et al. 2018; 
Skodras and Fakotakis 2015; Khilari 2010). Sometimes, 
this interpolation includes quadratic expressions, proce-
dures to remove outliers, such as the RANSAC algorithm 
(Jariwala et al. 2016), and the assumption that the face 
position does not change significantly from the position 
it had during the calibration phase (Zheng and Usagawa 
2018). Following a slightly different approach, in Liu 
et al. (2019, 2016) the authors applied local learning (LL) 
to find the optimal coefficients that map an appearance 
vector into the training set and, with them, the cursor 
position on the screen. the screen. Other authors used the 
CoEn (Yang et al. 2019), a measure of similarity between 
an eye image and the ones in the training set. From that 
measure, the optimal weight vector is estimated and used 
to determine the gaze direction. Another approach for 
regression is based on GPR (Wojke et al. 2016; Ferhat 
et al. 2015), which allows obtaining the probability dis-
tribution of possible interpolation functions. Calibration 
data contribute to get a posteriori probability function 
that, combined with the use of Gaussian kernels, allows 
finding an optimal fit.

• Machine learning techniques. Regression models are 
based on minimizing the sum of squared errors. As an 
alternative, SVR looks for finding an optimal weight vec-
tor that minimizes the absolute error with the following 
constraints: that the absolute error (a) must be less than a 
given margin; and (b) includes a slack variable that pen-
alties data outside of that margin (Mansanet et al. 2013). 
Other authors trained an artificial ANN (Sewell and 
Komogortsev 2010), or CNN (Ansari et al. 2021; Huang 
et al. 2021; Roy and Chanda 2022) for appearance-based 
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methods, and a CNN for feature-based (Tősér et al. 2016) 
with linear activation neurons at the last layer. The last 
layer allows selecting positions that do not belong to the 
calibration points. general regression neural network 
(GRNN) is based on a 3-layer neural network in which 
every training sample will represent a mean to a radial 
basis neuron (Torricelli et al. 2008). The output is a 
weighted average of radial neurons according to a kernel 
basis (Gaussian in most cases).

• Geometrical projections. Here, the eye gaze is obtained 
thanks to applying some geometrical model involving the 
eye position, the head and the screen. In Hammal et al. 
(2005) authors established a relationship between the 
position of the iris center in the image and its projection 
on the computer screen. Other authors have used the vec-
tor between the pupil and the eyeball’s center positions 
on the camera’s plane (Anwar et al. 2018); or applied a 
rotation matrix, modeling the head pose, to determine the 
new region of interest, according to the calibration data 
(Kim et al. 2016), or by estimating the focal 3D position 
through the minimization of an energy function. This 
includes the calibration points on the screen and the eye 
3D pupil center coordinates and anthropomorphic rules 
(Jankó and Hajder 2012).

There are studies aimed at detecting a small subset of eye 
gestures in order to determine the area of the screen the 
user is looking at, or the cursor control as it was a joystick. 
The use of thresholds (Alva et al. 2017; Ahmed et al. 2019; 
Karamchandani et al. 2015; Wiśniewska et al. 2014), or 
algorithms based on machine learning (Lee et al. 2011; Wu 
et al. 2014; Lin et al. 2013) are common in this context.

∙ Test: Eye tracking systems are appealing for multiple 
purposes, apart from enhancing communication capabilities. 
Consequently, a very low number of studies have considered 
the ET as an assistive solution and therefore recruited peo-
ple with disabilities (PWD) for testing. In this revision, two 
authors proposed detecting left-right eye movements either 
to select elements distributed horizontally on a computer 
screen (Alva et al. 2017), or to input text in a scan-based 
program (Magee et al. 2008). In another study, PWD were 
asked to select the correct answer of an online quiz applica-
tion by glancing at one out of four different positions on the 
screen (Agarwal et al. 2019). As can be seen, PWD tested a 
reduced version of what an ET really is.

For real-time tracking tests, the number of subjects 
enlisted in the experiments was variable (ranged between 
3 Liu et al. 2016 and 33 Ahmed et al. 2019). Neverthe-
less, most studies used datasets or prerecorded videos for 
an offline analysis, which allows the comparison with other 
scientific works. Particularly, we found databases collect-
ing different head poses, facial expressions (Cohn 2001) 
and illumination conditions: BioID (2010), FERET (2011) 

and Yale (1997); and that may include the coordinates of a 
high number of representative landmarks, such as in MUCT 
(Milborrow et al. 2010) and talking face video (TFV) (TFV 
2004). Creating a dataset is a burdensome task, since it 
requires to make manual annotations of the eyelid corners, 
pupil centers and other relevant eye feature’s positions. To 
overcome this issue, UnityEyes (Wood et al. 2016) was 
developed: a software that allows generating a complete 
dataset containing human eye images and feature point coor-
dinates. There are also datasets available: CVC eye-tracking 
DB (CVC) (Ferhat et al. 2014), gaze interaction for every-
body (GI4E) (Villanueva et al. 2013) and Columbia gaze DS 
(CAVE) (Smith et al. 2013b).

∙ head pose (HP): To obtain a better gaze estimation, the 
head position and orientation should be taken into account. 
Usually, head pose estimators involve many assumptions in 
order to achieve a realistic modeling (i.e. the shape and size 
of the head, the rotation angles of the eye, etc.). However, 
the high computational cost of complex HP estimators may 
not be in line with the requirements of some systems, and 
additionally small mistakes in pose estimation might accu-
mulate errors in the final gaze tracking output.

Some authors have not included specific strategies to 
compensate the head pose, but they have trained, or directly 
tested, their algorithms with natural head movements. For 
example, in Skodras and Fakotakis (2015), authors tested an 
iris center detection algorithm using datasets, like Milbor-
row et al. (2010) and GTAV (2008), that include subjects 
under various illumination and head poses. The same 
authors, in another paper (Skodras et al. 2015), completed 
the eye tracker by adding reference points. They obtained 
good results with the datasets (Smith et al. 2013a; Weiden-
bacher et al. 2007) even without having considered the head 
pose in the mapping function.

There are features that show certain level of head pose 
invariance. In Khilari (2010) slight head movements were 
compensated by using the iris-BTE feature. The BTE is 
unique on face, visible for any head pose and stable among 
different facial expressions. It is extracted on the basis of 
anthropometric measures after locating the eye region. 
Similarly, in Meng and Zhao (2017) the iris position was 
obtained relative to several reference points: eye corners and 
middle upper/lower eyelids. These relative movements entail 
a certain level of invariance to head movements.

Greater robustness for head pose estimation can be 
attained by employing the Perspective-n-Point (PnP) algo-
rithm (Dementhon and Davis 1995; Anwar et al. 2018) such 
as the “POSIT” algorithm. This algorithm determines the 
translation vector and rotation matrix, enabling the com-
putation of the object’s feature points or facial landmarks 
(Xiao et al. 2018) through scaling and iterative procedures. 
In Kim et al. (2016) the head pose was also estimated by 
facial marks along with the Heo and Savvide’s method (Heo 
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and Savvides 2011), that generates a geometric facial model 
containing four lengths related to eyes, nose and mouth. 
This model contributes to a better estimation of slant and 
tilt angles. By applying supervised descent method (SDM) 
(Tősér et al. 2016), in Xiong and De la Torre (2013) the gaze 
estimation was extended with 3D head pose data. Authors 
used 49 facial marks as inputs to SDM. They built a 3D 
mean face model, rotated it, and successively minimized 
the angular error. The position of the pupil center served as 
an optional feature, and the intercanthal distance (ICD) for 
normalization purposes.

Some datasets have been released for research purposes 
(Funes Mora et al. 2014; Zhang et al. 2015; Sugano et al. 
2014), containing different head poses and then facilitating 
the comparison among proposals.

∙ illuminance invariant (II): Authors have adopted several 
strategies to minimize the influence of scene illumination on 
accuracy. One method is based on turning the RGB informa-
tion into their YCbCr components and then giving more rel-
evance to the color plane than to the luminance dimension. 
In Skodras et al. (2015) and Skodras and Fakotakis (2015) 
authors combined the color information with the radial sym-
metry transform (Loy and Zelinsky 2003) to derive an eye 
map that emphasizes the iris area. This procedure was tested 
with various datasets (La Cascia et al. 2000; GTAV 2008) 
and it reported very robust under several illumination con-
ditions. Additionally, the usage of ratios in the chromatic 
components along with empirical thresholds (Kourkoutis 
et al. 2007) reduces the dependence on lighting conditions, 
although not completely.

Under non-ideal lighting, one half of the face may be 
darker than the other half. Therefore, by parceling the face 
image and changing the detector parameter for each half, it is 
possible to obtain better results (Rezaei and Klette 2012). In 
Wiśniewska et al. (2014), authors applied a binarization pro-
cedure based on p-tile thresholding in which the p value was 
obtained by assessing the mode and mean of pixel intensi-
ties in both eye regions separately. In Torricelli et al. (2008) 
authors proposed a modified Hough Transform that includes 
a voting system for each circle. The most voted circumfer-
ences of each eye are then compared with the candidates of 
the other eye to choose the pair of circumferences with the 
biggest total vote. This process has a good behavior over 
different light conditions even with asymmetric illumina-
tion of the face.

For relative homogeneous eye images, derivative opera-
tors, such as Canny algorithm, are efficient for detecting the 
iris contour independently of lighting conditions (Torricelli 
et al. 2008). The use of use snakuscule (minuscule snakes) 
(Xiao et al. 2018) has the property of adapting to different 
illumination conditions. Similarly, Valenti et al. (2009) used 
isophotes for eye center detection. Previous studies have 
shown that this technique is robust to rotation and lighting 

changes (Valenti and Gevers 2008; Lichtenauer et al. 2005). 
However, the shadows in the eye affect the isophote, result-
ing in unrealistic eye centers.

To reduce shadows and homogenize the face, the median 
gray-level value of the upper half of the face images can 
be assigned to the pixels with a gray level greater that 
he median value itself (Lin et al. 2013). The retinal filter 
(Doutsi et al. 2018; Hammal et al. 2005), in some extent, 
mimics the receptive fields of the human eye. Used in the 
pre-filtering stage, it reduces the variations of illumination 
and contour enhancement. The illumination invariance can 
be also achieved by training a deep neural network with a 
huge amount of images taken under different lighting condi-
tions (Meng and Zhao 2017).

∙ Output: The reviewed literature reports two main types 
of outputs for the eye-gaze detection algorithms: point on 
screen ( ↗ , ⊞ ) and joystick mode ( ↔ , ). The latter is the 
simplest form, which only allows the detection of a discrete 
set of gaze directions (Wiśniewska et al. 2014; Lee et al. 
2011; Magee et al. 2008) that handle the mouse pointer as a 
joystick; while, in the former, the pointer can directly jump 
to any position on screen (Yang et al. 2019).

∙  Accuracy: For the assessment of the ET performances, 
most authors ask subjects to look several times at specific 
points spread out on the computer screen. The average error 
is then computed for all points and participants. Normally, 
this error is given in degrees or pixels. We have favored 
the use of the same unit (degrees) to ease the comparison. 
Thus, we have marked with an asterisk those cases where it 
was impossible to make the conversion. Other authors split 
the screen in equally-sized squares and give the results as a 
percentage in placing the eye gaze inside them.

Studies that are only focused on determining the eye cent-
ers, typically use the same public databases [BioID (BioID 
2010), GI4E (Villanueva et al. 2013), etc.] as other studies. 
These databases include annotations with the position of the 
eye center and other relevant eye features. Accuracy is then 
given in terms of the percentage of the estimations lying 
inside a circle whose radius is normalized by the distance 
between the true eye centers (Jesorsky et al. 2001).

There are also datasets available for eye tracking: CVC 
(Ferhat et al. 2014), gaze interaction for everybody (GI4E) 
(Villanueva et al. 2013), Columbia gaze DS (CAVE) (Smith 
et al. 2013b).

3  Selection of studies

Previous section describes the state of art of the matter of 
this study, answering the (RQ1) in aspects concerning the 
most employed algorithms and the main features of the 
visible-light ETs. In order to find the criteria to continue 
with the study selection, several ET features must be taken 
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into account. The first, and maybe the most relevant one, is 
the accuracy. The better the accuracy, the better the ability 
of the ET to place the cursor at the correct position on the 
computer screen. There are factors influencing the accuracy 
negatively, so it would be also desirable that the algorithm 
shows certain robustness to head pose (to reduce the need 
of frequent calibrations) and to the scene lighting, that may 
cause many errors in detecting the eye centers.

Therefore, as the main key factor is the accuracy, is there 
then a method that stands out of the reminders? To answer 
this question (RQ2), we analyzed the significant differences 
among the feature-, appearance- or model-based methods. 
The accuracies in Tables 1, 2 and 3 along with the ones 
reported in Ferhat and Vilariño (2016), after removing dupli-
cated entries, are shown in Fig. 4

The feature-based methods seem to have a slightly bet-
ter figure in average (2.4◦ ) with respect to the 3.0◦ and 3.8◦ 
of appearance- and model-based methods respectively. 
However, these differences were not statistically significant 
according to KW (p = 0.14). This analysis included studies 
that allowed free head movements. Focused only on those 
studies that restricted head movements, the accuracy, in gen-
eral, decreases, but even in this case, none method stands out 
from the rest significantly (KW, p = 0.21). As a conclusion, 
there is no specific method that significantly improves the 
accuracy independently whether the head movements were 
constrained or not. Table IV collects the studies with best 
results in accuracy, grouped into three sets depending on 
whether the accuracy is less than, around or higher than 3 ◦.

In a scenario in which the screen size is of 18 × 28 cm 
(equivalent to 13”, which is a normal size for many lap-
tops and some tablets) and a subject-computer distance of 
60 cm (in the range of most studies), the equivalent grid 

resolution, (mxn) (Eq. 1) and cell side size (in cm) was esti-
mated (Fig. 5). Both are dependent on the accuracy. Conse-
quently, as the accuracy worsens, the grid cell size increases.

Table 4 contains the studies with lowest accuracies (under 
2.3◦ ), associated to a cell size less than 2 cm. None of them 
have considered the use of some technique to correct head 
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Fig. 4  Accuracy for different visible light eyetracker techniques (Fer-
hat and Vilariño 2016). As can be seen, the feature-based technique 
gathers the highest number of published studies

Fig. 5  Illustration of the chosen computer screen size and user-screen 
distance for evaluating the grid dimension and cell size according to 
the accuracy

Table 4  Summary of studies sorted by their accuracies

The grid dimension and cell size for a user-computer distance of 
60  cm and a screen size of 13”. Five studies shown in bold were 
selected. The cr symbol means that the authors used a chinrest

Acc. Ref HP II m × n Cell size (cm)

0.1 Yang et al. (2019) × cr × 172 × 267 0.11 × 0.11
0.8 Hammal et al. (2005) × ✓ 21 × 33 0.84 × 0.84
0.95 Liu et al. (2016, 2019) × cr × 18 × 28 1 × 1
1.2 Valenti et al. (2009) × ✓ 14 × 22 1.26 × 1.26
1.8 Jankó and Hajder (2012) × × 10 × 15 1.89 × 1.89
1.9 Wojke et al. (2016) × × 9 × 14 1.99 × 1.99
1.93 Cheng et al. (2022) × × 9 × 14 2.02 × 2.02
2.3 Jariwala et al. (2016) × × 7 × 12 2.41 × 2.41
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pose, but, at least, most of them have not constrained head 
movements in their experiments. Only Yang et al. (2019); 
Liu et al. (2019); Jariwala et al. (2016) used a chin rest and, 
for this reason, they were excluded. In Cheng et al. (2022) 
the distance between the screen and the participant was of 
30 cm, but authors used a mobile phone instead of a com-
puter, whose size is significantly smaller.

Studies with bigger cell sizes cannot operate like a true 
ET. These studies could be very useful for communication-
oriented applications that show various symbols (icons) in a 
panel on the computer screen. By just looking at one cell in 
the panel, the user could directly select it instead of waiting 
for a scanning procedure to reach the desire icon.

4  Discussion

Research on eye tracking is increasing owing to its ability in 
facilitating many tasks in several areas such as: (1) Virtual 
and Augmented Reality Applications to enhance the user 
experience. In the future, it is expected a more widespread 
adoption of ET in VR/AR headsets, enabling more immer-
sive and interactive experiences; (2) Healthcare and Medi-
cal Applications. Visible-light eye tracking has promising 
applications in healthcare to diagnose and monitor various 
conditions related to neurological disorders and eye-related 
diseases; (3) Market analysis and research, by providing 
valuable insights into user behavior, attention, and prefer-
ences, helping businesses and researchers optimize products 
and services; (4) Automotive Industry, where it is expected 
to play a significant role in the development of advanced 
driver assistance systems (ADAS), monitoring driver atten-
tion and fatigue, and therefore enhancing safety on the roads; 
(5) Accessibility. ET enhances accessibility for individu-
als with physical disabilities and create more intuitive user 
interfaces.

Many commercial ETs use IR-based elements, which 
have better performances than visible-light counterparts, 
but with a higher cost. A study verified this fact when both 
ETs were tested using several text entry applications (Chynał 
et al. 2010). Based on the data published in Kar and Cor-
coran (2017), the IR-ETs obtained an averaged accuracy of 
1.8◦ while for the visible-light ETs it was higher, 3.1◦ , and 
such a difference was statistically significant -KW-test (p = 
0.014). The advantage of the visible-light ET is that only 
a camera is needed, and, since many laptops and tablets 
include at least one, there is no need for additional hardware.

The accuracy in visible-light ETs and IR -ETs is very 
sensitive to head movements. Reported data unveiled 
that, for IR-ETs, the accuracy worsened when head move-
ments were allowed, 1.9◦ in comparison to when they were 
restricted or limited 1.6◦ (Kar and Corcoran 2017). In any 
ET An initial calibration phase is necessary to create a 

map between the eye gaze with a position on computer 
screen. Therefore, any shift from that initial conditions 
can produce errors in the estimation of the eye gaze. Head 
movements during the operation phase or changing the 
relative position between the computer and the user, will 
worsen the initial mapping, and therefore influence the 
accuracy negatively. Consequently, frequent calibrations 
must be made in order not to reduce the performance of 
the ET. This repetitive procedure may become inconven-
ient for users due to the frequent disruption in the use of 
the tracking system. Several studies have proposed various 
solutions to reduce the burden of continuous calibrations. 
For instance, in Drewes et al. (2019), a quick calibration 
procedure based on smooth pursuit eye movements is 
implemented. The authors demonstrated that showing a 
moving point describing a circle for 4 s is sufficient to 
maintain good eye-tracking accuracy. Other methods oper-
ate recalibrating the eye gaze continuously by knowing the 
points on the screen selected after a mouse click or with 
the on-screen content (Huang et al. 2016; Gomez and Gel-
lersen 2018). A common problem is the vertical drift when 
reading multiline passages. Several methods have system-
atically been reviewed in Carr et al. (2022) suggesting that 
dynamic time warping, which is a method for tackling drift 
and alignment problems, offers great promise. To alleviate 
the accuracy decrease during long-term use, the method 
proposed by Huang and Bulling (2019) analyzes the trajec-
tories during saccades. It is based on the fact that saccade 
trajectories recorded by a calibrated ET are nearly straight 
between the saccadic start and endpoints. By observing 
multiple saccades between different on-screen locations, 
and by jointly minimizing saccade curvatures, calibration 
distortion can be reduced.

Any environmental condition that affects one of the steps 
needed for the implementation of the ET will also influence 
on accuracy. For example, the room illuminance and the 
shadows on the user’s face reduce the algorithm’s ability to 
locate the iris center and, therefore, the eye gaze accuracy. 
IR-based ETs usually have lighting elements placed in front 
of the face, so the image captured by the IR camera is com-
monly free of shadows (San Agustin et al. 2010; Pasarica 
et al. 2016; Kim et al. 2014). Conversely, the camera of IR-
ETs does not work very well outdoors or whether the natural 
illumination is intense.

Machine learning is now proving its capability to enhance 
the performance of non-artificial intelligence solutions in 
numerous fields and applications (Zhang et al. 2023; Xie 
et al. 2023; Li et al. 2022). In this study, we have identi-
fied a machine learning approach (Wojke et al. 2016) that 
achieves an accuracy of under 2◦ , utilizing facial landmark 
(FL) to locate facial features and gaze point regression 
(GPR) for gaze estimation. A promising future lies ahead 
in this domain, with the development of more sophisticated 
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models that consider various head poses and lighting condi-
tions. By doing so, eye tracking technology can become less 
sensitive to factors that might otherwise diminish accuracy.

Only three studies in this review included people with 
disabilities in their experimental tests. Two of them detected 
horizontal eye movements so that users can select the left or 
right area of the computer screen, as a binary input method 
in which only two choices are shown Magee et al. (2008) and 
Alva et al. (2017)). In Agarwal et al. (2019) the ET could 
detect a larger set of eye movements to select up to eight 
choices on a grid. Authors tested the ET using a reduced 2 × 
2 grid and compared it with a commercial IR-based ET and 
a free software called WebGazer.js. Results demonstrated 
that the proposed solution improves WebGazer but not the 
commercial IR-based device.

To access a computer, people with disabilities have sev-
eral options. The simplest one is based on detecting a binary 
signal (on/off) coming from a mechanical button. Similarly, 
but more sophisticated systems are those that record bioel-
ectrical signals or use video processing to generate those on/
off signals. An example of such systems is those that detect 
voluntary blinks (Molina-Cantero et al. 2019), which are 
very useful when the motor functionality is quite affected. 
These binary detection systems need of specific applications 
that implement a scanning procedure for the selection of the 
elements contained on the computer screen. The scanning 
highlights every item on the screen for a dwell time. When 
the user presses the button, the highlighted item on the 
screen is selected. Depending on the application, the binary 
signal can be used to control a keyboard or a mouse (Molina-
Cantero et al. 2021). Some interfaces emulate a joystick, 
allowing users to access the computer without needing for a 
scanning-type application (Roy and Chanda 2022; Rondio 
et al. 2012; Kourkoutis et al. 2007; Wu et al. 2014; Chew 
and Penver 2019). This method is faster than the scanning-
based interfaces, owing to the item is directly accessed and 
it is not necessary to wait for the scanning to get to it, but 
slower than ETs. Molina-Cantero et al. (2021) compares sev-
eral cursor control methods analyzing the time invested to 
select various targets, with different sizes, placed at different 
distances away from an initial position. The ET obtained the 
best result (Vertegaal 2008) compared to any brain computer 
interface (BCI) system, a joystick or even a mouse.

Once the cursor is placed at the desired position on the 
computer, the element addressed can be selected. To do 
that, some authors have proposed to keep the cursor still for 
a period (Sahay and Biswas 2017). However, this method 
prevents users from being focused on any element for long. 
Otherwise, the involuntary selection of the element will be 
performed. This is the so-called Midas touch effect (Velichk-
ovsky et al. 2014). To avoid it, some ETs software has also 
included alternative selection methods such as, for example, 

that based on the detection of voluntary blinks (Biswas and 
Langdon 2013).

A final aspect that has be to address in future, when 
implementing the selected ET for testing, is the execution 
time. In this study we have only found a few numbers of 
studies explained the computational load of their algorithms 
and in different ways that makes it difficulty their compari-
son. Usually, the computer features, the operative system and 
the CPU percentage usage are described by many authors. 
Others give the processing speed of the system expressed in 
frames/s (Zheng and Usagawa 2018), which may be more 
appropriate to show the real-time capabilities of the pro-
posed algorithm and favor the comparison among studies.

5  Conclusion and future work

This study contains a detailed review of the current state 
of visible-light eye tracking technologies, describing their 
main features and most used algorithms (RQ1). Three main 
methods (appearance-, feature- or model-based) were identi-
fied but none of them was statistically better than the oth-
ers (RQ2). Head movements affect the accuracy negatively, 
and even though people with ALS show low amplitude of 
the head movements in advanced stages of the disease, they 
are enough to worsen the functionality of the ET. For this 
reason, only studies that did not use a chinrest were selected. 
The recommendations also include ETs with accuracies 
below 2◦ , for a user-computer distance of 60 cm and a screen 
size of 13 (RQ3). Higher accuracies mean higher on-screen 
grid sizes, and lower capacity in pointing small and near ele-
ments on it, such as icons, which reduces the functionality 
of the ET. Five studies fulfilled these recommendations, and 
only one was illuminance invariant.

The selected algorithms must now be tested at laboratory 
and real settings. The experiments will include the accu-
racy in detecting the pupil’s centers with the use of several 
databases, the accuracy in positioning the cursor on the 
computer screen with several illumination conditions, and 
head poses. The final implementation could contain a mix 
of several parts of the selected algorithms, depending on the 
results obtained during each verification stage. Eventually, a 
usability test of the proposed solution will be accomplished 
by people with ALS.
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