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ALADIN-based Distributed Model Predictive Control with dynamic
partitioning: An application to Solar Parabolic Trough Plants

P. Chanfreut1, J. M. Maestre2, D. Krishnamoorthy1, E. F. Camacho2

Abstract— This article presents a distributed model predic-
tive controller with time-varying partitioning based on the
augmented Lagrangian alternating direction inexact Newton
method (ALADIN). In particular, we address the problem of
controlling the temperature of a heat transfer fluid (HTF) in
a set of loops of solar parabolic collectors by adjusting its
flow rate. The control problem involves a nonlinear prediction
model, decoupled inequality constraints, and coupled affine
constraints on the system inputs. The application of ALADIN to
address such a problem is combined with a dynamic clustering-
based partitioning approach that aims at reducing, with min-
imum performance losses, the number of variables to be
coordinated. Numerical results on a 10-loop plant are presented.

I. INTRODUCTION

Over the last decades, solar energy technologies have
become increasingly efficient and cost-effective, and they
are now essential for the transition towards a sustainable
power system. In 2021, solar power was ranked the top
power generation source installed worldwide, and has re-
cently surpassed the threshold of 1 terawatt of installed
capacity [1]. Undoubtedly, solar photovoltaics are being the
kingpin for the growth of solar technologies, representing
more than 50% of the renewable generating capacity added
in 2021 [1]. Nonetheless, there are about 6 gigawatts of
concentrating solar power (CSP), and more than 1 gigawatt
under construction [2]. Moreover, the incorporation of ther-
mal energy storage technologies makes CSP systems capable
of dispatching power on demand, even during the night,
which is of particular interest to support other forms of
renewable generation [3], [4].

This paper focuses on solar parabolic trough plants, which
represent the most extended CSP technology [5]. Parabolic
trough plants obtain thermal energy by concentrating the
solar rays on a tube through which circulates a heat transfer
fluid (HTF) [6], [7]. In this regard, the solar field consists
of a set of parallel loops, which are rows of parabolic
collectors with a tube running along their focal line. One
of the main control problems that arise in this context is to
control the HTF temperature around a given reference by
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manipulating its flow rate. While different control methods
have been explored to address the latter, model predictive
control (MPC) has received special attention both at research
and commercial levels. See [8] (Chapter 5) for a review,
and [9] and [10] for recent contributions.

Traditionally, all loops of collectors receive the same HTF
flow. However, several works have pointed out that higher
efficiencies can be attained by optimally allocating the flow
that circulates specifically through each loop, since they
may exhibit disparate dynamics [11]–[13]. This is because
the loops may receive different irradiance levels due to
cloud shading, have different optical efficiencies due to
changes in their mirrors reflectivity, etc. The associated MPC
problem results in a constrained optimization problem, where
the goal is to optimally distribute the total HTF available
in the plant. The sheer size of these plants, which may
comprise more than 800 loops as in SOLANA [14], hinders
the applicability of a centralized MPC approach. Pursuing
increased scalability, a number of articles have explored
distributed MPC (DMPC) strategies where multiple agents
control subsets of loops, e.g., [15], [16]. In addition, DMPC
is also favourable in terms of monitoring and maintenance.
For example, if some of the loops are not operating, it will
only affect some of the agents, while the rest could continue
operating normally.

Within the DMPC framework, dual decomposition and
the alternating direction method of multipliers (ADMM)
have been extensively used for coordinating control deci-
sions [17]. Both of them involve iterative procedures based
on (sub)gradient methods, which often require many itera-
tions before converging to a solution. Moreover, their the-
oretical properties do not generally apply in the nonconvex
setting [18]. Considering these issues, this paper explores the
augmented Lagragian alternating direction inexact Newton
method (ALADIN) [18], [19], which has been recently stud-
ied for optimizing power transfers in electrical networks [20],
[21]. Particularly, ALADIN combines ideas of augmented
Lagrangian methods and sequential quadratic programming,
and is designed to solve potentially nonconvex optimization
problems in a distributed manner. In contrast to ADMM, AL-
ADIN uses both gradient and Hessian information at every
iteration, and has been shown to converge faster [19]. This is
beneficial for the real-time control problem underlying our
solar plants application.

The main contribution of this article is a DMPC based
on ALADIN with time-varying system partitioning. The
proposed controller optimizes the HTF flow rates in every
loop to track reference outlet temperatures, and integrates
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clustering methods to further increase scalability with min-
imum performance losses. In this regard, the solar field
is dynamically partitioned into clusters of similar loops
to reduce the number of optimization variables, and thus
simplify the distributed computations.

The rest of the article is organized as follows. Section II
presents the system dynamics, the control objectives, and
the associated centralized problem. Section III describes the
clustering formation, formulates the DMPC problem, and
presents the proposed ALADIN-based control algorithm.
Finally, Section IV presents our simulation results.

Notation: Given two time steps k and n ≥ k, and a
variable x, x(n|k) indicates the predicted value of x for
time n realized at k. Given a set S, say S = {1, 2, ..., |S|},
[xi]i∈S = [xi]

|S|
i=1 is the vector [x1, x2, ..., x|S|]

>. Also, | · |
denotes the cardinality when referring to a set, and the
absolute value when used with scalars. Capital caligraphic
letters are used for sets, whereas bold letters represent
sequences. Finally, 1m and 0m are the all-ones and all-zeros
vectors of dimension m× 1.

II. PROBLEM FORMULATION

Consider a solar parabolic trough plant comprising a set
of parallel loops N = {1, 2, ..., Nloops} equipped with inlet
valves (see Fig. 1).

A. System dynamics

The dynamics of the HTF temperature at the outlet of any
loop i ∈ N , i.e., T out

i [◦C], can be modeled considering the
variation of its internal energy as follows:1

Ci
dT out

i

dt
= ηiIi − qiPi(T out

i − T in)−hi, (1)

where T in [◦C] is the inlet temperature, and qi [m3/s]
represents the HTF flow rate in loop i. Also, Ci [J/ºC] is
the thermal capacity of the loop, Pi [J/(m3◦C)] is related to
its geometrical and thermal properties, hi [W] is a function
weighting the heat losses of loop i, and ηiIi [W] considers
the power received from the sun. In particular, ηi weights the
optical and geometric efficiency of the collectors in i, and
Ii = SIi, with S [m2] being the loops’ reflective surface
and Ii [W/m2] the direct normal irradiance. Finally, note that
some of the parameters in model (1) vary as a function of
the temperature. In particular, we will consider the following
throughout this paper2:

ρi = 903− 0.672Tm
i , Pi = ρici,

ci = 1820 + 3.478Tm
i , Ci = ρiciAL,

hi = S
(
0.00249(Tm

i − T a)2 − 0.06133(Tm
i − T a)

)
,

(2)

where Tm
i = (T out

i + T in)/2 is the mean between the inlet
and outlet temperature of loop i, T a [◦C] is the ambient
temperature, A [m2] is the cross sectional area of the tube,
and L [m] is the loops length.

1For the sake of clarity, the continuous time index is omitted in
Subsections II-A and II-B.

2The definitions in (2) consider the HTF (Therminol 55) and heat losses
of the ACUREX plant, which is located in the south of Spain [8].

1) Cluster-based model: Similar to (1), a cluster of loops
C ⊆ N can be jointly described by the following lumped
parameter model:

CC
dT out
C
dt

= ηCIC − qCPC(T out
C − T in)−hC , (3)

where T out
C denotes the outlet temperature of cluster C,

and qC is the total HTF pumped to the loops in C. Also,
parameters CC , PC and hC are defined analogously to (2),
and ηCIC =

∑
i∈C ηiIi. Note that if C = N , then (3)

provides a lumped model of the entire solar field; whereas
if C = {i}, model (3) is equivalent to (1).

B. Control objectives
The proposed controller should dynamically update flow

rates qi for all i ∈ N so as to track time-varying references
on the loops outlet temperature while satisfying the following
constraints: ∑

i∈N
qi ≤ QT, (4a)

qmin ≤ qi ≤ qmax, ∀i ∈ N , (4b)

Tmin ≤ T out
i ≤ Tmax, ∀i ∈ N , (4c)

where QT is the maximum available HTF flow in the
plant, qmin and qmax denote respectively the minimum and
maximum flows allowed in the loops, and Tmin and Tmax are
similarly the minimum and maximum desired temperatures.
Note that, as long as (4a) is satisfied, the total available
HTF can be unevenly distributed among the set of loops,
e.g., higher flow rates can be pumped to loops receiving
greater irradiance. Finally, the proposed controller should
be scalable and approximate the optimal performance with
reduced computational and communication burden.

C. Centralized MPC problem
In what follows, consider a discrete-time setting, let ∆ts be

the integration step size, and let k be the discrete time index,
i.e., step k refers to instant k∆ts. Likewise, let ∆tc = δc∆ts

be the sampling time considered in the control models,
where δc ∈ N+. Then, the centralized MPC problem
underlying this article can be formulated as follows:

min
[qi(k)]i∈N

∑
i∈N

∑
n∈H

(
wee

2
i (n+ δc|k) + wqq

2
i (n|k)

)
s.t.
T out
i (n+ δc|k) = T out

i (n|k)

+
∆tc

Ci(n|k)

(
ηi(k)Ii(k)−hi(n|k)

)
− ∆tc

Ci(n|k)
qi(n|k)Pi(n|k)

(
T out
i (n|k)− T in(k)

)
,

(5a)

T out
i (k|k) = T out

i (k), (5b)

Tmin ≤ T out
i (n+ δc|k) ≤ Tmax, (5c)

qmin ≤ qi(n|k) ≤ qmax, (5d)∑
l∈N

ql(n|k) ≤ QT, (5e)

∀i ∈ N , ∀n ∈ H, (5f)
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where ei(n+ δc|k) = T out
i (n+δc|k)− T ref(n+δc) denotes

the outlet temperature error of loop i, with T ref(·) being
the reference temperature. Also, H = {k, k + δc, k +
2δc, ..., k + δcNp} is the set of time instants considered in
the prediction horizon, with Np being a tuning parameter,
qi(k) = [qi(k|k), qi(k + δc|k), ..., k + δcNp]> is the flow
rate sequence of loop i, and we and wq are positive definite
weighting scalars. Likewise, (5a) is a discrete-time version
of model (1), where Pi(n|k), Ci(n|k) and hi(n|k) are com-
puted considering (2) and the predicted mean temperature
Tm
i (n|k) = (T out

i (n|k) + T in(k))/2. Finally, for the sake
of simplicity, the inlet temperature, effective irradiance, and
ambient temperature, are assumed to mantain their value at k
during the entire prediction horizon.

Remark 1. Prediction model (5a) introduces nonconvex
terms both in the cost function and in constraint (5c).
Therefore, it is not possible to claim that (5) is generally
a convex optimization problem.

III. CLUSTERING-BASED DMPC USING ALADIN
Centralized problem (5) may involve a large number of

loops and lacks convexity guarantees as mentioned above.
Considering this issue, this article proposes the distributed
control architecture illustrated in Fig. 1, which comprises a
set of MPC agents and a supervisor. The main features of
this approach are the following:

(i) The set of Nloops loops are dynamically partitioned by
the supervisor into a set of non-overlapping clusters
{C1, C2, ..., CNcl

}, such that
Ncl⋃
j=1

Cj = N , and Cj ∩ Cl = ∅ ∀j, l ∈ [1, Ncl], j 6= l,

where Ncl ≤ Nloops denotes the number of clusters.
(ii) Each resulting cluster Cj is assigned to MPC agent j,

which controls flow rates qi for all i ∈ Cj during a given
time period.

(iii) The set of MPC agents coordinate their decisions to
optimize their collective performance using ALADIN,
which is designed to address (potentially nonconvex)
distributed problems.

The next subsections provide further details regarding the
partition selection and the proposed control algorithm.

A. Partition selection

Inspired by [22], our proposed DMPC approach exploits
similarities between the loops to reduce the control prob-
lem complexity. In particular, the solar field is dynami-
cally partitioned into clusters of loops whose dynamics are
approximately characterized by the same parameters. To
this end, mean temperature Tm

i (k) and current effective
irradiance ηi(k)Ii(k) are periodically collected for all i ∈ N
so that we build the following data set:

D(k) = {[ηi(k)Ii(k), Tm
i (k)]}i∈N . (6)

Note that, given (5a), those loops for which these two
features are equal will have identical prediction models.

25

Agent ୡ୪

Agent 

Agent 1

Supervisor

Loops valves

Fig. 1: Architecture of the proposed control approach. The
agents control the flow rates in different clusters of loops,
e.g., agent 1 controls loops 1 and 2.

Using clustering methods [23], the loops in N can then be
partitioned into a number of clusters, say Ncl(k) ≤ Nmax

cl ,
according to the data in D(k). In this respect, Nmax

cl denotes
the maximum number of clusters, which is directly related
with the number of MPC agents available in the system.
Without loss of generality, we consider the well-known
centroid-based algorithm K-means [24], together with the
elbow method to select the optimal number of clusters.
Note that the elbow method runs the K-means algorithm
for different Ncl(k) and computes in each case an average
score evaluating the resulting partition.

B. Clusters-based MPC problem

Let P(k) = {C1, C2, ..., CNcl(k)} be the partition selected
at time k as described above. Then, we consider the following
MPC problem to find the HTF to be pumped to every cluster:

min
[qCj

(k)]∀Cj

Ncl(k)∑
j=1

|Cj |
∑
n∈H

(
wee

2
Cj (n+δc|k) + wqq

2
Cj (n|k)

)
s.t.
T out
Cj (n+ δc|k) = T out

Cj (n|k)

+
∆tc

CCj (n|k)

(
ηCj (k)ICj (k)−hCj (n|k)

)
− ∆tc

CCj (n|k)
qCj (n|k)PCj (n|k)

(
T out
Cj (n|k)− T in(n|k)

)
,

(7a)

T out
Cj (k|k) =

∑
i∈Cj (qi(k − 1)T out

i (k))∑
i∈Cj qi(k − 1)

, (7b)

Tmin ≤ T out
Cj (n+ δc|k) ≤ Tmax, (7c)

qmin
Cj ≤ qCj (n|k) ≤ qmax

Cj , (7d)
Ncl(k)∑
l=1

qCl(n|k) ≤ QT, (7e)

∀j ∈ {1, 2, ..., Ncl(k)}, ∀n ∈ H, (7f)

3



where the predicted outlet temperature error of the j-th
cluster is eCj (n + δc|k) = T out

Cj (n+ δc|k) − T ref(n+ 1),
for n ∈ H. Also, qmin

Cj = |Cj |qmin, qmax
Cj = |Cj |qmax, and

qCj (k) = [qCj (n|k)]n∈H = [qCj (k|k), ..., qCj (k+δcNp|k)]>.

Given the solution of (7), say q∗Cj (k) for all Cj ∈ P(k),
the HTF is uniformly distributed among the loops in every
cluster. That is, the implemented flows are given by

qi(t) =
q∗Cj (k|k)

|Cj |
, ∀i ∈ Cj , ∀t ∈ [k, k + 1, ..., k + δc). (8)

Remark 2. Problem (7) has the same form as problem (5)
but involves a reduced number of optimization variables. In
particular, while the number of flow variables in (5) was
NpNloops, here we deal with NpNcl(k).

Remark 3. Since the clusters are chosen to aggregate loops
with similar dynamics, the solution of (7) will approximate
that of (5). Particularly, we are replacing models of loops
that are nearly identical with a single lumped description.
This similarity among loops also motivates the uniform flow
allocation indicated in (8).

1) Formulation to use ALADIN: As detailed in [18],
ALADIN is designed to solve optimization problems with
separable (potentially nonconvex) objective functions, de-
coupled inequality constraints, and coupled affine equality
constraints.

Note that, by definition, the objective function in (7) is
separable and can indeed be rewritten as

Ncl(k)∑
j=1

|Cj |
∑
n∈H

(wee
2
Cj (n+δc|k) + wqq

2
Cj (n|k)).︸ ︷︷ ︸

fCj
(eCj

(k),qCj
(k))

Likewise, given (7a), variables T out
Cj (k+ κδc|k) for any κ ∈

{1, 2, ..., Np} can be computed as

T out
Cj (k + κδc|k) = T out

Cj (k)

+

k+(κ−1)δc∑
ñ=k

∆tc

CCj (ñ|k)

(
ηCj (k)ICj (k)−hCj (ñ|k)

)

−
k+(κ−1)δc∑

ñ=k

∆tc

CCj (ñ|k)
qCj (ñ|k)PCj (ñ|k)

(
T out
Cj (ñ|k)− T in(k)

)
.

That is, they are a function of current outlet temper-
ature T out

Cj (k), inlet temperature T in(k), effective irradi-
ance ηCj (k)ICj (k), ambient temperature T a(k), and the
sequence of control inputs implemented up to time instant
k + (κ − 1)δc. For simplicity, let us define zCj (k) =
[T out
Cj (k), ηCj (k)ICj (k), T in(k), T a(k)] and Tref(k) =

[T ref(n + δc)]n∈H. Then, the objective function in (7) can
also be rewritten as

Ncl(k)∑
j=1

fCj (zCj (k),Tref(k),qCj (k)). (9)

Using the same reasoning, constraint (7c) is of the form
hCj (zCj (k),qCj (k)) ≤ 0Np

, where hCj (·) : R × RNp →
RNp is the corresponding constraint function. Finally, let
us introduce a sink artificial loop, say loop 0, and let
us define C0 = {0} to keep the notation simple. Then,
problem (7) can be reformulated as follows:

min
[qCj

(k)]
Ncl(k)

j=0

Ncl(k)∑
j=1

fCj (zCj (k),Tref(k),qCj (k))+fC0(qC0(k)))

s.t. hCj (zCj (k),qCj (k)) ≤ 0, ∀Cj ∈ P(k), (10a)

qmin
Cj 1Np

≤ qCj (k) ≤ qmax
Cj 1Np

, ∀Cj ∈ P(k), (10b)

qC0(k) ≥ 0Np
, (10c)

Ncl(k)∑
l=0

qCl(k) = QT1Np
, (10d)

with qC0(k) being the flow surplus over QT that the agents
decide not to use. Likewise, fC0(qC0(k))) is a (possibly
nonzero) cost associated with sending flow to the sink loop.

C. Distributed coordination using ALADIN

Problem (10) is an optimal resource allocation problem
of the form of those that can be solved in a distributed
manner by implementing ALADIN. This algorithm involves
an iterative procedure that is briefly introduced below. In
this regard, let subscript p enumerate the iterations, λ be
the multiplier associated with constraint (10d), and consider
some time step k ∈ {0, δc, 2δc, ...}. Also, consider a positive
definite scaling matrix Σ, a termination tolerance ε, an initial
guess for the primal variables y0 = [y0

Cj ]
Ncl(k)
j=0 , and some λ0,

µ0 > 0, and ρ0 > 0. Then, flow sequences qCj (k) for all Cj
are computed by implementing the following steps starting
from p = 0. See [18] and [19] for further details.

1. Parallelizable decentralized step: All agents j ∈
{1, 2, ..., Ncl} solve locally the following decoupled
nonlinear problem:

min
qCj

fCj (zCj ,T
ref ,qCj ) + (λp)>qCj +

ρp

2
‖qCj − ypCj‖

2
Σ

s.t. hCj (zCj ,qCj ) ≤ 0, (11a)

qmin
Cj 1Np

≤ qi ≤ qmax
Cj 1Np

, (11b)

where, for clarity, we have omitted time index k. For the
sink artificial loop, we consider additional agent j = 0,
which solves a similar problem considering fC0(qC0).

2. Let qpCj be the solution of (11) for the j-th cluster. Then,
if ‖
∑Ncl

j=0 q
p
Cj−QT‖ ≤ ε and ‖

∑Ncl

j=0(qpCj−y
p
Cj )‖ ≤ ε,

exit the algorithm.
3. Sensitivity evaluations: All agents j compute gradients
gpi = ∇fCj (·), a positive definite Hessian approxima-
tion Hp

Cj , and constraints Jacobian GpCj [18].
4. Coordination step: Solve the following overall quadratic

4



program (QP):

min
s,∆q

Ncl∑
j=0

(
1

2
‖∆qCj‖2Hp

Cj

+ (gpCj )>∆qCj

)
+ r(s, λp, µp)

s.t.
Ncl∑
j=0

(qpCj + ∆qCj )−QT = s, (12a)

GpCj∆qCj = 0,∀Cj ∈ P. (12b)

where ∆q = [∆qCj ]Ncl
j=0 and r(·) = λp>s+µp/2‖s‖2.

5. Finally, update the primal and dual variables as follows:

yp+1 = yp + βp1(qp − yp) + βp2∆qp,

λp+1 = λp + βp3(λpQP − λ
p),

(13)

where qp = [qpCj ]Ncl
j=0, ∆qp is obtained from the solution

of (12), and λpQP is the multiplier associated with
constraint (12a). Likewise, factors β1, β2, and β3 are
computed following [18].

Remark 4. The QP in the coordination step could be solved
by the supervisor after communicating with the agents, or in
a distributed manner using bi-level ALADIN [25].

D. Pseudocode

Finally, the pseudocode of the proposed algorithm is
summarized in Algorithm 1. Recall that ∆tc is the control
time step and that the system is simulated using a discrete-
time version of (1) for all i ∈ N , where the integration step
size is ∆ts. Likewise, the inlet temperature dynamics are
modeled considering the following transfer function:

T in(s)

T out(s)− 80
=

1

600s+ 1
, (14)

where T out is the overall outlet temperature of the solar field,
and T out − 80ºC approximates the outlet temperature of the
steam generator. In this regard, for all instants k, we consider
T out(k) =

∑
i∈N qi(k − 1)T out

i (k)/
∑
i∈N qi(k − 1).

IV. SIMULATION RESULTS

In this section, we simulate Algorithm 1 on a 10-loop solar
parabolic plant using different values of Nmax

cl and ∆tcl,
and considering the parameters in Table I. All simulations
were carried out in a 1.8 GHz Intel® CoreTM i7/16GB
RAM computer using Matlab®, software CasADi [26], and
toolbox ALADIN-α [19]. Also, we used ipopt and MA57
for solving (11) and (12), respectively. The partitions were
found using function kmeans with the Calinski-Harabasz
index [27] defining the score.

As a reference, the results are compared with those
obtained considering statically the finest and coarsest par-
tition of the system. The former corresponds to run-
ning Algorithm 1 with initial singleton partition P(0) =
{{1}, {2}, . . . , {10}} and ∆tcl =∞. By contrast, the latter
corresponds to P(0) = {1, 2, ..., 10} and ∆tcl = ∞, i.e., a
single controller uses a lumped parameter model of the entire
solar field and distributes equally the flow among all loops.

Algorithm 1 Control algorithm
Define a maximum number of clusters Nmax

cl , an initial
partition P(0)={C1, ..., CNcl(0)}, with Ncl(0) ≤ Nmax

cl , and
let the partition be updated every ∆tcl =δcl∆ts. Also, assign
each Cj to agent j, and the sink loop to agent 0. Then, at all
instants k, proceed as follows:

1: if k ∈ {0, δc, 2δc, ...} then
2: if k ∈ {δcl, 2δcl, ...} then
3: Update the clusters as described in Section III-A

and define a partition P(k) = {C1, ..., CNcl(k)} such
that N cl(k) ≤ Nmax

cl .
4: else
5: Set P(k)← P(k − 1).
6: end if
7: All MPC agents j ∈ {0, 2, ..., N cl(k)} solve prob-

lem (7) in a distributed manner by using ALADIN
algorithm as described in Section III-C. As a solution,
the agents find the flow rates to be pumped to each
cluster Cj during interval [k, k + δc).

8: For each cluster Cj , define qi(t) = q∗Cj (k|k)/|Cj | for
all i ∈ Cj and t ∈ [k, k + δc).

9: end if
10: Simulate the loops dynamics considering (1), (2), (14),

and the current flow rates for all loop i ∈ N .
11: Set k ← k + 1.

For the sake of clarity, these two approaches will be denoted
as DMPCfin and MPCcoar, respectively.

The simulations consider a 7 hours period (8:30am-
3:30pm) of a cloudy day in which the irradiance and ambient
temperature evolve as shown in Fig. 2. The outlet tempera-
tures and flow rates evolution is illustrated in Fig. 3 (a) for
the case of Nmax

cl = 5 and ∆tcl = 2.5 min. As can be seen,
the loops outlet temperatures follow closely the reference,
and the flows decrease as the irrandiance falls. However,
the system performance underwent a significant deterioration
when using MPCcoar (see Fig. 3 (b)). Note that in the latter
case all loops receive the same flow, and hence there is no
chance of adjusting it to the space-varying conditions in the
solar field. Particularly, given (8), the maximum flow that the
loops can get with MPCcoar is QT/10 = 0.9 l/s, whereas
in the DMPC case we obtained maxi,k qi(k) = 0.95 l/s.
Also, when the overall outlet temperature approaches Tmax,
controller MPCcoar increases the flow in all loops, and this
decreases the temperature even of those that were already
below the reference.

TABLE I: Parameters used in the simulations

Value Unit Value Unit
qmin 0.2·10−3 m3/s ∆ts 0.5 s
qmax 2·10−3 m3/s ∆tc 30 s
Tmin 220 ◦C we 1·10−3

Tmax 305 ◦C wq 1 -
A 5.067·10−4 m2 Np 5 -
L 142 m ε 1 · 10−5 -
S 267.4 m2 QT 9 l/s
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Fig. 2: Evolution of the ambient temperature and of the direct
normal irradiance for every loop. The bottom plot zooms the
irradiance graph in a period affected by clouds.

The system performance is also numerically
compared in Table II, which provides the cumulative
costs in different simulations, i.e., Jcum =∑
k∈K

∑10
i=1

(
wee

2
i (k) + wqq

2
i (k)

)
, together with the

maximum incurred temperature errors, i.e.,

ē = max
k∈K̃,

i∈{1,...,10}

|ei(k)| = max
k∈K̃,

i∈{1,...,10}

|T out
i (k)− T ref(k)|.

Above, K represents the set of all simulated time instants,
and K̃ ⊂ K contains the instants after the first simulated 5
minutes. Note that set K̃ is used not to account for the
errors at the beginning of the simulations, which are mainly
influenced by the choice of the initial state. In addition,
Table II indicates the mean number of loops per cluster.
As expected, finer partitions and reduced ∆tcl resulted
both in lower performance costs and lower temperature
errors. In particular, the proposed approach with Nmax

cl = 8
and ∆tcl = 1.5 min performed comparably to DMPCfin.
Likewise, significant improvements with regard to MPCcoar
were observed even with only three clusters. Note also that

TABLE II: Cumulative performance costs and clusters size

Jcum ē
Mean no. of
loops/cluster

St
at

ic
pa

rt
. DMPCfin 172.08 9.84 1

MPCcoar 8.22·103 29.83 10

Nmax
cl ∆tcl [min]

Ti
m

e-
va

ry
in

g
pa

rt
iti

on

8 1.5 176.89 9.86 1.39
6 1.5 195.02 10.23 2.03
5 1.5 215.44 10.60 2.51
5 2.5 228.59 10.63 2.53
3 5.0 749.88 19.28 4.15

(a) Proposed DMPC with Nmax
cl = 5 and ∆tcl = 2.5 min

(b) MPCcoar

Fig. 3: Evolution of the loops outlet temperature and of the
HTF flow rates with different controllers. The dashed black
line indicates the reference temperature.

the temperature errors could be reduced if accurate irradiance
estimations are available.

Regarding the computation times, Fig. 4 shows the values
of the following indexes:

τ̄NLP =
1

|Kc|
∑
k∈Kc

Ncl(k)∑
j=1

τNLP
Cj (k), τ̄QP =

1

|Kc|
∑
k∈Kc

τQP(k),

τ̄ sum = τ̄NLP + τ̄QP +
1

|Kc|
∑
k∈Kc

Ncl(k)∑
j=1

τ sens
Cj (k),

which are associated with different steps of the ALADIN
algorithm. Above, τNLP

Cj (k) and τ sens
Cj (k) denote respectively

the time spent by agent j solving nonlinear problem (11) and
computing the sensitives at time step k. In addition, τQP(k)
refers to the time spent solving QP problem (12)3, and Kc

3These values were obtained using timers.NLPtotTime,
timers.QPtotTime and timers.sensEvalT, where struct timers
is given by ALADIN-α toolbox.
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DMPCfin tcl = 1.5 min, 
 Ncl

max = 8
tcl = 1.5 min, 

 Ncl
max = 6

tcl = 1.5 min, 
 Ncl

max = 5
tcl = 2.5 min, 

 Ncl
max = 5

tcl = 5 min, 
 Ncl

max = 3

0
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0.1

0.15

0.2

0.25

T
im

e 
[s

]

Fig. 4: Computation times of different steps of ALADIN
algorithm. For sake of clarity, τ̄QP is scaled by 50.

is the set of instants in which the flow rates are updated. As
reflected in Fig. 4, finer partitions involve a greater number of
variables to coordinate, and led to higher computation times.
Notice also that, although steps 1 and 3 of ALADIN can be
performed in parallel, increasing the number of distributed
agents also demands greater communication links.

V. CONCLUSIONS

A DMPC with time-varying partitioning for optimizing
the HTF flow rates in solar parabolic trough plants has been
presented. In this regard, clustering methods are considered
for dynamically partitioning the solar field into clusters of
similar loops, which are subsequently assigned to a set of
MPC agents. The article formulates the associated DMPC
problem so that it can be addressed implementing ALADIN
algorithm, and illustrates its effectiveness via simulations. In
particular, it is shown that the proposed approach can closely
approximate that of a DMPC with static finer partitions while
reducing the number of variables to be coordinated. Future
research will include a comparison with ADMM, as well as
exploring bi-level ALADIN. Also, we will extend our results
to larger plants, and consider the optimization of the setpoint
so as to maximize the net electricity production.
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