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1. Introduction

The young field of Systems biology1 aims to deepen the understanding of cellular level

dynamics arising over time from the interactions between different cellular systems. In

this respect a systematic approach is taken. In contrast, the classical study of cellu-

lar processes consisted of a reductionist approach which intended to understand the

functioning of cellular dynamics by identifying and characterising each one of their

molecular constituents. This approach did not produce the expected understanding

uncovering the fact that the functioning of cellular systems arises as an emergent pro-

cess from the interactions between their different components. Due to the complexity

of cellular processes and to the huge amount of data produced by experimentalists com-

putational/mathematical modelling, simulation and analysis are essential techniques in

this field. Systems biology is presented in recent textbooks [3, 87] and article collections

[25, 70, 120].

Systems biology constitutes a purely interdisciplinary field aiming to merge classical

biology, computer science and mathematics. Ideally it will produce a new generation of

scientists able to understand and apply concepts, techniques and sources of inspirations

coming from any of the three classical fields enumerated above into any of the others.

In this respect Systems biology does not consists of the application of computational

and mathematical techniques to biology, as it is the case in Bioinformatics, it rather

aims at the merging of all these disciplines.

Systems biology is closely related to the also young and growing research field of

synthetic biology [15, 98]. The final goal when modelling a cellular system is to obtain

the necessary understanding to be able to control its functioning. A deeper knowledge

of the organisation and functioning of cellular processes will allow us to engineer our

own cellular systems exhibiting a desired behaviour or producing a prefixed output.

This constitutes the main aim in synthetic biology. This opens a challenging range of

applications in pharmacology and novel treatments to important diseases like cancer.

Ordinary differential equations (ODEs) are the most widely used modelling ap-

1This term was coined by [59] and is not yet fully established.
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1. Introduction

proach in systems biology so far. However, it has been reported that the macroscopic,

deterministic and continuous approach followed by ODEs is questionable in cellular

systems with low number of molecules, slow reactions and heterogeneous structures

[8, 41]. These conditions are common is some cellular systems. For these cases meso-

scopic, stochastic and discrete approaches have been proposed. Due to the complexity

of cellular systems these latter approaches have been implemented in formal and high

level computational frameworks with the aim of producing relevant, understandable,

computable and extensible models. Some of the computational frameworks used to

model cellular systems are Petri nets [46], process algebra (π-calculus [101], bioam-

bients [100], brane calculus [26], κ-calculus [30], etc.), state charts [52], agent based

systems [54], etc.

Although each of these computational frameworks captures some of the information

regarding cellular systems and their components, none fully integrates the dynamics

and structural details of the systems. One of the main points which is neglected in most

computational approaches is the key role played by membranes and compartmentalisa-

tion in the structure and functioning of living cells. There have been several attempts

in specifying and simulating membranes and compartments in cellular systems, for ex-

ample the process algebra bioambients [100] and brane calculus [26]. Nevertheless, it

has been discussed that the models developed using process algebra can be obscure,

non intuitive and difficult to understand [101].

In this work we present P systems as a high level computational modelling frame-

work which integrates the structural and dynamical aspects of cellular systems in a

comprehensive and relevant way while providing the required formalisation to perform

mathematical and computational analysis. All the modelling approaches mentioned

above were well established formalisms coming from different sources of inspiration

before being applied to model cellular systems. For instance, the π-calculus was in-

troduced to specify mobile concurrent processes that interact through communication

channels [80]. In contrast, P systems are an unconventional model of computation

inspired directly from the functioning and structure of the living cell [91]. Therefore,

the concepts in P systems are more similar to those used in molecular cell biology than

the abstractions of other formalisms.

Roughly speaking, the three essential components of a P system are a cell-like

membrane structure containing a number of membranes arranged in an hierarchical

way and delimiting regions or compartments, multisets of objects and strings placed

inside the compartments delimited by membranes and rewriting rules associated with

specific compartments describing the evolution of the objects and strings placed inside

these compartments.
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1. Introduction

Rather than being an alternative to more classical modelling frameworks, like ODEs,

P systems constitute a complementary approach to be used when the classical mod-

elling approaches fail to specify and simulate cellular systems correctly. In contrast

to differential equations, P systems explicitly represent the discrete character of the

quantity of components of a cellular system by using rewriting rules on multisets of ob-

jects which represent molecules, and strings which describe the organisation of genes on

the genome. The inherent stochasticity, external noise and uncertainty in cellular sys-

tems is captured by using stochastic strategies based on Gillespie’s theory of stochastic

kinetics [40, 41, 42, 43, 44].

The key differential feature of P systems is the so called membrane structure which

represents the compartmentalisation in the structural organisation of living cells. In

this work we will show how by using membrane structures one can take into account the

key role played by membranes and compartmentalisation in the functioning of cellular

systems. For instance, in chapter 6 selective uptake of molecules from the environment

will be studied; in chapter 7 signalling at the cell surface will be specified and simulated;

and, finally, in chapter 8 colonies of interacting bacteria which communicate by sending

and receiving diffusing signals will be investigated. In all these case studies membranes

in P system specifications will specify the relevant regions of the corresponding cellular

system under study.

1.1. Organisation of this thesis

This text is organised into four parts covering different aspects of the work developed

by the author using P systems as a computational framework for the specification and

simulation of cellular systems.

• Part I: Introduction

The first part of this text constitutes the introduction to this work. It consists

of two chapters.

This first chapter stands as an extended abstract of the thesis together with a

description of the organisation of the text, a brief summary of each chapter and

the outcomes of the work presented in this text.

The second chapter presents a brief overview of modelling in cellular systems

within the framework of systems biology. The general concept of a model and

the modelling process in cellular systems are introduced in sections 2.1 and 2.2.

In this chapter, several modelling approaches are discussed. Namely, differential

equations in section 2.5, stochastic modelling in section 2.6 and computational
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1. Introduction

models in section 2.7. More precisely, in this last point, a short discussion on

Petri nets and π-calculus is given.

• Part II: Modelling Framework

The second part of this text constitutes the core of the thesis. In this part a

computational modelling framework based on P systems is discussed in three

chapters.

In chapter 3, P systems are presented as a modelling approach to cellular systems

fulfilling the requirements of a good modelling framework: relevance, understand-

ability, extensibility and computational/mathematical tractability. The specific

variant of P systems and the main definitions used in this work are presented

in section 3.2. The main concepts are P system specifications and families of P

system models. In section 3.3 we introduce an extension of the well known Gille-

spie algorithm to the compartmentalised structure of P systems, the Multicom-

partmental Gillespie algorithm. Finally, a methodology to perform probabilistic

model checking on P system models using PRISM is discussed in section 3.4.

Chapter 4 presents the specification principles in P systems. The chapter starts

by discussing how compartments are described using P system specifications.

Section 4.2 presents an enumeration of the protein-protein interactions that can

be specified using P system rewriting rules. The description of transcription net-

works is discussed in the following section offering two possibilities. The processes

involving proteins, genes and mRNA can be represented using either rewriting

rules on multisets of objects (section 4.3.1) or using rewriting rules on multisets

of objects and strings (section 4.3.2). Finally, section 4.4 introduces a method

to translate into P systems cellular models specified using SBML (Systems Bi-

ology Markup Language), a machine-readable language, derived from XML, for

representing models of biochemical reaction networks.

In chapter 5 we discuss the concept of a P system module to describe cellular

modules. In section 5.1 this concept is introduced to mimic a network of inter-

acting molecules performing a specific task and with a relatively independence of

the rest of the system. A basic set of P system modules representing the most

important elementary subsystems in cellular systems are described in section 5.2.

Finally, section 5.3 uses autoregulation in transcription networks to illustrate how

P system modules can be combine to produce more complex modules.

• Part III: Case Studies

In the third part of this thesis three different case studies are presented in order
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1. Introduction

to illustrate the modelling principles and techniques discussed in Part II, namely

prokaryotic gene regulation in chapter 6, signal transduction in chapter 7 and

quorum sensing in the bacterium Vibrio fischeri in chapter 8. These case studies

also show the suitability of P systems as a computational modelling framework.

In chapter 6 we describe the basic modelling principles for prokaryotic gene regu-

lation within the P system modelling framework using the Lac operon regulation

system as a case study. A brief description of the gene expression control in the

Lac operon is presented in section 6.1. According to this description a P system

specification and a family of P system models are developed in section 6.2. Fi-

nally, in section 6.3, an analysis of the behaviour of the Lac operon system under

different environmental conditions is discussed.

Chapter 7 presents a brief discussion of the general principles of signal trans-

duction systems. A deterministic version of the Multicompartmental Gillespie’s

algorithm, referred to as the Deterministic Waiting Times Algorithm, is intro-

duced in section 3.3 and will be used in the rest of the chapter. Two different

signal transduction systems are studied here: the Epidermal Growth Factor sig-

nalling cascade, section 7.3, and FAS induced apoptosis, section 7.4. A P system

specification of each of these systems is developed as well as a family of P system

models which will allow us to study the robustness of the system in the case of the

EGFR signalling cascade, and to check the validity of various hypotheses about

different protein-protein interactions in the case of the FAS-induced apoptosis.

The last case study is presented in chapter 8. Here we will study a communication

mechanism in colonies of bacteria termed quorum sensing. A brief description of

the quorum sensing system in the marine bacterium Vibrio fischeri is introduced

in section 8.1. In section 8.2 some principles for the development of specifications

and models for colonies of bacteria within the P system modelling framework are

presented in general, and, in particular, for the quorum sensing system in Vibrio

fischeri. Finally, in section 8.3 various P system models describing colonies of

different sizes will be analysed.

• Part IV: Conclusions

The last part of the text constitutes the conclusions of this work. Here we discuss

some achievements and limitations of the use of P systems as a computational

modelling framework in systems biology. Some future work and directions are

also presented.
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1.2. Outcomes of this work

Most of the technical contributions in this thesis are published in international journals.

The unpublished parts have been submitted recently or will be submitted shortly to

relevant journals in the field. Various further publications report early ideas, and

approaches related to the use of P systems as a computational modelling framework

for systems biology.

Most of the simulations performed in this thesis use an extension of Gillespie algo-

rithm called Multicompartmental Gillespie algorithm. The use of Gillespie’s stochastic

kinetic theory in P systems was first presented in the following paper published in

Transactions on Computational Systems Biology.

• Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006) P Systems, a new computa-

tionl modelling tool for systems biology, Transactions on Computational Systems

Biology VI, LNBI, 4220, 176 – 197.

Related to the adaption of P systems to the modelling of cellular systems, we

enumerate below two workshop papers which collect some preliminary investigations

on the use of bounded parallelism instead of the classical strategies based on maximal

parallelism in P systems.

• Bernardini, F., Romero-Campero, F.J., Gheorghe, M., Pérez-Jiménez M.J. (2006)

A Modeling Approach Based on P Systems with Bounded Parallelism, Lecture

Notes in Computer Science, 4361, 49 – 65.

• Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Pérez-Jiménez,

M.J., Romero-Campero, F.J. (2005) On P Systems as a Modelling Tool for Bio-

logical Systems, Lecture Notes in Computer Science, 3850, 114 – 133.

An investigation towards the use of probabilistic and symbolic model checking on

P system models was reported in the following workshop paper.

• Romero-Campero, F.J., Gheorghe, M., Bianco, L., Pescini, D., Pérez-Jiménez,

M.J., Ceterchi, R. (2006) Towards Probabilistic Model Checking on P Systems

Using PRISM, Lecture Notes in Computer Science, 4361, 477 – 495.

The previous four papers are mostly covered in chapter 3 when presenting the P

system modelling framework.

A comparison with other computatinal modelling frameworks in sytems biology,

more specifically π-calculus was discussed in the next paper published in Progress in

Natural Science.
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• Romero-Campero, F.J., Gheorghe, M., Ciobanu, G., Auld, J., Pérez-Jiménez,

M.J. (2007) Cellular modelling using P systems and process algebra, Progress in

Natural Science, 17 (4), 375 – 383.

The specification principles for protein-protein interactions and transcription net-

works were first presented in the following paper published in Biosystems.

• Romero-Campero, F.J., Pérez-Jiménez, M.J. Modelling Gene Expression Control

Using P Systems: The Lac Operon, A Case Study, Biosystems in press.

The discussions in chapter 4 follow the ideas presented in the previous paper. Chap-

ter 6 describes the gene expression control in the lac operon. This system was used as

a case study to illustrate the specification principles introduced in the paper above.

The two case studies presented in chapter 7 illustrating how signal transduction

systems can be specified and simulated using P systems were discussed in the two

following papers. The first paper is published in Progress in Natural Science and the

second one is a workshop paper.

• Chereku, S., Paun, A., Romero-Campero, F.J., Pérez-Jiménez, M.J., Ibarra, O.H.

(2007) Simulating Fas-induced apoptosis by using P systems, Progress in Natural

Science, 17 (4), 424 – 431.

• Paun, A., Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006) Modeling Signal

Transduction Using P Systems, Lecture Notes in Computer Science, 4361, 100 –

122.

Finally, the next paper published in Artificial Life studies the use of P systems

to model interactions in colonies of bacteria and, in particular, covers the case study

presented in chapter 8 consisting of the quorum sensing system in the bacterium Vibrio

fischeri.

• Romero-Campero, F.J., Pérez-Jiménez, M.J. (2008) A Model of the Quorum

Sensing System in Vibrio Fischeri Using P Systems, Artificial Life, 14, in press.
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2. Cellular Modelling

Without a recognition of logical fictions, without a comparison of reality with the purely imag-
ined world of the absolute and immutable, without a constant counterfeiting of the world by
means of numbers, man could not live. To recognise untruth as a condition of life; that is
certainly to impugn the traditional ideas of value in a dangerous manner, and a philosophy
which ventures to do so, has thereby alone placed itself beyond good and evil.

Friedrich Nietzsche, Beyond Good and Evil

2.1. Reality and Models

The use of models is intrinsic to any scientific activity. Scientists regularly use abstrac-

tions of the reality such as diagrams, graphs, plots, relationships, laws, etc. with the

aim to describe and understand the reality they are examining. Indeed, our theories

and hypotheses about biological objects and systems are in one sense just models [124].

Generally, in the modelling process one can discriminate between the domain of

ideas, thoughts, or other mental constructs and the domain of observations or data.

Nonetheless, these two fields are linked in an iterative cycle. Our mental picture and

understanding of the world is first suggested by experimental data, then we improve

our hypotheses, theories and models of the world by carrying out experiments that

produce data. This data is used to generate new hypotheses or mental constructions

that in turn suggest the design of the next set of experiments to perform [64, 65].

Although biologists are familiar with modelling, quantitative computational math-

ematical models have lain outside the mainstream due to the lack of techniques from

both experimental and theoretical/computational sides. Nonetheless, at the end of

the last century extraordinary advances were achieved in both computer science and

biology. For example the development of high-throughput technology like the ability

to effect high-quality and quasi continuous optical images of cells and the application

of machine learning to estimate parameters of stochastic models. The progress in mo-

lecular cell biology along with the development of computer science has reached the

12
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Figure 2.1.: The iterative relationship between the domain of ideas and data

point where each one can benefit from the other one, integrating computer science and

biology: computational systems biology [25].

These new advances have made possible the enumeration of the components of

cellular systems on a large scale. Nonetheless, computational systems biology is not

focused on the enumeration of the components themselves, but rather on the nature

of the links that connect them and the functional states of the networks that result

from the assembly of such links. The complexity and apparent messiness of molecular

interactions in cellular systems makes necessary the development of models able to

provide a better understanding of the dynamics and properties of the systems. In this

respect, the language of cells is much richer than we had supposed, and we are now

well placed to decode it.

A model, an abstraction of the real-world onto a mathematical/computational do-

main, highlights some key features while ignoring others that are assumed to be ir-

relevant. Therefore, a model should not be seen or presented as representations of

the truth, but instead as a statement of our current knowledge of the phenomenon

under research. A model is often more useful when proved to be wrong, since it shows

13



2. Cellular Modelling

that our current understanding of the phenomenon studied does not match the reality.

Thus, it helps experimentalists as a way to decide which experiments are necessary to

advance understanding [25].

In a cellular model it is desirable to have at least four properties: relevance, under-

standability, extensibility and computability [101].

• Relevance: A model must be relevant capturing the essential features of the

phenomenon investigated. It should present a unifying specification of the differ-

ent components that constitute the system, the interaction between them, their

dynamic behaviour as well as the physical structure of the system itself.

• Understandability: The abstract formalisms used to model cellular systems

should correspond well to the informal concepts and ideas from molecular biology.

A model should provide a better and integrated understanding of the real cellular

system instead of producing a complicated and hard to decipher formalism.

• Extensibility: In a cellular model we should be able to identify easily its different

components so they can be rearranged, duplicated, composed, etc. in an easy way

to produce other models. Models of cellular systems should also be extensible to

higher levels of organisations, like tissues, organs, organism, etc. Our knowledge

of cellular systems continues to expand and change. In order to handle this

continuous supply of new discoveries a model should be adapted to incorporate

new information without having to develop a completely new model from scratch.

• Computability and Mathematical tractability: It should be possible to

implement a model in a computer so that we can run simulations to study the

dynamics of the system by manipulating experimental conditions in the model

without having to perform complex and costly experiments. The computability

of the model also allows us to perform model checking and similar techniques

to infer and study qualitative and quantitative properties of the system in an

automatic way. In this respect, the model should be mathematically tractable.

That is, it should be possible to perform mathematical analysis on it.

There are primarily three uses of models in science:

• Understanding: Models are used as a formal framework for summarising and

synthesising large quantities of data. This allows us to organise and integrate

partial empirical research with the aim of identifying a lack of knowledge in

specific areas.
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2. Cellular Modelling

• Prediction: Having a model able to make an experimentally testable prediction

about the dynamical behaviour of the systems under investigation is one the main

goals of modelling itself.

• Control: The understanding and capability of prediction acquired using models

lead to the possibility to build, constrain or manipulate real cellular systems so

that they produce a desirable output or behaviour.

2.2. The Modelling Process

Modelling is real world problem solving and so the development of a model is a hard

process prone to failure where one has to reconsider many times the assumptions,

simplifications, etc. made at different points. The modelling process is a semiformal

set of rules that guides us to produce a model, formulate it in a formal language,

implement it on a computer and derive properties of the system under research.

• System identification and delimitation: The first step of the modelling

process consists of stating the specific part of the system one wants to model,

the objectives to achieve, the questions to be addressed and how the model will

be validated and analysed. It is not trivial to decide what part of the whole

phenomenon we are interested in.

Many cellular systems are very complex with many interactions and links, not

fully understood and difficult to delimit. This step involves making some sim-

plifying assumptions to have a clear image of what we want to study and the

question we want to answer. In this respect this is a crucial step in the pro-

cess since we can hardly design a good model without a clear delimitation of the

phenomenon.

• Definition and formal formulation: Once we have delimited the system to

be modelled it is necessary to specify or translate the informal description of

the components of the system, and the question to be addressed into a formal

language. This step requires that vague concepts and loose relations be made

definite in a formal language.

There are many formal frameworks for the specification of cellular systems rang-

ing from graphs, to differential equations, to stochastic processes, to computa-

tional approaches, etc. Each one has its own set of advantages and disadvantages

being more suitable to be applied to model different systems. Depending on

the system to be modelled and the type of questions one wants to answer some
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formalisms are more suitable than others. There does not yet exist so far any

unique unifying modelling framework that can be used in any cellular system.

Therefore this step implies taking the crucial decision of which formal approach

is going to be used. This decision may have to be revised and changed later on

as some approaches are inappropriate in certain circumstances and can influence

the predictions of the model.

• Implementation: This step consists of the activities in which the formal model

is implemented using computer code. At this stage one must verify that the

computer algorithms and code are correct with respect to the formal model.

Since models of cellular systems can easily involve many parameters, variables

and structures this is not an easy step. Most problems that arise at this point

are a concern of software engineering.

• Validation and calibration: As mentioned earlier cellular systems depend

frequently on many parameters. Some of these parameters can be obtained using

experiments, nonetheless, others can not be measured in the lab or are very

expensive to estimate. Therefore before simulations can be performed, we need

to calibrate our model by obtaining estimates for missing parameters and validate

it against the expected behaviour of the system. This requires comparing trial

results or simulations obtained using the model with real data coming from the lab

or with data generated using trustable methods. This stage consist of an iterative

process in which a candidate set of parameters is proposed, some simulations are

generated and on the basis of some metric of closeness to the desired behaviour

a new set of parameters is tested. If a satisfactory set of parameters is not

found some previous assumptions like the structure of the model, the modelling

approach, etc. must be reconsidered.

• Analisis and testing: Once an accurate set of parameters has been found

and our model has been validated one can address the questions that motivated

the study of the system by using the model. There exists different possible

analysis methods depending on the type of model developed which can range from

simple generation of simulations by running a computer program to complicated

statistical and mathematical argument and model checking.

2.3. Systems Biology

Life is one of the most complex phenomena in the universe and biology, the science of

life, is one of the most challenging research fields ever. For a long time biologists have
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Figure 2.2.: The Modelling Process

assumed a reductionist approach in biology and have tried to understand life by looking

at one little part of the cell at a time. For instance, they have elucidated the structure

of proteins, the structure of DNA and RNA, the principles of DNA replication as well

as transcription and translation and the structure and functioning of cell membranes.

There has been also a revolution in the experimental techniques and methodologies

developing new high-throughput techniques. These new methodologies allow us to

measure the expression level of all genes of a cell at the same time with a reasonable

temporal resolution. Fluorescence labeling and sophisticated microscopic techniques

allow tracing individual molecules within a single cell. Although these techniques are

these days still very expensive they have produced fine-grained knowledge of cellular

components and processes in time and space which is an important prerequisite for the

further elucidation of cellular regulation, see Figure 2.3.

Nevertheless, all these advances have proved wrong the initial hope that an under-

standing of the individual cellular components would be enough to understand how

cells work. It turned out that the whole cell functioning is more than just the sum of

the functionality of their components. In this respect, recently it has been proposed
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that to really understand life it is not sufficient to look at a single protein or gene at a

time. It is necessary to use a systematic approach which integrates the functioning of

thousands of proteins, genes and membranes in a dynamically changing environment.

Besides, the new techniques and methodologies produce a massive amount of data

which is impossible to analyse without the aid of very powerful computers. The huge

advances in computer science in the last century has made available computers able to

process this information. Advances in mathematical methodologies has also made it

possible to infer new insights into cellular systems.

Summing up, the scientific community is posed now to develop a systematic research

of cells, tissue, organs and organisms and of mainly cellular processes such as cellular

communication, cell division, homeostasis, and adaptation. The approach has been

termed Systems Biology and it relies on the integration of biology, mathematics and

computer science.

Systems biology is the quantitative study of biological systems, aided by technolog-

ical advances that both permit molecular observations on far more inclusive scales than

possible even fifteen years ago, and permit computational analysis of such observations.

Systems biology is experimentally driven, computational/mathematical driven, and

knowledge driven. It is experimentally driven because the complexity of biological

systems is difficult to penetrate without large-scale coverage of the molecular under-

pinnings, it is computationally/mathematically driven because the data obtained from

experimental investigations of complex systems need extensive quantitative analysis to

be informative; and it is knowledge driven because it is not computationally feasible

to analyse the data without incorporating all that is already known about the biology

in question.

Modelling is central in Systems Biology. Having a model allows one to analyse it

in a variety of ways, but a chief one is to establish those parts of the model that are

most important for determining the behaviour in which one is particularly interested.

Techniques such as sensitivity analysis are designed for this, and thus indicate to the

experimenter which parameters must be known with the highest precision and should be

the focus of experimental endeavor. When modelling can be applied effectively it is far

cheaper than wet biology and, as well as its use in metabolic engineering, can reduce the

reliance on in vivo animal/human experimentation (a factor of significant importance

in the pharmaceutical industry). Modelling is also used as a source of hypothesis

generation and testing. We may have existing experimental data with which the model

is inconsistent, and it is desirable to explore different models to see which changes to

them might best reproduce the experimental data. In biology this might, for example,

allow the experimenter to test for the presence of an interaction or kinetic property
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that might be proposed. In a more general or high-level sense, we may use such models

to seek evidence that existing hypotheses are wrong, that the model is inadequate, that

hidden variables need to be involved, that existing data are inadequate, or that new

theories are needed. In kinetic modelling this is often the case with inverse problems in

which one seeks to find a model that best explains a time series of experimental data.

In this respect Systems Biology uses theoretical models that are only representations

of their biological counterpart. Nevertheless, although models are simplifications of the

reality they can elucidate possible networks properties and help to discover possible

design principles in cellular systems.

Systems Biology is mainly driven by the high potential of its applications. There

are many applications in health care, for instance in drug development and validation.

A good example is the research carried on these days on the epidermal growth factor

receptor which is targeted by a new generation of cancer drugs. Using virtual screening,

in which the ability of different synthetic drugs to bind to receptors is tested in silico

using appropriate models, the most promising candidate can be determined. Then,

it can be synthesised and tested in the lab. The huge advantage in this approach is

the enormous speed and favorable economics (scalability) of this approach based on

modelling over the actual wet experiments.

2.4. Modelling Approaches

There are multiple ways of modelling cellular systems. A pathway diagram as dis-

played in standard biochemistry textbooks can be consider as the simplest one. Nev-

ertheless, this type of models lack many of the properties desirable in a good model,

as described in section 2.1. This representation does not capture relevant features of

the system like rate parameters, number of molecules involved in the reactions, etc.

Models of this form are not easily extended or combined and they do not allow much

mathematical or computational analysis. Therefore, the necessity of formal mathe-

matical/computational modelling approaches is evident. In the next three sections the

most widely used formalisms to model cellular systems are discussed. Here we cannot

present an exhaustive classification of the different modelling approaches and will talk

only about categories depending on the space scale, type of analysis, level of modelling,

etc.

According to the space scale in which the modelling approach is focused models are

classified into macroscopic, microscopic and mesoscopic [125].

• Macroscopic: In a macroscopic approach the system is observed and modelled

as a whole; the individual parts of the systems are poorly represented and almost
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no mechanistic information of how they interact is provided.

• Microscopic: In a microscopic approach each individual part of the system is

represented with a high level of detail. In the case of cellular systems, each

molecule is taken into account specifying its position and momenta. This ap-

proach turns out to be computationally intractable in most cases.

• Mesoscopic: In a mesoscopic approach the most relevant individual parts of

the system are taken into account but details like position and momenta are

neglected. Instead, one focuses on the number of individual components of the

system, the statistics of the events and how often they take place. The mesoscopic

approach is more tractable than the microscopic one while keeping more relevant

information than the macroscopic approach.

Depending on the knowledge available about a system, the analysis that can be

performed on them and on the data provided by models they can be classified into

quantitative and qualitative models.

• Quantitative: The advent of high-throughput technology allows us to obtain

quantitative data on a large scale for cellular systems. This data can be used

to estimate parameters making possible the development of models which pro-

duce in turn quantitative data and information. The three modelling approaches

discussed in the following sections are examples of this type of models.

• Qualitative: In spite of the recent advances in high-throughput technology, for

many cellular systems only incomplete, non-quantitative, uncertain or unreliable

data is available. In this case qualitative models can still provide relevant insights

of the dynamical behaviour of the system that is independent of parametric infor-

mation. Examples of this type of models are discrete abstractions of the dynamics

of differential equations [13, 14], boolean networks [116], graphs [12, 83], etc.

Based on the type of quantitative data generated by models and on the character

of the specification of the components of the system, one can talk about discrete and

continuous models.

• Discrete: In a discrete model the components of the systems are specified as

individual and discrete entities; in the case of cellular models one talks about a

positive integer number of molecules. The data generated is also discrete.

• Continuous: In a continuous model the components of the system are repre-

sented by continuous variables; for example in cellular models one talks about

20



2. Cellular Modelling

the concentration of the different chemical species. The data generated in this

case is also continuous.

Models can be classified into deterministic or stochastic according to the dynamics

they exhibit.

• Deterministic: Given a state of a deterministic model it is possible to determine

unequivocally the next state. Therefore there exists a single possible evolution

of the model and just one run of the model is enough to obtain all the necessary

information about the dynamics of the model.

• Stochastic: In a stochastic model, given a state there exists a set of possible

next states. The model can move to one of these states following a probability

distribution. Therefore there exists many possible evolutions of the model and in

order to get an idea of the statistics of the model one must perform a sufficient

number of simulations.

Depending on the starting point of the development of a model, low level or high

level, and how the detailed information of the system is incorporated into it, models

can be referred to as top-down or bottom-up models.

• Top-down models: In a top-down approach a general view of the system is first

formulated. Low-level subsystems are specified as black boxes. Then if necessary

and possible each subsystem is specified in greater detail, possibly using black

boxes for lower level subsystems. This process is iterative and it finishes when the

entire specification is reduced to first-level elements or when a predefined level of

detail is reached.

• Bottom-up models: In a bottom-up approach the first-level components of the

system are first specified in great detail. Then these components are combined

to form higher levels subsystems until the complete top-level system is achieved.

The classification presented here is far from being exhaustive. We have only pre-

sented a general description of the most relevant classes of models overlooking combi-

nations of the different approaches to produce hybrid models.

2.5. Modelling based on Differential Equations

Nowadays ordinary differential equations (ODEs) constitute the most widely used ap-

proach in modelling molecular interaction networks in cellular systems. They have
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been used successfully to model kinetics of conventional macroscopic chemical reac-

tions [55, 115]. Nevertheless the realisation of a reaction network as a system of ODEs

is based on two assumptions.

1. First, cells are assumed to be well stirred and homogeneous volumes so that

concentrations do not change with respect to space. Whether or not this is a

good approximation depends on the time and space scales involved. In bacteria

it has been shown that molecular diffusion is sufficiently fast to mix compounds.

The time needed for a protein to diffuse throughout a bacterium size volume is a

few seconds. Therefore if we are interested in transcription/translation processes

(minutes), cell cycle (hours), circadian rhythms (one day), etc. in bacteria the

well stirred volume assumption is justified. This is not the case in eukaryotic

cells where the volume is considerably bigger and it is structured in different

compartments like nucleus, mitochondria, golgi body, etc.

2. The second basic assumption is that chemical concentrations vary continuously

over time in a deterministic way. This assumption is valid if the number of

molecules of each specifies in the reaction volume (the cell or the subcellular

compartment) are sufficiently large and the reactions are fast. A sufficient large

number of molecules is considered to be at least thousands of molecules. This is a

common scenario in some eukaryotic cellular systems whereas in bacterial system

hundreds and fewer molecules are more common and the continuous variation

character of the system does not hold anymore.

Writing and solving numerically a system of ODEs, such as the one in (2.3) de-

scribing reaction networks can be largely automated. Each species i is assigned a

single variable Xi(t) which represents the concentration of the species at time t.

For each molecular species, a differential equation is written to describe its concen-

tration change over time due to the reactions with other species in the system. The rate

of each reaction is represented using a kinetic law, which commonly depends on one or

more rate constants, these kinetic laws are represented by the functions Fi(X1, . . . , Xn).

In this sense models based on ODEs are referred to as macroscopic since they do not

represent mechanistic aspects of molecules.

In order to solve a system of ODEs one must impose a set of initial conditions

representing the initial concentrations of the different species involved in the system.

The combination of differential equations with initial conditions is called a well-posed

initial value problem. The existence and uniqueness of solution for such a system of

ODEs is guaranteed under very weak conditions on the smoothness of the functions

Fi(X1, . . . , Xn).
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Property E. Coli Yeast Mammalian Cell

Cell Volume ∼ 1µm3 ∼ 1000µm3 ∼ 10000µm3

Proteins per cell ∼ 4 × 106 ∼ 4 × 109 ∼ 4 × 1010

Diffusion time of proteins
across the cell volume

∼ 0.1 sec ∼ 10 sec ∼ 100 sec

Diffusion time of small molecules
across the cell volume

∼ 1 msec ∼ 10 msec ∼ 0.1 sec

Size of genome 4.6 × 106 bp 1.3 × 107 bp 3 × 109 bp

Size of: Regulator binding site
Promoter
Gene

∼ 10 bp

∼ 100 bp

∼ 1000 bp

∼ 10 bp

∼ 1000 bp

∼ 1000 bp

∼ 10 bp

∼ 104 to 105 bp

∼ 104 to 106 bp

Time to transcribe a gene ∼ 2 min ∼ 2 min ∼ 30 min

Time to translate a protein ∼ 2 min ∼ 2 min ∼ 30 min

Timescale for
equilibrium biding of
small molecule to
protein (diffusion
limited)

∼ 1µsec

(1µM affinity)
∼ 1sec

(1nM affinity)
∼ 1sec

(1nM affinity)

Typical mRNA lifetime ∼ 2 - 5 min
∼ 10 min
to over 1 h

∼ 10 min
to over 10 h

Ribosomes per cell ∼ 104 ∼ 107 ∼ 108

Cell generation time
∼ 30 min
to several
hours

∼ 2 h
to several
hours

∼ 20 h to
nondividing

Figure 2.3.: Typical parameter values for E. Coli, Yeast and a Mammalian cell [3]
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


dX1

dt
= F1(X1, . . . , Xn)

. . .
dXn

dt
= Fn(X1, . . . , Xn)

X1(0) = x1
0, . . . , Xn(0) = xn

0

(2.1)

Exponential decay law, mass action law and Michaelis-Menten dynamics are the

most widely used kinetic laws:

– Exponential decay law is used to represent degradation, transformation, com-

plex dissociation and similar processes with a single reactant species or first order

reactions. This law assumes that the rate of the reaction is proportional to the

concentration of the reactant. More specifically, if X(t) represents the species

involved in a first order reaction, which follows an exponential decay law, the

rate of such a reaction is k · X(t).

– Mass action law is used to model reactions involving the collision of two

molecules to form a complex. In this case the rate is assumed to be propor-

tional to the product of the concentrations of the reactants. More specifically,

if X1(t) and X2(t) represents the species involved in the reaction following the

mass action law then its rate is k · X1(t) · X2(t).

– Michaelis and Menten (1913) first explored the elementary reaction mecha-

nism in which an enzyme E binds to a molecule X, called substrate, to pro-

duce the product P while keeping intact the enzyme E, see (2.2). They showed

that the rate of the enzyme-catalysed reaction can be described using the term
kpEX

Km + X
, where E and X represent the concentration of the enzyme and sub-

strate, Km =
kr + kp

kf

is called Michaelis-Menten constant, and kf , kr, kp are the

kinetic constants associated with the binding, dissociation and production reac-

tion, respectively.

X + E
kf

�
kr

X.E
kp−→ P + E (2.2)

Once a well-posed initial value problem has been formulated one can think of three

different possible ways of ”solving” it:

• Analytical: Under rather restrictive conditions the solution of a set of ODEs

can be expressed in terms of elementary functions like exponentials and harmonic
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functions. The conditions in which this can be done are so restrictive that the

dynamics obtained are very poor.

• Numerical: One can always approximate the solution of a well-posed initial

value problem in a computer using one of the well known numerical integration

methods. These methods can be very complicated and always produce an error,

meaning that the time series obtained constitutes an approximation of the real

solution.

• Qualitative: The previous possible ways of solving a system of ODEs produce

quantitative information about the dynamics of the system, whereas sometimes

one is only interested in qualitative information. There are very powerful and

developed techniques for the analysis of steady states, stability, bifurcation, etc.

like, for example, phase planes, vector fields, nullclines, etc.

In order to illustrate the different modelling approaches presented in this chapter

we will use the example described graphically in Figure 2.4. Our example consists of

two genes, geneI and geneR encoding a signal, S, and a cytoplasmic receptor protein R

respectively. The protein R is able to interact with the signal S to produce a complex

C which in turn activates the production of signals by direct binding to geneI.

The following system of ODE models our example:




dS

dt
= k1 − k3 · S · R + k4 · C − k5 · S +

kp · C
Km + C

dR

dt
= k2 − k3 · S · R + k4 · C − k6 · R

dC

dt
= k3 · S · R − k4C

S(0) = 0, R(0) = 0, C(0) = 0

(2.3)

The production of signals S and proteins R are assumed to take place at a con-

stant rate k1 and k2 respectively. All the first order reactions are modelled using the

exponential decay law as in the case of degradation of the signal and protein, k5 ·S and

k6 ·R, and complex dissociation k4 ·C. Complex formation is described using the mass

action law, k3 · S · R. The increase of signal production by the complex C is modelled

using Michaellis-Menten dynamics,
kp · C

Km + C
.

As mentioned earlier homogeneity is a key assumption in the application of ODEs,

nonetheless many biological systems display spatially inhomogeneous structures. This
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Figure 2.4.: Two genes, geneI and geneR, encoding a signal S and a protein R which

interact to form a complex C. This complex in turn increases the produc-

tion of signals by direct binding to geneI.

inhomogeneity is a product of processes in which the time for the movement of molecules

across the whole system is long compared to typical reaction times. In these systems

ODEs are not applicable anymore, instead partial differential equations (PDEs) appear

as a reliable modelling framework. In PDEs the discrete nature of the single molecules

forming the system is neglected. Therefore, as in the case of ODEs, PDEs are referred

to as a macroscopic modelling framework.

The state of the system is given in terms of continuous functions called fields, that

in this case, depend on space and time. Typically these functions represent densities

of molecules, although they can specify other features of the molecules. The fields

are linked to microscopic representations of the system state in terms of individual

molecules by local averages. Local averages are performed over volume elements that

are small compared to the length scales of the structure one is interested in, but large

enough to contain a sufficient number of particles such that spatial fluctuations within

a volume element are negligible.

Here we focus on the very important class of PDEs called reaction-diffusion systems.
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Turing introduced the idea that the diffusion of particles together with chemical

reactions can lead to the formation of spatiotemporal patterns [123]. The formation of

compartments in Drosophila and calcium dynamics in cell aggregates as well as within

cells have been successfully described using a reaction-diffusion approach [72]. The

application of reaction-diffusion systems to model intracellular protein dynamics is a

more recent development [57].

In a reaction diffusion system each field represents the density of one molecular

species i as a function of space and time, Xi(r, t).




∂

∂t
X1(r, t) = D1∇2X1(r, t) + F1(X1, . . . Xn)

. . . . . .
∂

∂t
Xn(r, t) = Dn∇2Xn(r, t) + Fn(X1, . . . Xn)

X1(0) = x1
0, . . . Xn, (0) = xn

0

(2.4)

The first terms on the right hand sides describe particle diffusion. The parameters

Di are the respective diffusion constants and ∇2 is the Laplace-operator. In the three

spatial dimensions, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 with ∂2

∂x2 is the second partial derivative with

respect to x. The functions Fi, as in the case of ODEs, represents the kinetic laws that

model the reaction between the molecules of the system.

2.6. Stochastic Modelling of Cellular systems

As discussed earlier, continuous and deterministic descriptions are adequate only if

the number of molecules are large. At the microscopic level of functioning of cellular

processes the interactions between molecules follow the laws of physics. A fundamental

result of theoretical statistical physics is the famous
√

n law, which states that ran-

domness or fluctuation level in a system are inversely proportional to the square root

of the number of particles. As a result biochemical systems in living cells with small

number of molecules of a few reactant species exhibit discrete and stochastic dynamical

behavior, rather than continuous and deterministic [8, 33, 78, 79]. A rapidly growing

body of experimental work shows that many cellular systems are controlled by a few

molecules, for example, gene expression where there exists only one molecule of DNA

a tens of molecules of transcription factor [33].

As a starting point we assume that the system is well-stirred. As mentioned before,

this is adequate if the distribution of molecules equilibrates on a shorter time scale

than the characteristic time scales of the processes under investigation.

27



2. Cellular Modelling

The first step for stochastic descriptions of chemical reactions is to define a suffi-

ciently complete set of state variables such that changes only depend on the current

state. Assuming that the system is confined to a constant volume V , and in ther-

mal equilibrium at some constant temperature it is enough to represent the state of a

system using the number of molecules of each reacting species.

Let us consider a system of molecules of N chemical species {S1, . . . , SN} interacting

through M chemical reaction channels {R1, . . . , RM}. The state of the system at time

t is describe by the state vector X(t) = (X1(t), . . . , XN(t)). We want to study the

evolution of the state vector X(t) given that the system was initially in some state

X(t0) = x0.

Each reaction channel Rj is characterised by a state-change vector vj = (v1j, . . . , vNj)

and a propensity aj(x) in a given state X(t) = x, see [40, 41, 42]. The components

of the state-change vector vij represents the change in the molecular population of the

species Si caused by one Rj reaction. Therefore if the system is in state x and a re-

action Rj occurs then the system will jump to the state x + vj. The array (vij) is

commonly known as the stoichiometric matrix.

The propensity is defined so that aj(x)dt represents the probability that one reaction

Rj will occur in the infinitesimal time interval [t, t + dt) given that X(t) = x. In order

to compute the propensity of each reaction channel Rj a stochastic constant cj is

associated with each reaction.

If Rj is a first order reaction of the form Si → products its propensity is aj(x) =

cjXi(t).

For a second order reaction of the form Si + Si′ → products the propensity is

computed as aj(x) = cjXi(t)Xi′(t) if i �= i′ or aj(x) = cj
1

2
Xi(t)(Xi(t) − 1) if i = i′.

Any higher order reaction is very unlikely to occur instead a series of second order

reactions takes place.

The stochastic constant cj can be computed using the reaction rate constant kj

used in conventional deterministic chemical kinetics like ODEs. It turns out that cj is

equal to kj for first order reaction, while for second order reactions cj = kj/V if the

reactants are different species or cj = 2kj/V if they are the same, see [40, 41, 42]. If

the rate constants kj are meassured in concentration units, which is a common case,

one has also to divide by Avogrado’s number.

At this point, it is worth noting that this approach is referred to as mesoscopic

modelling [125].

As discussed above here one wants to compute, P (x, t |x0, t0), the probability that

the system is in state X(t) = x, given that X(t0) = x0. The time evolution equation for

this probability can be obtained using the laws of probability to write P (x, t+dt |x0, t0)
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as follows:

P (x, t + dt|x0, t0) =

The system is already in state x at time t

and no reaction occurs in [t, t + dt)︷ ︸︸ ︷
P (x, t |x0, t0) × [1 −

M∑
j=1

aj(x)dt] +

+

The system is one Rj reaction removed from state x
at time t and one Rj reaction occurs in [t, t + dt)∑M

j=1

︷ ︸︸ ︷
P (x − vj, t |x0, t0) × aj(x − vj)dt

Subtracting P (x, t |x0, t0) from both sides, dividing through by dt, and taking the

limit dt → 0, we obtain the chemical master equation (CME):

dP (x, t |x0, t0)

dt
=

M∑
j=1

[aj(x − vj)P (x − vj, t |x0, t0) − aj(x)P (x, t |x0, t0)] (2.5)

The CME completely determines the probabilities of the system, but it really is a

system of nearly as many coupled ordinary differential equations as there are combina-

tions of molecules that can exist in the system. Therefore it can be solved analytically

only in a very few simple systems. Instead of solving the CME one can always con-

struct numerical realisations of X(t), that is, generate trajectories of X(t) using a

Monte Carlo algorithm. Here we present the Gillespie algorithm or stochastic simula-

tion algorithm (SSA).

There is a change in the point of view in the SSA with respect to CME. Here one

does not focus on computing P (x, t |x0, t0), the probability of the system being in state

x at time t, instead one wants to compute p(τ, j |x, t) the probability that when the

system is in state x at time t the next reaction to occur in the infinitesimal interval

[t + τ, t + τ + dτ) will be an Rj reaction.

If we denote as P0(τ |x, t) the probability that given X(t) = x no reaction occurs

in the time interval [t, t + τ) then the laws of probability imply:

p(τ, j |x, t)dτ = P0(τ |x, t) × aj(x)dτ (2.6)

The laws of probability also imply:

P0(τ + dτ |x, t) = P0(τ |x, t) × (1 −
M∑

j=1

aj(x)dτ) (2.7)
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An algebraic rearrangement of this last equation and passage to the limit dτ → 0

results in a differential equation whose solution is:

P0(τ |x, t) = exp (−a0(x)τ) where a0(x) =
M∑

j=1

aj(x) (2.8)

Plugging 2.8 in 2.6 we get

p(τ, j |x, t) = aj(x) exp (−a0(x)τ) (2.9)

This last equation implies that the joint density function of τ and j can be writ-

ten as the product of the τ -density function, a0(x) exp (−a0(x)τ), and the j-density,

aj(x)/a0(x). Now by using the inversion method of Monte Carlo theory [42] one can

generate random samples from these two densities to arrive at the following version of

the stochastic simulation algorithm (SSA), see [40, 41, 42]:

1. Initialise the time t = t0 and the system’s state X(t0) = x0.

2. With the system in state x at time t, compute all aj(x) and their sum a0(x).

3. Draw two random numbers r1 and r2 from the uniform distribution in the unit-

interval, and select τ and j according to

τ =
1

a0(x)
ln

(
1

r1

)
(2.10)

j = the smallest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x) (2.11)

4. Effect the next reaction by replacing t ← t + τ and x ← x + vj.

5. Record (t,x) as desired. Go to step 2 or stop simulation.

Note that the time step τ in the SSA is exact and is not a finite approximation to

some infinitesimal dt as is the case in most numerical solvers for differential equations.

The SSA does not solve the CME numerically as it does not produce the probability

density function of X(t). Nonetheless, much information can be achieved about this

density function by either histogramming or averaging the results of many realisations

of the SSA.

The main drawback of the SSA is its high computational cost due to the simulation

of every reaction event one at a time. This is particularly inefficient in systems with

many molecules where a0(x) is very large and therefore the generated τs are very small.
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There are some improvements of the SSA that give up some of the exactness to get

more simulation speed [43, 44].

So far it has been assumed that the system volume V is well-mixed, that is, the

spatial distribution of molecules equilibrates on a shorter time scale than the charac-

teristic time scales for changes in the state variables. However, if the molecules do not

have time to diffuse through the whole reaction volume between their reactions, het-

erogeneity becomes apparent and the well-mixed volume assumption is not adequate

anymore. The condition for homogeneity by diffusion is that

Ti >> L2/Di for all species i (2.12)

where Ti is the average time between two reactions involving species i, Di is its diffusion

constant and L is the linear size of the system [9, 38]. When this condition is not

satisfied one way to model spatial heterogeneity is to divide the volume V into n

artificial subvolumes such that the length of the subvolumes l is chosen so that (2.12)

holds when replacing L with l. Therefore each subvolume can be considered well-mixed.

In this case to represent the state of the system at time t, X(t), one needs one

variable Xi,k(t) to represent the number of molecules of species Si, 1 ≤ i ≤ N in the

subvolume Vk, 1 ≤ k ≤ n. The state of the system can be changed by chemical reactions

within the subvolumes and diffusion events between the subvolumes. The chemical

reactions have different propensities in the different subvolumes as they depend on the

local number of molecules. Diffusion is modelled as a memory lacking random walk

in discrete space. A diffusion rate constant is associated with each diffusion reaction,

dλµ
i = dµλ

i = Di/l
2, for two neighboring subvolumes and zero otherwise. Di represents

the diffusion rate of the species Si and l is the linear size of the subvolume. The

propensity of the diffusion of a species Si from λ to µ, two neighboring subvolumes, is

computed as dλµ
i Xi,λ(t).

Now we can derive the so call reaction-diffusion master equation (RDME) similarly

to the derivation of the CME.

31



2. Cellular Modelling

dP (x, t |x0, t0)

dt
=

n∑
k=1

M∑
j=1

[aj(x − vj)P (x − vj, t |x0, t0) − aj(x)P (x, t |x0, t0)]+

n∑
µ=1

∑
λ�=µ

N∑
i=1

{dλµ
i (xi,λ + 1)P ([. . . xi,λ + 1 . . . xi,µ − 1 . . . ] |x0, t0)−

−dλµ
i (xi,λ)P (x, t |x0, t0)}

(2.13)

The first term is similar to the CME and it represents the evolution due to the

reactions j = 1, . . . , M in the subvolumes k = 1, . . . , n. The second term contains the

state transitions rates due to diffusion between neighbouring subvolumes.

As in the case of CME, the reaction diffusion equation is too complicated for ana-

lytical analysis; instead, one can sample the Markov process one event at a time using

an appropriate Monte Carlo method. The next subvolume method [31] is a recent adap-

tation of the SSA [40] to the situation where spatial homogeneity is questionable. In

this case the space is partitioned into subvolumes where homogeneity can be assumed.

Starting with an initial distribution of molecules, in each volume k the time for the

next reaction τk is sampled from an exponential distributed with an average of 1/ak
0

where ak
0 =

∑
ak

i with ak
i the propensities of the reaction and diffusion events i in

the volume k. Then the events to take place in the different subvolumes are sorted

according to the waiting time τk. On the one hand, when a reaction event takes place

in a subvolume the new reaction or diffusion event to take place is recomputed in

that subvolume. On the other hand, when a diffusion event takes places it produces a

change in two subvolumes and therefore new events to take place in both subvolumes

are recomputed.

2.7. Computational Modelling

The complexity of cellular systems makes the use of computers necessary to help un-

derstand the underlying mechanisms. Nevertheless, until recently the majority of com-

putational models in biology were implemented in custom programs and published as

statements of the underlying mathematical model. No computational formalism was

explicitly used to model and simulate cellular systems. Nevertheless, to be useful a

computational model must be presented within a well defined, consistent and formal

framework.
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Recently many computational frameworks has been used to model cellular systems

like Petri nets, process algebra, cellular automata, state charts, agents, etc. Here we

will only discuss briefly the first two.

2.7.1. Petri nets

Petri Nets are a mathematical and computational tool for modelling and analysis of

discrete event systems typically with concurrent behaviour. They offer a formal way

to represent the structure of the interactions in a discrete event system, simulate its

behaviour, and prove certain properties of the system [99]. Petri nets have applications

in many fields of system engineering and computer science. Here, we focus only on a

specific class of Petri nets called place-transition net or PT-net, for short.

A PT-net is a directed graph formed by two kinds of nodes called places P and

transitions T respectively. Directed edges, called arcs, connect places to transitions,

and transitions to places, each arc (x, y) having a weight W (x, y). Thus, for each

transition, one identifies a set of input places, the places which have at least one arc

directed to that transition, and a set of output places, the places which the outgoing

arcs of that transition are directed to. A non-negative integer number of tokens is

assigned to each place; the numbers of tokens defines the state of the PT-net, which

is also called the marking of the PT-net. PT-nets are usually represented by diagrams

where places are drawn as circles, transitions are drawn as squares, and an arc (x, y)

is added between x and y if W (x, y) ≥ 1. These arcs are then annotated with their

weight if this is 2 or more.

In a PT-net, a transition is enabled when the number of tokens in each input

place is greater than or equal to the weight of the arc connecting that place to the

transition. An enabled transition can fire by consuming tokens from its input places and

producing tokens in its output places; the number of tokens produced and consumed

are determined by the weight of the arcs involved. The firing of a transition can be

understood as the movement of tokens from some input places to some output places.

In order to handle PT-nets a matrix representation turns out to be convenient.

A marking is represented using a vector M of size |P | whose elements correspond to

the number of tokens present in each place of the PT-net. The incidence matrix of a

PT-net is the |T | × |P | matrix A such that, every element aij of A, denotes the change

in the number of tokens in place j due to the firing of transition i. A control vector u

is a vector of size |T | containing 1 in position i to denote the firing of transition i, 0

otherwise.

Then if the current marking of a PT-net is Mk and the firing of a transition i is

represented by the control vector u the next marking Mk+1 can be computed as
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Biochemistry PT-net

Molecule Place

Molecular Population Marking

Biochemical Transformation Transition

Reactant Input Place

Product Output Place

Table 2.1.: Modelling Principles in PT-nets.

Mk+1 = Mk + A′u

Thus, if a particular marking Mn is reached from an initial marking M0 through a

firing sequence u1, u2, . . . , un of enabled transitions, we obtain

Mn = M0 + AT ·
n∑

k=1

uk

which represents the reachable-marking equation.

A system of interacting molecules can be modelled as a discrete event system with

concurrent behaviour using PT-nets as follows. Each molecular species is represented

by a different place and each biochemial transformation as a different transition. The

number of tokens inside a place is used to specified the number of molecules [99]. This

modelling approach is summarised in Table 2.7.1. Within this framework only quali-

tative analysis can be performed. In order to be able to develop quantitative analysis

Stochastic Petri Nets (SPN) were introduced in [46]. In SPNs enabled transitions fire

with an exponentially distributed time delay according to the SSA described in the

previous section. Each transition is associated with a rate parameter used to compute

the propensity of each transition according to the weight of its input places.

Thus, a biochemical system is represented as a discrete event system whose struc-

tural properties, like P-invariants, T-invariants, boundedness, liveness, etc, are useful

for drawing conclusions about the behaviour and structure of the original biochemi-

cal system. Here we refer to the current literature [45, 99, 103, 104, 105] for details

regarding the theory and applications of Petri nets.

For instance, P-invariants determine the set of molecules whose total net concentra-

tions remains unchanged during the application of certain biochemical transformations;

T-invariants instead indicate the presence of cyclic reactions which lead to a condition

where some reactions are in a state of continuous operation. Also, the property of

liveness is useful to determine the absence of metabolic blocks which may hinder the

progress of the biochemical system.
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In order to illustrate the modelling principles in Petri nets we present a Petri net

model of the cellular system presented in Figure 2.4. A graphical representation of

our Petri net model is depicted in Figure 2.5. Each one of the six molecular entities

of the cellular system, namely, geneI, geneR, R, S, C, and C.geneI is represented

by a place. Each transition corresponds with a molecular interaction. For instance,

transition T2 describes the formation of the complex C, represented by the output

place of this transition, with S and R, represented by the two input places of this

transition. Finally, the initial marking consisting of two tokens in our Petri net, one in

the place corresponding with the geneI and the other one in the place corresponding

with the geneR representing the initial number of molecules in the system.

Figure 2.5.: A Petri net model of the cellular system introduced in Figure 2.4

2.7.2. π-calculus.

The π-calculus was introduced by Milner, Parrow, and Walker as a formal language

to describe mobile concurrent processes that interact through communication channels

[80]. It is now a widely accepted model for interacting systems with dynamically

evolving communication topology. The π-calculus allows channels to be passed as data
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along other channels, and this fact provides channel mobility. This mobility is an

important feature and increases the expressive power. The π-calculus has a simple

semantics and a tractable algebraic theory. Starting with atomic actions and simpler

processes, complex processes can be constructed in many ways. The process expressions

are defined by guarded processes, parallel composition P |Q, nondeterministic choice

P +Q, replication !P , and a restriction operator (νx)P creating a local fresh channel x

for a process P . A structural congruence relation providing a static semantics is defined

over the set of processes. The evolution of a process is described in π-calculus by a

reduction relation over processes. This relation contains those transitions which can

be inferred from a set of rules. Different variants have been used to model molecular

interactions [102], gene networks, and to integrate molecular and gene networks [24].

In the π−calculus formalism a system of interacting molecular entities is mod-

elled by a system of interacting processes that communicate through complementary

communication channels. Each molecular species or domain is represented by a differ-

ent process. The number of copies of each process is used to specify the number of

molecules. Molecular interactions are described using complementary communication

channels. Complexes and cellular compartments are represented by the scope of private

communication channels. This modelling approach is summarised in Table 2.2.

Originally the semantics of the π−calculus were non-deterministic which is well

suited for qualitative analysis. However for a more accurate quantitative modelling of

biomolecular systems the stochastic π−calculus was introduced in [95]. To provide the

π−calculus with a stochastic extension based on the SSA, described in the previous

section, each communication channel is associated with a rate parameter. This constant

is used to compute the propensity of that communication channels by taking into

account the possible combinations of the processes trying to communicate through

that specific channels.

Biochemistry π-calculus

Compartment Private communication channel

Molecule Process

Molecular Population Systems of communicating processes

Biochemical Transformation Communication channel

Compartment Translocation Extrusion of a private channel’s scope

Table 2.2.: Modelling Principles in π-calculus

Finally, we present in Figure 2.6 a π-calculus model of the cellular system presented

in Figure 2.4. Each molecular entity of the system is specified as a process. Molecular
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interactions are represented by communication channels. Therefore, every molecular

interaction needs two processes to communicate through the communication channel

representing it. In this respect, an auxiliary process aux has been introduced to model

unimolecular reactions. For instance, the behaviour of the molecules S is modelled

using the process S := cf?.C + sdeg?.0. This process can communicate through the

communication channel cf 1 with the process R := cf !.0 + rdeg?.0 to represent a

complex formation reaction or with the auxiliary process, aux, through the communi-

cation channel sdeg which corresponds with the unimolecular reactions consisting in

the degradation of the molecules S. The initial number of molecules is specified in the

initial processes, geneI|geneR|aux.

π-calculus model of gene expression

Initial processes: geneI | geneR | aux

Processes:

geneI := prodI?.(geneI | S) + act?.CgeneI

geneR := prodR?.(geneR | R)

S := cf?.C + sdeg?.0

R := cf !.0 + rdeg?.0

C := cd?.(S | R) + act!.0

CgeneI := deact?.(geneI | C) + aprod?.(CgeneI | S)

aux := prodI!.aux + prodR!.aux + sdeg!.aux + rdeg!.aux + deact!.aux

Figure 2.6.: A π-calculus model of the cellular system introduced in Figure 2.4

1Complementary communication channels are denoted using the symbols ? and !.
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3. P Systems, a Modelling Framework

The data are accumulating and the computers are humming, what we are lacking are the
words, the grammar and the syntax of a new language.

Dennis Bray

In chapter 1 we discussed different approaches to modelling cellular systems. In

spite of the fact that each of these approaches captures some of the information re-

garding cellular systems and their components, none fully integrates dynamics and

structural details of the different components. As mentioned in chapter 1 this should be

done while keeping relevance, understandability, extensibility and computational/ma-

thematical tractability. In this chapter P systems are presented as a modelling approach

to cellular systems fulfilling all these requirements. In section 3.1 we briefly introduce

P systems as a branch of Natural computing presenting their source of inspiration.

The specific variant of P systems and the definitions used in this work are presented

in section 3.2. An extension of the well known Gillespie algorithm, the Multicompart-

mental Gillespie algorithm will be introduced in section 3.3. Finally, a methodology to

perform probabilistic model checking on P system models using PRISM is discussed in

section 3.4.

3.1. P Systems, a Bio-inspired Model of Computation

Membrane Computing is an emergent branch of Natural Computing introduced by

G. Păun in [89]. Since then it has received important attention from the scientific

community. This new model of computation starts from the assumption that the pro-

cesses taking place in the compartmental structure of a living cell can be interpreted

as computations. Specifically, membrane computing starts from the observation that

membranes play a fundamental role in the functioning of living cells. The cell mem-

brane separates, and hence protects, the internal space of the cell from the external

environment. The inner membranes define the structure of the cell, by identifying a
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number of internal compartments, and, in particular, they protect the nucleus which

contains the genetic information. Membranes are essentially involved in many reac-

tions taking place inside the various compartments of a cell, and they act as selective

channels of communication between different compartments as well as between the cell

and the environment. Membrane computing formalises and abstracts these features of

living cells by introducing the notion of P systems, also called membrane systems.

Roughly speaking, the three essential components of a P system are:

1. A cell-like membrane structure containing a number of membranes arranged in

an hierarchical way and delimiting regions or compartments. A compartment is

the space between a membrane and the membranes (if any) directly included in

it1. All membranes but one are included in a unique main membrane called skin

membrane a membrane without any membrane inside is said to be elementary.

The membrane structure can be represented formally, as a rooted tree, where

the nodes are called membranes, the root is called skin, and the relationship of

a membrane being inside another one is represented by the relationship of the

node being the descendent of another one.

2. Multisets of objects and strings placed inside the compartments delimited by

membranes.

3. Rewriting rules associated with specific compartments describing the evolution

of the objects and strings placed inside the compartments.

Each compartment contains a multiset of objects and strings that evolve according

to the rewriting rules assigned to the compartment. Specifically, when rules are ap-

plied they can consume/produce some objects, move objects from one compartment to

another one, rewrite strings when specific objects are present, etc. Rules have a local

scope since they are associated with compartments and when applied they only change

the content of at most two compartments; the compartment they are assigned to and

possibly a compartment located inside it or the compartment outside it.

In the original approach a computation in a membrane system is obtained by re-

peatedly applying the rules in a non-deterministic synchronous maximal parallel way:

in each step, in each compartment, all the objects and strings that can evolve by

means of any rule must evolve in parallel at the same time. Since the introduction of

membrane computing in 1998, many variants of P systems have been proposed like P

1Note that there exists a one-to-one relationship between membranes and compartments and thus
these terms will be used interchangeably through this work.
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Figure 3.1.: A membrane structure containing eight membranes delimiting eight com-

partments.

systems with symport/antiport rules [90], with promoters/inhibitors [60], with active

membranes, tissue P systems, Spiking Neural P systems [61], etc.

We must stress that P systems, according to the original motivation, were not in-

tended to provide a comprehensive and accurate model of the living cell, rather, to

explore the computational nature of various feature of biological membranes. Indeed,

most variants of membrane systems have been proved to be computationally com-

plete, that is equivalent in power to Turing machines, and computationally efficient,

that is able to solve computationally hard problems in polynomial time by trading

time with space. Although most research in P systems concentrates on computational

powers, recently P systems have been used to model biological phenomena within the

framework of computational systems biology presenting models of oscillatory systems

[35], signal transduction [92], gene regulation control [107], quorum sensing [108] and

metapopulations [93].

3.2. P system Specifications and P systems Models

In this section the main definitions used in this work are presented. First, we intro-

duce P system specifications which will constitute the main structure used to analyse

particular cell systems. A set of parameters is identified from the components of a P
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system specification. Then, the basic definition of P system specifications is extended

to introduce P system models. Given a possible sets of values for the parameters of

a P system specification, a P system model is obtained by instantiating the set of

parameters using the given parameter values.

Definition 3.1 (P system Specification). A P system specification is a construct

Π = (O, L, µ, M1, M2, . . . , Mn, Rl1 , . . . , Rlm)

where:

• O is a finite alphabet of symbols representing objects;

• L = {l1, . . . , lm} is a finite alphabet of symbols representing labels for the com-

partments and identifying compartment types2;

• µ is a membrane structure containing n ≥ 1 membranes identified in a one to

one manner with values in {1, . . . , n} and labelled with elements from L;

• Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of membrane i

with li ∈ L, the label of this membrane, wi ∈ O∗ a finite multiset of objects and

si a finite set of strings over O;

• Rlt = {rlt
1 , . . . , rlt

klt
}, for each 1 ≤ t ≤ m, is a finite set of rewriting rules associated

with compartments of the type represented by the label lt ∈ L, of one of the

following two forms:

− Multiset rewriting rules:

rlt
j : obj1 [ obj2 ]l

c
lt
j−→ obj′1 [ obj′2 ]l (3.1)

with obj1, obj2, obj
′
1, obj

′
2 ∈ O∗ some finite multisets of objects and l a label from

L. A multiset of objects, obj is represented as obj = o1 + o2 + · · · + om with

o1, . . . , om ∈ O. The empty string, which represents the empty multiset, will be

denoted by λ. For simplicity, we will write on instead of

n︷ ︸︸ ︷
o + · · · + o.

These rules are multiset rewriting rules that operate on both sides of membranes,

that is, a multiset obj1 placed outside a membrane labelled by l and a multiset

obj2 placed inside the same membrane can be simultaneously replaced with a

multiset obj′1 and a multiset obj′2, respectively.

2Compartments with the same label will be considered of the same type and thus the same set of
rules is associated with them.
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− String rewriting rules:

rlt
j : [ obj1 + str1; . . . ; objp + strp ]l

c
lt
j−→ [ obj′1 + str′1,1 + . . . str

′
1,i1

; . . . ; obj′p + str′p,1 + . . . str′p,ip
]l (3.2)

A string str is represented as follows str = 〈s1.s2. · · · .si〉 where s1, . . . , si ∈ O.

In this case each multiset of objects objj and string strj, 1 ≤ j ≤ p, are replaced

by a multiset of objects obj′j and strings str′j,1 . . . str′j,ij .

Note that a constant clt
j is associated specifically with each rule. This constant will

be referred to as stochastic constant and will be used to compute the propensity

of the rule according to the current context of the compartment where the rule

is located.

Definition 3.2 (Parameters). Given a P system specification Π = (O,L, µ, M1, . . . ,

Mn, Rl1 , . . . , Rlm) the set of parameters of Π, P(Π) = (M0(Π), C(Π)), of consists of:

1. The initial multisets M0(Π) = (M1, . . . , Mn) associated with the compartments.

2. The constants C(Π) = (rlt
j ) 1 ≤ j ≤ klt

1 ≤ t ≤ m

, associated with the rewriting rules in

Rl1 , . . . Rlm .

Definition 3.3 (P system Model). Let Π be a P system specification with parame-

ters P(Π) = (M0(Π), C(Π)), M0 and C a family of possible values for the initial mulite-

sets M0(Π) and for the constants C(Π). A family of P system models, F(Π, M0, C), is

obtained from Π, M0 and C by instantiating the parameters P(Π) using values from

M0 and C.

Hence given M0 and C sets of possible values for the parameters P(Π) = (M0(Π),

C(Π)) of Π and (M1, . . . , Mn) ∈ M0, (rlt
j ) 1 ≤ j ≤ klt

1 ≤ t ≤ m

∈ C specific values, a P system

model (Π, (M1, . . . , Mn), (rlt
j ) 1 ≤ j ≤ klt

1 ≤ t ≤ m

) is obtained by instantiating the parameters of

Π using the specific values from (M1, . . . , Mn) and (rlt
j ) 1 ≤ j ≤ klt

1 ≤ t ≤ m

). In this way a family

of P system models F(Π, (M0, C)) sharing the same P system specification Π can

be used to study the behaviour of a particular cell system specified by Π under the

different initial conditions collected in M0 and study the sensitivity of the system for

the different rules constants in C. Similar definitions were introduced in [93].

In order to illustrate the previous definitions we use the cell system described graph-

ically in figure 3.2. Our example consists in a signal S transported to the cytoplasm by
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a receptor R located in the cell surface. Once in the cytoplasm S interacts with a pro-

tein Tf forming the complex S–Tf which in turn activates by direct binding the genes

gene–Tf and gene–R, which codify the protein Tf and the receptor R respectively.

The following P system specification describes this system:

Π0 = (O,L, µ, M1, M2, M3, Renv, Rsurf , Rcyto)

where:

• In the alphabet O the molecular entities present in the system are represented:

O = {S, R, S–R, Tf, S–Tf, gene–Tf, S–Tf–gene–Tf, gene–R, S–Tf–gene–R}

• The labels L = {env, surf, cyto} specify the main regions of the system, namely,

the environment, cell surface and cytoplasm.

• The membrane structure µ consists of three membrane defining the three com-

partments or regions involved in the system; the environment, the cell surface and

the cytoplasm, identified respectively with the numbers 1, 2 and 3, and labelled

with env, surf and cyto. A graphical representation of the membrane structure

is given in figure 3.2.

• The initial multisets M1, M2 and M3 represent the initial conditions of the com-

partments, environment, cell surface and cytoplasm, respectively. They are part

of the parameters of the P system specification.

• The set of rewriting rules Renv, Rsurf and Rcyto describe the molecular interactions

taking place in the corresponding compartments.

– The set of rules Renv = {renv
1 , renv

2 } represents the binding of the signal S to

the receptor R, renv
1 ; and the degradation of the signal S, renv

2 .

renv
1 : S [ R ]env

cenv
1−→ [ S–R ]env

renv
2 : [ S ]env

cenv
2−→ [ ]env

– The set of rules Rsurf = {rsurf
1 , rsurf

2 , rsurf
3 } specify the debinding of the

signal S from the receptor R, rsurf
1 ; the releasing of the signal S to the

cytoplasm, rsurf
2 and the internalisation or diffusion in of the receptor R to

the cytoplasm, rsurf
3 .

rsurf
1 : [ S–R ]surf

csurf
1−→ S [ R ]surf
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Figure 3.2.: An example of a cell system consisting of the activation of two genes, gene–

R and gene–Tf , by a external signal S which interacts with a protein Tf .
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rsurf
2 : S–R [ ]cyto

csurf
2−→ R [ S ]cyto

rsurf
3 : R [ ]cyto

ccyto
2−→ [ R ]cyto

– The set of rules Rcyto specify the molecular interactions taking place in the

cytoplasm as follows:

rcyto
1 : [ gene–Tf ]cyto

ccyto
1−→ [ gene–Tf + Tf ]cyto

rcyto
2 : [ gene–R ]cyto

ccyto
2−→ [ gene–R + R ]cyto

These two rules represent the basal production of the protein Tf , rcyto
1 , and

the receptor R, rcyto
2 .

rcyto
3 : [ S + Tf ]cyto

rcyto
3−→ [ S–Tf ]cyto

rcyto
4 : [ S–Tf ]l

ccyto
4−→ [ S + Tf ]l

The two previous rules describe the interactions between the signal S and

the protein Tf leading to the formation and dissociation of the complex

S–Tf .

rcyto
5 : [ S–Tf + gene–Tf ]cyto

ccyto
5−→ [ S–Tf–gene–Tf ]cyto

rcyto
6 : [ S–Tf–gene–Tf ]cyto

ccyto
6−→ [ S–Tf + gene–Tf ]cyto

rcyto
7 : [ S–Tf–gene–Tf ]cyto

ccyto
7−→ [ S–Tf–gene–Tf + Tf ]cyto

rcyto
8 : [ S–Tf + gene–R ]cyto

ccyto
8−→ [ S–Tf–gene–R ]cyto

rcyto
9 : [ S–Tf–gene–R ]cyto

ccyto
9−→ [ S–Tf + gene–R ]cyto

rcyto
10 : [ S–Tf–gene–R ]cyto

ccyto
10−→ [ S–Tf–gene–R + R ]cyto

The rules above specify the activation of the genes gene–Tf and gene–R

by direct interaction with S–Tf ; rcyto
5 , rcyto

6 , rcyto
8 and rcyto

9 ; and the active

production of Tf and R; rcyto
7 and rcyto

10 .

rcyto
11 : [ R ]cyto

ccyto
11−→ R [ ]cyto

rcyto
12 : [ Tf ]cyto

ccyto
12−→ [ ]cyto

rcyto
13 : [ R ]cyto

ccyto
13−→ [ ]cyto

rcyto
14 : [ S ]cyto

ccyto
14−→ [ ]cyto

Rule rcyto
11 represents the diffusion out from the cytoplasm or location of the

receptor in the cell surface. Rules rcyto
12 , rcyto

13 and rcyto
14 specify the degradation

in the cytoplasm of the protein Tf , receptor R and signal S respectively.
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Once the corresponding P system specification, Π0, is formulated one has to identify

the parameters associated with it, P(Π0). These parameters consists of:

• The initial multisets, M0(Π0) = (M1, M2, M3), where M1 = (l1, w1, s1) is associ-

ated with the environment, M2 = (l2, w2, s2) is associated with the cell surface

and M3 = (l3, w3, s3) is associated with the cytoplasm.

• The rules constants C(Π0) = (cenv
1 , cenv

2 , csurf
1 , csurf

2 , csurf
3 , ccyto

1 , . . . , ccyto
14 ).

At this point we can define a family of P systems models by specifying finite ranges

of values M0 and C for the parameters M0(Π0) and C(Π0).

The possible values associated with the initial multisets, M0 = (M1,M2,M3), allow

us the study of the behaviour of the system under different initial conditions. In our

case we study the evolution of the system for different number of signals S in the

environment:

M1 = {(env, λ, λ), (env, S50, λ)}
M2 = {(surf, λ, λ), (surf, R3, λ)}
M3 = {(cyto, gene–Tf + gene–R, λ), (cyto, R3 + gene–Tf + gene–R, λ)}

In most cases it is difficult or impossible to determine the specific values for the

constants associated with the rules. Even in these cases, there exists some biological

constraints which can be used to define ranges of possible values for the rule constants.

We represent these possible values in C. For example, as it will be discussed in chapter

3, the constant associated with the rules of the form [ a + b ]l
con−→ [ c ]l are diffusion

limited by the value ∼ 0.16 molec−1sec−1 in a volume of ∼ 10−15l. Therefore we define

cenv
1 = ccyto

3 = (0, 0.16). In a similar way using biological knowledge it is possible to

determine ranges of values for the rest of rule constants in C. The finite ranges of

values defined in C allow us to search for estimates of the rule constants producing a

evolution which best matches a given target behaviour, by using for example genetic

algorithms. Another possibility is the study of the parameter sensitivity of the system.

Finally, we can investigate specific models from the family F(Π0, (M0, C)).

3.3. Gillespie’s Kinetics Theory for the Evolution of P

Systems Models

In the original approach of membrane computing P systems evolve in a non determinis-

tic and maximally parallel manner. All the objects in every membrane that can evolve
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according to any rule must evolve [89]. This produces a semi-quantitative framework

that takes into account the discrete character of the molecular population and the role

play by membranes in the structure and functioning of living cells. Although such

coarse abstraction have been proved to achieve some success [6, 20], this approach

fails to model quantitative aspects that are key to the functioning of many cell sys-

tems. Specifically the non deterministic and maximally parallel approach produces the

following two inaccuracies:

• Reactions do not occur at a correct rate.

• All time steps are equal and do not represent the time evolution of the real cell

system.

These two problems are interdependent and must be addressed when devising a rel-

evant modelling framework for cell systems as it has been done in other computational

approaches [46, 101].

In the field of membrane computing, the discrete aspect of the different components

as well as the distributed and compartmentalised character of the structure, where

the computation takes place, are fundamental. This is not the case with the non

deterministic and maximal parallel semantics as have been studied in different variants

[28, 36]. In this section the original approach will be replaced with various strategies

that associate different rates to the rules depending on the current configuration of

the system. Our strategies will be based on Gillespie’s theory of stochastic kinetics

[40, 41, 42, 43, 44].

To provide P systems with a stochastic extension a constant c is associated to each

rule. This constant depends only on the physical properties of the molecules involved in

the reaction described by the rule and on other physical parameters of the system like

temperature. It represents the probability per time unit that a particular reaction takes

place and is used to compute the propensity of each rule which in turn determines the

probability and time needed to apply the rule. This solves the two problems presented

above.

There exists a different approach to modelling cell systems in membrane computing,

based on the so called Metabolic Algorithm [23, 35], that keeps maximal parallelism as

the strategy for the evolution of their models. Nonetheless they use rules of the form

a → a, called transparent rules, that have no effect on the state of the system, in order to

bound the number of applied rules that actually change the system. Specific functions,

called reaction maps, defined ad hoc, are also associated with rules to represent the

reactions rates. By doing this the first of the two problems presented above is somehow

solved; nevertheless the real time evolution of the system is not treated in this approach.
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Finally, the Metabolic Algorithm is deterministic and so its applicability in certain cell

systems suffers from the same drawbacks as other deterministic approaches like ODEs.

At the microscopic level of functioning of cellular processes the interactions between

molecules follow the laws of physics. A fundamental result of theoretical statistical

physics is the famous
√

n law, which states that randomness or fluctuation level in a

system are inversely proportional to the square root of the number of particles. As a

result systems with a low number of molecules show high fluctuations and the appli-

cation of the classical deterministic and continuous approach to modelling cell systems

is questionable. In the following subsections different strategies for the evolution of P

system models based on Gillespie algorithm are presented.

3.3.1. Multicompartmental Gillespie Algorithm

In section 2.6 an algorithm for simulating the time-course evolution of a stochastic

kinetic model was introduced. This discrete-event simulation algorithm, usually re-

ferred to as the Gillespie algorithm or SSA (Stochastic Simulation Algorithm), has the

nice properties that it simulates every reaction event and is exact in the sense that

it generates exact independent realisations of the underlying stochastic kinetic model.

Nevertheless, it should be emphasised that the Gillespie algorithm was developed for

a single, well mixed and fixed volume or compartment. In what follows we present

an adaptation of the Gillespie algorithm that can be applied in the different regions

defined by the hierarchical and compartmentalised structure of a P system model. This

will be referred to as Multi-compartmental Gillespie algorithm.

The starting point consists of treating each region, delimited by a membrane, as a

well mixed and fixed volume where the classical Gillespie algorithm is applied. Thus in

each compartment the next rule to be applied and the waiting time for this application

is computed using a local Gillespie algorithm that only takes into account the number

of molecules, rules and volume of the compartment. Given the state of a compartment

i, Mi = (li, wi, si), the next rule to be applied and its waiting time is computed as

follows:

1. Compute for each rule in rj ∈ Rli its propensity, aj(Mi), by multiplying the

stochastic constant cli
j associated specifically with rule rj ∈ Rli by the number

of distinct possible combinations of the objects and substrings present on the

left-side of the rule with respect to the current contents of membranes involved

in the rule.

2. Compute the sum of all propensities:
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a0(Mm) =
∑

rj∈Rli

aj(Mi)

3. Draw two random numbers r1 and r2 from the uniform distribution in the unit-

interval, and select τi and ji according to

τi =
1

a0(Mi)
ln

(
1

r1

)
(3.3)

jm = the smallest integer satisfying

ji∑
j=1

aj(x) > r2a0(Mi) (3.4)

Then the compartments defined by membranes are ordered in a priority queue

according to when the rules are scheduled to be applied. The first rule to be applied in

the whole system occurs in the compartment on top of the priority queue. Depending

on the type of rule that has been applied the state of a single compartment or of two

compartments is changed. Therefore the waiting time and rule to be applied in these

compartments must be recalculated. The algorithm stops when a prefixed simulation

time is reached.

Next, the Multi-compartmental Gillespie Algorithm is described in detail:

• Initialisation

◦ set time of the simulation t = 0;

◦ for each membrane i compute a triple (τi, ji, i) by using the procedure de-

scribed above; construct a list containing all such triples;

◦ sort this list of triples (τi, ji, i) in increasing order according to τi;

• Iteration

◦ extract the first triple, (τi0 , ji0 , i0) from the list;

◦ set time of the simulation t = t + τi0 ;

◦ update the waiting time for the rest of the triples in the list by subtracting

τi0 ;

◦ apply the rule rji0
in membrane i only once changing the number of objects

and sites in the membranes affected by the application of the rule;

◦ for each membrane i′ affected by the application of the rule remove the

corresponding triple (τi′ , ji′ , i
′) from the list;
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Figure 3.3.: Multicompartmental Gillespie algorithm

◦ for each membrane i′ affected by the application of the rule rji0
re-run the

Gillespie algorithm for the new context in i′ to obtain (τ ′
i′ , j

′
i′ , i

′), the next

rule rj′
i′
, to be used inside membrane i′ and its waiting time τ ′

i′ ;

◦ add the new triples (τ ′
i′ , j

′
i′ , i

′) in the list and sort this list according to each

waiting time and iterate the process.

• Termination

◦ Terminate simulation when time of the simulation t reaches or exceeds a

preset maximal time of simulation.

It is worth noting that this is a local algorithm in the sense that all computations

only consider the number of objects and rules of a single compartment. The only

remaining global computation is the location of the index of the smallest waiting time,

which could be improved by keeping all reaction times in an indexed priority queue. The

advantage of having local computations is that the algorithm is easily implemented in

an event-driven object-oriented programming style, such an implementation could be

multithreaded on a hyper-threading machine and would also lend itself to full message-

passing implementation on a parallel computing cluster.

In Figure 3.3 a graphical representation of the Multicompartmental Gillespie Algo-

rithm is presented for a P system consisting of four compartments.

As an example of the use of this strategy we have taken two P systems models

from the family F(Π0, (M0, C)) defined in the previous section. These two P sys-

tems models (Π0; (M1(1),M2(1),M3(1)), C) and (Π0; (M1(2),M2(2),M3(2)), C) rep-
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resent the different initial conditions, these being the absence and presence of signals

in the environment respectively. Nevertheless, they share the same rule constants

C = (0.16, 10−3, 2, 4, 10−2, 10−2, 10−3, 0.1, 8, 5, 10, 0.2, 3, 10, 8 × 10−2, 5 ×
10−3, 5×10−3, 10−3, 3×10−3) 3. In figures, Figure 3.4 and Figure 3.5, we present two

different realisations of the two models and an estimation of the probability of having

different number of molecules at time 500 sec using 1000 different realisations of the

models.

3.4. Probabilistic Model Checking on P Systems

Models Using PRISM

Most research in systems biology focuses on the development of models of biological

systems accurately enough such as to be able to reveal new properties that can be

difficult or impossible to discover through direct lab experiments. One key question is

what one can do with a model, other than simple simulation. Is it enough just to realise

many simulations of a model, as has been done in Figure 3.4 and Figure 3.5, to really

obtain novel knowledge on the system under study? This question has been considered

in detail for deterministic models where a rich theory has been produced that can

be used to analyse systems of differential equations such as stability and bifurcation

analysis. However, this is not the case for stochastic models, as such systems defy

conventional intuition and consequently are harder to conceive. The field is widely

open for theoretical advances that help us to reason about systems in greater detail

and with finer precision.

There are several attempts in this direction which consists of applying model check-

ing tools to computational models of cell systems with the aim to analyse properties

of such models automatically. The methods developed using model checking are not

intended to replace the classical simulation and differential equation based approaches,

instead they should be used in conjunction with them in order to gain greater insight

into the complex interactions in cell systems.

In this respect, there are previous studies investigating the use of model checking

for P system models [7, 29]. In this section we will propose the use of a probabilistic

symbolic model checking approach based on PRISM (Probabilistic and Symbolic Model

Checker) [133].

3 The units of the constants associated with first order rules are s−1 and the units of those constants
associated with second order rules are molec−1s−1.
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Figure 3.4.: The first two graphs constitute different evolutions of the number

of receptor molecules R and protein molecules Tf in the P sys-

tem model representing the absence of signals in the environment,

(Π0; (M1(1),M2(1),M3(1)), C). The following two histograms present an

estimation of the probability of having n R and Tf molecules at time

t = 500 sec. Finally, the last two histograms are an estimation of the

probability of getting n as the maximal number of R and Tf molecules

within the first 500 seconds.
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Figure 3.5.: In this figure we study the behaviour of the P system model,

(Π0; (M1(2),M2(2),M3(2)), C), representing the presence of signals in the

environment by analysing 1000 different simulations. As we saw in figure

3.4 three receptor and protein molecules are quite likely to be present in

the system which explains the choice of the initial multisets M2(2) and

M3(2).Observe the difference between the first two simulations of the sys-

tem which suggest that the level of noise in the system is important. The

following four histograms present an estimation of the probability of hav-

ing n molecules of the different molecular entities involved in the system

at time 500 sec. These graphs also suggest a high level of noise.
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3.4.1. Probabilistic Model Checking with PRISM

Model checking is a well established and widely used formal method for verifying the

correctness of real life systems. Probabilistic model checking is a probabilistic variant

of the classical model checking augmented with quantitative information regarding the

likelihood that transitions occur and the times at which they do so [111]. Typically,

probabilistic model checking works with Markov chains or Markov decision process. In

this paper, it suffices to consider continuous-time Markov chains (CTMC). Formally,

a CTMC is defined by a set of states S, a set of initial states S ⊆ S and a transition

rate matrix R : S × S → R. This gives the rate R(s, s′) at which transitions occur

between each pair of states s, s′. The rate is taken as the parameter of an exponential

distribution.

As a formal verification technique, probabilistic model checking has been success-

fully applied to the analysis of complex systems from a broad range of domains, in-

cluding security and communication protocols, distributed algorithms and power man-

agement, [73].

Analytical methods based on probabilistic model checking consists of three different

steps:

1. First, one must design a precise mathematical model of the system which is to

be analysed. In this work, P systems specifications and models will be used

as the formal description required in this step. Alternatively, other high-level

formalisms such as Petri nets or process algebra could be used.

2. Once the formal model is built, one has to translate it into the specific language of

the probabilistic model checking tool used to analyse the formal model, PRISM in

this case. Typically in model checking and particularly in PRISM, this language

will allow the construction of a labelled state-transition system in which each state

represents a possible configuration and the transitions represent the evolution of

the system from one configuration to another over time.

3. Finally, some properties of the model must be identified and expressed formally

using temporal logic. This allows the probabilistic model checker to analyse these

properties in an automatic way against the constructed model.

One of the major advantages of probabilistic model checking is that it is an exhaus-

tive approach, that is, all possible behaviours of the system are analysed.

In this section we will use the software tool PRISM (Probabilistic and Simbolic

Model Checker) to perform probabilistic model checking on P system models. In what

follows a brief description of PRISM is presented, for details we refer to [133].
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PRISM, the probabilistic and symbolic model checker in this study, supports three

different types of probabilistic models, discrete time Markov chains (DTMC), Markov

decision processes (MDP) and continuous time Markov chains (CTMC). PRISM sup-

ports systems specifications through two temporal logics, PCTL (probabilistic com-

putation tree logic) for DTMC and MDP and CSL (continuous stochastic logic) for

CTMC.

As mentioned before, in order to construct and analyse a model with PRISM, it

must be specified in the PRISM language, a simple, high level, state-based language

based on the Reactive Modules formalism of [5].

Here we describe some aspects of the PRISM language through the following illus-

trative example taken from [133].

// N-place queue + server

ctmc

const int N = 10;

const double mu = 1/10;

const double lambda = 1/2;

const double gamma = 1/3;

module queue

q : [0 .. N] init 0;

[] q < N -> mu : (q’ = q + 1);

[] q = N -> mu : (q’ = q);

[serve] q > 0 -> lambda : (q’ = q - 1);

endmodule

module server

s : [0 .. 1] init 0;

[serve] s = 0 -> 1 : (s’ = 1 );

[] s = 1 -> gamma : (s’ = 0);

endmodule
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The first step when writing a model in PRISM is to indicate which type of model

is being described from those supported by PRISM. The keywords dtmc, ctmc or mdp,

are typically placed at the very beginning of the file containing the model to announce

that the model consist of a discrete time Markov chain, a continuous time Markov

chain or a Markov decision process respectively. Our example constitutes a continuous

Markov chain model as the key word ctmc attests.

The fundamental components of the PRISM language are modules, variables and

commands. A model is composed of a number of modules which can interact with each

other. A module contains a number of local variables and commands.

The previous example consists of two modules; the first one represents a queue and

the second one represents a server.

A module is specified as:

module 〈name〉

endmodule

Note that, in the example above, there are only two local variables, q in the queue

module representing the size of the queue, and s in the server module which represents

whether or not the server is busy. In the declaration of a variable its initial value and

range must be specified. A variable declaration looks like:

name : [ lower-bound .. upper-bound ] init value;

The values of these variables at any given time constitute the state of the module.

The space of reachable states is computed using the range of each variable and its

initial value. The global state of the whole model is determined by the local state of

all modules.

The behaviour of each module is described by a set of commands. A command

takes the form:

[ action ] g → λ1 : u1 + · · · + λn : un;

The guard g is a predicate over all the variables of the model. Each update ui

describes the new values of the variables in the module specifying a transition of the

module. The expressions λi are used to assign probabilistic information, rates, to

transitions. For example, in the case of CTMC, λi constitutes the parameter of a

negative exponential distribution which determines the waiting time for the transition

represented by ui to take place.
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The label action placed inside the square brackets are used to synchronise the ap-

plication of different commands in different modules. This forces two or more modules

to make transitions simultaneously. The rate of this transition is equal to the product

of the individual rates, since the processes are assumed to be independent.

In our example, in the queue module there are three commands; the first one allows

a new client to join the queue with probability mu if the maximal size, N, has not been

reached yet; otherwise the second command maintains the size of the queue constant

with probability mu. The third command is synchronised with the first command of

the server module and describes the situation when there are clients in the queue and

the server is free; in this case with rate lambda the server is set to busy and one client

is removed from the queue. Note that the rate of this transition is equal to the product

of the two individual rates (1 × lambda = lambda), this is a common technique, where

one action is passive with rate 1 and the other action is active, defining the actual rate

for the synchronised transition.

PRISM supports many other features like constants, expressions, process algebra

operators, module renaming, etc. For a detailed description of the tool we refer to

[133].

Once a probabilistic model has been specified and constructed in PRISM, one needs

to identify one or more properties of the model which can be analysed using PRISM.

This is done, as is common with formal verification techniques, using temporal logic.

More specifically, PRISM supports properties expressed in a language based on the

logics PCTL (probabilistic computation tree logic) for DTMCs and MDPs and CSL

(continuous stochastic logic) for CTMC, probabilistic extensions of the classical tem-

poral logic CTL. For details on the syntax and semantics of these two logics we refer to

[50, 22, 10, 11]. This work will focus on CSL since we deal with Gillespie’s kinetic the-

ory which constitutes a Monte Carlo algorithm for the exact generation of trajectories

of a CTMC represented by the chemical master equation, see section 2.6.

One key feature of probabilistic model checking and of PRISM in particular is the

use of rewards associated with states and transitions. This allows to express reward-

based properties in temporal logic which are quantitative in nature. Rewards as-

sociated with states, cumulated rewards, are incremented in proportion to the time

spent in the state, while rewards associated with transitions impulse rewards are in-

cremented each time the transition is taken. Rewards are defined using the construct

rewards ... endrewards. State rewards are specified as guard : reward, which

associates the reward reward with those states satisfying guard. For state rewards

[action] guard : reward is used, the interpretation being that transitions from states

which satisfy the guard guard and are labelled with the action action acquire the
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reward reward.

PRISM allows us to specify properties using three different operators:

• The P operator allows us to reason about the probability that a certain type of

behaviour is observed. A behaviour is represented in PRISM by a set or path

of states. Therefore, when specifying properties of a model one has to identify

the set or path of states under study. This is achieved by writing a PRISM

expression which evaluates to true for the corresponding states. PRISM supports

the specification of path properties using the temporal operators next X, until U

and bounded until U time. In the case of bounded until, time can take any of

the three forms: >= t, <= t or [t1, t2] with t, t1 and t2 non negative doubles and

t1 ≤ t2.

Given a path property, pathprop, the P operator can be used to check whether

or not the probability of obtaining the behaviour described by pathprop satisfies

the bound, where bound is of the form >= p, > p, <= p or < p, with p a non

negative double in the range [0, 1].

P bound [ pathprop ]

PRISM can also compute the actual probability of a behaviour described by

pathprop as follows:

P =? [ pathprop ]

• The S operator is used to reason about the long run, equilibrium or steady state

behaviour of the model. In this respect this operator can only be used with the

properties of a set of states, prop. This excludes path properties which use the

temporal path operators.

Similarly the probability of attaining a p can be checked or computed:

S bound [ prop ]

S =? [ prop ]

• The R operator analyses properties related to the expected values of rewards

associated with the states of a PRISM model. This operator behaves in a similar

way as the two previous ones, allowing us to check whether or not the expected
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reward satisfies a bound or to compute the expected reward itself using one of

the following constructs:

R bound [ rewardprop ]

R =? [ rewardprop ]

where bound can be of the form >= r, > r, <= r or < r, with r a non negative

double. There are four different types of reward properties, rewardprop, namely,

reachability reward, F prop; cumulative reward, C <= t ; instantaneous reward,

I = t and steady state reward, S.

3.4.2. Transforming P system Specifications into PRISM

Recall that the first step when analysing a formal model using probabilistic model

checking is to translate it into the language of the particular tool that is being used.

In what follows we will describe how P systems specifications, the high-level formal

framework used to develop models of cell systems in this work, are specified in the

PRISM language, the probabilistic model checker in this study. The example presented

in Figure 3.2 is used to illustrate the method discussed in what follows.

First of all, we need to indicate which type of model is being described. In section

3.3 the strategy, according to which our P systems models evolve, was presented. This

strategy is based on Gillespie’s theory of stochastic kinetics which produces models

that are equivalent to continuous time Markov chains. Therefore, a PRISM model

specifying a P system model will start with the key word cmtc.

As discussed in section 3.1 the three essential components of a P system are a

membrane structure consisting of a number of membranes that can interact with each

other, multisets of objects and strings and rewriting rules associated with membranes.

These components can easily be mapped into the components of the PRISM language

using modules to represent membranes, variables to describe objects and commands

to specify rules.

In what follows it is described in detail how to translate P system specifications

into the PRISM language. Given a P system specification Π = (O, L, µ, M1, M2, . . . ,

Mn, Rl1 , . . . , Rlm) its components will be specified as follows:

• Membrane structure: Recall that each membrane in µ is uniquely identi-

fied with an identifier i, 1 ≤ i ≤ n. Modules are used to describe the be-

haviour of membranes. In this respect for each membrane i a module with name

compartment_i will be introduced in the model.
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For instance, the membrane structure of our example, Figure 3.2, consists of

three membranes. Therefore the part of the PRISM model corresponding to the

membrane structure will look like:

module compartment_1

...

endmodule

module compartment_2

...

endmodule

module compartment_3

...

endmodule

• Alphabet and initial multisets: For each object obj ∈ O that can be present

inside the compartment defined by membrane i a local variable obj_i will be

declared in module compartment_i.

The initial value of this variable is determined by the initial multiset Mi =

(li, wi, si) associated with membrane i. Since the initial multisets are part of the

parameters of a P system specification we can define a constant, ini_obj_i, with

no value assigned to it, which will make this variable a parameter of the PRISM

model.

The value range of the variables representing objects will be determined experi-

mentally or it will be derived from the literature. In order to specify these ranges

two constants will be declared upb_obj_i and lob_obj_i.

In our example, the object R appears in compartment 2, which identifies the cell

surface. The variable R_2 will be used to specify the number of molecules R. Its

initial value corresponding to the number of molecules in the initial multiset M2

will be described by the constant ini_R_2. The range of this variable will be

defined using the constants upb_R_2 and lob_R_2. This produces the following

PRISM code fragment describing the object R. This code will be written in the

module compartment_2.

const int ini_R_2;

const int upb_R_2;
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const int lob_R_2;

R_2 : [ lob_R_2 .. upb_R_2 ] init ini_R_2 ;

• Rewriting rules: Commands are used in PRISM models to describe the rewrit-

ing rules of a P system specification. PRISM does not directly support the use

of strings, because of this our work will be restricted to the type of rules in

3.1. These rules are typically referred to as protein-protein interactions in the

literature.

Given a compartment i, represented by module compartment_i, by checking the

label associated with the compartment in the initial multiset Mi = (li, wi, si), one

can determine the set of rules, Rli , that needs to be converted into the commands

of the module.

In general, protein-protein interaction rules need two membranes to interact in a

synchronised way to exchange objects. Let’s assume that membrane i is contained

in membrane k described by module compartment_k. When a rule affects two

different compartments, the two modules representing them will synchronise the

application of two different commands, which describe the effect of the application

of the rule in the corresponding compartments, by using the label r_j_l_i. In

the case in which the application of a rule only involves one compartment the

label r_j_l_i will still be used as it facilitates the formulation of rewards based

properties associated with transitions.

Therefore given a rule of the form:

rli
j : obj1 [ obj2 ]l

c
li
j−→ obj′1 [ obj′2 ]l

with obj1 = o1
1 + · · · + o1

n1
,obj2 = o2

1 + · · · + o2
n2

,obj′1 = oo1
1 + · · · + oo1

m1
,obj′2 =

oo2
1+· · ·+oo2

m2
some finite multisets and cli

j the stochastic constant associated with

the rule. The variables o_1_1_k, . . . , o_n_1_1_k, oo_1_1_k, . . . , oo_m_1_1_k

specify the objects from obj1 and obj′1 in module compartment_k. The objects

o_1_2_i, . . . , o_n_2_2_i and oo_1_2_i, oo_m_2_2_i represent the objects from

obj2 and obj′2 in module compartment_i.

The stochastic constants associated with the rules are part of the parameters

of the P system specification and will be specified in the PRISM modules using

constants with no value assigned to them, making them parameters of the PRISM

model as well. More precisely, the constant cli
j associated with rule rli

j will be

represented by the following constant declared at the beginning of the PRISM

model before the specification of the modules.
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const double c_j_l_i;

The command in module compartment_i describing the effect of an application

of rule rli
j in compartment i will be:

[ r_j_l_i ] o_1_2_i > 0 & ... & o_n_2_2_i > 0 &

oo_1_2_i < upb_oo_1_2_i & ... &

oo_m_2_2_i < upb_oo_m_2_2_i - >

c_j_l_i * o_1_2_i * ... * o_n_2_2_i :

(o_1_2_i’ = o_1_2_i - 1) & ... &

(o_n_2_2_i’ = o_n_2_2_i - 1) &

(oo_1_2_i’ = oo_1_2_i + 1) & ... &

(oo_m_2_2_i’ = oo_m_2_2_i + 1);

The command in module compartment_k describing the effect of an application

of rule rli
j in compartment k will be:

[ r_j_l_i ] o_1_1_k > 0 & ... & o_n_1_1_k > 0 &

oo_1_1_k < upb_oo_1_1_k & ... &

oo_m_1_1_k < upb_oo_m_1_1_k - >

o_1_1_k * ... * o_n_1_1_k :

(o_1_1_k’ = o_1_1_k - 1) & ... &

(o_n_1_1_k’ = o_n_1_1_k - 1) &

(oo_1_1_k’ = oo_1_1_k + 1) & ... &

(oo_m_1_1_k’ = oo_m_1_1_k + 1);

Observe that these two commands are applied when the guards hold, that is, if

and only if there are some reactants in the corresponding membranes and the

products have not reached the upper bounds determined experimentally. Also

note that the rate of this transition is the product of the individual rates:

(c_j_l_i * o_1_2_i * ... * o_n_2_2_i) (o_1_1_k * ... * o_n_1_1_k)

It has been assumed that all the objects on the left hand side of the rule are

different. If there were objects with multiplicity greater than one present on the

left hand side of the rule the rate associated with the command would be different

and it will be computed as it is explained in section 2.6.
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When this transition is performed the local variables representing the reactants

are decreased by one and the variables representing the products are increased

by one.

Finally, in order to illustrate this method of translating a P system specification

into a PRISM model, we present how two of the rewriting rules from our example

are converted into commands in the corresponding modules.

First, note that although the rules of the general form in (3.1) require synchro-

nisation between two modules representing compartments, in many particular

cases only one compartment is involved and no synchronisation is needed. For

instance, the complex formation rule from our example:

rcyto
3 : [ S + Tf ]cyto

rcyto
3−→ [ S–Tf ]cyto

In this case there will be a single command representing this rule in module

compartment_3 which represents the cytoplasm in the PRISM. This command

is presented in the following fragment of PRISM code:

const double c_3_cyto;

[r_3_cyto] S_3 > 0 & Tf_3 > 0 &

S_Tf_3 < upb_S_Tf_3 ->

c_3_cyto * S_3 * Tf_3 :

(S_3’ = S_3 - 1) & (Tf_3’ = Tf_3 - 1) &

(S_Tf_3’ = S_Tf_3 + 1);

Although in many cases synchronisation is not used, the cases where it is neces-

sary are not rare. For instance, in our example the binding of the signal molecule

S to the receptor R implies the synchronisation of two modules, compartment_1

and compartment_2 representing the environment and cell surface respectively.

renv
1 : S [ R ]env

cenv
1−→ [ S–R ]env

In this case it is necessary to split the description of this rule into two commands.

The first command representing the effect of this rule in the compartment de-

scribing the environment, compartment_1, will be:

[ r_1_env ] S_1 > 0 ->

c_1_env * S_1 :
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S_1’ = S_1 - 1;

The command describing the transition of module compartment_2, which speci-

fies the cell surface, due to an application of the rule renv
1 will be:

[ r_1_env ] R_2 > 0 &

S_R_2 < upb_S_R_2 ->

R_2 :

R_2’ = R_2 - 1 &

S_R_2’ = S_R_2 + 1;

Note that in the last example the general multiset of objects obj′1 is empty and

therefore there is no reference to it in the first command.

3.4.3. Analysis of P Systems Models Using PRISM

In this section we will illustrate how PRISM can be used to analyse P systems models by

using our example in Figure 3.2. Here we will focus on the model (Π0; (M1(1),M2(1),

M3(1)), C) presented in section 3.3 and which represents the initial condition with no

signals.

The first step when analysing a model in PRISM is to associate the appropriate

rewards with the corresponding states and transitions. We are interested in analysing

the evolution over time of the number of molecules and the number of applications of

rules. Therefore, two different list of rewards will be used:

• The first rewards list will associate with each state a reward representing the

number of a particular molecule. A constant molec is used to identify which

molecule is being tracked at the moment.

const int molec;

rewards "molecules"

molec = 1 : s_1;

molec = 2 : s_3;

molec = 3 : r_2;

...

molec = 11 : s_Tf_gene_r_3;

endrewards
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Figure 3.6.: Expected number of molecules and probability of exceeding a prefixed

threshold

• In a similar manner a list of rewards will be used to associated with each transition

a reward of 1 representing that the rule has been applied once. A constant rule

is used to identify which rule is being analysed.

const int rule;

rewards "rules"

[ r_1_env ] rule = 1 : 1;

[ r_2_env ] rule = 2 : 1;

[ r_1_surf ] rule = 3 : 1;

...

[ r_14_cyto ] rule = 19 : 1;

endrewards

Once the corresponding rewards have been associated with particular states and

transitions one can use PRISM to model check some properties of the system.

For example, one common analysis, when dealing with stochastic models, is to

compute the expected number of molecules over time. This can be studied in PRISM

using instantaneous reward properties where a constant time indicates the time instant

for which the expected number of molecules is computed.

R = ? [ I = time ]

Figure 3.6 left depicts the expected evolution of the number of R and Tf molecules

over 3500 seconds. Note that both quantities of molecules seem to reach a steady state.

The study of steady states is one of the most widely spread analytic methodologies.

Steady-state reward properties of the form R = ? [ S ] allow us to compute the ex-

pected reward in the long run or steady state. This has been done for both, R and Tf
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molecules, which found that the expected number of R and Tf molecules in the long

run is 2 and 1.5 molecules respectively.

Once the number of molecules in the steady state has been determined it is inter-

esting to compute the expected time to reach the steady state. This can be done with

the following reachability reward properties:

R = ? [ F Tf_3 = 2 ] =⇒ 250 sec

R = ? [ F R_3 = 1 ] =⇒ 1000 sec 4

Although the expected number of molecules in the steady state for Tf and R is

two and one respectively, the number of both types of molecules exceed these values in

the simulations presented in 3.4. We can compute the probability of these molecules

to exceed a preset threshold (upb) within the first 3500 seconds by asking PRISM to

calculate the following probabilities:

P = ? [ true U <= 3500 Tf_3 > upb ]

P = ? [ true U <= 3500 R_2 > upb ]

The results of this computation are shown in Figure 3.6 right. Observe that the

probability to exceed a threshold greater than the steady state is appreciable for both

types of molecules. For instance, the probability of getting more than 5 Tf molecules

within 3500 sec is approximately 0.5. With regard to the expected time to reach the

steady state, one can also check the probability of getting the expected number of

molecules in the steady state before this expected time. These probabilities turn out

to be considerable big as shown below:

P = ? [ true U <= 200 Tf_3 = 2 ] =⇒ 0.52

P = ? [ true U <= 900 R_2 = 1 ] =⇒ 0.59

As done before for the steady state values now we can compute the expected time

when the number of R and Tf molecules exceeds an upper bound. This is shown in

Figure 3.7.

PRISM also allows to reason about the evolution of P system models as a con-

sequence of the applications of different rules. One can compute the probability and

expected values of the number of applications of the rules. For instance, one can com-

pute the expected number of applications of the different rules within T units of time

using cumulative reward properties of the following form:

4As we are working with a quantity of molecules represented as an integer number we assume the
steady state of R is one molecule.

68



3. P Systems, a Modelling Framework

Figure 3.7.: Expected time for the number of R and Tf molecule to exceed a preset

upper bound

Figure 3.8.: Expected number of time each rule is applied during the evolution of our

model

R = ? [ C <= T ]

In Figure 3.8 depicts the expected number of applications within 3500 sec of rules

rcyto
1 , rcyto

12 , rcyto
2 , rcyto

13 , rcyto
11 and rsurf

3 .

The type of properties analysed in this section are only intended to illustrate how

to use PRISM to study the behaviour of P system models. We do not intend to cover

all possible properties, not even the most common ones, that can be checked in PRISM

as the properties to study in a P system model depend very much on the model being

analysed.
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Systems

Life is an emergent, rather than an immanent and inherent, property of matter. Although it
arises from the material world, it cannot be reduced to it.

Erwin Schrödinger

Life is a relationship among molecules and not a property of any molecule.

Linus Pauling

In chapter 2 we discussed briefly different modelling approaches. All these modelling

approaches were well established formalisms coming from different inspirations and

sources before being applied to model cellular systems. For example, the π-calculus was

introduced to specify mobile concurrent processes that interact through communication

channels [80]. In contrast, P systems are inspired directly from the functioning and

structure of the living cell. Therefore, the concepts in P systems are more similar

to those used in molecular cell biology than the abstractions of other formalisms. In

this chapter, P systems are presented as a formal framework for the specification and

simulation of cellular systems which integrates structural and dynamic aspects in a

comprehensive and relevant way while providing the required formalisation to perform

mathematical and computational analysis.

Rather than being an alternative to more classical modelling frameworks, like ODEs,

P systems constitute a complementary approach to be used when the classical mod-

elling approaches fail to specify and simulate cellular systems correctly. Three situa-

tions where the applicability of conventional macroscopic, continuous and deterministic

approaches, like ODEs, is questionable are:

• Cellular systems with a heterogeneous compartmentalised structure, low number

of molecules and slow reactions.

• Processes in gene regulation like transcription and translation (inherently con-
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current and discrete processes) and the binding of transcription factors to gene

promoters (fundamentally a boolean behaviour).

• The order in which different genes are found in operons1 on the genome is im-

portant as it determines the order in which genes are transcribed. These lin-

ear structures are not easily specified and simulated in classical approaches like

ODEs.

In contrast to differential equations, P systems are an unconventional model of

computation which explicitly represents the discrete character of the quantity of com-

ponents of a cellular system by using rewriting rules on multisets of objects which rep-

resent molecules, and strings which describe the organisation of genes on the genome.

The inherent stochasticity, external noise and uncertainty in cellular systems is cap-

tured by using stochastic strategies like the Multicompartmental Gillespie’s Algorithm

introduced in section 3.3.

The key differential feature of P systems is the so called membrane structure which

represents the compartmentalisation in the structural organisation of cells. In this work

we will show how by using membrane structures one can take into account the key

role played by membranes and compartmentalisation in the functioning of the cellular

systems. For instance, in chapter 6 selective uptake of molecules from the environment

will be studied; in chapter 7 signalling at the cell surface will be specified and simulated;

and finally in chapter 8 colonies of interacting bacteria which communicate by sending

and receiving diffusing signals will be investigated. In all these case studies membranes

in P system specifications will specify the relevant regions of the corresponding cellular

system under study.

In what follows we present in detail how the main components of cellular systems

are specified and simulated using P systems. We start by discussing how compartments

are described using P system specifications. Section 4.2 presents an enumeration of the

protein-protein interactions that can be specified using P system rewriting rules. The

description of transcription networks is discussed in the following section. Here two

different approaches are taken. Genes and mRNA can be represented using individual

objects or strings. Moreover the processes involving proteins, genes and mRNA can

be represented using either rewriting rules on multisets of objects, section 4.3.1, or

using rewriting rules on multisets of objects and strings, section 4.3.2. Finally, section

4.4, introduces a method to translate into P systems cellular models specified using

1An operon is a group of genes physically linked on the chromosome and under the control of the
same promoters. In an operon, the linked genes give rise to a single mRNA that is translated into
the different gene products. This type of mRNA is called a polycistronic mRNA.
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Figure 4.1.: Typical structure of biomembranes with a bilayer made of hydrophobic

hydrocarbon chains and hydrophilic polar heads from [76]

SBML (Systems Biology Markup Language), a machine-readable language, derived

from XML, for representing models of biochemical reaction networks.

4.1. P system Specifications of Compartments

Membranes play a key role in the functioning and structural organisation of both

prokaryotic and eukaryotic cells. The basic structural unit of all biomembranes is a

phopholipid bilayer, a two dimensional sheet with a hydrophobic core and hydrophilic

faces, see Figure 4.1.

Prokaryotes, which are the smallest cells (∼ 1 − 2µm), present a simple structure

consisting of a single compartment surrounded by a plasma membrane. In the larger

eukaryotic cells, the rates of chemical reactions would be limited by the diffusion of

small molecules if a cell were not structured into smaller subcompartments termed or-

ganelles. Each organelle is surrounded by one or more membranes enclosing a unique

complement of proteins enabling it to carry out its characteristic cellular functions.

For example, endosomes take up soluble macromolecules from the cell exterior, lyso-

somes are acidic organelles that contain a battery of degradative enzymes, the smooth

endoplasmic reticulum synthesises fatty acids and phospholipids, the rough endoplas-

mic reticulum synthesises proteins, the golgi complex processes and sorts secreted and

membrane proteins, plant vacuoles store small molecules, mitocondria are the principal

sites of ATP production in aerobic cells, chloropasts contain internal compartments

in which photosynthesis takes place, the nucleus contains the DNA genome and RNA

synthesis aparatus, etc. The importance of internal membranes is evident from the

fact that the total surface area of these membrane is roughly tenfold as great as that

of the plasma membrane.

The function of membranes is not only limited to enclosing compartments where
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Figure 4.2.: Diagram showing how various classes of proteins are associated with the

lipid bilayer making up a cell membrane from [76]

specific molecules and chemical reactions are located, they also control the movement of

molecules between the inside and the outside of a cell and into and out of the organelles

of eukaryotic cells. Another important mechanism where membranes play a key role is

cell signalling. These processes are carried out by three different types of proteins that

are associated with membranes, see Figure 4.2.

• Integral or transmembrane proteins which span the bilayer structure of mem-

branes and are normally made of three different segments: one hydrophobic do-

main embedded in the membrane, one cytosolic domain and an exoplasmic one;

these last two domains are hydrophilic.

• Lipid anchored membrane proteins which are tethered to one leaflet of the bilayer.

• Peripheral membrane proteins which are associated with membranes by specific

noncovalent interactions with either integral or lipid anchored proteins.

The importance of these type of proteins is suggested from the finding that approx-

imately a third of all yeast genes encode a membrane protein. The relative abundance

of genes for membrane proteins is even greater in multicellular organisms in which

membrane proteins have additional functions in cell adhesion.

Membrane proteins and lipids are not fixed. To the contrary, they can diffuse in

the two-dimensional plane of a bilayer. Diffusion constants of 108 − 107 cm2/s are

characteristic of the proteins and lipids that constitute membranes. In this respect,
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the two dimensional region comprising a membrane can be considered as well mixed in

certain situations.

Summing up, in cell compartments there are two distinct and relevant regions:

1. The compartment surface where a set of proteins, which control the movement of

molecules and detect signals, are located.

2. The lumen or aqueous interior space where a characteristic complement of pro-

teins carry out specific functions.

In the P system modelling framework, membranes are used to define relevant regions

in cellular systems. In this work two different membranes will be used to specify the

two relevant regions associated with a cellular compartment:

1. A first membrane will represent the compartment surface. In the region defined

by this membrane the objects describing the integral, anchored and peripheral

proteins associated with the compartment surface will be located. The processes

involving molecular transport and cell signalling will be represented by rules

which will also be associated with this region.

2. Another membrane will describe the aqueous interior of the compartment and

thus it will be embedded inside the previous membrane. The set of objects and

strings specifying the proteins and other molecules located in the lumen of the

compartment will be placed in the region defined by this membrane. The rules

describing the molecular interactions taking place inside the compartment are

also associated with this membrane.

In some cases where no signalling or active transport of molecules is studied the

membrane representing the compartment surface is omitted.

It is worth noting that up to now P systems have overlooked the importance of

the cytoskeleton, a dense network of protein filaments that permeate the cytosol and

mechanically support membranes. It is a key component of the structure of living cells

serving as a scaffold to which particular sets of proteins and membranes are bound. It

is also involved in a great variety of processes like molecular transport, cell division,

cell mobility, etc. Its importance is suggested by the fact that while the surface of all

membranes in an eukaryotic cell is around 8000 µm2 the surface of the cytoskeleton is

roughly 94000 µm2.
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4.2. P system Specifications of Protein-Protein

Interactions

Large and complex networks of interacting proteins are responsible for most of the in-

formation processing within living cells. The present section aims to provide a compre-

hensive and relevant P system modelling schema for the most important protein-protein

interactions that take place in living cells.

The theoretical and experimental description of protein-protein interactions is re-

lated to the field of chemical kinetics. A primary objective in this area is to determine

the propensity or probability of a protein interaction, in order to describe the rate at

which reactants are transformed into products. In this section the P system schema for

each protein-protein interaction and its propensity, computed according to Gillespie’s

theory of stochastic kinetics [40, 41, 42, 43, 44], is presented.

A graphical representation will be provided for each P system schema using CellDe-

signer, a structured diagram editor for drawing gene-regulatory and biochemical net-

works [37].

• Transformation and degradation:

A molecule a can react to produce another molecule b or it can be degraded by the

cell machinery, see Figure 4.3. The dynamics of these reactions can be modelled

using the exponential decay law. This law states that the rate of the reaction or

its propensity is proportional to the number of molecules of the reactant a.

Figure 4.3.: Graphical representation of transformation and degradation.
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In P system specifications, transformation and degradation are represented using

the rewriting rules in the schema (4.1). In these rules the object a is replaced with

the object b or is simply removed in the case of degradation. The compartment

type where the molecules are transformed or degraded is also specified using

square brackets with a label l. A constant c is associated with the rule so that

its propensity 2 can be computed.

r1 : [ a ]l
c−→ [ b ]l

r2 : [ a ]l
c−→ [ ]l

prop(ri) = c · |a| i = 1, 2 (4.1)

Note that these reactions are first order reactions or monomolecular reactions.

As discussed in section 2.6, for this type of reaction the mesoscopic and stochastic

constant, c, used in modelling approaches similar to ours is equal to the deter-

ministic and macroscopic constant, k, used in ODEs. In this case this constant

has units of time−1.

• Complex formation and dissociation:

Two molecules, a and b, can collide and stick together through noncovalent inter-

actions to produce a complex c. Once a complex has been formed it can dissociate

back into its components, d and e which could have changed as a consequence of

the interaction.

In biochemistry, these reactions are referred to as complex formation, more specif-

ically heterodimer formation when a �= b and homodimer formation when a = b;

and complex dissociation, see Figure 4.2.

Many important cellular processes depend on complex formation and dissociation,

since the binding of a molecule to another one can alter (regulate) the activity

of the complex which can be completely different from the activity of the single

molecules.

The dynamics of these reactions follow the mass action law, which states that the

rate or propensity of the reaction is directly proportional to the product of the

number of the reactant molecules. Thus, two constants ccf and ccd are associated

with the complex formation and dissociation reactions respectively so their rates

or propensities can be computed.

2In this work |a| will be used to represent the number of molecules a
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Figure 4.4.: Graphical representation of complex formation and dissociation.

In P system specifications, complex formation and dissociation reactions are spec-

ified using the rewriting rules in the schema (4.2) which take the name of the

reactions they represent. In the complex formation rule, rcf , the objects a and

b, representing the corresponding molecules, are replaced with the object c, rep-

resenting the complex. In the same manner, in the complex dissociation rule,

rcd, the object c is replaced with the objects d and e. The compartment type in

which the reactions take place is specified using square brackets and a label l.

rcf : [ a + b ]l
ccf−→ [ c ]l prop(rcf ) =




ccf · |a||b| if a �= b

ccf · |a|(|a| − 1)

2
if a = b

rcd : [ c ]l
ccd−→ [ d + e ]l prop(rcd) = ccd · |c|

(4.2)

In this case, the stochastic constants ccf and ccd, associated with the complex

formation and complex dissociation rules, have units of time−1 molecules−1 and

time−1, respectively. As discussed in section 2.6, the constant ccf associated with

the second order rule representing complex formation can be computed using

the deterministic constant kon, which have units of concentration−1 time−1, as

follows:

77



4. P System Specifications of Cellular Systems

con =




kon

V × NA

if a �= b

2 kon

V × NA

if a = b

where NA represents Avogrado’s number, the number of molecules in a mole,

NA ∼ 6.023 × 1023 and V represents the volume of the system. Here we have

assumed that the units of concentration used are M (moles/liter).

At this point it is worth noting that ccf represents the average number of collision

events per time unit, and therefore it is limited by the rate of collisions of a

diffusing molecule hitting a protein size target. Thus ccf has a diffusion-limited

value of about 108 − 109 M−1sec−13. This upper bound is independent of the

details of the complex formation and therefore it can be used to determine a

possible range of values for the constants associated with the complex formation

rules when developing a P system model from a P system specification.

In contrast, the stochastic constant, ccd, associated with the dissociation rule,

rcd, is equal to the deterministic constant koff , since this rule represents a first

order reaction. There is no general upper bound for ccd, which can vary over

many orders of magnitude for different reactions. This is due to the fact that

ccd is determined by the strength of the chemical bounds between the molecules

forming the complex.

Cellular systems are not only composed of networks of interacting proteins. Mem-

branes and compartmentalisation play a key role in the organisation and the functioning

of such systems. For example, in signalling at the cell surface, selective uptake of sub-

stances from the environment and diffusion across membranes in a colony of interacting

bacteria.

Most high-level formalisms proposed so far to model cellular systems like ODEs,

process algebra, Petri nets, agent-based approaches, etc. capture some of the informa-

tion regarding pathways and their molecular components and interactions; nonetheless,

none fully integrates quantitative dynamics, interactions among molecular entities and

the structural organisation of cells in different compartments. Nevertheless, there have

been recent attempts to specify compartmentalisation in process algebra like the π-

calculus [101] and BioAmbients [100]. In this respect P systems present a clear advan-

tage since membranes, compartments and interactions involving them can be explicitly

3In order to obtain the upper bound that can be compared directly to ccf it is necessary to express
this value in molecules by multiplying it by NA and V
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Figure 4.5.: Diffusion across a cell membrane

and directly specified in a comprehensive and relevant manner using the so called

membrane structure and the P system specification schema presented in this chapter.

In what follows we will describe how the fundamental processes of communication

and transport between different compartments in cellular systems, are specified within

the P system modelling framework. Basically, we will deal with communication through

passive diffusion across membranes, signalling at the cell surface and selective uptake

of substances from the environment.

• Diffusion in and out:

Small molecules can readily move by simple passive diffusion across membranes

without the aid of transport proteins and without the consumption of any metabolic

energy. The movement takes place down to the chemical concentration gradient

of the diffusing molecule; that is, from regions with high concentrations to re-

gions with low concentrations. The relative diffusion rate of any substance is

proportional to its concentration gradient across the layer and to its hydropho-

bicity and size; charged molecules are also affected by electric potentials across

the membrane, see Figure 4.5.

The rewriting rules in (4.3) constitute a P system specification for diffusion in

and out of a compartment. This compartment is represented by squared brackets

with a label l, that identifies the type of the compartment. For diffusion in the

object a is moved from the compartment surrounding compartment l inside the
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Figure 4.6.: Binding of a ligand to a transmembrane receptor

region defined by it. Viceversa for the case of diffusion out from compartment l.

As in previous cases the constants cin and cout associated with the rules are used

to compute their rates or propensities.

r1 : a [ ]l
cin−→ [ a ]l prop(r1) = cin|a|

r2 : [ a ]l
cout−→ a [ ]l prop(r2) = cout|a|

(4.3)

• Binding and debinding:

One of the key steps in the process of converting signals into cellular responses,

signal transduction, is the binding of signalling molecules to structurally comple-

mentary sites on the extracellular or membrane-spanning domains of receptors

leading to their activation, Figure 4.6.

Note that, in signal transduction, the cell membrane plays a key role being the

region where receptors are located and where they carry out their activities. In

this respect in P system specifications, the plasma membrane is represented as

the region defined by two membranes; one of them will represent the cell surface

and the other one the cytoplasm; for case studies where this membrane structure

is used see Chapters 6 and 7. In this region all the molecules associated with
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the cell membrane will be placed, as is the case with molecules that are attached

either to the inside or the outside of the cell membrane, transmembrane receptors,

receptor complexes, etc.

In P system specifications, the binding and debinding of a ligand to its receptor,

located on the cell surface, is specified using the rewriting rules in (4.4). For the

binding rule, the object a representing the ligand is placed outside the compart-

ment representing the cell surface, square brackets with label l. The receptor is

specified using the object b placed inside the square brackets. These two objects

are replaced with the object c, the complex receptor-ligand, inside the square

brackets which represent the cell membrane.

The debinding reaction, Figure 4.6, is specified by replacing the object c, inside

the square brackets, with the object d, representing the ligand, outside the square

brackets and the object e, representing the free receptor, inside them.

r1 : a [ b ]l
clb−→ [ c ]l prop(r1) = clb|a||b|

r2 : [ c ]l
cld−→ d [ e ]l prop(r2) = cld|c|

(4.4)

Similar to the case of complex formation and dissociation the constants ccf and

ccd are used to compute the propensity of the corresponding rules according to

the mass action law. Also in this case clb is diffusion limited and has units of

time−1 molec−1 whereas there is no general upper bound for cld which has units

of time−1.

The P system schema representing binding and debinding reactions will be used to

model signalling at the cell surface in chapter 7. Nevertheless, this schema is not

limited to representing receptor activation. It can also be used to specify selective

uptake (binding) of certain substances from the environment and delivering of

substances to the environment (debinding) by specific transport proteins located

on the cell surface. An example of this latter application of this schema will be

presented in chapter 6.

• Recruitment and releasing:

Binding of a ligand to its receptor produces a conformational change in the cy-

tosolic domain or domains of the receptor that triggers the recruitment of some

cytoplasmic proteins. These proteins are subsequently transformed and released

back into the cytoplasm which ultimately induces specific cellular responses, see

Figure 4.7.
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Figure 4.7.: Recruitment of a cytoplasmic protein by an active transmembrane receptor

The rules in (4.5) model recruitment and releasing reactions in P system specifi-

cations. The compartment from where or to where the proteins are recruited or

released is specified using square brackets with a label l. In the recruitment rule,

rrt the active receptor is represented by the object a placed outside the compart-

ment l where the object b represents the protein that is recruited. These objects

are replaced with the object c outside compartment l specifying the formation of

the complex formed by the active receptor and the recruited protein.

Conversely, in the releasing rule, rrl, the object c outside compartment l is re-

placed with the objects d outside and the object e inside the compartment.

The constant crt associated with the recruitment rule, rrt, which can be consid-

ered to represent a complex formation reaction, is analogous to the constant ccf

associated with the complex formation rule in the sense that it is used to com-

pute the propensity of the corresponding rule using the mass action law. This

constant is diffusion limited and has units of time−1 molec−1. The constant crl

is not bounded in general and has units of time−1; in this sense it is similar to

the complex dissociation rule ccd.
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rrt : a [ b ]l
crt−→ c [ ]l prop(rrt) = crt|a||b|

rrl : c [ ]l
crl−→ d [ e ]l prop(rrl) = crl|c|

(4.5)

This P system specification schema will be used in chapter 7 to describe processes

involving recruitment and releasing reactions in signalling at the cell surface.

In chapter 6 this schema is used to specify processes consisting in the uptake

(recruitment) of certain substances from the cytoplasm and the delivering of some

substances to the cytoplasm (releasing) by specific transport proteins located on

the cell surface.

4.3. P system Specifications of Transcription

Networks

Living cells can sense very complex environmental signals through some of the molec-

ular interactions described in the previous section; commonly through the binding of

signals to receptors described in (4.4). They can also sense information about the in-

ternal state of the cell; commonly through complex formation described in (4.2). Cells

respond to these signals by producing appropriate proteins codified in specific genes
4. The rate of production of these proteins are regulated by special proteins called

transcription factors which bind genes increasing or decreasing the rate at which they

are transcribed into mRNA. In this sense, cells use transcription factors as an inter-

nal representation of the environmental and internal state of the cell. For instance,

the Escherichia Coli has an internal representation of about 300 transcription factors

(degrees of freedom) which regulate the rate of production of roughly 4000 proteins.

The interaction between transcription factors and genes leading to a change in the

rate of production of certain proteins are described by transcription networks. In this

section, P system specification schemas for transcription networks in prokraryotes are

presented. For simplicity only prokaryotes will be considered. In contrast to prokaryotic

cells where there is a single compartment, in eukaryotes there are two compartments

involved in gene regulation, namely, the nucleus, where transcription and more complex

processes like RNA splicing take place, and the cytoplasm where, for example, post

transcriptional control and translation occur. In spite of the differences between gene

4 The simplest definition of a gene is a stretch of DNA that contains information to specify synthesis
of a single polypeptide chain (protein) or functional RNA
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regulation control in prokaryotes and eukaryotes the same fundamental principles and

mechanisms still apply in both cases.

The central dogma of molecular cell biology states that the necessary information

for the production of proteins is contained in stretches of DNA called genes. Transcrip-

tion of a gene is the process by which a protein called RNA polymerase produces the

mRNA that corresponds to a gene’s coding sequence. This mRNA is then translated

into a protein or gene product, by ribosomes, complexes made of specific proteins and

ribosomal RNA. This picture is much more complex than it first appears since tran-

scription factors, which are also proteins encoded in certain genes, acts as regulators

in the transcription rate of genes by binding to specific regions or sites of the DNA.

These genes can codify in turn other transcription factors or other proteins produced

to carry out specific tasks. Transcription factors can regulate genes in a positive or

negative manner; an increase in the quantity of transcription factor leads to more or

less gene expression. This provides a feedback pathway by which genes can regulate the

expression of other genes and, in this manner, the production of the proteins encoded

by them.

In this work two different approaches to the specification of transcription networks

and gene regulation processes will be discussed.

In the first approach only objects will be used to specify the proteins, transcription

factors and genes involved in the system. Rewriting rules on multisets of objects will

describe the interactions between the different components of transcription networks

in this approach.

In the second approach a much more detailed description of the interactions will

be developed using objects to represent proteins and transcription factors and strings

to represent genes, operons and mRNA. Rewriting rules on multisets of objects and

strings will provide a more mechanistic description of the processes that take place in

transcription networks.

4.3.1. Specification of Transcription Networks using Objects

In a simplistic approach processes like transcription and translation can be abstracted

as individual reactions. In this case genes and operons will be specified as individual

objects which produce in a single step their complementary mRNA also represented

by a single object. The production of a protein from the mRNA is also described in a

single step. Finally, the processes involved in gene expression control, like binding and

debinding of transcription factors from genes, are also specified using rewriting rules

on multisets of objects.

In what follows, we present P system specification schemas using objects and rewrit-
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ing rules on multisets of objects to describe the processes that take place in transcription

networks.

• Transcription and translation:

As mentioned above the central dogma of molecular cell biology states that ge-

netic information is stored in the DNA. This information is transcribed into

mRNA which in turn is translated into proteins, see Figure 4.8.

Figure 4.8.: Transcription and translation of a gene codifying the protein prot.

Here the linear information contained in genes and mRNAs is represented by

individual objects. Specifically, in the P system specification schema in (4.6) the

objects gene, rna and prot specify the stretch of DNA consisting of the gene, its

complementary mRNA, and its gene product or protein, respectively.

The transcription of the gene into its complementary mRNA is described by

the rewriting rule, rtc. According to this rule in the compartments of the type

represented by the label l, the object gene is replaced with the objects gene and

rna. In this manner, when the rule is applied the object gene remains in the

compartment and an object rna representing the mRNA is produced.

rtc : [ gene ]l
ctc−→ [ gene + rna ]l prop(rtc) = ctc|gene|

rtl : [ rna ]l
ctl−→ [ rna + prot ]l prop(rtl) = ctl|rna|

(4.6)
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In a similar way translation is described by the single rewriting rule rtl, according

to which the object rna is replaced with the objects rna and prot. The application

of this rule does not consume the object rna but it produces an object prot

representing the translated protein.

The propensities of the rewriting rules in the P system specification schema in 4.6

are computed in the same way as the other first order rules presented previously.

The units of the contants ctc and ctl are time−1 and they represent the average

number of mRNA transcripts produced per time unit and the average number of

protein products translated from a single mRNA per time unit, respectively.

In a more simplistic specification of the production of proteins one can ignore the

intermediary step consisting of the production of the mRNA and assume that the

protein is produced directly from the gene in a single process described in (4.7).

Although this is an extremely simplistic representation of the complex processes

involved in the production of proteins it will be used in this work when other

processes are the focus of research.

rprod : [ gene ]l
cprod−→ [ gene + prot ]l prop(rprod) = cprod|gene| (4.7)

• Binding and debinding of transcription factors to genes:

The rewriting rules in (4.6) on their own only allow us to specify genes whose

expression does not depend on transcription factors and consequently on any

external or internal signal. These genes are called constitutive genes and they are

continuously transcribed at approximately the same rate since the cell needs the

proteins encoded in them to perform basic tasks. For this reason they are also

termed housekeeping genes.

Unlike constitutive genes, putative genes are only expressed or transcribed when

needed according to some signals sensed by the cells using transcription factors

that are only active when these signals are present either in the environment or

inside the cell. There are, basically, two different types of transcription factors,

activators and repressors. Although both types bind to genes, see Figure 4.9,

they have opposite effects. Activators increase the rate of transcription of genes

whereas repressors produce a decrease in the rate of transcription of the genes to

which they bind.

The binding of a transcription factor to a gene is reversible. The processes of

binding and debinding of a transcription factor to a gene can be described by
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Figure 4.9.: Binding and debinding of a transcription factor Tf to a gene.

similar rules to the ones used to specify complex formation and dissociation.

The P system specification schema in (4.8) constitute the specification of these

processes through rewriting rules on multisets of objects.

Rule rgon represents the binding of a transcription factor, represented by the

object Tf , to a gene, specified with the object gene. According to this rule in

compartments of the type represented by the label l a object Tf and an object

gene can be replaced with an object Tf–gene, which represents the situation

when the transcription factor, Tf , is bound to the gene, gene. The reverse

process, the debinding of a transcription factor from a gene, is described through

the rule rgoff . When this rule is applied in compartments of the type l the object

Tf–gene is replaced with the objects gene and Tf .

rgon : [ Tf + gene ]l
cgon−→ [ Tf–gene ]l prop(rgon) = cgon|Tf ||gene|

rgoff : [ Tf–gene ]l
cgoff−→ [ Tf + gene ]l prop(rgoff ) = cgoff |Tf–gene|

(4.8)

The constant cgon associated with the rules describing the binding of transcrip-

tions factors to genes is similar to the constant ccf associated with the complex

formation rule in (4.2) in the sense that both have units of molec−1 time−1 and

can be computed from the macroscopic and deterministic constant used in ODEs.

A very important similarity between these two constants is that both are diffusion
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limited. Nevertheless, the upper bound in the case of cgon is higher because of

the one-dimensional diffusion effects due to the sliding of the transcription factor

along the DNA. The upper bound to cgon is approximately 1010–1011 M−1 sec−1.

This value is actually the upper bound for the corresponding macroscopic and

deterministic constant kgon used in ODEs. In order to use this value for our

constant cgon it is necessary to convert it into molec−1 sec−1 using the volume

of the compartment where the reaction takes place and Avogrado’s number as

described in section 2.6. The constant cgoff associated with the rule describing

the debinding of the transcription factor from the gene is similar to the constant,

ccd, associated with the dissociation rule in (4.2) in the sense that it has units of

time−1, coincides with the constant used in ODEs and has got no general upper

bound as it is determined by the strength of the chemical bonds between the

transcription factor and the gene.

4.3.2. Specification of Transcription Networks using Strings

The use of individual objects to represent the complex structure of genes in the DNA

and RNA and the use of single rules to describe the complex processes of transcrip-

tion and translation have been very successful in modelling transcription networks.

Nevertheless, in order to model accurately the processes involved in transcriptions net-

works using this approach, it was necessary to incorporate in an artificial manner some

features, like delays, that emerge from the linear organisation of genes in the DNA

and the time scale difference between transcription and translation. For instance, in

prokaryotes genes codifying proteins involved in similar tasks are arranged together in

a piece of DNA called operon so that they are transcribed in a single strand of mRNA.

The order in which these genes are placed in operons is relevant, as it determines the

order in which they are transcribed, and thus the order in which their protein products

become available. Therefore, it is necessary to specify genes using linear structures like

strings if one wants to produce relevant models of transcription networks.

Another important fact that is overlooked in approaches describing transcription

and translation as individual processes is that in prokaryotes shortly after transcription

has started and before it is over ribosomes can bind to the growing mRNA and start

translation. Furthermore, there can be many processes of transcription and translation

going on at the same time. Summing up, transcription and translation are concurrent

and parallel processes that are difficult to specify using individual objects and single

step rules. The specification of transcription and translation as concurrent and par-

allel processes has been addressed already in process algebra based approaches; more

precisely in the π-calculus [74].
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Finally, another problem that arises from the use of single step rules for the de-

scription of transcription, translation and protein-protein interaction is the difference

in the time scales of these processes as can be seen in the table of Figure 2.3 in chap-

ter 2. While protein-protein interactions take seconds, transcription and translation

may need half an hour to complete. This difference in the time scales produces a dif-

ference of many orders of magnitude in the stochastic constants associated with the

corresponding rules. When this is the case the applicability of Gillespie’s theory of

stochastic kinetics is questionable as the difference among the stochastic constants dis-

torts appreciably the evolution of the system. In this section this problem is solved

by decomposing the processes of transcription and translation into simpler interactions

whose time scales are similar to those of protein-protein interactions.

In what follows we propose the use of strings to represent the linear structure of

strands of DNA and RNA and the use of rewriting rules on multisets of objects and

strings to describe the binding and debinding of transcription factors to genes and the

processes of transcription and translation as concurrent and parallel processes.

• Binding and debinding of transcription factors to specific sites on the

DNA:

As discussed in the previous section the rate of transcription of most genes is

regulated by specific proteins called transcription factors. These proteins bind to

specific regions of the genes called operators. These sites are normally located

around the region where the RNA polymerase, the protein that directs transcrip-

tion, binds to start transcription. The binding of a transcription factor to an

operator produces a change in the conformation of that region of the gene that

can yield two different and opposite effects. On the one hand, the binding of

a transcription factor to an operator can help the RNA polymerase to bind to

the gene activating transcription. On the other hand, the binding of a transcrip-

tion factor can block the region where the RNA polymerase binds and therefore

it represses transcription. The binding of transcription factors to operators is

reversible.

The P system specification schema in 4.9 describes the binding and debinding of a

transcription factor represented by the object Tf to an operator specified by the

substring 〈site〉. The rule rtfb describes the binding of the transcription factor

Tf to an operator, 〈site〉. The effect of this rule consists of the consumption of an

object Tf and the rewriting of the substring 〈site〉 representing the free operator

with the substring 〈site′〉 representing the operator occupied by the transcription

factor.
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The reverse process of debinding a transcription factor from an operator is de-

scribed in rule rtfd. An application of this rule produces an object Tf and the

replacement of the substring 〈site′〉 with the substring 〈site〉.

rtfb : [ Tf + 〈site〉 ]l
ctfb−→ [ 〈site′〉 ]l prop(rtfb) = con|Tf ||〈site〉|

rtfd : [ 〈site′〉 ]l
ctfd−→ [ Tf + 〈site〉 ]l prop(rtfd) = coff |〈site′〉|

(4.9)

The constant ctfb associated with rule rtfb represents the affinity between the

transcription factor and the operator. Similar to the previous constant associated

with rules describing the formation of molecular complexes, this constant has

units of molec−1time−1 and it is diffusion limited. The constant ctfd associated

with rule ctfd has unit of time−1 and is determined by the strength of the bonds

formed between the operator and the transcription factor. Therefore, there is no

general upper bound for it.

• Transcription:

Transcription is the process by which a specific protein called RNA polymerase

syntheses from a template sequence of DNA the corresponding complementary

strand of RNA. During synthesis of RNA, the four-base language of DNA, con-

sisting of sequences of A (adenine), G (guanine), C (cytosine) and T (thymine),

is copied, or transcribed, into the four-base language of RNA. The four bases in

RNA are identical to those of DNA except for the case of T (thymine) which is

replaced with U (uracil) in the RNA.

To carry out transcription, RNA polymerase performs several distinct functions,

as depicted in Figure 4.10, namely, transcription initiation, mRNA elongation

and transcription termination. In what follows a detailed description of the P

system schemas used to specify these interactions are presented. As mentioned

before these schemas will consists of rewriting rules on multisets of objects and

strings. In this respect, the RNA polymerase will be represented by the object

RNAP. The linear structure of genes in the DNA will be described by strings

whose substrings represent relevant regions or sites in the gene. For instance, the

string in (4.10) will be used to illustrate the effect of the rules presented in this

section.
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gene︷ ︸︸ ︷
prom.siteini.sitemid. · · · .sitemid.siteter (4.10)

Figure 4.10.: Transcription stages taken from [76]

– First the RNA polymerase recognises and binds reversibly to a specific site at

the beginning of the gene, called the promoter, represented by the substring

〈prom〉.
The rewriting rules in (4.11) describe the processes of recognition of the

promoter by the RNAP, the binding of the RNAP to the promoter and the

debinding of the RNAP from the promoter. These rewriting rules act on

multisets of objects and strings.

The recognition of the promoter and binding of the RNAP to the promoter

is described in rule rrb. An application of this rule in a compartment of
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the type specified by the label l consumes an object RNAP and replaces

〈prom〉 with 〈prom.RNAP〉 in a string which contains 〈prom〉 as a substring.

This produces the insertion of the object RNAP after the substring 〈prom〉
in the corresponding string which describes the binding of the RNAP to

the promoter of the gene. The propensity of this rule is computed using

the mass action law, as with previous rules describing the formation of

a molecular complex of any kind. The constant crb measures the affinity

between the RNAP and the promoter. Similarly to the case of the binding

of transcription factors to DNA sites this constant is diffusion limited.

The debinding of the RNAP from the promoter is specified in rule rrd. Ac-

cording to this rule in a compartment of type l the substring 〈prom.RNAP〉
is rewritten with the substring 〈prom〉 and an object RNAP is produced.

An application of this rule produces the removal of the object RNAP from

the string where 〈prom〉 is located, representing the dropping of the RNAP

from the promoter. The constant crd associated with this rule is similar to

previous constants associated with rules describing the dissociation of com-

plexes of any type. In this respect, there is no general upper bound for it

since its value represents the strength of the bonds between the RNAP and

the promoter. The strength of the bond between the RNAP and the pro-

moter does not only depend on the nucleotide5 sequence of the promoters;

transcription factors can bind to the promoter enhancing the bounds.

rrb : [ RNAP + 〈prom〉 ]l
crb−→ [ 〈prom.RNAP〉 ]l

prop(rrb) = con|RNAP||〈prom〉|

rrd : [ 〈prom.RNAP〉 ]l
crd−→ r[ RNAP + 〈prom〉 ]l

prop(rrd) = crd|〈prom.RNAP〉|

(4.11)

Below we present an example of the effect of an application of the rule rrb

5 Nucleotides are the monomoners or elementary molecules which form the nucleid acids, DNA and
RNA.
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on the string introduced in (4.10).

RNAP

prom.siteini.sitemid. · · · .sitemid.siteter

⇓
prom.RNAP.siteini.sitemid. · · · .sitemid.siteter

– During transcription initiation the RNA polymerase melts the DNA

strands in order to make the bases in the template strand available for

base pairing. After several ribonucleotides 6 have been polymerised7 the

RNA polymerase dissociates from the promoter which becomes available for

other polymerases to bind and start transcription.

This process is described by the rewriting rule on multisets of strings in

(4.12). This rule specifies the melting of the double strand of the DNA and

the transcription of the first nucleotides. These nucleotides are represented

by the substring 〈siteini〉. The complementary ribonucleotides are repre-

sented by the substring 〈siteini〉 which mark the beginning of the nascent

(growing) mRNA. The effect of an application of the rule rti in a compart-

ment of type l consists of the replacement of the substring 〈RNAP.siteini〉
with the substring 〈siteini.siteini.RNAP〉 in the string representing the gene.

rti : [ 〈RNAP.siteini〉 ]l
cti−→ [ 〈siteini.siteini.RNAP〉 ]l

prop(rti) = cini|〈RNAP.siteini〉|
(4.12)

An example of the application of rule rti is given below. Note that after

an application of rule rti the substring 〈prom〉 is free so another object

RNAP representing an RNA polymerase can bind to it. In this manner

the binding of RNA polymerases to the promoter of a gene which is already

6The ribonucleotides are the specific nucleotides forming the RNA.
7Polimerisation is the process of bonding monomers to form longer chains called polymers.
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being transcribed can be described using our approach.

prom.RNAP.siteini.sitemid. · · · .sitemid. · · · .siteter

⇓
prom.siteini.siteini.RNAP.sitemid. · · · .sitemid. · · · .siteter

– During the stage of strand elongation, RNA polymerase moves along the

template DNA adding nucleotides to the nascent (growing) RNA chain. Al-

though, the growing mRNA hangs from the RNA polymerase and is not

part of the DNA; in our specification using strings, the substring represent-

ing the growing mRNA is part of the string which represents the DNA.

Nevertheless, different symbols will be used to specify DNA sites and RNA

sites so the growing mRNA can be easily identified. (4.13) depicts how the

growing mRNA hanging from the RNAP is specified as part of the string

representing the gene.

mRNA




siteini

sitemid

...

sitemid

prom.siteini.sitemid. · · · .sitemid. RNAP .sitemid. · · · .siteter

|||

prom.siteini.sitemid. · · · .sitemid.

mRNA︷ ︸︸ ︷
siteini.sitemid. · · · sitemid .RNAP.sitemid. · · · .siteter

(4.13)

The rewriting rule rel in (4.14) describes the process of mRNA elonga-

tion. The substring 〈siteini.w.RNAP.sitemid〉 represents the situation when

the RNA polymerase (RNAP) with a partially formed chain of mRNA,

〈siteini.w〉, is ready to transcribe the next site in the DNA, 〈sitemid〉. Note

that w is a string representing the growing mRNA consisting only of sym-

bols for RNA sites and ribosomes. The substring 〈siteini〉 marks the end of

the growing mRNA.

The addition of newly transcribed nucleotides is achieved by adding the sub-

string 〈sitemid〉 to the substring representing the growing mRNA, 〈siteini.w〉.
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The movement of the RNA polymerase along the DNA leaving behind the

already transcribed sites is described by moving the substring 〈sitemid〉 from

immediately ahead of the symbol RNAP to the end of the growing mRNA

represented by the substring 〈siteini〉.
All this is achieved by rewriting the substring 〈siteini.w.RNAP.sitemid〉 with

the substring 〈sitemid.siteini.w.sitemidRNAP〉 in the string representing the

gene being transcribed as it is described in (4.14).

rel : [ 〈siteini.w.RNAP.sitemid〉 ]l
cel−→ [ 〈sitemid.siteini.w.sitemidRNAP〉 ]l

prop(rel) = cel|〈siteini.w.RNAP.sitemid〉|

(4.14)

The constant cel is used to compute the propensity of the rule rel. This is

done in the same manner as for the previous first order rules. This constant

describes the average number of times the RNA polymerase transcribes a

site of the length of sitemid. This value can be estimated since it is know

that RNA polymerase moves along the DNA synthesising RNA at a rate of

approximately 1000 nucleotides per minute.

Below an example showing the effect of an application of rule rel is presented.

Note that after one application of rule rel the symbol sitemid is left behind

and becomes available for another step representing the transcription of

this site by another RNA polymerase. In this way the parallel transcription

of the same gene by many RNA polymerases can be modelled using our

approach.

prom.siteini.sitemid. · · · .sitemid.siteini.

w︷ ︸︸ ︷
sitemid. · · · sitemid .RNAP.sitemid. · · · .siteter

⇓

prom.siteini.sitemid. · · · .sitemid.sitemid.siteini.

w︷ ︸︸ ︷
sitemid. · · · sitemid .sitemid.RNAP. · · · .siteter

– The last stage in RNA synthesis is transcription termination when a

completed RNA molecule is released from the RNA polymerase and the

polymerase dissociates from the template. There are specific sequences in

the template DNA that mark where RNA polymerase must terminate tran-

scription.
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The rule rter in (4.15) describes the last step in transcription. The termi-

nation site on the DNA marking the place where RNA polymerase must

dissociate is represented by the symbol 〈 siteter 〉. The situation when

the RNA polymerase, RNAP, with a growing mRNA reaches a termination

site is represented by the substring 〈siteini.w.RNAP.siteter〉. The dissoci-

ation of the RNA polymerase from the DNA is described by rewriting the

substring 〈siteini.w.RNAP.siteter〉 with 〈siteter〉. The release of the RNA

polymerase is specified by the production of an object RNAP. Finally, the

release of a completed mRNA is represented by the production of a new

string 〈siteini.w.siteter〉 where the symbols siteini and siteter mark the be-

ginning and end of the newly formed mRNA.

rter : [ 〈siteini.w.RNAP.siteter〉 ]l
cter−→ [ RNAP + 〈siteter〉; 〈siteini.w.siteter〉]l

prop(rter) = cter|〈siteini.w.RNAP.siteter〉|

(4.15)

The constant cter is used to compute the propensity of the rule rter. This

constant is similar to the constant cel as it describes the average number of

times the RNA polymerase transcribes a site of the length of 〈siteter〉.
Below an example showing the effect of an application of rule rter is pre-

sented. Note that after an application of the rule rter the object RNAP

becomes available to bind again to the substring representing the promoter

and start the process of transcription.

prom.siteini.sitemid. · · · .sitemid.siteini.

w︷ ︸︸ ︷
sitemid. · · · sitemid .RNAP.siteter

⇓
RNAP

siteini.

w︷ ︸︸ ︷
sitemid. · · · sitemid .siteter

prom.siteini.sitemid. · · · .sitemid.siteter

• Translation:

Translation is the whole process by which the nucleotide sequence of an mRNA is
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used to order and join the amino acids8 in a polypeptide chain. This sequence of

amino acid determines the three-dimensional structure of the polypeptide chain

and its activity. Therefore, translation is critical to the production of functional

proteins and hence to the proper functioning of cells.

During protein synthesis the four-base language of RNA is translated into the 20

amino acid language of proteins. The genetic code used by cells is a triplet code,

where every three nucleotides in the mRNA or codon corresponds either with an

amino acid or a termination point.

Ribosomes, complexes of an special RNA called rRNA (ribosomal RNA) and

proteins, direct the formation of polypeptides. Similarly to transcription, the

complex process of translation can be divided into three stages, initiation, elon-

gation and termination, see Figure 4.11.

Figure 4.11.: Translation stages taken from [76]

– In prokaryotes, shortly after RNA polymerase starts transcription and be-

fore it is over, ribosomes bind to the growing mRNA to start translation.

Synthesis of all polypeptide chains in prokaryotic and eukaryotic cells begins

with the amino acid methionine. In most mRNAs, the codon codifying this

amino acid and thus marking the start point for translation is AUG9. In our

P system specification schema for translation initiation, the initiation codon

is specified using the substring 〈siteini〉 in the string describing the mRNA.

Ribosomes are represented using the object Rib. The rule rtli describes the

binding of a ribosome, Rib, to the initiation codon, 〈siteini〉. An application

8Amino acids are the monomers or building blocks of proteins. Proteins are synthesised via poly-
merisation of amino acids through peptide bonds yielding a chain which constitutes the primary
structure of proteins.

9Although AUG is the initiator codon in most cases, in a few bacterial mRNAs GUG and CUG are
used as initiator codons.

97



4. P System Specifications of Cellular Systems

of this rule in a compartment of type l consumes an object Rib and rewrites

the substring 〈siteini〉 with 〈 siteini.Rib 〉 in the string describing the mRNA.

This produces the insertion of the object Rib after the substring 〈siteini〉
which describes the initiation of a translation process by a ribosome.

rtli : [ Rib + 〈siteini〉 ]l
ctli−→ [ 〈siteini.Rib〉 ]l

prop(rtli) = ctli|Rib||〈siteini〉|
(4.16)

The constant ctli associated with the rule in (4.16) represents the affin-

ity between a ribosome and the initiation codon specified by the substring

〈siteini〉.
Next we present an example of the effect of an application of rule rtli. Note

that in the string used in this example there is a symbol RNAP which indi-

cates that transcription is in process and has not yet finished. This does not

prevent translation from initiation which is the case in prokaryotes. There-

fore, in our approach it is possible to specify transcription and translation

as concurrent and parallel processes.

Rib

prom.siteini.sitemid. · · · .sitemid.siteini.sitemid. · · · sitemid.RNAP.sitemid. · · · .siteter

⇓
prom.siteini.sitemid. · · · .sitemid.siteini.Rib.sitemid. · · · sitemid.RNAP.sitemid. · · · .siteter

– Ribosomes direct elongation of a polypeptide by moving along an mRNA

chain interacting with various proteins factors and tRNAs10. The key steps

in elongation are the entry of each amino acid, the formation of a peptide

bond11 with the preceding amino acids and the movement or translocation

of the ribosome on the mRNA being translated.

In our approach the growing chain of amino acids is not specified as our

focus is on the release of the protein once translation is finished. Therefore,

in elongation we only specify the movement of ribosomes along the mRNA.

10tRNAs are small molecules of special RNA that transfer specific amino acids to a growing polypep-
tide chain through interactions with ribosomes

11A peptide bond is formed between two amino acids when the carboxyl group of one of them reacts
with the amino group of the other group releasing a molecule of water.
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The rule in (4.17) describes a step of elongation. The substring 〈Rib.sitemid〉
describes the situation when a ribosome, Rib, is posed to read the next piece

of mRNA, 〈sitemid〉 and attach the corresponding amino acids to the growing

polypeptide. The translocation of a ribosome along the mRNA is achieved

by rewriting the substring 〈Rib.sitemid〉 with the substring 〈sitemid.Rib〉.

rtle : [ 〈Rib.sitemid〉 ]l
ctle−→ [ 〈sitemid.Rib〉 ]l

prop(rtle) = ctle|〈Rib.sitemid〉|
(4.17)

The constant ctle associated with the rule rrle represents the average number

of sites represented by sitemid are translated by time unit. This constant

can be deduced using the fact that ribosomes add new amino acids to a

growing polypeptide at a rate of approximately three to five amino acids

per second.

Below we present an example of an application of rule rtle in a string repre-

senting a gene that is being transcribed and translated at the same time:

prom.siteini.sitemid. · · · .sitemid.siteini.Rib.sitemid. · · · sitemid.RNAP.sitemid. · · · .siteter

⇓
prom.siteini.sitemid. · · · .sitemid.siteini.sitemid.Rib. · · · sitemid.RNAP.sitemid. · · · .siteter

– The final stage in the production of a polypeptide chain consists in trans-

lation termination. Ribosomes dissociate from a mRNA and release a com-

pleted polypeptide chain when they reach specific codons marking termina-

tion points. There are three termination codons UAA, UGA and UAG.

This last process in the translation of a mRNA into a polypeptide is de-

scribed by the rule rtlt in (4.18). The situation when a ribosome reaches a

termination codon is represented by the substring 〈Rib.siteter〉. The disso-

ciation of the ribosome from the mRNA and the release of the polypeptide

chain are described by rewriting the substring 〈Rib.siteter〉 with the sub-

string 〈siteter〉 in the string representing the mRNA and the production of

an object Rib and Prot specifying a free ribosome and a newly produced

protein, respectively.
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rtlt : [ 〈Rib.siteter〉 ]l
ctlt−→ [ Rib + 〈siteter〉; Prot ]l

prop(rtlt) = ctlt|〈Rib.siteter〉|
(4.18)

The constant ctlt associated with rule rtlt and used to compute its propensity

is similar to the previous constant ctle as it represents the average number

of sites of the length of the site represented by 〈siteter〉 are translated by

time unit.

Below we present an example of an application of rule rtlt. Note that for

the application of a rule of this type, the production of a complete mRNA

between an initiation and a termination codon is necessary, which it is nor-

mally referred to as a reading frame.

siteini.Rib.sitemid. · · · sitemid.Rib.siteter

⇓
Rib

Prot

siteini.Rib.sitemid. · · · sitemid.siteter

Note that our approach allows us to describe the translation of the same

mRNA by many ribosomes which is the case in living cells. For instance, in

the example above there are two symbols which representes two ribosomes

translating the same strand of mRNA.

4.4. Systems Biology Markup Language and P

System Models

This section addresses the translation of Systems Biology Mark-Up Language (SBML)

Level 2 version 1 models into P systems models.

Computational modelling in cellular research is becoming increasingly important

as a means of helping to better understand cellular functions by using software tools.

Due to the large community of researchers working in the field they often face sev-

eral problems. Normally, users need to work with complementary software tools like

simulators, model checkers, parameter estimators, graphical tools, etc. and it becomes

difficult to transfer a model from one tool to another. It is also usual to work with

models published in peer-reviewed journals. These models, in spite of being sometimes
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accompanied by instructions for obtaining their definitions in electronic format, are

not clearly identified or easily retrieved because each author may use a different repre-

sentation language. Another problem appears when simulation software packages are

no longer supported and models developed in these systems become unusable.

The diversity of approaches and methods in cellular modelling implemented by

different software tool developers demands a common intermediate format, a lingua

franca, enabling communication of the most essential aspects of a model. The Sys-

tems Biology Markup Language (SBML) was developed in an effort to address this

demand. SBML is a format for representing biochemical networks and is intended

to be convenient for computer software tools to generate and parse, thereby enabling

communication of biochemical networks and interoperability between disparate mod-

elling and simulation tools. It is intended to be independent of particular modelling

approaches and should be appropriate for any modelling approach. It is essentially an

eXtensible Markup Language (XML) encoding the main components of biochemical

networks.

Here we will concentrate on the current specification, SBML Level 2 (version 1).An

SBML model consists of the optional lists of functions, units, compartments, species,

parameters, rules, reactions and events. This is the basic structure of an SBML Level

2 (version 1) specification:

<?xml version="3.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2" level ="2" version ="1">

<model id = " ">

<listOfFunctionDefinitions>

...

</listOfFunctionDefinitions>

<listOfUnitDefinitions>

...

</listOfUnitDefinitions>

<listOfCompartments>

...

</listOfCompartments>

<listOfSpecies>

...

</listOfSpecies>

<listOfParameters>

...

</listOfParameters>

<listOfRules>
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...

<listOfRules>

<listOfReactions>

...

</listOfReactions>

<listOfEvents>

...

</listOfEvents>

</model>

</sbml>

Here we only describe the list of units, compartments, species, parameters and

reactions, as these are sufficient for adequately describing models coming from most

modelling approaches notably ours. For a complete description of SBML Level 2 version

1 see [135].

• The list of units allows definition and redefinition of the units used in the model.

The units are a delicate issue in a model as it is the main point where mesoscopic-

stochastic and macroscopic-deterministic models differ. Mesoscopic models nor-

mally use number of molecules as units while macroscopic models work with

concentration units. By default SBML assumes the use of concentration units

and this is changed by the following code:

<listOfUnitsDefinitions>

<unitDefinition id="species">

<listOfUnits>

<uniy kind = "item" />

</listOfUnits>

</unitDefinition>

</listOfUnitsDefinitions>

• The list of compartments enumerates the compartments in the model. A model

must have at least one compartment and each compartment should be given

an id. One may also specify a name for the compartment, a size (or volume),

units for the volume, etc. A hierarchical structure consisting of compartments

embedded inside other compartments can be specified using the optional field

outside. For example a model consisting of two nested compartments would be

specified as follows:
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<listOfCompartments>

<compartment id = "id1" name = "cytoplasm" />

<compartment id = "id2" name = "nucleus" outside = "id1" />

<\listOfCompartments>

• The list of species states all the molecular species of the model. Each species

must have an id and can also be given a compartment where it is located, the

initial amount or concentration and other attributes.

<listOfSpecies>

<species id=" " compartment=" " initialAmount= " " />

...

</listOfSpecies>

• The list of parameters contains the definition of constants that are used in the

model. It is also possible to declare local parameters in the kinetic law of reaction

as discussed below. An example of a parameter list is given below:

<listOfParameters>

<parameter id = "c1" value="0.01" />

<parameter id = "c2" value="0.2" />

</listOfParameters>

• The list of reactions consists of an enumeration of the reactions of the system.

A reaction in turn consists of a list of reactants, a list of products and a kinetic

law. The list of reactants and the list of products contains the identifiers of

the reactant and product species of the reaction. The kinetic law is a MathML

encoding of the formula describing the rate of the reaction. Within the kinetic law

local parameters can be specified. For example the code given below specifies a

reaction with reactants reactant1 and reactant2, product product1 and kinetic

law K*reactant1*reactant2 where K is a local parameter.

<reaction id="r1" reversible ="false">

<listOfReactants>

<speciesReferences species="reactant1">

<speciesReferences species="reactant2">

</listOfReactants>

<listOfProducts>
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<speciesReferences species="product1">

</listOfProducts>

<kineticLaw>

<math xmlns="http://www-w3.org/1998/Math/MathML">

<apply>

<times/>

<cn> K </cn>

<ci> reactant1 </ci>

<ci> reactant2 </ci>

</apply>

</math>

<listOfParameters>

<parameter id="K" value="0.002">

</listOfParameters>

</kineticLaw>

</reaction>

By using SBML different software tools can all operate on an identical representa-

tion of a model, reducing opportunities for errors in translation and assuring a common

starting point for simulation and analysis.

SBML should not be regarded as an alternative to other representations, but simply

as an electronic format which could in principle be used in conjunction with the spec-

ifications of any modelling framework. Also note that SBML representations should

be generated and manipulated not by hand but rather by software tools which present

the user a friendlier interface. In this work we will use CellDesigner, a structured dia-

gram editor for drawing gene-regulatory and biochemical networks [37] which exports

graphical models of cellular systems to SBML format.

4.4.1. Translating SBML Format into P Systems Models

Not all the components of an SBML Level 2 version 1 file can be translated into a P

system model. Here we will only discuss how to translate the sections corresponding

to units, species, compartments and reactions.

• Units are the first section to be analysed when translating an SBML file into a

P system model. It is necessary to check the units of the initial amounts of the

species and parameters. By default, SBML assumes concentration units of moles

per liter. In this case it is necessary to expresse the initial amount of the species
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in molecules by multiplying the quantities given in the SBML file by the volume

of the compartment where the species are located and by Avogradro’s number.

The conversion of deterministic-macroscopic constants into the corresponding

mesoscopic-stochastic ones is done as discussed in section 2.6.

• Compartments are considered in SBML format as bounded regions in which

species are located. In P system models, membranes do not necessarily corre-

spond to real cellular membranes delimiting compartments. Instead they are

used to define homogeneous regions where localised reactions take place. Here

we will only consider the cases when the regions delimited by membranes in a P

system model correspond to actual compartments or compartments surfaces. In

this scenario given a compartment specification in SBML:

<compartment id = "id1" name = "comp" outside="id0" />

Two membranes are generated: one with label comp-surf representing the com-

partment surface, [ ]comp−surf ; and another one with label comp, representing the

inner part of the compartment, [ ]comp. This second membrane will be embedded

inside the first one, [ [ ]comp ]comp−surf . The rest of the hierarchy in the mem-

brane structure is inherited directly from the SBML specification using the field

outside of each compartment.

• Species are treated in SBML format as simple, indivisible biochemical entities.

This permits the specification of species as objects in the alphabet of a P system

model. Species are also given an initial amount and a compartment where they

are located. Since each compartment from the SBML format produces two mem-

branes it is not obvious in which of them the objects representing species will be

placed. Therefore given the specification of a species in SBML:

<species id="s1" name = "species1"

compartment="id-comp" initialAmount= "Init" />

an object species1 will represent this species in the alphabet of the P system

model. In order to decide in which of the two membranes used to describe the

compartment id-comp this object is placed it is necessary to determine the species

that interact with species1. This is done by analysing the list of reactions. If

species1 reacts with species located in the compartment outside the compart-

ment id-comp then we consider that it is located on the compartment surface

and therefore we place the object in the membrane with label comp-surf. Oth-

erwise it is located in the membrane with label comp. The initial amount Init

105



4. P System Specifications of Cellular Systems

is used to compute the multiplicity of the object species1 in the initial multiset

associated with the corresponding membrane.

• Reactions in SBML are described in terms of reactants, products and an optional

kinetic law. SBML does not impose any restriction on the number of reactants

and products. In principle P systems rules support any number of objects on

the left and right hand side of the rules. Nevertheless, since Gillespie’s theory of

stochastic kinetics is used in this work the types of rules supported are limited

to those discussed in sections 4.2 and 4.3.1. All these rules describe first or

second order reactions. Although reactions with more than two reactants can be

factorized in binary interactions SBML does not provide any information about

the dynamics of these intermediary reactions preventing the use of this procedure.

Therefore our study is limited to the translation of SBML models containing at

most second order reactions.

Another issue arises from the fact that, in SBML Level 2 version 1, compartments

are attributes of species but not of reactions. Consequently, reactions are not

associated with regions as it is the case in P systems models where the sets of

rules are localised in the different regions defined by membranes. This makes the

translation of the list of reactions of an SBML file into the rules of a P system

model a delicate process. In order to localise a given reaction in a region defined

by a membrane the first step is to determine which type of rule from the ones

introduced in section 4.2 can be used to represent this reaction.

Finally, the kinetic law associated with a reaction can be an arbitrary complex

mathematical expression specified in MathML with no information as to whether

the given rates are deterministic or stochastic. Thus the given kinetic law will not

be taken into account and the correct propensities associated with the reactions

will be computed using Gillespie’s theory of stochastic kinetics with the parameter

declared in the reaction as a local parameter.

The following steps demonstrate how to translate the reactions from an SBML

file into P system rules distinguishing between first and second order reactions.

1. First order reactions: Reactions with a single reactant, r, can be de-

scribed using different types of rules depending on the number and location

of the products. The first step in translating a first order reaction consists

of determining the membrane in which r is placed. This was done before

when translating the section corresponding to species. Let’s assume that r

is associated with the membrane with label l. Since the only reactant is

located in membrane l it is natural to associate the rules that represent this
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type of reaction with membrane l. The rule that can be used to represent a

first order reaction depends on the number of products and their location.

– Reactions with a single product p located in membrane l: In this case

the following transformation rule is used to describe the reaction,

[ r ]l
c−→ [ p ]l

The constant c represents the local parameter defined in the section

kinetic law of the analysed reaction.

– Reactions with a single product p located in the membrane l′ outside

membrane l: Here a diffusion out rule of the following form describes

this type of reaction,

[ r ]l
c−→ p [ ]l

– Reactions with a single product p located in a membrane embedded

into membrane l identified with the label l′: In this case the following

diffusion in rule specifies this type of reaction,

r [ ]l′
c−→ [ p ]l′

– Reactions with two products, p1 and p2 both located in membrane l:

The following complex dissociation rule represents this type of reaction,

[ r ]l
c−→ [ p1 + p2 ]l

– Reactions with two products, p1 located in the membrane l′ outside

membrane l and p2 located in membrane l: In this situation the following

debinding rule is used to specify this type of reaction,

[ r ]l
c−→ p1 [ p2 ]l

– Reactions with two products, p1 located in membrane l and p2 located

in a membrane embedded into membrane l identified with the label l′:

Here the following releasing rule describes this type of reaction,

r [ ]l′
c−→ p1 [ p2 ]l′

2. Second order reactions: Reactions with two reactants, r1 and r2, and a

single product p can be described using different types of rules depending on

the location of r1, r2 and p. Thus, the first step of the translation consists
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in determining the membrane or membranes where r1, r2 and p are placed.

This was done before when translating the section corresponding to species.

Depending on the location of the reactants, r1 and r2, the rule representing

the corresponding reaction will be associated with a different membrane.

The rules used to represent a second order reaction depend on the location

of r1, r2 and p and are selected as follows.

– Reactions with both reactants r1 and r2 located in the same membrane

l and with a single product p also located in the same membrane l: In

this situation a complex formation rule of the following form is used to

describe this type of reaction,

[ r1 + r2 ]l
c−→ [ p ]l

It is natural to associate this rule with membrane l since all the objects

involved in the rule are located in this membrane.

– Reactions with r1 located in membrane l, which is outside membrane l′

where r2 and the product p are located: In this case a binding rule of

the following type represents this type of reaction,

r1 [ r2 ]l′
c−→ [ p ]l′

As discussed in section 4.2 this type of rule can be used to describe the

interaction of a ligand r1 and a receptor r2, placed on the surface of a

compartment, to produce a complex receptor-ligand. This interaction

takes place in the compartment where the ligand is present, thus this

type of rule is associated with membrane l where r1, which represents

the ligand, is located.

– Reactions with r1 and the product p located in membrane l, which is

outside membrane l′ where r2 is located: The following recruitment rule

is used to specify this type of reaction,

r1 [ r2 ]l′
c−→ p [ ]l′

In section 4.2 recruitment rules were introduced to describe the process

whereby a protein r1 placed on the inner part of a compartment surface

interacts with another protein r2 floating freely in the compartment to

form a complex p that remains attached to the compartment surface.

This interaction takes place in the inner part of the compartment which
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is represented in this rule by the membrane with label l′. Therefore this

rule will be associated with the membrane with label l′.
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Although cell biology has evolved to function and not to be comprehensible, they show an
inherent simplicity, by employing and combining a rather small set of basic building-block
circuits, each for specific tasks.

Uri Alon

5.1. Modules in Cellular Biology and P Systems

Cellular functions are rarely performed by an individual molecule; most biological

functions arise as emergent behaviour from the interactions among modules made up

of many molecular species. In this work a module is defined as a discrete entity which

performs a specific function separable from those of other modules. The function of

a module is a result of the interactions among their components, these functions are

not easily predicted by studying the properties of their isolated components. This

separation depends on chemical isolation, which can originate from spatial localisation

in different compartments or from chemical specificity [53]. These both features can

be easily represented in P systems using membranes for spatial localisation and rules

for chemical specificity.

Modules can be isolated or connected to each other. Isolation allows the cell to

carry out many diverse processes without interferences among them that would harm

the cell, whereas connectivity allows higher level functions to be built by assembling dif-

ferent modules. P systems have proved to be a useful tool in studying self-assembling

processes [16, 18], therefore they are a suitable framework to study how the modu-

larisation and pattern of connections among the functional cellular modules achieve

emergent behaviours such as amplification, adaptation, robustness, insulation, error

correction, coincidence detection, etc.

In this chapter we will show how P systems can specify in a comprehensive and

relevant manner functional modules in cellular systems. The modular specification of

cellular systems allows us to identify the organisation and function of the living cell and
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to explain general principles that govern different self-assembly processes occurring in

synthetic sciences like engineering or artificial life.

As mentioned before modularisation in cellular systems is due to chemical specificity

and spatial location in different compartments.

• On the one hand, modularisation due to chemical specificity is represented in P

systems using modules of rewriting rules on multisets of objects and strings of

one of the following two forms:

obj1 [ obj2 ]l
c−→ obj′1 [ obj′2 ]l (5.1)

where obj1, obj2, obj
′
1, obj

′
2 are finite multisets of objects over an alphabet O and l

a label specifying a compartment type. According to rules of this type, a multiset

of objects obj1 located outside a compartment of the type specified by label l and

a multiset obj2 inside this compartment can be simultaneously replaced with a

multiset obj′1 and a multiset obj′2 respectively.

[ obj1+str1; . . . ; objp+strp ]l
c−→ [ obj′1+str′1,1+. . . str

′
1,i1 ; . . . ; obj

′
p+str′p,1+. . . str′p,ip ]l

(5.2)

where obj1, . . . , objp and obj′1, . . . , obj
′
p are finite multisets of objects over an alpha-

bet O, str1, . . . , strp and str′1, . . . , str
′
p are strings over O and l a label specifying

a compartment type. According to rules of this type, the multisets obj1, . . . , objp

are replaced with the objects obj′1, . . . , obj
′
p inside a compartment of the type

specified by label l. And at the same time, the strings str1, . . . , strp are rewritten

with the strings str′1, . . . , str
′
p on the strings where str1, . . . , strp are substrings.

The stochastic constant c associated with each rule is used to compute its propen-

sity according to the discussions in Chapter 4.

Definition 5.1 (P system Module). A P system module is a set of rules

of one of the form in (5.1) or (5.2) representing molecular interactions which

occur repetitively in many cellular systems. A module is identified with a name

and three sets of variables, V , C and Lab. V represents variables that can

be instantiated using objects or strings which describe molecular entities. C

represents the stochastic constants associated with each rule. Lab specifies the

labels of the compartments involved in the rules. Formally, a module, mod, with

variables V , constants C and labels L will be written as mod(V, C, L). More

complex modules can be constructed from simple modules by applying set union.

111



5. Modularisation in P systems

• On the other hand, modularisation due to spatial location in different compart-

ments is specified in P systems using a membrane structure; a hierarchical ar-

rangement of membranes defining compartments where all the membranes but

one must be included in a unique main membrane, the skin, which defines the

boundary of the system with respect to the external environment. The mem-

brane structure can be represented formally, as a rooted tree, where the nodes

are called membranes, the root is called skin, and the inclusion of a membrane

inside another one is represented by its node being the descendent of another

one.

Recall that a P system specification is a construct

Π = (O, L, µ, M1, M2, . . . , Mn, R1, . . . , Rn)

where O is a finite alphabet of symbols representing molecular entities; L is a finite

alphabet of labels representing types of compartments; µ is a membrane structure

containing n ≥ 1 membranes labelled with labels from L; Mi = (li, wi, si), for each

1 ≤ i ≤ n, is the initial configuration of membrane i with li ∈ L; wi a finite multiset of

objects over O; and si a multset of strings over O. Finally, Ri the set of rules associated

with compartment i , for each 1 ≤ i ≤ n, can be obtained as a finite union of modules

representing molecular interactions involving this compartment.

Regarding modularisation due to spatial compartmentalisation, a P system specifi-

cation can be seen as representing an individual entity such as a bacterium or eukaryotic

cell and so the behaviour of a colony or tissue of such entities can be studied using

colonies of P systems as it will be discussed in Chapter 8.

5.2. A Library of Basic P System Modules

In this section we introduce a library of basic P system modules representing protein-

protein and gene control interactions that will be used to construct more complex

modules.

5.2.1. Protein-protein Interaction Modules

Many important cellular processes depend on interactions between proteins. For ex-

ample, the binding of a molecule to another one can alter (regulate) the activity of the

complex which can be completely different from the activity of the single molecules.

• Dimerisation Module: Two molecules, X and Y , can collide and stick together

through noncovalent interactions to produce a complex Z. This complex in turn
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can dissociate back into X and Y . In biochemistry, these reactions are referred

as dimerisation.

dim({X, Y, Z}, {c1, c2}, {l}) =

{
[ X + Y ]l

c1−→ [ Z ]l,

[ Z ]l
c2−→ [ X + Y ]l

}
(5.3)

• Enzymatic reaction: Some chemical reactions are assisted by some proteins

called enzymes. The enzyme X binds reversibly to the substrate Y . Once they

are together forming a complex Z the enzyme produces a change in the substrate

and then they dissociate releasing the unchanged enzyme X and the product W .

enz({X, Y, Z, W}, {c1, c2, c3}, {l}) =




[ X + Y ]l
c1−→ [ Z ]l,

[ Z ]l
c2−→ [ X + Y ]l,

[ Z ]l
c2−→ [ X + W ]l


 (5.4)

When the substrate is available in such quantities that it does not affect the

dynamics of the reaction the above module can be simplified by considering that

the enzyme X produces a product Z not being consumed in the reaction.

prod({X, Z}, {c1}, {l}) = { [ X ]l
c1−→ [ X + Z ]l} (5.5)

• Degradation: The cell machinery degrades molecules in order to control their

activity.

deg({X}, {c1}, {l}) = { [ X ]l
c1−→ [ ]l}

• Diffusion: Small molecules can readily move by passive simple diffusion across

membranes without the aid of transport proteins. The rewriting rules in these

modules constitute the specification in P systems of diffusion in and out of a

compartment. This compartment is represented by square brackets with a label

l, that identifies the type of the compartment. For diffusion in the object X

is moved from the compartment surrounding compartment l inside the region

defined by it, and viceversa for diffusion out from compartment l.

diffin({X}, {c}, {l}) = {X [ ]l
c−→ [ X ]l}

diffout({X}, {c}, {l}) = {[ X ]l
c−→ X [ ]l}
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5.2.2. Gene Regulation Modules

We now present some modules for the specification of gene regulation control in prokrary-

otes constructed using previous modules. For simplicity, transcription and translation

are represented using individual rules. Nevertheless, in living cells transcription and

translation involve many interactions between RNA polymerase, DNA, mRNA and

ribosomes that take place in a concurrent manner.

• Constitutive expression: We start by modelling constitutive genes; genes

whose level of expression does not depend on transcription factors. This kind

of genes are transcribed continually at a relatively constant level.

In this case from the gene encoded in the DNA, G, the mRNA, R, is transcribed

or produced using the module prod({G, R}, {c1}, {l}). The mRNA translation

and production of the protein product associated with the gene, P , is specified

in the module prod({R,P}, {c2}, {l}). The mRNA and protein degradation are

represented by the modules deg({R}, {c3}, {l}) and deg({P}, {c4}, {l}).

const({G, R, P}, {c1, . . . , c4}, {l}) =




prod({G, R}, {c1}, {l}) ∪
prod({R, P}, {c2}, {l}) ∪
deg({R}, {c3}, {l}) ∪
deg({P}, {c4}, {l})


 (5.6)

This type of genes is also referred to as unregulated genes, and therefore the

previous module can be also denoted using UnReg.

• Positive regulation: Unlike constitutive genes, facultative genes are only ex-

pressed when needed according to some signals received by the cell from its

surroundings. Activators are transcription factors which bind to the promoter of

genes and activate their expression by recruiting RNA polymerase.

The activation of the gene G after the binding with the activator A is specified

using the module dim({A, G, Gon}, {c1, c2}, {l}). The processes of transcription

and translation are represented using the same modules as the case of constitutive

expression. Note that here the active form of the gene is producing the mRNA.
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pos({A, G, Gon, R, P}, {c1, . . . , c6}, {l}) =




dim({A, G, Gon}, {c1, c2}, {l}) ∪
prod({Gon, R}, {c3}, {l}) ∪
prod({R,P}, {c4}, {l}) ∪
deg({R}, {c5}, {l}) ∪
deg({P}, {c6}, {l})




(5.7)

• Negative regulation: As opposed to positive regulation in some conditions

cells do not need the protein product encoded by a gene; in this case this gene

is turned off or repressed by transcription factors called repressors. Repressors

bind to the promoter site of genes blocking it so that polymerase cannot bind

to it and thus preventing genes from being transcribed. The blocking of gene G

after the binding of repressor Rep to its promoter is specified using the module

dim({Rep,G,Goff}, {c1, c2}, {l}).

neg({Rep,G,Goff , R, P}, {c1, . . . , c6}, {l}) =

=




dim({Rep,G,Goff}, {c1, c2}, {l}) ∪
prod({G, R}, {c3}, {l}) ∪
prod({R,P}, {c4}, {l}) ∪
deg({R}, {c5}, {l}) ∪
deg({P}, {c6}, {l})




(5.8)

In this section we have presented a simple approach on P systems specification

modularisation. The approach emphasises the benefits of a flexible and uniform mod-

elling paradigm based on modules obtained either from simple P systems rules or other

already defined modules. The method allows to specify a large class of problems and

to reuse a model for other similar contexts.

5.3. Modelling Cellular Modules Combining P System

Modules

Now we can start to specify and model more complex patterns that can be found in

cellular systems by combining the basic modules introduced in the previous section.

The first step in this task consist of the search of cellular modules. Recall that in-

tuitively a cellular module is a recurring pattern in networks of interacting molecular

entities that occurs far more often than at random [4].
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Figure 5.1.: Negative autoregulation

In this section we will use only autoregulation in transcription networks to illustrate

our approach.

5.3.1. Negative Autoregulation

Negative autoregulation is a pattern in transcription networks occurring in about half

of the repressors in Escherichia coli [122]. It consists of a gene whose protein product

acts as a transcription factor repressing its own transcription, Figure 5.1.

Negative autoregulation (NAR) can be obtained from the negative regulation mod-

ule in 5.8 by constraining the variables representing the repressor and the protein

product to be instantiated with the same objects.

NAR({G, Goff , R, P}, {c1, . . . , c6}, {l}) = neg({P, G, Goff , R, P}, {c1, . . . , c6}, {l})
(5.9)

In what follows we will try to find properties of the negative autoregulation module

which have been the reason why evolution has selected it as a recurrent pattern in cel-

lular systems. In order to elucidate these properties the dynamics of the NAR module

will be compare with the dynamics of the module representing an unregulated gene or

constitutive gene (UnReg). To make a meaningful comparison between two different

designs, one must carried the experiments with equivanlence of as many parameters as

possible between the alternative designs, this comparison methodology is referred to
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as mathematically controlled comparison [113, 112]. In this work PRISM will be

used to compare the dynamics of different P system modules following the methodology

introduced in section 3.4.

The research of the dynamics of modules focuses in the study of how fast or slow

the number of the molecular specifies involved in the module change over time. An

important measure for the characterisation of these dynamics is the response time. The

response time is generally defined as the time to reach halfway between the initial and

the final levels in a dynamic process.

Following a mathematically controlled comparison we will study the dynamics of the

NAR and UnReg modules using the same stochastic constants for the rules describing

translation and degradation of the mRNA and protein. More specifically, the stochastic

constants for the UnReg module will be cUnReg
1 = 2.89 × 10−3 molec sec−1, cUnReg

2 =

0.04 sec−1, cUnReg
3 = 2×10−3 sec−1, and cUnReg

4 = 5.78×10−4 sec−1, and the stochastic

constants for the NAR module will be cNAR
1 = 0.03 molec−1sec−1, cNAR

2 = 5.78 ×
10−2 sec−1, cNAR

3 = 0.13 molec sec−1 , cNAR
4 = cUnReg

2 , cNAR
5 = cUnReg

3 , and cNAR
6 =

cUnReg
4 . In Figure 5.2 the expected evolution of the number of proteins over time for

the NAR module and UnReg module with stochastic constants enumerated before is

depicted. Note that the dynamics of both modules reach a steady state of about 100

protein molecules. The constant cNAR
3 was chosen so both modules share the same

steady state as we need to have modules having as many parameters equal as possible.

Figure 5.2.: Expected evolution of the number of proteins over time for the NAR and

UnReg modules.

The property we will compare is the response time in both modules. It has been

found that negative autoregulation speeds the response time in transcription networks

[109]. We will check this property for our stochastic and discrete P system modules

using PRISM. The dynamics of both modules, with respect to the number of proteins,

go from zero proteins to a steady state of 100 proteins. Therefore, the response time in

this case is the expected time to reach 50 proteins. In Figure 5.3, the expected responses
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time for both the NAR and UnReg modules are compared using the expected evolution

of the number of proteins over time. Note that indeed the response time in the NAR

module is much shorter.

Figure 5.3.: Negative autoregulation accelerates response times

PRISM is not only limited to the computation of the expected behaviour of systems.

For instance, here we can compute the probability of exceeding 50 protein molecules

over time which is associated with the response time. This is shown in Figure 5.4. Note

that the probability of reaching 50 molecules in the case of negative autoregulation is

appreciable within the first hundreds of seconds; whereas for the case of unregulated

expression this probability is not appreciable until the first thousands of seconds.

Figure 5.4.: Probability of the response time in negative autoregulation (left) and un-

regulated expression (right).

5.3.2. Positive Autoregulation

Positive autoregulation is a pattern in transcription networks which consists in a gene

whose protein product acts as a transcription factor enhancing its own transcription,
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Figure 5.5.: Positive autoregulation

Figure 5.5.

Positive autoregulation (PAR) can be obtained from the positive regulation module

in 5.7 by constraining the variables representing the activator and the protein product

to be instantiated with the same objects.

PAR({G, Gon, R, P}, {c1, . . . , c6}, {l}) = pos({P, G, Gon, R, P}, {c1, . . . , c6}, {l})
(5.10)

For this case following the previous analysis for the NAR and Unreg modules we

compare the response time in the PAR module. Figure 5.6 shows the expected evo-

lution of the number of proteins in the PAR module (left) and in the UnReg module

(right). It can be observed that in this case opposite to negative autoregulation positive

autoregulation slows down the response time.

Figure 5.6.: Positive autoregulation slows down the response time

The study of more complex P systems modules representing modular patterns in

cellular systems remains a promising and challenging future work open in this thesis.
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6. Modelling Prokaryotic Gene

Regulation

The structure and function of living cells is determined by the specific set of proteins

they contain. These specific and characteristic proteins are codified in the cell genome.

The control of gene expression determines which genes are expressed and therefore the

specific proteins present in a cell. In this respect, the control of gene expression is a

fundamental aspect in molecular cell biology subject to intensive research in computa-

tional systems biology.

In most bacteria or prokaryotic cells gene expression is highly regulated in order

to produce the necessary proteinic machinery to respond to environmental changes.

Therefore, at a given time, a bacterial cell synthesises only those proteins necessary for

its survival under the particular conditions of that time. Gene expression in prokary-

otes, and also in eukaryotes, is regulated primarily by mechanisms that control tran-

scription initiation.

In this chapter we describe the basic modelling principles for prokaryotic gene reg-

ulation within the P system modelling framework. The lac operon regulation system

will be used as a case study to illustrate the general principles presented in chapter

3. A brief description of the gene expression control in the lac operon is presented

in section 6.1. According to this description a P system specification and a family

of P system models are developed in section 6.2. Finally, in section 6.3, an analysis

of the behaviour of the lac operon system under different environmental conditions is

discussed.

6.1. Gene Expression Control in the Lac Operon

Many of the genes in Escherichia coli (E. coli) are expressed constitutively; that is, they

are always turned on. Others, however, are active only when their products are needed

by the cell, so their expression must be regulated. The most direct way to control the
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expression of a gene is to regulate its rate of transcription; that is, the rate at which

RNA polymerase transcribes the gene into molecules of messenger RNA (mRNA).

Adding a new substrate to the culture medium may induce the formation of new

enzymes capable of metabolising that substrate. An example of this phenomenon

happens when we take a culture of E. coli that is feeding on glucose and transfer some

of the cells to a medium containing lactose instead, a revealing sequence of events takes

place.

At first the cells are quiescent: they do not metabolise lactose, their other metabolic

activities decline, and cell division ceases. Soon, however, the culture begins growing

rapidly again with the lactose being rapidly consumed. During the quiescent interval,

the cells began to produce three enzymes that they had not been producing before: a

permease, LacY, that transports lactose across the plasma membrane from the culture

medium into the interior of the cell; β-galactosidase which hydrolyses lactose into

glucose and galactose, and a transacetylase, LacA, whose function is still uncertain.

The genes encoding these proteins which are involved in the uptake and consump-

tion of lactose are located on a region of the E. coli genome called lac operon.

Figure 6.1.: Lac Operon

The gene lacI encodes a protein called LacI that acts as a repressor. The lac

repressor is made up of four identical polypeptides (the protein product of the gene

lacI). Part of this molecule has a site that enables it to recognise and bind to 24 base

pairs of the lac promoter called the lac operator, preventing the RNA polymerase from

transcribing the structural genes lacZ, lacY and lacA that encode β-galactosidase, the

permease and the transacetylase respectively.

Nonetheless, sometimes the repressor drops from the promoter allowing transcrip-
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tion at a basal rate. Besides, the repressor contains another site where allolactose, a

product of the reaction of lactose with β-gallactoside, can bind producing a confor-

mational change. As a result of this change, the repressor can no longer bind to the

operator region and falls off. RNA polymerase can then bind to the promoter and

transcribe the lac genes.

Thus, when lactose is added to the culture medium, it causes the repressor to be

released from the operator so RNA polymerase can transcribe the three structural genes

of the operon into a single molecule of messenger RNA. Hardly does transcription begin

before ribosomes attach to the growing mRNA molecule and move down it to translate

it into the three proteins. In this respect, transcription and translation are concurrent

processes in bacteria which play an important role in gene expression control.

Absence of active lac repressor is essential but not sufficient for effective transcrip-

tion of the lac operon. The presence of glucose in the culture medium, even in the

presence of lactose, seems to repress or inhibit the synthesis of β-galactosidase. The

molecular mechanism of this effect is called catabolite repression. The phenomenon

of catabolite repression has been observed in operons other than the lac operon; for

example, the arabinose and the maltose operons.

Catabolite repression is mediated through the effects that the system of glucose

transport into the cell has on the internal concentration of cyclic AMP (cAMP). If

glucose is abundant in the growth medium it will be transported in to the cell by

the action of the glucose transport system. During its transport to the inside of the

bacterium cell glucose is phosphorylated with the phosphate group being donated by a

component of the transport system called EIIA∼P. The same component also activates

the enzyme, adenylate cyclase (AC) which helps in the synthesis of cAMP. As long as

EIIA∼P is participating in glucose transport, it is not able to activate adenylate cyclase.

The result is that as glucose is transported into the cell, the concentration of cAMP

falls because adenylate cyclase is not being activated to synthesise cAMP any more. If

there is little or no glucose in the growth medium, the glucose transport system is not

operational. The phosphate donor component is now free to activate adenylate cyclase.

The result is that in the absence of glucose, the concentration of cAMP rises. Thus

there is an inverse relationship between the external concentration of glucose and the

cytoplasmic concentration of cAMP. As one rises, the other falls. Furthermore, EIIA,

the non phosphorylated state of EIIA∼P, inhibits the permease involved in the uptake

of lactose inside the bacterial cell preventing lactose from entering the cytoplasm.

Therefore when glucose is scarce in the medium, cAMP is abundant in the cy-

toplasm and it can be bound by the cAMP receptor protein (CRP), which is also

known as catabolite activator protein (CAP). As its name suggests, this protein is
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responsible for mediating the phenomenon of catabolite repression through its ability

to activate transcription. The complex CRP-cAMP2 binds to the lac operon just up-

stream of the promoter. In this position it can assist RNA polymerase to bind by direct

protein-protein contacts significantly increasing the rate of transcription by acting as

an activator.

CRP, and its mechanism of action, have been the subject of intensive research over

the past years since it plays a role in many other operons. However, the molecular

details of how it functions are different in every case. Thus, it has been difficult to

establish any unifying model for the mechanism of action of this protein.

Summing up, the lactose operon is subject to both negative and positive control.

The lac repressor, LacI, negatively regulates expression and, the activator, cAMP-

CRP2, positively activates expression.

There are, as a result, four basic states of expression of the lac operon:

• NO Glucose and NO Lactose

Under these conditions, there will be a large number of cAMP molecules in the cell

and CRP-cAMP2 will be bound at its binding site upstream of the lac promoter.

It will assist RNA polymerase to bind to the promoter but it will not activate

transcription because the lactose repressor will remain bound to the operator site

since there is no inducer, allolactose, present.

There will essentially be no transcription of the lac operon.

This makes physiological sense. Without sugar substrates the cell cannot carry

out much metabolism; however, it remains poised to use whatever it can when-

ever it can. In this case, if lactose does become available, the cell can and will

immediately respond because lactose permease will transport the lactose into the

cell and RNA polymerase is positioned to start the expression of β-galactosidase

so that the lactose can be utilised immediately.

• Glucose present but NO Lactose

Under these conditions, there will be a low number of cAMP molecules in the cell

so CRP-cAMP2 will not be bound at the lac promoter. In addition, the activity

of lactose permease will be inhibited by EIIA.

There will be no transcription of the lac operon.

This also makes physiological sense. As long as glucose is present in the growth

medium there is little need to metabolise lactose and since lactose is not present

there is no need to transport lactose into the cell or to express the genes of the

lac operon.
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• Glucose and lactose present

Under these conditions, there will be a low number of cAMP molecules in the cell

so CRP-cAMP2 will not be bound at the lac promoter. Lactose permease will

be inhibited by EIIA nevertheless some lactose will still enter the cell producing

some inducer molecules of allolactose. These molecules in turn will deactivate

some LacI molecules decreasing the level of repression of the lac operon.

There will be a low level of transcription of the lac operon.

Again, this makes physiological sense. As long as glucose is present in the growth

medium there is little need to metabolise lactose. However, since lactose is now

present, it would be inefficient to ignore a sugar supply completely. The lac

operon will be induced but, since CRP is not bound, the amount of transcription

is relatively low.

• NO Glucose but abundant lactose

Under these conditions, there will be a large number of cAMP molecules in the

cell so CRP-cAMP2 will be bound at the lac promoter. Lactose permease is not

inhibited, so it will transport the lactose into the cell. Once in the cytoplasm

lactose will interact with β-galactosidase to produce allolactose which in turn

binds to the repressor LacI preventing it from inhibiting the expression of lac

operon.

There will be maximal transcription of the lac operon.

This also makes physiological sense. With lactose as the sole sugar source, the cell

must use every available molecule for its own benefit. Thus the lactose permease

transport system will bring lactose into the cell and the lac operon will be both

induced and activated.

The presence of two separate control systems allows the cell to respond more sen-

sitively to the needs imposed by changing growth conditions. Many bacterial operons

have dual control systems, nevertheless the details are different in the different cases

[96].

6.2. Modelling the Lac Operon Regulation Using P

systems

In this section we develop a P system specification and a family of P system models for

the transcription regulation system in the lac operon. Our models will illustrate the

126



6. Modelling Prokaryotic Gene Regulation

specification principles discussed in Chapter 3. More specifically we will use objects

to represent molecular entities like proteins and sugars; strings will specify molecular

entities with a linear structure like the lac operon and mRNAs; and rewriting rules

on multisets of objects and strings will describe the interactions between the different

molecular components of the system. Finally, the relevant regions in the transcription

regulation system are described using membranes delimiting compartments.

In the models proposed in this section we will study the behaviour of system

for different initial conditions in the culture medium. Namely, a culture medium

with/without glucose and with/without lactose.

6.2.1. A P system Specification of the Lac Operon System

In what follows we present a detailed description of the P system specification of the

lac operon regulation system in this work.

• Specification of the relevant regions in the lac operon system:

Membranes play a key role in the functioning and structural organisation of

the gene regulation system in the lac operon. E. coli has been the subject of

intensive research which has produced vast knowledge of the functionality of its

cellular systems. E. coli presents a relatively simple structure consisting of a single

compartment surrounded by a plasma membrane. The function of the plasma

membrane is to define the bacterium itself by isolating and differentiating it from

the surrounding medium. Nevertheless, its function is not only limited to enclose

specific molecules interacting through particular cellular processes. The plasma

membrane also controls the movement and transport of molecules between the

inside and the outside of the bacterium. Another important mechanism where

the plasma membrane plays a key role is cell signalling. These two processes,

namely, selective transport of molecules and cell signalling at the cell surface, are

crucial within the lac operon system. In this respect, in an E. coli bacterium,

there are two distinct and relevant regions:

– The bacterium cell surface which contains a set of proteins that control the

movement of molecules and detect signals.

– The bacterium lumen or aqueous interior of the bacterium where a charac-

teristic complement of proteins are involved in specific cellular processes.

According to the specification principles presented in Chapter 3, regarding the

use of membranes to define relevant regions in cellular system, two different

membranes will be used in this work to specify an E. coli bacterium.
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1. The first membrane, identified with the label s, represents the bacterium

cell surface. This membrane will be used to define the bacterium itself. The

objects describing the molecular entities associated in some manner with the

plasma membrane will be located in the region defined by this membrane.

The rewriting rules specifying the processes of selective uptake of substances

from the environment and cell signalling at the bacterium cell surface will

also be associated with this region.

2. The second membrane, identified with the label c, will describe the aqueous

interior of the bacterium and therefore is embedded inside the previous

membrane. The set of objects and strings specifying the proteins and other

molecular entities, like the lac operon itself, which are located in the lumen

of the bacterium, will be placed in the region defined by this membrane.

The rewriting rules describing the molecular interactions taking place inside

the bacterium are also associated with the region or compartment defined

by this membrane.

3. There exists another relevant region in the lac operon system, the culture

medium, which must be taken into account if one intends to produce a

complete model of the lac operon regulation system. Another membrane,

identified with the label e, will be used to specify this region. Depending on

the sugar sources, glucose and/or lactose, present in the culture medium an

E. coli bacterium will exhibit different behaviour. In this work the different

responses of an E. coli bacterium to different sugar sources will be obtained

by placing the objects corresponding to these sugar sources in the region

defined by this last membrane. Finally, note that this membrane will deter-

mine the boundary of our system and it contains the membrane representing

the bacterium cell surface which in turn contains the membrane describing

the bacterium interior. In Figure 6.2, a Venn diagram representation of this

membrane structure is depicted.

• Specification of the molecular entities of the lac operon system:

Among the molecular entities involved in the lac operon system there are two

significantly different sets of molecules that differ in their structure:

– On the one hand, we have the proteins and enzymes involved in the selective

uptake of sugars from the culture medium and in their metabolism, for

instance EIICB and the enzyme β–galactosidase. Although the structure of

these molecules is complex and determines their functionality, an explicit
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Figure 6.2.: The membrane structure depicting the relevant regions in the lac operon

system.

specification of their structure is not crucial. Therefore, these molecules can

be thought of as individual entities without an internal structure. In this

respect, they will be represented using objects, and the molecular population

they constitute will be described using multisets of objects.

The objects used in this work to represent the proteins and enzymes involved

in the lac operon are collected in the alphabet Oprot. Figure 6.3 shows the

correspondence between the objects from Oprot and the proteins, enzymes

and molecular complexes involved in the lac operon system.

Oprot = { EIIA, EIIA∼P, EIICB, EIICB–EIIA∼P, EIICB∼P, Gluc,

Gluc∼P, EIICB∼P–Gluc, Lact, LacY, Lact-LacY, AC, AC–EIIA,

AC–EIIA∼P, ATP, AC–EIIA∼P–ATP, LacY-EIIA, β–Galac, Lact,

β–Galac–Lact, Allolact, LacI, LacI–Alloct, CRP, CRP–cAMP, CRP–

cAMP2, RNAP }
The functions carried out by these proteins will be described later when dis-

cussing the specification of the cellular processes in the lac operon regulation

system using rewriting rules.

– On the other hand, we have the genes which codify the necessary informa-

tion for the synthesis of some of the proteins and enzymes described in the
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Symbol Molecule
EIICB
EIICB∼P

Glucose Transporter Enzyme IICB
and its phosphorylated state

EIIA
EIIA∼P

Glucose Transporter Enzyme IIA
and its phosphorylated state

EIICB–EIIA∼P Complex transporter enzymes IICB and phophorilated IIA
Gluc Gluc∼P Glucose and its phosphorylated state
EIICB∼P–Gluc Complex transporter IICB phosphorylated and glucose

Lact Lactose
LacY Lactose permease

Lact-LacY Complex lactose permease and lactose
LacY-EIIA Complex lactose permease and transporter enzyme IIA

ATP
cAMP

Adenosine triphosphate and
cyclic adenosine monophosphate

AC Adelynate Cyclase
AC–EIIA
AC–EIIA∼P
AC–EIIA∼P–ATP

ATP and AC complexes with and ATP

β–Galac
β–Galac–Lact

β–Galactosidase and its complex with lactose

Allolact Allolactose, the inducer
LacI LacI–Alloct The lac repressor and its complex with allolactose

CRP
CRP–cAMP
CRP–cAMP2

cAMP Receptor Protein, the activator,
its complex with cAMP and its dimer

RNAP RNA polymerase

Figure 6.3.: Objects representing the proteins, enzymes and other molecules involved

in the lac operon regulation system.

alphabet Oprot. The genes studied in this work are arranged together in

a linear structure called the lac operon. The order in which these genes

appear in the lac operon is relevant as it determines the order at which the

genes are expressed making their corresponding protein products available

to perform specific tasks. For instance, the first gene in the lac operon is the

LacZ gene which codifies the enzyme β-galactosidase. This enzyme cleaves

lactose into glucose and galactose producing as a byproduct allolactose, the

inducer of the lac operon system. Since this constitutes the first step in

the consumption of lactose and in the production of the signal marking the

presence of lactose in the environment evolution has located the gene LacZ

in first place. The other linear structures in the lac operon system are the

mRNAs.
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The linear structure of these molecular entities, genes and mRNAs, will be

specified in this work using strings. The relevant sites in the lac operon

and in the corresponding mRNA will be represented using symbols from the

alphabets Odna and Orna respectively. A detailed description of the sites

represented by the symbols from Odna and Orna is presented in Figure 6.4.

Odna = { cap, capCRP−cAMP2 , op, opLacI , lacZs, lacZm, lacZe, lacYs, lacYm,

lacYe, lacAs, lacAm, lacAe}
Orna = {Rib, op, lacZs, lacZm, lacZe, lacYs, lacYm, lacYe, lacAs, lacAm, lacAe}

Symbol Site
cap Free CAP site where the activator CRP-cAMP2 binds

capCRP−cAMP2 CAP site occupied by the activator CRP-cAMP2 binds
op Free operator site where the repressor LacI binds

opLacI Operator site occupied by the repressor LacI binds
lacZs

lacYs

lacAs

Sites marking the start point of the lacZ, lacY and
lacA gene respectively

lacZm

lacYm

lacAm

Sites located in the middle of the lacZ, lacY and
lacA gene respectively

lacZe

lacYe

Sites located in the final point of the lacZ and
lacY gene respectively.

lacAe
Site marking the end of gene lacA which coincides
with the transcription termination site of the lac operon

op Site marking the starting point of the mRNA transcript
lacZs lacZe

lacYs lacYe

lacAs lacAe

Sites marking the beginning and end of the reading frames
in the mRNA for the genes lacZ, lacY and lacA respectively

lacZm

lacYm

lacAm

Sites located in the middle of reading frames of lacZ, lacY and
lacA gene respectively

Figure 6.4.: Symbols specifying the relevant sites in the lac operon and in its corre-

sponding mRNA.

More specifically, the following string, s3, represents the lac operon in E.

coli:

〈 cap. op .

30︷ ︸︸ ︷
lacZs.lacZm. · · · .lacZm.lacZe .

12︷ ︸︸ ︷
lacYs.lacYm. · · · .lacYm.lacYe .

6︷ ︸︸ ︷
lacAs.lacAm. · · · .lacAm.lacAe 〉
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Due to its size RNA polymerase occupies around 100 nucleotides, and so

each symbol, 〈 lacZi 〉, 〈 lacYi 〉 and 〈 lacAi 〉 with i = s, m, e, represents

a sequence of 100 nucleotides of the corresponding gene, instead of a single

one. Therefore we have only 30 sites lacZ, 12 lacY and 6 lacA representing

the 3000, 1200 and 600 nucleotides of the corresponding genes.

The CAP binding site and the operator are represented by 〈 cap 〉 and

〈 op 〉.

• Specification of the molecular interactions in the lac system:

As discussed in Chapter 3 rewriting rules on multisets of objects and strings are

used within the P systems modelling framework to describe molecular interac-

tions in living cells. More specifically, rewriting rules on multisets of objects

are generally used for the specification of protein-protein interactions whereas

rewriting rules on multisets of objects and strings are applied when describing

processes involving linear structures as in the case of gene expression control.

In what follows, a detailed description of the rewriting rules describing the molec-

ular processes in the lac operon system is given. The stochastic constants asso-

ciated with each rule will also be presented.

− Rules describing the glucose transport system.

The uptake of glucose consists of a transfer pathway where a phosphoryl group is

transferred sequentially along a series of proteins to glucose. This process will be

described using the P system specification schema for recruitment and releasing

(4.5) and for binding and debinding (4.4).

The uptake glucose from the environment starts with the recruitment of the cyto-

plasmic phosphorylated protein EIIA∼P by the transmembrane protein EIICB.

This is describe by the recruitment rule r1. This process is reversible, EIIA∼P

can be released back unchanged to the cytoplasm, releasing rule r2.

r1: EIICB [ EIIA∼P ]c
c1→EIICB–EIIA∼P [ ]c, c1 = 0.235 molec−1sec−1

r2: EIICB–EIIA∼P [ ]c
c2→ EIICB [ EIIA∼P ]c, c2 = 2 × 10−4 sec−1

Once EIIA∼P is recruited by EIICB they can interact producing the phospho-

rylation of EIICB in the cell surface and the release of EIIA to the cytoplasm.

The releasing rule r3 describes this interaction.
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r3: EIICB–EIIA∼P [ ]c
c3→ EIICB∼P [ EIIA ]c, c3 = 0.0706 sec−1

Once the phosphorylated protein EIICB∼P is present on the cell surface glucose

can start to be transported inside the cell by binding to EIICB∼P, binding rule r4.

On the one hand, this interaction is reversible and it can result in the debinding

of the glucose from EIICB∼P, debinding rule r5. On the other hand, glucose can

be transported inside the bacterial cell and released into the cytoplasm, releasing

rule r6. In this process glucose is phosphorylated, Gluc∼P.

r4: Gluc [ EIICB∼P ]s
c4→ [ EIICB∼P–Gluc ]s, c4 = 6.96×10−3 molec−1sec−1

r5: [ EIICB∼P–Gluc ]s
c18→ Gluc [ EIICB∼P ]s, c5 = 1.04 × 10−2 sec−1

r6: EIICB∼P–Gluc [ ]c
c6→ EIICB [ Gluc∼P ]c, c6 = 0.128 sec−1

− Rules describing the lactose transport system.

The transport of lactose inside the bacterial cell is specified with the same type

of rules as the glucose transport system, namely binding, debinding, recruitment

and releasing rules. However, the lactose transport system is simpler as it does

not imply a sequential transfer of a phosphoryl group, as it is the case in the

glucose transport system.

For lactose to enter the bacterial cell the presence of the permease LacY on the

cell surface is necessary. LacY is the protein product of the second gene in the

lac operon, lacY. Although, LacY is synthesised in the cytoplasm it moves to

the cell surface. The transport of LacY to the cell surface is specified using the

diffusion out rule, r7.

r7: [ LacY ]c
c7→ LacY [ ]c, c7 = 0.02sec−1

The uptake of lactose, Lact, present in the environment is carried out in two

steps. First, lactose binds to the permease, binding rule r8. Once bound to the

permease it is transported and released into the cytoplasm, releasing rule r9.

r8: Lact [ LacY ]s
c8→ [ Lact-LacY ]s, c8 = 5.12 × 10−3molec−1sec−1

r9: Lact-LacY [ ]c
c9→ LacY [ Lact ]c, c9 = 5.12 × 10−3sec−1
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The uptake of lactose is inhibited by EIIA through direct interaction. EIIA binds

to the permease LacY producing the complex LacY-EIIA, recruitment rule r10.

Lactose can not bind to this complex on the cell surface blocking the transport of

lactose into the bacterial cell. The complex LacY-EIIA can dissociate back into

its components, releasing rule r11.

r10: LacY [ EIIA ]c
c10→ LacY-EIIA [ ]c, c10 = 10−4 molec−1sec−1

r11: LacY-EIIA [ ]c
c11→ LacY [ EIIA ]c c11 = 10−3 sec−1

These molecular interactions are important in catabolite repression; a high num-

ber of non-phosphorylated EIIA in the cytoplasm is a consequence of the presence

of glucose in the environment. During its transport glucose is phosphorylated

with a phosphoryl group that is transferred from EIIA∼P to EIIBC and finally

to the glucose. Therefore, in the presence of glucose, EIIA∼P is depleted from

the cytoplasm and EIIA is produces in high numbers. This situation inhibits the

permease LacY and the uptake of lactose.

− Rules describing the activity of β–Galactosidase.

β–galactosidase cleaves lactose into glucose and galactose so the bacterium can

consume it. The production of glucose from lactose is not crucial in the regulation

of the expression of the genes in the lac operon and it will not be specified in our

work. Nevertheless, the production of allolactose is a key step in the regulation

of the system as allolactose acts as an inducer. Allolactose is a product of the

interaction between β–galactosidase and lactose. β–galactosidase is an enzyme

which first forms a complex with lactose, complex formation rule r12, and then

interacts with it to produce allolactose, dissociation rule r13.

r12: [ β–Galac + Lact ]c
c12→ [ β–Galac–Lact ]c, c12 = 3.92 × 10−4 molec−1sec−1

r13: [ β–Galac–Lact ]c
c13→ [ β–Galac + Allolact ]c, c13 = 3.92×10−4 molec−1sec−1

β–Galactosidase is degraded by the cell machinery in the cytoplasm. This process

is described by the degradation rule, r14.

r14: [ β–Galac ]c
c14→ [ ]c, c14 = 1.93 × 10−4 sec−1

− Rules describing the activity of allolactose.
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Allolactose is a signal of the presence of lactose in the environment. It acts as

an inducer of the regulation system in the lac operon by inhibiting the repressor,

LacI, through direct interaction, complex formation rule r15. A conformational

change is induced in the repressor when allolactose binds to it. This prevents the

repressor from binding to the operator of the lac operon.

Allolactose is also degraded in the cytoplasm, degradation rule r16.

r15: [ LacI + Allolact ]c
c15→ [ LacI-Allolact ]c, c15 = 0.01molec−1sec−1

r16: [ Allolact ]c
c16→ [ ]c, c16 = 5.58 × 10−5sec−1

− Rules describing the activity of Adenylate Cyclase.

Adenylate Cyclase (AC) regulates the production of cAMP molecules, whose

number is inversely proportional to the number of glucose molecules in the envi-

ronment. For the synthesis of cAMP, AC recruits reversibly the phosphorylated

EIIA∼P from the cytoplasm, recruitment rule r17 and releasing rule r18.

r17: AC [ EIIA∼P ]c
c17→ AC–EIIA∼P [ ]c, c17 = 2.35 × 10−5molec−1sec−1

r18: AC–EIIA∼P [ ]c
c18→ AC [ EIIA∼P ]c, c18 = 0.01sec−1

The complex AC–EIIA∼P recruits ATP from the cytoplasm, recruitment rule,

r19, and transforms it into cAMP which subsequently is released into the cyto-

plasm, releasing rule r20.

r19: AC–EIIA∼P [ ATP ]c
c19→ AC∼P–EIIA∼P–ATP [ ]c,

c19 = 2.35 × 10−3molec−1sec−1

r20: AC–EIIA∼P–ATP [ ]c
c20→ AC∼P–EIIA∼P [ cAMP ]c, c20 = 0.02sec−1

As mentioned before the non-phosphorylated number of molecules of EIIA is a

signal of the presence of glucose in the environment. As part of the mechanism of

catabolite repression, EIIA inhibits the production of cAMP by binding reversibly

to AC in the cell membrane, recruitment rule r21 and releasing rule r22. This

inhibits the activation of the lac operon by repressing the activity of AC and

therefore the production of cAMP and the activator CRP-cAMP2.

r21: AC [ EIIA ]c
c21→ AC–EIIA [ ]c c21 = 2.35 × 10−3molec−1sec−1

r22: AC–EIIA [ ]c
c22→ AC [ EIIA ]c, c22 = 0.02sec−1
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− Rules describing the formation of the activator CRP-cAMP2

The protein CRP can not bind to the promoter, unless it interacts with cAMP to

produce the complex CRP-cAMP which in turn will form a dimer CRP-cAMP2,

complex formation rules r23 and r24. This last dimer is able to bind to the

promoter and increase the rate of transcription of the genes encoded in the lac

operon.

r23: [ CRP + cAMP ]c
c23→ [ CRP-cAMP ]c, c23 = 5 × 10−3molec−1sec−1

r24: [ CRP-cAMP + CRP-cAMP ]c
c24→ [ CRP-cAMP2 ]c,

c24 = 5 × 10−3molec−1sec−1

− Rules describing the activation and repression of the lac operon

The rate of transcription of the lac operon is determined by the state of the so

called lac operon switch. The lac operon switch is made of the CAP site, 〈cap〉,
where the activator binds and the operator, 〈op〉, where the repressor binds. The

lac operon switch has four different configurations depending on the occupation

of the CAP site and operator: 〈cap.op〉, 〈cap.opLacI〉, 〈capCRP−cAMP2 .op〉 and

〈capCRP−cAMP2 .opLacI〉. These configurations can be reached by applying the

binding and debinding of transcription factor rules introduced in (4.9).

In the absence of lactose the repressor LacI will be active and it will bind the op-

erator inhibiting the transcription of the lac operon, transcription factor binding

rule r25. Nonetheless, occasionally LacI drops from the operator allowing a basal

production of the proteins, transcription factor dissociation rule r26.

r25: [ LacI + 〈 op 〉 ]c
c25→ [ 〈 opLacI〉 ]c, c25 = 0.2molec−1sec−1

r26: [ 〈 opLacI〉 ]c
c26→ [ LacI + 〈 op 〉 ]c, c26 = 5sec−1

In absence of glucose there is a high number of cAMP molecules that will produce

a high number of activators, CRP-cAMP2. The activator binds reversibly to the

CAP site 〈 cap 〉, transcription factor binding and debinding rules r27 and r28

respectively.

r27: [ CRP-cAMP2 + 〈 cap 〉 ]c
c27→ [ 〈 capCRP−cAMP2 〉 ]c,

c27 = 0.01molec−1sec−1

r28: [ 〈 capCRP−cAMP2 〉 ]c
c28→ [ CRP-cAMP2 + 〈 cap 〉 ]c, c28 = 5sec−1
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− Rules describing transcription initiation in the lac operon

The first step in the transcription of the lac operon consists in the binding of

the RNA polymerase (RNAP) to the lac operon switch. The affinity between the

lac operon switch and the RNA polymerase depends on the configuration of the

switch. On the one hand, when the CAP site is free, 〈 cap 〉, the RNAP seldomly

binds to the lac operon switch producing a basal rate of transcription, rule r29.

On the other hand, when the activator CRP-cAMP2 occupies the CAP site, 〈
capCRP−cAMP2 〉, it produces an increase in the rate of transcription of around

40-fold, rule r30.

r29: [ RNAP + 〈 cap 〉 ]c
c29→ [ 〈 cap.RNAP 〉 ]c, c29 = 5 × 10−4molec−1sec−1

r30: [ RNAP + 〈 capCRP−cAMP2 〉 ]c
c30→ [ 〈 capCRP−cAMP2 . RNAP 〉 ]c,

c30 = 0.02molec−1sec−1

RNAP starts transcription by producing the complementary ribonucleotides of

the operator site 〈 op 〉, transcription initiation rule r31. The site 〈 op 〉 marks

the beginning of a mRNA transcript. Note that after the application of rule r31

the substring 〈 op 〉 is left free so another RNAP can start transcription before

the first RNAP finishes transcribing the operon. Therefore we are explicitly

simulating transcription by different polymerase as a concurrent process.

r31: [ 〈 RNAP.op 〉 ]c
c31→ [ 〈 op. op. RNAP 〉 ]c, c31 = 2sec−1

− Rules describing mRNA elongation in the lac operon

During the first stages of mRNA elongation RNAP moves along the lacZ gene

transcribing it into mRNA. RNAP starts transcribing the first nucleotides of

the lacZ gene represented by 〈 lacZs 〉 and attaches the complementary ribonu-

cleotides specified by 〈 lacZs 〉 to the growing mRNA, 〈 op 〉, transcription elonga-

tion rule r32. The substring 〈 lacZs 〉 represents the RBS (ribosome binding site)

for this gene. Once this site is produced a ribosome binding rule can be applied

and translation can start before translation is over. Therefore in our approach

transcription and translation take place in parallel.

r32: [ 〈 op. RNAP. lacZs 〉 ]c
c32→ [ 〈 lacZs.op.lacZs.RNAP 〉 ]c, c32 = 2sec−1

During transcription a complementary strand of mRNA is produced. This is

described by the production of the RNA site 〈 lacZm 〉 which is attached to the

growing mRNA represented by the substring 〈 op.w 〉, w ∈ O∗
rna , whereas the

DNA just transcribed 〈 lacZm 〉 is left behind, transcription elongation rule r33.
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r33: [ 〈 op.w.RNAP.lacZm 〉 ]c
c33→ [ 〈 lacZm.op.w.lacZm.RNAP 〉 ]c,

c33 = 2sec−1

When the RNAP reaches the end of the LacZ gene it attaches the site

〈 lacZe 〉 to the substring 〈 op.w 〉, w ∈ O∗
rna , which describes the growing mRNA,

transcription elongation rule r34. The string 〈 lacZe 〉 represents a translation

termination site, therefore when ribosomes reach this site they dissociate releasing

the protein encoded by the lacZ gene, β-galactosidase.

r34: [ 〈 op.w.RNAP.lacZe 〉 ]c
c34→ [ 〈 lacZe.op.w.lacZe.RNAP 〉 ]c,

c34 = 2sec−1

The following transcription elongation rules describe the transcription of the

genes lacY and lacA in a similar way as in the case of the gene lacZ.

r35: [ 〈 op.w. RNAP. lacYs 〉 ]c
c35→ [ 〈 lacYs.op.w.lacYs.RNAP 〉 ]c,

c35 = 2sec−1

r36: [ 〈 op.w. RNAP. lacYm 〉 ]c
c36→ [ 〈 lacYm.op.w.lacYm.RNAP 〉 ]c,

c36 = 2sec−1

r37: [ 〈 op.w. RNAP. lacYe 〉 ]c
c37→ [ 〈 lacYe.op.w.lacYe.RNAP 〉 ]c,

c37 = 2sec−1

r38: [ 〈 op.w. RNAP. lacAs 〉 ]c
c38→ [ 〈 lacAs.op.w.lacAs.RNAP 〉 ]c,

c38 = 2sec−1

r39: [ 〈 op.w. RNAP. lacAm 〉 ]c
c39→ [ 〈 lacAm.op.w.lacAm.RNAP 〉 ]c,

c39 = 2sec−1

− Rule describing transcription termination in the lac operon

The transcription of the lac operon terminates when the RNA polymerase reaches

a transcription termination site at the end of the lacA gene. This site is repre-

sented by the string 〈 lacAe 〉. When the RNAP reaches this termination site

it attaches the final ribonucleotides, 〈 lacAe 〉 to the growing mRNA 〈 op.w.

〉, w ∈ O∗
rna, and it dissociates from the operon releasing the fully transcribed

mRNA, transcription termination rule r40.

r40: [ 〈 op.w.RNAP.lacAe 〉 ]c
c40→ [ RNAP + 〈 lacAe 〉 ; 〈 op.w.lacAe 〉 ]c,

c40 = 2sec−1
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− Rules describing translation initiation

Translation starts when ribosomes, Rib, recognise the RBS of the genes lacZ,

lacY and lacA, represented by the strings 〈 lacZs 〉, 〈 lacYs 〉 and 〈 lacAs 〉 and

attach to the mRNA to start translation, translation initiation rules r41, r42 and

r43.

r41: [ Rib + 〈 lacZs 〉 ]c
c41→ [ 〈 Rib.lacZs 〉 ]c, c41 = 0.16molec−1sec−1

r42: [ Rib + 〈 lacYs 〉 ]c
c42→ [ 〈 Rib.lacYs 〉 ]c, c42 = 0.16molec−1sec−1

r43: [ Rib + 〈 lacAs 〉 ]c
c43→ [ 〈 Rib.lacAs 〉 ]c, c43 = 0.16molec−1sec−1

− Rules describing translation and ribosome dissociation rules

During translation ribosomes move along the sites in the mRNA represented by

the substrings 〈 lacZm 〉, 〈 lacYm 〉 and 〈 lacAm 〉, translation elongation rules r44,

r45, r47, r48, r50 and r51. When ribosomes reach the termination site, lacZe, lacYe

or lacAe, they dissociate from the mRNA releasing the proteins, β-galactosidase,

LacY or LacA, translation termination rules r46, r49 and r52.

r44: [ 〈 Rib.lacZs 〉 ]c
c44→ [ 〈 lacZs.Rib 〉 ]c, c44 = 0.3sec−1

r45: [ 〈 Rib.lacZm 〉 ]c
c45→ [ 〈 lacZm.Rib 〉 ]c, c45 = 0.3sec−1

r46: [ 〈 Rib.lacZe 〉 ]c
c46→ [ β−Galac + Rib + 〈 lacZe 〉 ]c, c46 = 0.3sec−1

r47: [ 〈 Rib.lacYs 〉 ]c
c47→ [ 〈 lacYs.Rib 〉 ]c, c47 = 0.3sec−1

r48: [ 〈 Rib.lacYm 〉 ]c
c48→ [ 〈 lacYm.Rib 〉 ]c, c48 = 0.3sec−1

r49: [ 〈 Rib.lacYe 〉 ]c
c49→ [ LacY + Rib + 〈 lacYe 〉 ]c, c49 = 0.3sec−1

r50: [ 〈 Rib.lacAs 〉 ]c
c50→ [ 〈 lacAs.Rib 〉 ]c, c50 = 0.3sec−1

r51: [ 〈 Rib.lacAm 〉 ]c
c51→ [ 〈 lacAm.Rib 〉 ]c, c51 = 0.3sec−1

r52: [ 〈 Rib.lacAe 〉 ]c
c52→ [ LacA + Rib + 〈 lacAe 〉 ]c, c52 = 0.3sec−1

− Rules describing mRNA degradation

mRNA is degraded when specific enzymes bind to the RBS, 〈 lacZs 〉,
〈 lacYs 〉 and 〈 lacAs 〉, and remove them preventing new ribosomes from initiating

translation, degradation rules r53, r54 and r55.

r53: [ 〈 lacZs 〉 ]c
c53→ [ ]c, c53 = 0.2sec−1

r54: [ 〈 lacYs 〉 ]c
c54→ [ ]c, c54 = 0.2sec−1
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r55: [ 〈 lacAs 〉 ]c
c55→ [ ]c, c55 = 0.2sec−1

Summing up, our P system specification of the gene expression regulation system

in the lac operon consist in the following construct:

Πlac = (O, {e, s, c}, [ [ [ ]3 ]2 ]1, M1, M2, M3, Re, Rs, Rc) (6.1)

where:

• The alphabet O collects the objects representing the molecular entities, proteins,

DNA sites and RNA sites, involved in the lac operon system:

O = Oprot ∪ Odna ∪ Orna

• The labels {e, s, c} identify the type of the compartments defined by the mem-

brane structure in Πlac, these being the environment, cell surface and cytoplasm

respectively.

• The membrane structure consists of three membranes defining the three rele-

vant regions in the lac operon system, namely, the environment identified with

the number 1, the cell surface identified with the number 2 and the cytoplasm

identified with the number 3. A Venn diagram representation of the membrane

structure in our P system specification Πlac is depicted in Figure 6.2.

• The initial multisets M1, M2 and M3 are part of the parameters of our P system

specification Πlac. They associate the label e with membrane 1 which represents

the environment, the label s with membrane 2 which represents the cell surface

and the label c with membrane 3 which represents the cytoplasm.

• The set of rewriting rules on multisets of objects and strings Re, Rs and Rc are

associated with the compartments representing the environment, cell surface and

cytoplasm respectively. These rules describe the molecular interactions that take

place in the specific compartment they are associated with. Next we enumerate

the rules associated with each compartment.

Re = {r4, r8}
Rs = {r2, r3, r5, r6, r9, r11, r18, r20, r22}
Rc = {r1, r7, r10, r12, r13, r14, r15, r16, r17, r19, r21, r23, . . . , r55}
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6.2.2. P System Models of the Lac operon Regulation System

In this section we introduce a family of P system models which will allow us to study the

behaviour of the lac operon gene regulation system under different initial conditions.

Once our P system specification of the lac operon system, Πlac, has been designed

it is necessary to identify the parameters associated with it, P(Πlac), and specify a set

of possible values for them to generate a family of P system models. This family of

P system models will allow us to study the behaviour of the lac operon system under

different conditions.

According to Definition 3.2 the parameters of our P system specification P(Πlac)

consists of the initial multisets and stochastic constants associated with the rewriting

rules:

P(Πlac) = (M0(Πlac), C(Πlac))

• In our case the stochastic constants associated with the rewriting rules C(Πlac)

will have a fixed value collected in C. The values in C were presented before

during the enumeration of the rewriting rules. It has been possible to determine

good estimates for every stochastic constant because the lac operon is one of

the most studied and characterised gene regulation system, being considered the

canonical example in prokaryotic gene regulation. The stochastic constants used

in this work were deduced from the literature or were computed, according to the

discussion in section 2.6, from some deterministic kinetic constants used in ODE

models, [58, 66, 69, 77, 106].

• The initial multisets M0(Πlac) constitute the actual parameters of our system. In

the initial multisets we specify the initial number of objects and strings present

in each compartment and the label associated with them. Different initial con-

ditions will be described using different initial multisets. Each choice from these

possible initial multisets will produce a different model which will allow us to

study the behaviour of the lac operon regulation system under the initial condi-

tion represented by the chosen initial multisets.

The possible values associated with the initial multisets M0 = (M1,M2,M3)

will describe four different initial conditions in the environment, M1 = {M1
1 ,

M2
1 , M3

1 , M4
1}, and a single initial condition for the cell surface M2 = {M2} and

cytoplasm M3 = {M3}.
More specifically, the four initial multisets associated with the environment are:
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– Initial multiset representing the absence of glucose and lactose in the envi-

ronment:

M1
1 = (e, λ, λ)

– Initial multiset representing abundant glucose and absence of lactose in the

environment:

M2
1 = (e, Gluc300000, λ)

– Initial multiset representing the absence of glucose but abundant lactose in

the environment:

M3
1 = (e, Lact300000, λ)

– Initial multiset representing abundant glucose and lactose in the environ-

ment:

M4
1 = (e, Gluc300000 + Lact300000, λ)

For the cell surface there is a single initial configuration representing in the initial

multiset M2:

M2 = (s, EIICB2500 + EIICB ∼ P15000 + AC10000 + LacY3000}, λ)

For the cytoplasm there is also a single initial configuration representing in the

initial multiset M3:

M3 = (c, w3, s3)

where w3 represents the initial objects

w3 = RNAP300 +Rib3000 +EIIA2000 +EIIA ∼ P13000 +ATP1000000 +β−Galac3000

+LacI1500 + CRP10000

and s3 the initial string representing the lac operon:

〈 cap. op .

30︷ ︸︸ ︷
lacZs.lacZm. · · · .lacZm.lacZe .

12︷ ︸︸ ︷
lacYs.lacYm. · · · .lacYm.lacYe .

6︷ ︸︸ ︷
lacAs.lacAm. · · · .lacAm.lacAe 〉
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These parameters produce a family, Flac(Πlac; (M0, C)), consisting of four different

P system models associate to our P system specification of the lac operon, Πlac:

1. PSM1 = (Πlac; (M
1
1 , M2, M3), C)

2. PSM2 = (Πlac; (M
2
1 , M2, M3), C)

3. PSM3 = (Πlac; (M
3
1 , M2, M3), C)

4. PSM4 = (Πlac; (M
4
1 , M2, M3), C)

In the following section we will analyse the behaviour of the lac operon under dif-

ferent initial conditions by running simulations of the previous four P systems models,

PSM1, PSM2, PSM3 and PSM4.

6.3. Analysis of the Gene Expression in the Lac

Operon

In this section we will present an analysis of the gene expression regulation system of

the lac operon under different conditions in the media or environment. The analysis will

be carried out through simulation using the Multicompartmental Gillespie’s Algorithm

described in section 3.3 and a simulator which implements this algorithm is available

from [134].

The initial conditions that are going to be studied are absent of lactose and glu-

cose; no glucose but abundant lactose; abundant glucose but no lactose and abundant

glucose and lactose. These four conditions are described in the four P systems models,

PSM1, PSM2, PSM3 and PSM4 designed in the previous section. The behaviour of

each P system model will be analysed by presenting the evolution over time of the

number of molecules of some key proteins and enzymes, as well as, by describing the

configuration of the switch of the lac operon which determines the level of expression

of the genes codified in the lac operon.

• Behaviour of the system with no glucose and no lactose in the environment,

P system model PSM1.

When glucose is not present in the environment EIIA∼P is not consumed by the

glucose transport system and it activates AC on the cell surface. Once active

AC produces a high number of cAMP molecules, as shown in Figure 6.5. cAMP

binds to the protein CRP to produce the complex CRP-cAMP which in turns

through dimerisation yields the activator CRP-cAMP2.
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Figure 6.5.: Number of cAMP molecules over time in absence of glucose and lactose

With a high number of activators, the CAP site will be occupied by a CRP-

cAMP2 molecule, which will assist RNA polymerase in binding to the promoter.

Nonetheless, since there is no lactose in the environment no allolactose will be

produced in the cytoplasm and therefore the repressor will be active and bound

to the operator. In these conditions a characteristic state of the lac operon is

presented in the string in (6.2) obtained using our simulator.

cap-CRP-cAMP 2 RNAP op-LacI lacZ s lacZ m –op Rib

–lacZ s –lacZ m RNAP lacZ m lacZ m lacZ m lacZ m

lacZ m lacZ m lacZ m –op Rib –lacZ s –lacZ m –lacZ m

–lacZ m –lacZ m –lacZ m –lacZ m–lacZ m –lacZ m RNAP

lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m

lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m

lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ m lacZ e

lacY s lacY m lacY m lacY m lacY m lacY m lacY m lacY m

lacY m lacY m lacY m lacY m lacY e lacA s lacA m lacA m

lacA m lacA m lacA e

(6.2)
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Note that CRP-cAMP2 is bound to the CAP site assisting the RNA polimerase,

RNAP (in bold), to bind to the promoter of the lac operon. Once bound to the

promoter RNA is ready to start transcription whenever the repressor drops from

the operator. This event happens occasionally permitting the transcription of

the lac operon, as it can be seen in (6.2) where two polimerases are transcrib-

ing. Nevertheless, the repressor will be bound to the operator most of the time

blocking transcription initiation.

Summing up, the configuration of the lac operon switch under the conditions

represented in the P system model PSM1, 〈 capCRP-cAMP2 .RNAP.opLacI 〉, produces

a slight increase in the expression of the genes encoded in the lac operon. This

makes physiological sense, with no sugar in the environment the bacterium sets

the operon such that it can respond immediately and efficiently to the presence

of lactose.

• Behaviour of the system with abundant glucose but no lactose in the envi-

ronment, P system model PSM2.

When glucose is abundant in the environment EIIA∼P is depleted rapidly from

the cytoplasm by the glucose transport system which in turn produces a high

number of EIIA molecules. EIIA inhibits the activity of AC preventing it from

assisting in the synthesis of cAMP and consequently there is a low number of

activators, see Figure 6.6. Therefore, in these conditions, no activator will be

bound at the lac operon CAP site.
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Figure 6.6.: Number of active EIIA∼P and activator CRP-cAMP

Since there is no lactose in the environment no allolactose will appear in the

cytoplasm and the repressor will be active and bound to the operator. Therefore

in these conditions the configuration of the switch will be 〈 cap.opLacI 〉. This
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configuration only allows transcription of the lac operon at a very low rate, as

can be seen in the low number of RNA polymerases transcribing the lac operon

in Figure 6.7.
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Figure 6.7.: Number of polymerases transcribing the lac operon in presence of glucose

This makes physiological sense. As long as glucose is present in the growth

medium there is little need to metabolise lactose and the lactose operon is

switched off.

• Behaviour of the system with no glucose but abundant lactose in the envi-

ronment, P system model PSM3.

In these conditions, on the one hand, the absence of glucose in the environment

allows the enzyme EIIA∼P to interact with AC in the synthesis of a high number

of cAMP. This in turn produces a high number of activators molecules CRP-

cAMP2. Due to the high number of activator molecules the CAP site will be

occupied which enhances transcription by recruiting RNA polymerase.

On the other hand, since lactose is abundant in the environment it will be trans-

ported by the permease LacY, expressed at a basal level, into the cytoplasm.
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β-galactosidase is also present at a basal level in the cytoplasm and as soon as

lactose is present it starts to cleave it into galactose and glucose, and occasionally

allolactose appears as a product of the interaction between β-galactosidase and

lactose. Allolactose acts as an inducer binding to the repressor LacI and prevent-

ing it from binding to the operator. In Figure 6.8 it is depicted how the number

of active repressors is rapidly inhibited when lactose is abundant.

Under these conditions the lac operon will be both induced (no repressor will be

bound to the operator) and activated (the activator will be bound to the CAP

site). Therefore, the configuration of the switch will be 〈 capCRP-cAMP2 .op 〉
and the genes encoded in the operon will be transcribed massively, as can be

deduced by the number of RNAP transcribing the operon, Figure 6.8. This will

result in a drastic increase in the number of β−galactosidase and LacY molecules,

see Figure 6.9.
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Figure 6.8.: Number of active repressors, left graph, and active RNA polymerases, right

graph

• Behaviour of the system with abundant glucose and abundant lactose in the

environment, P system model PSM4.

Again the presence of glucose produces a low number of activators and the lac

operon will not be activated by the binding of a CRP-cAMP2 molecule to the

CAP site. Therefore, even in the presence of lactose the genes encoded in the lac

operon will be very rarely transcribed. This phenomenon is known as catabolite

repression. There will also be little uptake of lactose from the environment as

the permease LacY will be inhibited. Observe in Figure 6.10 that the number of

glucose molecules decreases in the environment whereas lactose remains almost
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Figure 6.9.: Number of β−galactosidase, left graph, and permease LacY, right graph,

over time

constant which indicates that almost no lactose is transported inside the bacterial

cell.

Nevertheless, some lactose will be present in the cytoplasm which will produce

allolactose which is able to inhibit the repressor to some extent producing a low

transcription rate of the operon.

Summing up, in these conditions the configuration of the lac operon switch will

be 〈 cap.op 〉. That is, the lac operon will be induced, no repressor will be bound

to the operator but, since no activator CRP-cAMP2 will be bound to the CAP

site, the lac operon will not be activated. This configuration of the lac operon

switch produces a relatively low rate of transcription of the genes encoded in the

lac operon. This can be seen in figure 6.11 where the number of galactosidase

and LacY start to increase slowly.

Again, this makes physiological sense. As long as the bacterium can metabolise

glucose there is little need to metabolise lactose. However, since lactose is now

present, the cell will not ignore a sugar supply completely.
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Figure 6.10.: Glucose and lactose molecules in the environment
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Figure 6.11.: Number of β−galactosidase, left graph, and permease LacY, right graph,

over time
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One of the most important cellular processes consists of the sensing of external signals

by transmembrane receptors located on the cell surface. Cells monitor the state of

the changing environment through these processes and produce the correct response

adapting their functioning according to the signals they receive. These processes are

the subject of very intensive research as they are involved in many key cellular systems

like cell division, apoptosis, cell differentiation etc. Malfunctioning in the signalling

pathways that constitute signal transduction systems can cause many cancer related

processes like tumourgenesis, angiogenesis, uncontrolled cell proliferation, etc. The im-

portance of membranes in the functioning and structure of signal transduction systems

is obvious making P systems a suitable framework for the development of models of

such systems.

In this chapter we present a brief description of the general principles of signal

transduction systems in section 7.1. A deterministic version of the Multicompartmental

Gillespie’s algorithm introduced in section 3.3 will be introduced in section 7.2. This

algorithm will be referred to as the Deterministic Waiting Times Algorithm and will be

used in the evolution of the P systems models developed in this chapter. Two different

signal transduction systems will be studied in this chapter, namely the Epidermal

Growth Factor signalling cascade, section 7.3, and FAS induced apoptosis, section 7.4.

A P system specification of each of these systems will be developed as well as a family

of P systems models which will allow us to study the robustness of the system in the

case of the EGFR signalling cascade and to check the validity of various hypotheses

about different protein-protein interactions in the case of the FAS-induced apoptosis.

7.1. Signal Transduction

Signal transduction is a collection of cellular processes by which cells translate extracel-

lular signals into specific cellular responses. Typically, cells sense extra cellular signals

through direct binding of these signals to receptors placed on the cell surface. Signal
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transduction involves a large diversity of molecular processes, including binding and

debinding of signals to extracellular domains of transmembrane receptors, recruitment

and releasing of proteins and enzymes from and to the cytoplasm, molecular degra-

dation and transformation (mainly phosphorylation), etc. Signalling pathways involve

molecular entities of different types, such as receptors, enzymes, signals etc. These

molecules can assemble dynamically into highly organised complexes.

Modelling of the dynamic behaviour of signalling pathways is not straight forward.

Knowledge about components of the pathway and their interactions are still limited

and incomplete. Furthermore, the effect of a signal often changes the state of the whole

cell, and this implies difficulties for determination of the system limits. This makes

the development of computational/mathematical models that can help in elucidating

properties of signal transduction systems a necessity.

A common sequence of events in the signalling pathways which constitute signal

transduction systems is shown in Figure 7.1 and proceeds as follows. The signal (a

substance acting as a ligand) approaches the cell surface. Cells have developed two

different modes of importing a signal.

On the one hand, the stimulus may penetrate the cell membrane and bind to its

respective receptor in the cell interior. An example of this first system for sensing an

extracellular signal is the case of lactose in the lac operon gene regulation system in

the previous chapter.

On the other hand, the signal can be perceived by a transmembrane receptor. In this

case the signal does not cross the membrane. The signal acts as a ligand whose target

is a receptor located on the cell surface. This chapter is focused on the specification

and analysis of this type of signal transduction system.

Once the signal is bound to the receptor it produces a conformational change in its

cytosolic domains which yields the activation of the receptor. The active receptor in

turn triggers subsequent processes within the cell consisting typically of signalling cas-

cades. These cascades frequently include a series of changes in protein phosphorylation

states. Finally, the sequence of state changes crosses the nuclear membrane producing

a change in the activation state of one or more transcription factors. Commonly, the

transcription factors affected by a signalling cascade change their binding properties to

regulatory regions on the DNA sequence of a set of genes resulting in a change in the

transcription rates of these genes, normally increasing them. These newly produced

proteins constitute the actual response of the cell to the extracellular signal.

In addition to this downstream program, signalling pathways are regulated by a

number of control mechanisms including feedback loops, feed-forward loops, cross-talk

between different pathways, etc.
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Figure 7.1.: A common sequence of events in signal transduction. A signal binds to

a transmembrane receptor inducing its activation, commonly through the

formation of multimers made of different receptors. Once active the recep-

tors recruit cytoplasmic proteins and other proteins associated with the

cellular membrane. This yields the activation of the cytoplasmic proteins

which are released back into the cytoplasm where they start a signalling

cascade involving other proteins that may interact with different organelles

in the cell. Eventually, the signal reaches the nucleus where it activates

the transcription of specific proteins which constitutes the actual cellular

response to the extracellular signal.
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7.2. Deterministic Waiting Times Algorithm

In section 3.3 an adaption of the classical Gillespie algorithm to the compartmen-

talised structure of P system models was introduced. This algorithm is referred to as

the Multicomparmental Gillespie algorithm and its use was motivated by the fact that

systems with a low number of molecules are not accurately modelled with the classical

deterministic and continuous approach based on ODEs. Nevertheless, for systems with

high number of molecules the deterministic approaches are valid to some extent. In

this section, in order to study the possibility of applying deterministic strategies to

simulate some cellular systems, we present the deterministic version of the Multicom-

parmental Gillespie algorithm which will be referred to as the Deterministic Waiting

Times Algorithm.

Given the state of a compartment i, Mi = (li, wi, si), from a P system model, the

next rule to be applied and its waiting time is computed as follows:

1. Compute for each rule in rj ∈ Rli its velocity, vj(Mi), by multiplying the stochas-

tic constant cli
j associated specifically with rule rj ∈ Rli by the number of distinct

possible combinations of the objects and substrings present on the left-side of the

rule with respect to the current contents of membranes involved in the rule.

2. Compute the waiting time associated with rule rj ∈ Rli as follows:

τj =
1

vj(Mi)
(7.1)

Then all the rules associated with the membranes of the P system are ordered in

a priority queue according to when they are scheduled to be applied. The first rule to

be applied in the whole system is the one with the shortest waiting time. Depending

on the type of rule that has been applied the state of a single compartment or of

two compartments is changed. Therefore the waiting time for the rules associated

with these compartments must be recalculated. The algorithm stops when a prefixed

simulation time is reached.

Next, we give a detailed description of the Deterministic Waiting Times Algorithm:

• Initialisation

◦ set the time of the simulation t = 0;

◦ for every rule rj associated with each membrane i in µ compute the triple

(τj, j, i) by using the procedure described before; construct a list containing

all such triples;
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◦ sort the list of triple (τj, j, i) according to τj;

• Iteration

◦ extract the first triple, (τi0 , ji0 , i0) from the list;

◦ set the time of the simulation t = t + τi0 ;

◦ update the waiting time for the rest of the triples in the list by subtracting

τi0 ;

◦ apply the rule rji0
in membrane i0 only once changing the number of objects

and sites in the membranes affected by the application of the rule;

◦ for each membrane i′ affected by the application of the rule remove all the

triples corresponding to rules associated with i′, (τ ′
i′ , ji′ , i

′) from the list;

◦ for each rule associated with each membrane i′ affected by the application

of the rule rji0
compute its corresponding triple as discussed above;

◦ add the new triples in the list and sort this list according to each waiting

time and iterate the process.

• Termination

◦ Terminate simulation when the time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Note that in this algorithm instead of associating a waiting time to a single rule in

each membrane (as is the case in the Multi-compartmental Gillespie’s Algorithm) every

rule in each membrane has a waiting time computed in a deterministic way that is used

to determine the order in which the rules are applied. We also highlight the fact that

this is an exact method in the sense that we do not approximate infinitesimal intervals

of time by ∆t as is the case in ODEs, but the time step varies across the evolution of

the system and is computed in each step, being dependent on the current state of the

system.

7.3. Modelling the EGFR Signalling Cascade

The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase family of

receptors. Binding of the epidermal growth factor (EGF) to the extracellular domain of

EGFR induces receptor dimerisation and autophosphorylation of intracellular domains.

Then a multitude of proteins are recruited starting a complex signalling cascade and

the receptor follows a process of internalisation and degradation in endosomals. Two
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principal pathways lead to activation of Ras-GTP by hydrolisation of Ras-GDP. One

of these pathways depends on the Src homology and collagen domain protein (Shc)

and the other one is Shc-independent. Ras-GTP acts like a switch that stimulates

the Mitogen Activated Protein (MAP) kinase cascade by phosphorylating the proteins

Raf, MEK and ERK. Subsequently phosphorylated MEK and ERK regulate several

cellular proteins and nuclear transcription factors. Disregulated EGFR expression,

ligand production and signalling have been proved to have a strong association with

tumourgenesis. As a result of this, EGFR has been identified as a key biological target

for the development of novel anticancer therapies.

Figure 7.2 depicts a detailed graphical representation of the EGFR signalling cas-

cade.

In this section we present a P system specification and a family of models for the

EGFR signalling cascade. Our specification and models will consist only of protein-

protein interactions. Therefore only objects will be used to represent molecular entities

and rewriting rules on multisets of objects will describe the molecular interactions of

the system. In the same manner as in the previous chapter the relevant regions of the

system will be specified using membranes.

The models developed in this section will allow us to study the robustness of the

systems with regard to the number of extracellular signals and with regard to the

number of receptors located in the cell surface.

7.3.1. A P System Specification for the EGFR Signalling Cascade

In what follows we present a detailed description of the P system specification for the

EGFR signalling cascade in this chapter.

• Specification of the relevant regions in the EGFR signalling cascade:

The role played by the cell membrane in the EGFR signalling cascade is crucial

as it is the region of the cell where the receptors are located and where all the

interactions producing the assembly of molecular complexes involved in signalling

take place. These molecular complexes are made of transmembrane receptors,

extracellular signals and cytoplasmic proteins.

The membranes of our P system specification of the EGFR signalling cascade

describe the three relevant regions of the system:

1. The environment where the signal is located will be specified using the mem-

brane identified with the number 1. A label e will be associated with this

membrane. It will constitute the root of the membrane structure describing

the compartments involved in the system.
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Figure 7.2.: Graphical representation of the EGFR signalling cascade

2. The cell surface where the receptor and the complexes involved in signalling

as well as other proteins associated with the cell membrane are located.
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This membrane is identified with the number 2. A label s will be associated

with this membrane. This membrane will be embedded inside the previous

membrane to represent the fact that the environment surrounds the cell

surface.

3. The cytoplasm where the actual signalling cascade takes places. This mem-

brane is identified with the number 3. A label c will be associated with this

membrane. This membrane will be located inside the previous membrane

to represent the fact that the cell surface wraps the cytoplasm.

A Venn diagram representation of the membrane structure can be seen in Figure

7.3.

Figure 7.3.: Membrane structure in the P System Specification of the EGFR signalling

cascade

• Specification of the molecular entities in the EGFR signalling cascade:

As mentioned earlier we only consider molecular entities that can be represented

using single objects. In this respect, the alphabet O collects all the objects used

to specify the signals, receptors, proteins and complexes of proteins that take part

in the signalling cascade. Figure 7.4 presents the objects in O and the molecular

entities they represent.

• Specification of the molecular interactions in the EGFR signalling cas-

cade:
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Object Molecular Entity

EGF Epidermal Growth Factor

EGFR Epidermal Growth Factor Receptor

EGFR-EGF EGFR and EGF complex

EGFR-EGF2, EGFR-EGF2* Dimerised and Phosphorylated Receptor

TP1, TP2, TP3, TP4 Tyrosine Phosphatase 1,2,3,4

EGFR-EGF2*-TP1 Phosphorylated Receptor and TP1 complex

EGFR-EGF2-TP1 Receptor, TP1 complex

PLC, PCL* Phospholipase C-γ and its phosphorylated state

EGFR-EGF2*-PLC Phosphorylated Receptor and PLC complex

EGFR-EGF2*-PLC* Phosphorylated Receptor and PLC* complex

PLC*-TP2 PLC* and TP2 complex

PLC-TP2 PLC and TP2 complex

PI3K, PI3K* Phosphatidylinositol 3-kinase and its phosphorylated state

EGFR-EGF2*-PI3K Phosphorylated receptor and PI3K complex

EGFR-EGF2*-PI3K* Phosphorylated receptor and PI3K* complex

PI3K*-TP4 PI3K* and TP4 complex

PI3K-TP4 PI3K and TP4 complex

Grb2 Growth factor receptor binding protein 2

EGFR-EGF2*-Grb2 Phosphorylated receptor and Grb2 complex

SOS Son of sevenless homologue protein

EGFR-EGF2*-Grb2-SOS Phosphorylated receptor, Grb2, SOS complex

Grb2-SOS Grb2 and SOS complex

Shc, Shc* src homology 2 domain and its phosphorylated state

EGFR-EGF2*-Shc Phosphorylated receptor and Shc complex

EGFR-EGF2*-Shc* Phosphorylated receptor and Shc* complex

Shc*-TP3 Shc* and TP3 complex

Shc-TP3 Shc and TP3 complex

EGFR-EGF2*-Shc*-Grb2 Phosphorylated receptor, Shc* and Grb2 complex

EGFR-EGF2*-Shc*-Grb2-SOS Phosphorylated receptor, Shc*, Grb2 and SOS complex

Shc*-Grb2-SOS Shc*, Grb2 and SOS complex

Shc*-Grb2-SOS Shc* and Grb2complex

Ras-GDP, Ras-GTP, Ras-GTP* Ras protein and its hydrolised state

Raf, Raf* Raf protein and its phosphorylated state

Ras-GTP-Raf Ras-GTP and Raf complex

MEK, MEK-P, MEK-PP Mitogen-activated Protein Kinase and its phosphorylated states

ERK, ERK-P, ERK-PP External Regulated Kinase and its phosphorylated states

Raf*-MEK Raf* and MEK complex

Raf*-MEK-P Raf* and MEK-P complex

MEK-PP-ERK MEK-PP and ERK complex

MEK-PP-ERK-P MEK-PP and ERK-P complex

P2, P3 Phosphatases 2,3

MEK-P-P2 MEK-P and P2 complex

MEK-PP-P2 MEK-PP and P2 complex

ERK-P-P3 ERK-P and P3 complex

ERK-PP-P3 ERK-PP and P3 complex

Figure 7.4.: Objects in the EGFR P system specification

As mentioned previously in our P system specification of the EGFR signalling

cascade only rewriting rules on multisets of objects will be used since we are only

specifying protein-protein interactions.
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In what follows we present the 160 rewriting rules used to describe the interac-

tions between the different molecular entities involved in the signalling cascade.

For each rule we also present the deterministic macroscopic constant associated

with it. All these constants were obtained from ODE models enumerated in

the references, [32, 68, 81, 115, 117, 119, 130]. These constants could not be

used directly in our P system model, instead they were first converted into their

mesoscopic and stochastic counterparts according to the discussion in section 2.6.

A brief description of the interactions represented by the rules will be presented

as well.

− Receptor activation

The first step in the signalling cascade consists of the reversible binding of the

signal, the Epidermal Growth Factor (EGF), to its receptor, binding and debind-

ing rules r1 and r2. Once bound, EGF assists in dimerisation of the receptor, the

formation of a complex made up of two receptors, complex formation and disso-

ciation rules r3 and r4. The dimerisation of the receptor produces the reversible

phosphorylation of both receptors yielding the active form of the receptor, trans-

formation rules r5 and r6.

Phosphate TP1 is involved in one of the processes of deactivation of the receptor.

Specifically, TP1 is recruited reversibly from the cytoplasm by the active receptor,

recruitment and releasing rules r7 and r8. Once bound to the receptor TP1

dephosphorylate it, transformation rule r9 and subsequently is released reversibly

back into the cytoplasm, releasing rule r10 and recruitment rule r11.

Rule Kinetic Constant

r1 : EGF [ EGFR s
c1−→ [ EGFR-EGF ]s k1 = 3 × 10−3

r2 : [ EGFR-EGF ]s
c2−→ EGF [ EGFR ]s k2 = 6 × 10−2

r3 : [ EGFR-EGF + EGFR-EGF ]s
c3−→ [ EGFR-EGF2 ]s k3 = 1.1 × 10−2

r4 : [ EGFR-EGF2 ]s
c4−→ [ EGFR-EGF + EGFR-EGF ]s k4 = 0.814

r5 : [ EGFR-EGF2 ]s
c5−→ [ EGFR-EGF2∗]s k5 = 2.71

r6 : [ EGFR-EGF2∗]s
c6−→ [ EGFR-EGF2 ]s k6 = 0.0271

r7 : EGFR-EGF2∗[ TP1 ]c
c7−→ EGFR-EGF2∗-TP1[ ]c k7 = 0.03

r8 : EGFR-EGF2∗-TP1[ ]c
c8−→ EGFR-EGF2∗[ TP1]c k8 = 5.91

r9 : [ EGFR-EGF2∗-TP1]s
c9−→ [ EGFR-EGF2-TP1]s k9 = 7.44

r10 : EGFR-EGF2-TP1[ ]c
c10−→ EGFR-EGF2 [ TP1]c k10 = 5.1 × 10−3

r11 : EGFR-EGF2 [ TP1]c
c11−→ EGFR-EGF2-TP1[ ]c k11 = 2 × 10−4

− Receptor Internalisation and degradation

The main mechanism of receptor deactivation consists of receptor internalisation

in the cytoplasm where subsequently it is degraded. Receptor internalisation can

take place without the aid of any transport proteins, diffusion in rules r12 and r13
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or after interaction with the protein CPP, complex formation and dissociation

rules r18, r19 and diffusion in rule r20. The internalisation of the receptor is

reversible, diffusion out rule r14. Once in the cytoplasm the receptor can be

degraded, degradation rules, r15 and r16.

Rule Kinetic Constant

r12 : EGFR [ ]c
c12−→ [ EGFR ]c k12 = 5 × 10−5

r13 : [ EGFR ]c
c13−→ EGFR [ ]c k13 = 5 × 10−3

r14 : EGFR-EGF2∗[ ]c
c14−→ [EGFR-EGF2∗]c k14 = 5 × 10−5

r15 : [ EGFR ]c
c15−→ [ ]c k15 = 6.64 × 10−4

r16 : [ EGFR-EGF2∗ ] c
c16−→ [ ] c 6.64 × 10−4

r17 : [ EGF ] c
c17−→ [ ] c k17 = 1.67 × 10−4

r18 : [ EGFR-EGF2∗-Grb2 CPP ] s
c18−→ [ EGFR-EGF2∗-Grb2-CPP ] s k18 = 1.73 × 10−7

r19 : [ EGFR-EGF2∗-Grb2-CPP ] s
c19−→ [ EGFR-EGF2∗-Grb2 CPP ] s k19 = 1.66 × 10−3

r20 : EGFR-EGF2∗-Grb2-CPP [ ] c
c20−→ [ EGFR-EGF2∗-Grb2 CPP ] c k20 = 0.003

r21 : [ CPP ] c
c21−→ CPP [ ] c k21 = 10−5

Once the receptor is active it recruits several cytoplasmic proteins assembling

different complexes which trigger some signalling pathways in the cytoplasm.

When these proteins are recruited they are phosphorylated and released back in

the cytoplasm to initiate different signalling pathways. Next we present the P

system specification of these pathways.

− PLCγ pathway

One of the first cytoplasmic pathways starts with the reversible recruitment of

the protein PLCγ, rules r22 and r23. Once recruited to the cell membrane PLCγ is

reversibly phosphorylated, rules r24 and r25, and released back to the cytoplasm,

rules r26 and r27. Once in the cytoplasm PLCγ* can translocate to the membrane,

rules r28 and r29, or be desphosphorylated by TP2, rules r30, r31, r32, r33 and r34.

Rule Kinetic Constant

r22 : EGFR-EGF2∗ [ PLCγ ] c
c22−→ EGFR-EGF2∗-PLCγ [ ] c k22 = 0.1

r23 : EGFR-EGF2∗-PLCγ [ ] c
c23−→ EGFR-EGF2∗ [ PLCγ ] c k23 = 1

r24 : [ EGFR-EGF2∗-PLCγ ] s
c24−→ [ EGFR-EGF2∗-PLC∗

γ ] s k24 = 10

r25 : [ EGFR-EGF2∗-PLC∗
γ ] s

c25−→ [ EGFR-EGF2∗-PLCγ ] s 0.1

r26 : EGFR-EGF2∗-PLC∗
γ [ ] c

c26−→ EGFR-EGF2∗ [ PLC∗
γ ] c k26 = 1.5 × 10−4

r27 : EGFR-EGF2∗ [ PLC∗
γ ] c

c27−→ EGFR-EGF2∗-PLC∗
γ [ ] c k27 = 7.5 × 10−8

r28 : PLC∗
γ [ ] s

c28−→ [ PLC∗
γ ] s k28 = 1

r29 : [ PLC∗
γ ] s

c29−→ PLC∗
γ [ ] s k29 = 0.03

r30 : [ PLC∗
γ + TP2 ] c

c30−→ [ PLC∗
γ -TP2 ] c k30 = 1.5 × 10−4

r31 : [ PLC∗
γ -TP2 ] c

c31−→ [ PLC∗
γ + TP2 ] c k31 = 1.5 × 10−3

r32 : [ PLC∗
γ -TP2 ] c

c32−→ [ PLCγ -TP2 ] c k32 = 0.1

r33 : [ PLCγ -TP2 ] c
c33−→ [ PLCγ + TP2 ] c k33 = 10−5

r34 : [ PLCγ TP2 ] c
c34−→ [ PLCγ -TP2 ] c k34 = 1.8 × 10−7

− Grb2 pathway
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One of the most important signalling pathways starts with the recruitment of the

Grb2 protein, rules r35 and r36. Once Grb2 is recruited the protein SOS can also

be recruited, rules r37 and r38. This situation allows the complex Grb2-SOS to

be released reversibly in the cytoplasm,rules r39 and r40, where it can dissociate,

rules r40 and r41.

Rule Kinetic Constant

r35 : EGFR-EGF2∗ [ Grb2 ] c
c35−→ EGFR-EGF2∗-Grb2 [ ] c k35 = 1.5 × 10−3

r36 : EGFR-EGF2∗-Grb2 [ ] c
c36−→ EGFR-EGF2∗ [ Grb2 ] c k36 = 0.2

r37 : EGFR-EGF2∗-Grb2 [ SOS ] c
c37−→ EGFR-EGF2∗-Grb2-SOS [ ] c k37 = 0.01

r38 : EGFR-EGF2∗-Grb2-SOS [ ] c
c38−→ EGFR-EGF2∗-Grb2 [ SOS ] c k38 = 0.06

r39 : EGFR-EGF2∗-Grb2-SOS [ ] c
c39−→ EGFR-EGF2∗ [ Grb2-SOS ] c k39 = 2.8 × 10−3

r40 : EGFR-EGF2∗ [ Grb2-SOS ] c
c40−→ EGFR-EGF2∗-Grb2-SOS [ ] c k40 = 5.3 × 10−5

r41 : [ Grb2-SOS ] c
c41−→ [ Grb2 + SOS ] c k41 = 10−4

r42 : [ Grb2 + SOS ] c
c42−→ [ Grb2-SOS ] c k42 = 6.7 × 10−6

− Shc pathway

Another important pathway depends on the protein Shc. This protein is recruited

by the active receptor, phosphorylated and released back into the cytoplasm, rules

r43 - r48. Once in the cytoplasm it can be dephosphorylated by TP3, rules r49 -

r53. Once bound to the receptor the phosphorylated state of Shc can assist in the

recruitment of the proteins Grb2 and SOS, rules r54 - r57, r60 - r63, r68 and r69.

The complexes formed by the proteins Grb2, SOS and Shc are released into the

cytoplasm, rules r58, r59, r64 - r67, where they can dissociate and interact with

the Grb2 pathway. These interactions constitute the cross-talk between these

two pathways.

Rule Kinetic Constant

r43 : EGFR-EGF2∗ [ Shc ] c
c43−→ EGFR-EGF2∗-Shc [ ] c k43 = 0.1

r44 : EGFR-EGF2∗-Shc [ ] c
c44−→ EGFR-EGF2∗ [ Shc ] c k44 = 1

r45 : [ EGFR-EGF2∗-Shc ] s
c45−→ [ EGFR-EGF2∗-Shc∗ ] s k45 = 20

r46 : [ EGFR-EGF2∗-Shc∗ ] s
c46−→ [ EGFR-EGF2∗-Shc ] s k46 = 0.2

r47 : EGFR-EGF2∗-Shc∗ [ ] c
c47−→ EGFR-EGF2∗ [ Shc∗ ] c k47 = 5 × 10−4

r48 : EGFR-EGF2∗ [ Shc∗ ] c
c48−→ EGFR-EGF2∗-Shc∗ [ ] c k48 = 3.56 × 10−7

r49 : [ Shc∗ + TP3 ] c
c49−→ [ Shc∗-TP3 ] c k49 = 5 × 10−3

r50 : [ Shc∗-TP3 ] c
c50−→ [ Shc∗ + TP3 ] c k50 = 9.5 × 10−2

r51 : [ Shc∗-TP3 ] c
c51−→ [ Shc-TP3 ] c k51 = 0.15

r52 : [ Shc-TP3 ] c
c52−→ [ Shc + TP3 ] c k52 = 2 × 10−4

r53 : [ Shc + TP3 ] c
c53−→ [ Shc-TP3 ] c k53 = 4 × 10−6

r54 : EGFR2∗-Shc∗ [ Grb2 ] c
c54−→ EGFR2∗-Shc∗-Grb2 [ ] c k54 = 1.5 × 10−3
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Rule Kinetic Constant

r55 : EGFR2∗-Shc∗-Grb2 [ ] c
c55−→ EGFR2∗-Shc∗ [ Grb2 ] c k55 = 4.95 × 10−2

r56 : EGFR2∗-Shc∗-Grb2 [ ] c
c56−→ EGFR2∗ [ Shc∗-Grb2 ] c k56 = 6.5 × 10−4

r57 : EGFR2∗ [ Shc∗-Grb2 ] c
c57−→ EGFR2∗-Shc∗-Grb2 [ ] c k57 = 1.4 × 10−6

r58 : [ Shc∗-Grb2 ] c
c58−→ [ Shc∗ + Grb2 ] c k58 = 1 × 10−3

r59 : [ Shc∗ + Grb2 ] c
c59−→ [ Shc∗-Grb2 ] c k59 = 1 × 10−5

r60 : EGFR2∗-Shc∗-Grb2 [ SOS ] c
c60−→ EGFR2∗-Shc∗-Grb2-SOS [ ] c k60 = 0.015

r61 : EGFR2∗-Shc∗-Grb2-SOS [ ] c
c61−→ EGFR2∗-Shc∗-Grb2 [ SOS ] c k61 = 0.03

r62 : EGFR2∗-Shc∗-Grb2-SOS [ ] c
c62−→ EGFR2∗ [ Shc∗-Grb2-SOS ] c k62 = 1.1 × 10−3

r63 : EGFR2∗ [ Shc∗-Grb2-SOS ] c
c63−→ EGFR2∗-Shc∗-Grb2-SOS [ ] c k63 = 2.37 × 10−6

r64 : [ Shc∗-Grb2-SOS ] c
c64−→ [ Shc∗-Grb2 SOS ] c k64 = 0.06

r65 : [ Shc∗-Grb2 SOS ] c
c65−→ [ Shc∗-Grb2-SOS ] c k65 = 0.03

r66 : [ Shc∗-Grb2-SOS ] c
c66−→ [ Shc∗ Grb2-SOS ] c k66 = 0.035

r67 : [ Shc∗ Grb2-SOS ] c
c67−→ [ Shc∗-Grb2-SOS ] c k67 = 2.5 × 10−3

r68 : EGFR2∗-Shc∗ [ Grb2-SOS ] c
c68−→ EGFR2∗-Shc∗-Grb2-SOS [ ] c k68 = 0.5

r69 : EGFR2∗-Shc∗-Grb2-SOS [ ] c
c69−→ EGFR2∗-Shc∗ [ Grb2-SOS ] c k69 = 0.1

− Internalized Receptor Activity

We assume that receptors at the cell surface and internalised receptors in endo-

somal compartments induce identical signalling cascades, except for the PLCγ

pathway which is turned off upon receptor internalisation.

Rule Kinetic Constant

r70 : [ EGF + EGFR ] c
c70−→ [ EGFR-EGF ] c k70 = 3 × 10−3

r71 :[ EGFR-EGF ] c
c71−→ [ EGF + EGFR ] c k71 = 0.06

r72 : [ EGFR-EGF + EGFR-EGF ] c
c72−→ [ EGFR-EGF2 ] c k72 = 1.1 × 10−2

r73 : [ EGFR-EGF2 ] c
c73−→ [ EGFR-EGF + EGFR-EGF ] c k73 = 0.814

r74 : [ EGFR-EGF2 ] c
c74−→ [ EGFR-EGF2∗ ] c k74 = 2.71

r75 : [ EGFR-EGF2∗ ] c
c75−→ [ EGFR-EGF2 ] c k75 = 0.0271

r76 : [ EGFR-EGF2∗ + TP1 ] c
c76−→ [ EGFR-EGF2∗-TP1 ] c k76 = 5.1 × 10−3

r77 : [ EGFR-EGF2∗-TP1 ] c
c77−→ [ EGFR-EGF2∗ + TP1 ] c k77 = 5.91

r78 : [ EGFR-EGF2∗-TP1 ] c
c78−→ [ EGFR-EGF2-TP1 ] c k78 = 7.44

r79 : [ EGFR-EGF2-TP1 ] c
c79−→ [ EGFR-EGF2 + TP1 ] c k79 = 5.1 × 10−3

r80 : [ EGFR-EGF2 + TP1 ] c
c80−→ [ EGFR-EGF2-TP1 ] c k80 = 2 × 10−4

r81 : [ EGFR-EGF2∗ + Grb2 ] c
c81−→ [ EGFR-EGF2∗-Grb2 ] c k81 = 1.5 × 10−3

r82 : [ EGFR-EGF2∗-Grb2 ] c
c82−→ [ EGFR-EGF2∗ + Grb2 ] c k82 = 0.2

r83 : [ EGFR-EGF2∗-Grb2 + SOS ] c
c83−→ [ EGFR-EGF2∗-Grb2-SOS ] c k83 = 0.01

r84 : [ EGFR-EGF2∗-Grb2-SOS ] c
c84−→ [ EGFR-EGF2∗-Grb2 + SOS ] c k84 = 0.06

r85 : [ EGFR-EGF2∗-Grb2-SOS ] c
c85−→ [ EGFR-EGF2∗ + Grb2-SOS ] c k85 = 2.8 × 10−3

r86 : [ EGFR-EGF2∗ + Grb2-SOS ] c
c86−→ [ EGFR-EGF2∗-Grb2-SOS ] c k86 = 5.3 × 10−5

r87 : [ EGFR-EGF2∗ + Shc ] c
c87−→ [ EGFR-EGF2∗-Shc ] c k87 = 0.1

r88 : [ EGFR-EGF2∗-Shc ] c
c88−→ [ EGFR-EGF2∗ + Shc ] c k88 = 1

r89 : [ EGFR-EGF2∗-Shc ] c
c89−→ [ EGFR-EGF2∗-Shc∗ ] c k89 = 20

r90 : [ EGFR-EGF2∗-Shc∗ ] c
c90−→ [ EGFR-EGF2∗-Shc ] c k90 = 0.2

r91 : [ EGFR-EGF2∗-Shc∗ ] c
c91−→ [ EGFR-EGF2∗ + Shc∗ ] c 5 × 10−4

r92 : [ EGFR-EGF2∗ + Shc∗ ] c
c92−→ [ EGFR-EGF2∗-Shc∗ ] c 3.56 × 10−7
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Rule Kinetic Constant

r93 : [ EGFR2∗-Shc∗ + Grb2 ] c
c93−→ [ EGFR2∗-Shc∗-Grb2 ] c 1.5 × 10−3

r94 : [ EGFR2∗-Shc∗-Grb2 ] c
c94−→ [ EGFR2∗-Shc∗ + Grb2 ] c 4.95 × 10−2

r95 : [ EGFR2∗-Shc∗-Grb2 ] c
c95−→ [ EGFR2∗ + Shc∗-Grb2 ] c 6.5 × 10−4

r96 : [ EGFR2∗ + Shc∗-Grb2 ] c
c96−→ [ EGFR2∗-Shc∗-Grb2 ] c 1.4 × 10−6

r97 : [ EGFR2∗-Shc∗-Grb2 + SOS ] c
c97−→ [ EGFR2∗-Shc∗-Grb2-SOS ] c k97 = 0.015

r98 : [ EGFR2∗-Shc∗-Grb2-SOS ] c
c98−→ [ EGFR2∗-Shc∗-Grb2 + SOS ] c k98 = 0.03

r99 : [ EGFR2∗-Shc∗-Grb2-SOS ] c
c99−→ [ EGFR2∗ + Shc∗-Grb2-SOS ] c k99 = 1.1 × 10−3

r100 : [ EGFR2∗ + Shc∗-Grb2-SOS ] c
c100−→ [ EGFR2∗-Shc∗-Grb2-SOS ] c k100 = 2.37 × 10−6

r101 : [ EGFR2∗-Shc∗ + Grb2-SOS ] c
c101−→ [ EGFR2∗-Shc∗-Grb2-SOS ] c k101 = 0.5

r102 : [ EGFR2∗-Shc∗-Grb2-SOS ] c
c102−→ [ EGFR2∗-Shc∗ + Grb2-SOS ] c k102 = 0.1

− PI3K pathway

A marginal pathway consists of the recruitment of the protein PI3K, rules r103

and r104, its phosphorylation, rules r104 and r105; its release back to the cytoplasm,

rules r106 and r107 where it can be dephosphorylated through interactions with

TP4, rules r109 - r113.

Rule Kinetic Constant

r103 :EGFR-EGF2∗ [ PI3K ] c
c103−→ EGFR-EGF2∗-PI3K [ ] c k103 = 0.1

r104 : EGFR-EGF2∗-PI3K [ ] c
c104−→ EGFR-EGF2∗ [ PI3K ] c k104 = 2

r105 : [ EGFR-EGF2∗-PI3K ] s
c105−→ [ EGFR-EGF2∗-PI3K∗ ] s k105 = 9.85

r106 : [ EGFR-EGF2∗-PI3K∗ ] s
c106−→ [ EGFR-EGF2∗-PI3K ] s k106 = 0.985

r107 : EGFR-EGF2∗-PI3K∗ [ ] c
c107−→ EGFR-EGF2∗ [ PI3K∗ ] c k107 = 0.047

r108 : EGFR-EGF2∗ [ PI3K∗ ] c
c108−→ EGFR-EGF2∗-PI3K∗ [ ] c k108 = 4.82 × 10−5

r109 : [ PI3K∗ TP4 ] c
c109−→ [ PI3K∗-TP4 ] c k109 = 7 × 10−4

r110 : [ PI3K∗-TP4 ] c
c110−→ [ PI3K∗ TP4 ] c k110 = 7 × 10−3

r111 : [ PI3K∗-TP4 ] c
c111−→ [ PI3K-TP4 ] c k111 = 0.03

r112 : [ PI3K-TP4 ] c
c112−→ [ PI3K TP4 ] c k112 = 8 × 10−5

r113 : [ PI3K TP4 ] c
c113−→ [ PI3K-TP4 ] c k113 = 6.7 × 10−6

− Ras and Raf activation

The Grb2 and Shc pathway converge in the activation of the Ras protein. Once

the proteins Grb2 and SOS have been recruited in one of the two pathways they

can interact with Ras-GDP, rules r114 - r125, to produce Ras-GTP. Once Ras-GTP

appears in the cell surface it can interact with Raf, rules r126 - r129, producing

the phosphorylated state of both molecules Ras-GTP* and Raf*. Ras-GTP* can

interact with the Shc pathways, rules r130 - r133 and Raf* can be dephosphorylated

through interactions with Phosp1, rules r134 - r136.
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Rule Kinetic Constant

r114 : [ EGFR-EGF2∗-Grb2-SOS + Ras-GDP ] s
c114−→ [ EGFR-EGF2∗-Grb2-SOS-Ras-GDP ] s k114 = 0.015

r115 : [ EGFR-EGF2∗-Grb2-SOS-Ras-GDP ] s
c115−→ [ EGFR-EGF2∗-Grb2-SOS + Ras-GDP ] s k115 = 1.3

r116 : [ EGFR-EGF2∗-Grb2-SOS-Ras-GDP ] s
c116−→ [ EGFR-EGF2∗-Grb2-SOS + Ras-GTP ] s k116 = 0.5

r117 : [ EGFR-EGF2∗-Grb2-SOS + Ras-GTP ] s
c117−→ [ EGFR-EGF2∗-Grb2-SOS-Ras-GDP ] s k117 = 1 × 10−4

r118 : [ EGFR-EGF2∗-Grb2-SOS + Ras-GTP∗ ] s
c118−→ [ EGFR-EGF2∗-Grb2-SOS-Ras-GTP ] s k118 = 2.1 × 10−3

r119 : [ EGFR-EGF2∗-Grb2-SOS-Ras-GTP ] s
c119−→ [ EGFR-EGF2∗-Grb2-SOS + Ras-GTP∗ ] s k119 = 0.4

r120 : [ EGFR-EGF2∗-Grb2-SOS-Ras-GTP ] s
c120−→ [ EGFR-EGF2∗-Grb2-SOS + Ras-GDP ] s k120 = 0.023

r121 : [ EGFR-EGF2∗-Grb2-SOS + Ras-GDP ] s
c121−→ [ EGFR-EGF2∗-Grb2-SOS-Ras-GTP ] s k121 = 2.2 × 10−4

r122 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GDP ] s
c122−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GDP ] s k122 = 0.015

r123 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GDP ] s
c123−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GDP ] s k123 = 1.3

r124 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GDP ] s
c124−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GTP ] s k124 = 0.5

r125 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GTP ] s
c125−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GDP ] s k125 = 1 × 10−4

r126 : [ Ras-GTP + Raf ] s
c126−→ [ Ras-GTP-Raf ] s k126 = 0.001

r127 : [ Ras-GTP-Raf ] s
c127−→ [ Ras-GTP + Raf ] s k127 = 0.0053

r128 : [ Ras-GTP-Raf ] s
c128−→ [ Ras-GTP∗ Raf∗ ] s k128 = 1

r129 : [ Ras-GTP∗ + Raf∗ ] s
c129−→ [ Ras-GTP-Raf ] s k129 = 7 × 10−4

r130 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GTP∗ ] s
c130−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GTP ] s k130 = 7.9 × 10−3

r131 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GTP ] s
c131−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GTP∗ ] s k131 = 0.3

r132 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GTP ] s
c132−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GDP ] s k132 = 0.023

r133 : [ EGFR-EGF2∗-Shc∗-Grb2-SOS + Ras-GDP ] s
c133−→ [ EGFR-EGF2∗-Shc∗-Grb2-SOS-Ras-GTP ] s k133 = 2.2 × 10−4

r134 : Raf∗ [ Phosp1 ] c
c134−→ Raf∗-Phosp1 [ ] c k134 = 0.0717

r135 : Raf∗-Phosp1 [ ] c
c135−→ Raf∗ [ Phosp1 ] c k135 = 0.2

r136 : Raf∗-Phosp1 [ ] c
c136−→ Raf [ Phosp1 ] c k136 = 1

− MEK and ERK activation

The activation of the Raf protein in the cell surface triggers the last pathway

specified in this work which consists of the activation of MEK and ERK. First,

MEK is recruited to the cell surface by Raf* twice where it is doubly phospho-

rylated and released back into the cytoplasm, rules r137 - r142. In the cytoplasm

MEK-PP can be desphosphorylated by Phosp2, rules r143 - r148, or it can interact

with ERK, rules r149 - r154, to produce its doubly phosphorylated state ERK-PP.

In turn ERK-PP is desphosphorylated by Phosp3, rules r155 - r160.

Rule Kinetic Constant

r137 : Raf∗ [ MEK ] c
c137−→ Raf∗-MEK [ ] c k137 = 0.0111

r138 : Raf∗-MEK [ ] c
c138−→ Raf∗ [ MEK ] c k138 = 0.01833

r139 : Raf∗-MEK [ ] c
c139−→ Raf∗ [ MEK-P ] c k139 = 3.5

r140 : Raf∗ [ MEK-P ] c
c140−→ Raf∗-MEK-P [ ] c k140 = 0.0111

r141 : Raf∗-MEK-P [ ] c
c141−→ Raf∗ [ MEK-P ] c k141 = 0.01833

r142 : Raf∗-MEK-P [ ] c
c142−→ Raf∗ [ MEK-PP ] c k142 = 2.9

r143 : [ MEK-PP + Phosp2 ] c
c143−→ [ MEK-PP-Phosp2 ] c k143 = 1.43 × 10−2

r144 : [ MEK-PP-Phosp2 ] c
c144−→ [ MEK-PP + Phosp2 ] c k144 = 0.8

r145 : [ MEK-PP-Phosp2 ] c
c145−→ [ MEK-P + Phosp2 ] c k145 = 0.058

r146 : [ MEK-P + Phosp2 ] c
c146−→ [ MEK-P-Phosp2 ] c k146 = 2.5 × 10−4

r147 : [ MEK-P-Phosp2 ] c
c147−→ [ MEK-P + Phosp2 ] c k147 = 0.5

r148 : [ MEK-P-Phosp2 ] c
c148−→ [ MEK + Phosp2 ] c k148 = 0.058
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Rule Kinetic Constant

r149 : [ MEK-PP + ERK ] c
c149−→ [ MEK-PP-ERK ] c k149 = 1.1 × 10−4

r150 : [ MEK-PP-ERK ] c
c150−→ [ MEK-PP + ERK ] c k150 = 0.033

r151 : [ MEK-PP-ERK ] c
c151−→ [ MEK-PP + ERK-P ] c k151 = 16

r152 : [ MEK-PP + ERK-P ] c
c152−→ [ MEK-PP-ERK-P ] c k152 = 1.1 × 10−4

r153 : [ MEK-PP-ERK-P ] c
c153−→ [ MEK-PP + ERK-P ] c k153 = 0.033

r154 : [ MEK-PP-ERK-P ] c
c154−→ [ MEK-PP + ERK-PP ] c k154 = 5.7

r155 : [ ERK-PP + Phosp3 ] c
c155−→ [ ERK-PP-Phosp3 ] c k155 = 0.0145

r156 : [ ERK-PP-Phosp3 ] c
c156−→ [ ERK-PP + Phosp3 ] c k156 = 0.6

r157 : [ ERK-PP-Phosp3 ] c
c157−→ [ ERK-P + Phosp3 ] c k157 = 0.27

r158 : [ ERK-P + Phosp3 ] c
c158−→ [ ERK-P-Phosp3 ] c k158 = 0.005

r159 : [ ERK-P-Phosp3 ] c
c159−→ [ ERK-P + Phosp3 ] c k159 = 0.5

r160 : [ ERK-P-Phosp3 ] c
c160−→ [ ERK + Phosp3 ] c k160 = 0.3

Summing up our P system specification of the EGFR signalling cascade consists of

the following construct:

ΠEGFR = (O, {e, s, c}, µ,M1, M2, M3,Re,Rs,Rc)

where:

• The alphabet O collects all the objects representing the proteins and complexes

of proteins involved in the system, see Figure 7.4.

• The set of labels, L = {e, s, c}, is used to identify the different compartment

types where the signalling transduction takes place, namely, the environment e,

the cell surface s and the cytoplasm c.

• The membrane structure, µ, consists of three membranes identifying the three

relevant regions in the system, namely, the environment, the cell surface and the

cytoplasm. A Venn diagram representation of the membrane structure in our P

system specification ΠEGFR is depicted in Figure 7.3.

• The initial multisets M1, M2 and M3 are part of the parameters of our P system

specification ΠEGFR. They associate the label e with membrane 1 which repre-

sents the environment, the label s with membrane 2 which represents the cell

surface and the label c with membrane 3 which represents the cytoplasm.

• The sets of rewriting rules Re, Rs and Rc are associated with the compartments

representing the environment, cell surface and cytoplasm respectively. These

rules describe the molecular interactions that take place in the specific compart-

ment they are associated with. Next we enumerate the rules associated with each

compartment.

– Re = {r1}
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– Rs = {r2 − r6, r8 − r9, r12, r14, r18 − r20, r23 − r26, r29, r36, r38, r39, r44, r45, r46

r47, r55, r56, r62, r69, r104 − r107, r114 − r133, r135, r136, r138, r139, r141, r142}
– Rc = {r7, r11, r13, r15 − r17, r21, r22, r27, r28, r30 − r35, r37, r40 − r43, r48 − r54,

r57 − r61, r63 − r68, r70 − r103, r108 − r113, r134, r137, r140, r143 − r160}

7.3.2. P Systems Models for the Analysis of the EGFR Signalling

Cascade

Once we have developed a P system specification of the EGFR signalling cascade,

ΠEGFR, we can study the behaviour of the system under different conditions. In this

section we will study the robustness of the signalling cascade with regard to the number

of signals, EGF, in the environment and the number of receptors, EGFR, in the cell

surface. This will be achieved by designing a suitable family of P system models.

The first step in the design of a family of P system models associated with our P

system specification consists of identifying the parameters, P(ΠEGFR) = (M0(ΠEGFR),

C(ΠEGFR)).

The EGFR signalling cascade is one of the best studied and understood signal trans-

duction systems, and thus it was possible to determine good estimates for the constants

associated with the rules C(ΠEGFR). These values were enumerated previously during

the introduction of the rules.

Therefore, the actual parameters of our P system specification are the initial multi-

sets M0(ΠEGFR) = (M1,M2,M3). As mentioned earlier in this section the robustness

of the EGFR signalling cascade will be studied with regard to the number of signals in

the environment and the number of receptors in the cell surface. The different number

of initial signals will be represented in the initial multisets associated with the environ-

ment M1 and the different number of receptors in the cell surface will represented in

the initial multisets associated with the cell surface M2. Different initial conditions in

the cytoplasm will not be studied, thus there will be a single initial multiset associated

with the cytoplasm M3 = {M3}.
More specifically, the initial multisets associated with each membrane or compart-

ment will be:

• The initial multisets associated with the environment M1 = {M100
1 , M200

1 , M300
1 ,

M400
1 , M1000

1 , M2000
1 } will represent the initial conditions corresponding to a con-

cetration of 100nM, 200nM, 300nM, 400nM, 1000nM and 2000nM of EGF signals,

in the environment.

• The initial multisets associated with the cell surface M2 = {M100
2 , M1000

2 } will

represent the initial conditions corresponding to a concentration of 100nM and
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1000nM of receptors, EGFR, in the cell surface. The same initial concentration

of 200 nM of Ras-GDP will be placed in both initial multisets M100
2 and M1000

2 .

• Finally, there will be a single initial multiset associted with the cytoplasm, M3.

This initial multiset will represent the initial conditions corresponding to a con-

cetration of 250nM of ShC, 150nM of PLCγ, 50nM of PI3K, 40nM of SOS, 80nM

of Grb2, 100nM of TP1, 450nM of TP2, 450nM of TP3, 125nM of TP4, 80nM of

Raf, 400nM of MEK, 400nM of ERK, 80nM of P1, 80nM of P2 and 300nM of P3.

By combining these parameters with the P system specification ΠEGFR we ob-

tain a family of P system models FEGFR(ΠEGFR; ((M1,M2,M3), C)) consisting of

twelve different P systems models. These models will be denoted by PSM ij
EGFR where

PSM ij
EGFR = (ΠEGFR; (M i

1, M
j
2 , M3), C).

In what follows we present an analysis of the robustness of the EGFR signalling

cascade using the previous models. The analysis will be carried out through simula-

tion using the Deterministic Waiting Times algorithm introduced in section 7.2. The

behaviour of each P system model will be analysed by presenting the evolution over

time of the number of molecules of some key proteins and enzymes involved in the

signalling cascade. For example, in Figure 7.5 it depicts the evolution over time of the

number of autophosphorylated receptors and the number of doubled phosphorylated

MEK (Mitogen External Kinase), one of the target proteins of the signalling cascade

that regulates some nuclear transcription factors involved in the cell division. Note

that the activation of the receptor is very fast reaching its maximum within the first

5 seconds and then it decays fast to very low levels; on the other hand the number of

doubled phosphorylated MEK is more sustained around 3 nM. These results agree well

with empirical observations, see [81, 115].

The EGFR signalling cascade is known to be involved in processes related to cancer

development. In particular, it has been reported that an overexpression of signals EGF

in the environment and of receptors, EGFR, in the cell surface occurs in cancerous

cells. As mentioned before in this work these two situations, namely an overexpression

of signals and receptor, will be studied separately in order to determine which of the

two is really distorting the function of the signalling cascade.

• Robustness of the system with regard to extracellular EGF signals:

First, we analyse the effect of the number of extracellular signals on the signalling

cascade. In particular, we will show the evolution over time of the number of

autophosphorylated receptors and double phosphorylated MEK in the models

PSM100,100
EGFR , PSM200,100

EGFR , PSM300,100
EGFR , PSM400,100

EGFR , PSM1000,100
EGFR and PSM2000,100

EGFR .
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Figure 7.5.: Evolution of the number of autophosphorylated receptors, left, and the

number of doubled phosphorylated MEK, right

Recall, that these models represent an experiment where the extracellular signal

EGF varies over a range from 100 nM to 2000 nM.
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Figure 7.6.: Evolution over time of the number of autophosphorylated receptors for a

range of extracellular singal concentration

In Figure 7.6 it can be seen that the receptor autophosphorylation is clearly
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concentration dependent showing different peaks for a differing number of signals

in the environment. According to the variance in the receptor activation it is

intuitive to expect different cell responses to different EGF concentrations. In

what follows we show that, interestingly, this is not the case.
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Figure 7.7.: Evolution over time of the number of double phosphorylated MEK for a

range of extracellular singal concentration

Observe, in Figure 7.7 , that the number of doubled phosphorylated MEK does

not depend on the number of signals in the environment. This shows the surpris-

ing robustness of the signalling cascade with regard to the number of extracellular

EGF. The signal is either attenuated or amplified to obtain the same concentra-

tion of one of the most relevant kinases in the signalling cascade, MEK. Note

that after 100 seconds, when the response is sustained, the lines representing the

response to different external EGF concentrations are identical.

• Effect of the number of receptor in the cell surface

Now we analyse the effect on the dynamics of the signalling cascade on differ-

ent numbers of receptors in the cell surface. More specifically, we will show the

evolution over time of the number of double phosphorylated MEK in the models
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PSM400,100
EGFR and PSM400,1000

EGFR . Recall, that these two models represent an exper-

iment where the number of receptors in the cell surface is changed from 100 nM

to 1000 nM whereas the number of extracellular signals EGF is kept constant at

400 nM.
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Figure 7.8.: Evolution over time of the number of double phosphorylated MEK for

different number of receptors in the cell surface

Figure 7.8 shows the evolution of the number of doubled phosphorylated MEK

when there is 100 nM and 1000 nM of receptors in the cell surface. Note that

now the response is considerably different, the number of activated MEK being

greater when there is an overexpression of receptors in the cell surface. As a

consequence of this high number of activated MEK the cells will undergo an

uncontrolled process of proliferation.

The key role played by the overexpression of EGFR on the uncontrolled growth

of tumours has been reported before, making EGFR one of the main biological

targets for the development of novel anticancer therapies.
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7.4. Modelling FAS Induced Apoptosis

There are basically two mechanisms of cell death, necrosis and apoptosis. Necrosis is a

form of cell death that usually occurs when cells are damaged by injury. A disruption

of the cell membrane occurs and intracellular materials are released. In contrast to

necrosis, apoptosis is carried out in an ordered sequence of events that culminates in

the suicide of the cell, and without releasing intracellular materials from the dying cell.

The term apoptosis (also known as programmed cell death) was coined by Kerr,

Wyllie and Currie [67] as a means of distinguishing a morphologically distinctive form

of cell death which was associated with normal physiology.

Apoptosis occurs during organ development, plays an important role in cellular

homeostasis [62], and is a cellular response to a cellular insult that starts a cascade of

apoptotic signals, both intracellular and extracellular, which converge on the activation

of a group of apoptotic–specific proteases called caspases. The apoptotic mechanism

include condensation of cell contents, DNA fragmentation into nucleosomal fragments,

nuclear membrane breakdown, and the formation of apoptotic bodies, small membrane–

bound vesicles phagocytosed by neighboring cells [84]. Apoptosis protects the rest of

the organism from a potentially harmful agent and dysregulation of apoptosis can

contribute to the development of autoimmune diseases and cancers. Apoptosis can

also be induced by anticancer drugs, group factor deprivation, and irradiation.

The family of proteases that mediates apoptosis is divided into two subgroups.

• The first group consists of caspase 8, caspase 9, and caspase 10, and they function

as initiators of the cell death process.

• The second group contains caspase 3, caspase 6, and caspase 7, and they work as

effectors. The other effector molecule in apoptosis is Apaf-1, which, together with

cytochrome c, stimulates the processing of pro-caspase 9 to the mature enzyme.

The other regulators of apoptosis are the Bcl2 family members, divided into three

subgroups based on their structure.

• Members of the first subgroup, represented by Bcl2 and Bcl-xL, have an anti-

apoptotic function.

• The second subgroup, represented by Bax and Bak.

• The third subgroup, represented by Bid and Bad, are pro-apoptotic molecules.

Apoptotic death can be triggered by a wide variety of stimuli. Among the more

studied death stimuli are DNA damage which in many cells leads to apoptotic death
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via a pathway dependent on p53, and the signalling pathways for FAS-induced apop-

tosis that was shown to be one of the most relevant processes for understanding and

combating many forms of human diseases such as cancer, neurodegenerative diseases

(Parkinson’s disease, Alzheimer’s disease, etc.), AIDS and ischemic stroke.

Fas (also called CD95 or APO–1) is a cell surface receptor protein with an extracel-

lular region, one transmembrane domain, and an intracellular region. Fas belongs to

the tumour necrosis factor/nerve growth factor (TNT/NGF) cytokine receptor family.

Activation of Fas through binding to its ligands induces apoptosis in the Fas bearing

cell. Fas induced–apoptosis starts from the Fas ligand binding to Fas receptors and

ends in the fragmentation of genomic DNA, which is used as a hallmark of apoptosis.

Fas ligands usually exist as trimers and bind and activate their receptors by in-

ducing receptor trimerisation. This creates a clustering of Fas that is necessary for

signalling. In its intracellular region, Fas contains a conserved sequence called a death

domain. Activated receptors recruit adaptor molecules (such as FADD, Fas–associating

protein with death domain) which interacts with the death domain on the Fas receptor

and recruit procaspase 8 to the receptor complex, where it undergoes autocatalytic

activation cleaving and releasing active caspase 8 molecules intracellularly. Activated

caspase 8 can activate caspase 3 through two different pathways that have been iden-

tified by Scaffidi et al. [114], and are referred to as type I (death receptor pathway)

and type II (mitochondrial pathway), where caspases play a crucial role for both the

initiation and execution apoptosis.

The pathways diverge after activation of initiator caspases and converge at the end

by activating executor caspases. In the type I pathway, the initiator caspase (caspase

8) cleaves procaspase 3 directly and activates the executor caspase (caspase 3).

In the type II pathway, a more complicated cascade is activated involving the dis-

ruption of mitochondrial membrane potential and is mediated by Bcl2 family proteins

that regulate the passage of small molecules which activate caspase cascades through

the mitochondrial transition pore. More specifically (see Figure 7.9), caspase 8 cleaves

Bid (Bcl2 interacting protein) and its COOH–terminal part translocates to mitochon-

dria where it triggers cytochrome c release. The released cytochrome c bind to Apaf–1

(apoplectic protease activating factor) together with dATP and procaspase 9 and ac-

tivate caspase 9. The caspase 9 cleaves procaspase 3 and activates caspase 3.

The executor caspase 3 cleaves DFF (DNA fragmentation factor) in a heterodimeric

factor of DFF40 and DFF45. Cleaved DFF45 dissociates from DFF40, inducing

oligomerisation of DFF40. The active DFF40 oligomer causes the internucleosomal

DNA fragmentation.

Despite many molecular components of these apoptotic pathways having been iden-

172



7. Modelling Signal Transduction

Figure 7.9.: FAS signalling pathways, from [2, 84]
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tified, a better understanding of how they work together in a consistent network is nec-

essary. A way to understand complex biological processes, in general, and the complex

signalling behaviour of these pathways, in particular, is achieved by modelling them in

a computational framework and simulating them in electronic computers.

In [55] the two pathways activated by FAS starting with the stimulation of FASL

(FAS ligand) until the activation of the effector caspase 3, have been modelled using

ordinary differential equations in which biochemical reactions were used to describe

molecular interactions. Here we present an alternative modelling approach to the FAS

induced apoptosis based in P systems.

7.4.1. A P System Specification of the FAS Induced Apoptosis

In this section we present a P system specification of the FAS induced apoptosis system

described previously. The specification principles in this section will follow those used

in the case of the EGFR signalling cascade in section 7.3.

• Specification of the relevant regions in the FAS induced apoptosis sys-

tem:

Similar to the case of the EGFR signalling cascade, membranes play a key role

in the Fas induced apoptosis system. The relevant regions in the Fas induced

apoptosis system include those used in the EGFR signalling cascade, namely, the

environment, the cell surface and the cytoplasm. Nevertheless, in this case there

is an extra relevant region, the mitochondria.

More specifically the membrane structure of our P system specification for the

Fas induced apopotosis system consists of the following four membranes:

1. The environment where the signal FASL appear. This membrane is identi-

fied with the number 1 and will be labelled e. It constitutes the root of the

membrane structure describing the compartments involved in the system.

2. The cell surface where the receptor FAS is located and where the assembly

of the the complexes involved in signalling takes place. This membrane is

identified with the number 2 and will be labelled s. This membrane will be

embedded inside the previous one to represent the fact that the environment

surrounds the cell surface.

3. The cytoplasm where the signalling pathways take place. This membrane

is identified with the number 3 and will be labelled c. This membrane will

be located inside the previous membrane to represent the fact that the cell

surface wraps the cytoplasm.
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4. Finally, a region is used to describe all mitochondria in the cell. All the

molecules associated with the mitochondria will be placed in this region

identified with the number 4 and labelled m. This last membrane will be

embedded inside the membrane representing the cytoplasm.

A Venn diagram representation of the membrane structure can be seen in Figure

7.10.

Figure 7.10.: Membrane structure in the P System Specification of the Fas induced

apoptosis system

• Specification of the molecular entities in the FAS induced apoptosis

system:

Our model consist of 53 proteins and complexes of proteins. All of them are

represented by single objects collected in the alphabet O, presented below:
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O = {FASL, FAS, FASC, FADD, FASC-FADD, FASC-FADD2,,
FASC-FADD3, FASC-FADD2-CASP8, FASC-FADD3-CASP8,
FASC-FADD2-FLIP, FASC-FADD3-FLIP,
FASC-FADD2-CASP82, FASC-FADD3-CASP82,
FASC-FADD2-CASP8-FLIP, FASC-FADD3-CASP8-FLIP,
FASC-FADD2-FLIP2, FASC-FADD3-FLIP2,
FASC-FADD-CASP8, FASC-FADD-FLIP, CASP8, FLIP,
FASC-FADD3-CASP83, FASC-FADD3-CASP82-FLIP,
FASC-FADD3-CASP8-FLIP2, FASC-FADD3-FLIP3,
CASP8P41

2 , CASP8∗2, CASP3, CASP8∗2-CASP3,
CASP3∗, CASP8∗2-Bid, tBid, Bid, Bax, tBid-Bax,
tBid-Bax2, Smac, Smac∗, Cyto.c, Cyto.c∗, XIAP,
Smac∗-XIAP, Apaf, Cyto.c∗-Apaf-ATP, CASP9,
Cyto.c∗-Apaf-ATP-CASP9, Cyto.c∗-Apaf-ATP-CASP92,
CASP9∗, CASP9∗-CASP3, CASP9-XIAP, CASP3∗-XIAP,
Bcl2, Bcl2-Bax}

(7.2)

The most important molecular entities and their corresponding objects are pre-

sented in Figure 7.11.

Object Protein or Complex

FAS Fas protein

FASL Fas Ligand

FADD Fas–associating protein with death domain

FLIP Fas Ligand Inhibitory Protein

CASP3, CASP8, CASP9 Caspases 3, 8 and 9

Bcl2 B-cell leukemia/lymphoma-2

Bid, tBid Domain death agonist and its truncated form

Bax BCL-2-associated X protein

Apaf Apoptotic protease activating factor

Smac Second mitochondria–derived activator of caspase

XIAP X–linked inhibitor of apoptosis protein

Figure 7.11.: Molecular entities in the FAS induced apoptosis system

• Specification of the molecular interactions in the FAS induced apop-

tosis system:

The molecular interactions in the FAS induced apoptosis systems are similar

to those presented in the P system specification of the EGFR signalling cas-
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cade. Binding and debinding rules describe the binding and debinding of the

signal FASL to its receptor FAS. Complex formation rules are used to specify

the assembly in the cell surface of the complexes which triggers the cytoplasmic

signalling pathways. The initiation of these signalling pathways is specified using

recruitment and releasing rules involving the complexes in the cell surface and

certain cytoplasmic proteins. The signalling pathways consists of complex for-

mation and dissociation rules that specify the transfer of the signal to the target

proteins.

All the rules of our P system specification of the FAS induced apoptosis system

are presented in Figures 7.12 7.13 7.14 7.15. The constants associated with them

are computed from those presented in Figure 7.16.

Regarding the specification of the molecular interactions in the FAS induced

apoptosis systems it is known that Bcl2 blocks the mitochondrial pathway. Nev-

ertheless, it is not clear that the mechanism through which Bcl2 can block the

pathway is of type II.

In [85] and [127] four different mechanisms to block the mitochondrial are sug-

gested:

(a) Bcl2 might bind to Bax

(b) Bcl2 might bind to Bid

(c) Bcl2 might bind to tBid

(d) Bcl2 might bind to both Bax and tBid

All these possible alternatives are presented in Figure 7.15.

Summing up our P system specification of the FAS induced apoptosis system con-

sists of the following construct:

ΠFAS = (O, {e, s, c,m}, µ,M1, M2, M3, M4,Re,Rs,Rc,Rm)

where:

• The alphabet O collects all the objects representing the 53 proteins and complexes

of proteins involved in the system, see (7.2).

• The set of labels, L = {e, s, c,m}, is used to identify the different compartment

types where the signalling transduction takes place, namely, the environment e,

the cell surface s, the cytoplasm c and the mitochondria m.
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Rule Constant
r1 : FASL [ FAS ]s

c1−→ [ FASC ]s k1f

r2 : [ FASC ]s
c2−→ FASL [ FASC ]s k1r

r3 : FASC [ FADD ]c
c3−→ FASC : FADD [ ]c k2f

r4 : FASC-FADD [ ]c
c4−→ FASC [ FADD ]c k2r

r5 : FASC-FADD [ FADD ]c
c5−→ FASC-FADD2 [ ]c k2f

r6 : FASC-FADD2 [ ]c
c6−→ FASC-FADD [ FADD ]c k2r

r7 : FASC-FADD2 [ FADD ]c
c7−→ FASC-FADD3 [ ]c k2f

r8 : FASC-FADD3 [ ]c
c8−→ FASC-FADD2 [ FADD ]c k2r

r9 : FASC-FADD2-CASP8 [ FADD ]c −→ FASC-FADD3-CASP8 [ ]c k2f

r10 : FASC-FADD3-CASP8 [ ]c
c10−→ FASC-FADD2-CASP8 [ FADD ]c k2r

r11 : FASC-FADD2-FLIP [ FADD ]c
c11−→ FASC-FADD3-FLIP [ ]c k2f

r12 : FASC-FADD3-FLIP [ ]c
c12−→ FASC-FADD2-FLIP [ FADD ]c k2r

r13 : FASC-FADD2-CASP82 [ FADD ]c
c13−→ FASC-FADD3-CASP82 [ ]c k2f

r14 : FASC-FADD3-CASP82 [ ]c
c14−→ FASC-FADD2-CASP82 [ FADD ]c k2r

r15 : FASC-FADD2-CASP8-FLIP [ FADD ]c
c15−→ FASC-FADD3-CASP8-FLIP [ ]c k2f

r16 : FASC-FADD3-CASP8-FLIP [ ]c
c16−→ FASC-FADD2-CASP8-FLIP [ FADD ]c k2r

r17 : FASC-FADD2-FLIP2 [ FADD ]c
c17−→ FASC-FADD3-FLIP2 [ ]c k2f

r18 : FASC-FADD3-FLIP2 [ ]c
c18−→ FASC-FADD2-FLIP2 [ FADD ]c k2r

r19 : FASC-FADD-CASP8 [ FADD ]c
c19−→ FASC-FADD2-CASP8 [ ]c k2f

r20 : FASC-FADD2-CASP8 [ ]c
c20−→ FASC-FADD-CASP8 [ FADD ]c k2r

r21 : FASC-FADD-FLIP [ FADD ]c
c21−→ FASC-FADD2-FLIP [ ]c k2f

r22 : FASC-FADD2-FLIP [ ]c
c22−→ FASC-FADD-FLIP [ FADD ]c k2r

r23 : FASC-FADD3 [ CASP8 ]c
c23−→ FASC-FADD3-CASP8 [ ]c k2f

r24 : FASC-FADD3-CASP8 [ ]c
c24−→ FASC-FADD3 [ CASP8 ]c k2r

r25 : FASC-FADD3 [ FLIP ]c
c25−→ FASC-FADD3-FLIP [ ]c k3f

r26 : FASC-FADD3-FLIP [ ]c
c26−→ FASC-FADD3 [ FLIP ]c k3r

r27 : FASC-FADD3-CASP8 [ CASP8 ]c
c27−→ FASC-FADD3-CASP82 [ ]c k3f

r28 : FASC-FADD3-CASP82 [ ]c
c28−→ FASC-FADD3-CASP8 [ CASP8 ]c k3r

r29 : FASC-FADD3-CASP8 [ FLIP ]c
c29−→ FASC-FADD3-CASP8-FLIP [ ]c k3f

r30 : FASC-FADD3-CASP8-FLIP [ ]c
c30−→ FASC-FADD3-CASP8 [ FLIP ]c k3r

r31 : FASC-FADD3-FLIP [ CASP8 ]c
c31−→ FASC-FADD3-CASP8-FLIP [ ]c k3f

r32 : FASC-FADD3-CASP8-FLIP [ ]c
c32−→ FASC-FADD3-FLIP [ CASP8 ]c k3r

r33 : FASC-FADD3-FLIP [ FLIP ]c
c33−→ FASC-FADD3-FLIP2 [ ]c k3f

r34 : FASC-FADD3-FLIP2 [ ]c
c34−→ FASC-FADD3-FLIP [ FLIP ]c k3r

r35 : FASC-FADD3-CASP82 [ CASP8 ]c
c35−→ FASC-FADD3-CASP83 [ ]c k3f

Figure 7.12.: Rewriting rule for the P system specification of the FAS induced apoptosis

system
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Rule Constant
r36 : FASC-FADD3-CASP83 [ ]c

c36−→ FASC-FADD3-CASP82 [ CASP8 ]c k3r

r37 : FASC-FADD3-CASP82 [ FLIP ]c
c37−→ FASC-FADD3-CASP82-FLIP [ ]c k3f

r38 : FASC-FADD3-CASP82-FLIP [ ]c
c38−→ FASC-FADD3-CASP82 [ FLIP ]c k3r

r39 : FASC-FADD3-CASP8-FLIP [ CASP8 ]c
c39−→ FASC-FADD3-CASP82-FLIP [ ]c k3f

r40 : FASC-FADD3-CASP82-FLIP [ ]c
c40−→ FASC-FADD3-CASP8-FLIP [ CASP8 ]c k3r

r41 : FASC-FADD3-CASP8-FLIP [ FLIP ]c
c41−→ FASC-FADD3-CASP8-FLIP2 [ ]c k3f

r42 : FASC-FADD3-CASP8-FLIP2 [ ]c
c42−→ FASC-FADD3-CASP8-FLIP [ FLIP ]c k3r

r43 : FASC-FADD3-FLIP2 [ CASP8 ]c
c43−→ FASC-FADD3-CASP8-FLIP2 [ ]c k3f

r44 : FASC-FADD3-CASP8-FLIP2 [ ]c
c44−→ FASC-FADD3-FLIP2 [ CASP8 ]c k3r

r45 : FASC-FADD3-FLIP2 [ FLIP ]c
c45−→ FASC-FADD3-FLIP3 [ ]c k3f

r46 : FASC-FADD3-FLIP3 [ ]c
c46−→ FASC-FADD3-FLIP2 [ FLIP ]c k3r

r47 : FASC-FADD2 [ CASP8 ]c
c47−→ FASC-FADD2-CASP8 [ ]c k3f

r48 : FASC-FADD2-CASP8 [ ]c
c48−→ FASC-FADD2 [ CASP8 ]c k3r

r49 : FASC-FADD2 [ FLIP ]c
c49−→ FASC-FADD2-FLIP [ ]c k3f

r50 : FASC-FADD2-FLIP [ ]c
c50−→ FASC-FADD2 [ FLIP ]c k3r

r51 : FASC-FADD2-CASP8 [ CASP8 ]c
c51−→ FASC-FADD2-CASP82 [ ]c k3f

r52 : FASC-FADD2-CASP82 [ ]c
c52−→ FASC-FADD2-CASP8 [ CASP8 ]c k3r

r53 : FASC-FADD2-CASP8 [ FLIP ]c
c53−→ FASC-FADD2-CASP8 : FLIP [ ]c k3f

r54 : FASC-FADD2-CASP8-FLIP [ ]c
c54−→ FASC-FADD2-CASP8 [ FLIP ]c k3r

r55 : FASC-FADD2-FLIP [ CASP8 ]c
c55−→ FASC-FADD2-CASP8-FLIP [ ]c k3f

r56 : FASC-FADD2-CASP8-FLIP [ ]c
c56−→ FASC-FADD2-FLIP [ CASP8 ]c k3r

r57 : FASC-FADD2-FLIP [ FLIP ]c
c57−→ FASC-FADD2-FLIP2 [ ]c k3f

r58 : FASC-FADD2-FLIP2 [ ]c
c58−→ FASC-FADD2-FLIP [ FLIP ]c k3r

r59 : FASC-FADD [ CASP8 ]c
c59−→ FASC-FADD-CASP8 [ ]c k3f

r60 : FASC-FADD-CASP8 [ ]c
c60−→ FASC-FADD [ CASP8 ]c k3r

r61 : FASC-FADD [ FLIP ]c
c61−→ FASC-FADD-FLIP [ ]c k3f

r62 : FASC-FADD-FLIP [ ]c
c62−→ FASC-FADD [ FLIP ]c k3r

r63 : FASC-FADD2-CASP82 [ ]c
c63−→ FASC-FADD2 [ CASP8P41

2 ]c k4

r64 : FASC-FADD3-CASP83 [ ]c
c64−→ FASC-FADD3-CASP8 [ CASP8P41

2 ]c k4

r65 : FASC-FADD3-CASP82-FLIP [ ]c
c65−→ FASC-FADD3-FLIP [ CASP8P41

2 ]c k4

r66 : FASC-FADD3-CASP82 [ ]c
c66−→ FASC-FADD3 [ CASP8P41

2 ]c k4

r67 : [ CASP8P41
2 ]c

c67−→ [ CASP8∗2 ]c k5

r68 : [ CASP8∗2 + CASP3 ]c
c68−→ [ CASP8∗2-CASP3 ]c k6f

r69 : [ CASP8∗2-CASP3 ]c
c69−→ [ CASP8∗2 + CASP3 ]c k6r

r70 : [ CASP8∗2 + CASP3∗ ]c
c70−→ [ CASP8∗2-CASP3 ]c k7

Figure 7.13.: Rewriting rule for the P system specification of the FAS induced apoptosis

system
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Rule Constant
r71 : [ CASP8∗2 + Bid ]c

c71−→ [ CASP8∗2-Bid ]c k8f

r72 : [ CASP8∗2-Bid ]c
c72−→ [ CASP8∗2 + Bid ]c k8r

r73 : [ CASP8∗2 + tBid ]c
c73−→ [ CASP8∗2-Bid ]c k7

r74 : [ tBid + Bax ]c
c74−→ [ tBid-Bax ]c k9f

r75 : [ tBid-Bax ]c
c75−→ [ tBid + Bax ]c k9r

r76 : [ tBid-Bax + Bax ]c
c76−→ [ tBid-Bax2 ]c k9f

r77 : [ tBid-Bax2 ]c
c77−→ [ tBid-Bax + Bax ]c k9r

r78 : tBid-Bax2 [ Smac ]m
c78−→ Smac∗ [ ]m k10

r79 : tBid-Bax2 [ Cyto.c ]m
c79−→ Cyto.c∗ [ ]m k10

r80 : [ Smac∗ + XIAP ]c
c80−→ [ Smac∗-XIAP ]c k11f

r81 : [ Smac∗-XIAP ]c
c81−→ [ Smac∗ + XIAP ]c k11r

r82 : [ Cyto.c∗ + Apaf ]c
c82−→ [ Cyto.c∗-Apaf -ATP ]c k12f

r83 : [ Cyto.c∗-Apaf -ATP ]c
c83−→ [ Cyto.c∗ + Apaf ]c k12r

r84 : [ Cyto.c∗-Apaf -ATP + CASP9 ]c
c84−→ [ Cyto.c∗-Apaf -ATP -CASP9 ]c k13f

r85 : [ Cyto.c∗-Apaf -ATP -CASP9 ]c
c85−→ [ Cyto.c∗-Apaf -ATP + CASP9 ]c k13r

r86 : [ Cyto.c∗-Apaf -ATP -CASP9 + CASP9 ]c
c86−→ [ Cyto.c∗-Apaf -ATP -CASP92 ]c k14f

r87 : [ Cyto.c∗-Apaf -ATP -CASP92 ]c
c87−→ [ Cyto.c∗-Apaf -ATP -CASP9 + CASP9 ]c k14r

r88 : [ Cyto.c∗-Apaf -ATP -CASP92 ]c
c88−→ [ Cyto.c∗-Apaf -ATP -CASP9 + CASP9∗ ]c k15

r89 : [ CASP9∗ + CASP3 ]c
c89−→ [ CASP9∗-CASP3 ]c k16f

r90 : [ CASP9∗-CASP3 ]c
c90−→ [ CASP9∗ + CASP3 ]c k16r

r91 : [ CASP9∗-CASP3 ]c
c91−→ [ CASP9∗ + CASP3∗ ]c k17

r92 : [ CASP9 + XIAP ]c
c92−→ [ CASP9-XIAP ]c k18f

r93 : [ CASP9-XIAP ]c
c93−→ [ CASP9 + XIAP ]c k18r

r94 : [ CASP3∗ + XIAP ]c
c94−→ [ CASP3∗-XIAP ]c k19f

r95 : [ CASP3∗-XIAP ]c
c95−→ [ CASP3∗ + XIAP ]c k19r

Figure 7.14.: Rewriting rule for the P system specification of the FAS induced apoptosis

system
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Rule Constant

r96 : Bax [ Bcl2 ]m
c96−→ [ Bcl2-Bax ]m k20f

r97 : [ Bcl2-Bax ]m
c97−→ Bax [ Bcl2 ]m k20r

r96′ : Bid [ Bcl2 ]m
c96′−→ [ Bcl2-Bid ]m k20f

r97′ : [ Bcl2-Bid ]m
c97′−→ Bid [ Bcl2 ]m k20r

r96′′ : tBid [ Bcl2 ]m
c96′′−→ [ Bcl2-tBid ]m k20f

r97′′ : [ Bcl2-tBid ]m
c97′′−→ tBid [ Bcl2 ]m k20r

Figure 7.15.: Rewriting rule for the P system specification of the FAS induced apoptosis

system

k1f = 9.09E − 05 nM−1s−1

k1r = 1.00E − 04 s−1

k2f = 5.00E − 04 nM−1s−1

k2r = 0.2 s−1

k3f = 3.50E − 03 nM−1s−1

k3r = 0.018 s−1

k4 = 0.3 s−1

k5 = 0.1 s−1

k6f = 1.00E − 05 nM−1s−1

k6r = 0.06 s−1

k7 = 0.1 s−1

k8f = 5.00E − 03 nM−1s−1

k8r = 0.005 s−1

k9f = 2.00E − 04 nM−1s−1

k9r = 0.02 s−1

k10 = 1.00E − 03 nM−1s−1

k11f = 7.00E − 03 nM−1s−1

k11r = 2.21E − 03 s−1

k12f = 2.78E − 07 nM−1s−1

k12r = 5.70E − 03 s−1

k13f = 2.84E − 04 nM−1s−1

k13r = 0.07493 s−1

k14f = 4.41E − 04 nM−1s−1

k14r = 0.1 s−1

k15 = 0.7 s−1

k16f = 1.96E − 05 nM−1s−1

k16r = 0.05707 s−1

k17 = 4.8 s−1

k18f = 1.06E − 04 nM−1s−1

k18r = 1.00E − 03 s−1

k19f = 2.47E − 03 nM−1s−1

k19r = 2.40E − 03 s−1

k20f = 2.00E − 03 nM−1s−1

k20r = 0.02 s−1

Figure 7.16.: Kinetic constants of the FAS induced apoptosis systems
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• The membrane structure, µ, consists of four membranes identifying the four

relevant regions in the system, namely, the environment, the cell surface, the cy-

toplasm and the mitochondria. A Venn diagram representation of the membrane

structure in our P system specification ΠFAS is depicted in Figure 7.10.

• The initial multisets M1, M2, M3 and M4 are part of the parameters of our P

system specification ΠFAS. They associate the label e with membrane 1 which

represents the environment, the label s with membrane 2 which represents the

cell surface, the label c with membrane 3 which represents the cytoplasm and the

label m with membrane 4 which represents the mitochondria.

• The set of rewriting rules on multisets of objects and strings Re, Rs, Rc and Rm

are associated with the compartments representing the environment, cell surface,

cytoplasm and mitochondria respectively. These rules describe the molecular

interactions that take place in the specific compartment they are associated with.

Next we enumerate the rules associated with each compartment.

– Re = {r1}
– Rs = {r2, r4, r6, r8, r10, r11, r12, r14, r16, r17, r18, r20, r22, r24, r26, r28, r30, r32, r34,

r36, r38, r40, r42, r44, r46, r48, r50, r52, r54, r56, r58, r60, r62, r63, r64, r65, r66}
– Rc = {r3, r5, r7, r9, r11, r13, r15, r17, r19, r21, r23, r25, r27, r29, r31, r33, r35, r37, r39,

r41, r43, r45, r47, r49, r51, r53, r55, r57, r59, r61, r67, r68, r69, r70, r71, r72, r73,

r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91,

r92, r93, r94, r95, r96, r96′ , r96′′}
– Rm = {r97, r97′ , r97′′}

7.4.2. Analysis of the FAS Induced Apoptosis using P systems

Models

In a similar manner as in the previous cases once we have developed our P system

specification of the Fas induced apoptosis system, ΠFAS, it is necessary to identify the

parameters associated with it and give them specific values that allow us to study or

analyse different properties of the system.

In all the previous cases the analysis of the systems refer to the study of their be-

haviour for different initial conditions represented in the initial multisets. In the case

of our analysis of the FAS induced apoptosis system in addition to studying the be-

haviour for different initial coditions we will analyse the effect of different mechanisms,

described using rewriting rules, on the signalling cascade.

182



7. Modelling Signal Transduction

First we study the activation of one of the major proteins in the pathway, caspase

3. We compare our results obtained using the Deterministic Waiting Times algorith

to experimental data and to the results obtained using ODEs in [55]. The parameters

corresponding to the initial multisets are computed from the initial condition of the

system of differential equations presented in [55].

M1 = (e, FASL12500, λ)

M2 = (s, FAS6023, λ)

M3 = (c, FADD10040 + CASP820074 + FLIP 48786 + CASP3120460 + Bid15057+

Bax50189 + XIAP 18069 + Apaf 60230 + CASP912046, λ)

M4 = (m, Smac60230 + Cyto.c60230 + Bcl245172, λ)

(7.3)

The rule constants used in this first experiment are those computed according to

the discussion in section 2.6 from the deterministic macroscopic constants presented in

Figure 7.16 except for rules r96′ , r97′ , r96′′ and r′′97 whose constants will be set to zero

since in this first experiment the mechanisms they represent are assumed not to take

place within the system. This first set of rule constants is denoted by Ca.

Therefore, the first P system model to be analysed is PSMa = (ΠFAS; (M1, M2,

M3, M4), C
a). The results from the ODE model in [55] show that caspase 3 is activated

after 4 hours, which was considered close to the experimental results where caspase 3

was found to be activated after 6 hours (see Figure 7.17). By running our model PSMa

using the Deterministic Waiting Times algorithm the caspase 3 activation dynamics

are studied when Bcl2 is at baseline value. Caspase 3 is activated in our simulations

after about 7 hours which is a very good approximation to the experimental data and

improves on the results obtained in the ODE model [55].

There are cells (as thymocytes and fibroblasts) which are not sensitive to Bcl2

overexpression as described in [114]. In these cells caspase 8 directly activates caspase

3.

Scaffidi et al. has suggested in [114] that the type of pathway activated by Fas

is chosen based on the concentration of caspase 8 generated in active form following

FASL binding. If the concentration of active caspase 8 is high, then the caspase 3 is

activated directly, on the other hand, if the concentration of activated caspase 8 is low,

the type II pathway is chosen. In this last case, the system amplifies the death signal

through the mitochondria to be able to induce cell death.

To check this hypothesis, the active caspase 8 formation was increased by mak-

ing the initial concentration of caspase 8 a value 20 times greater than its baseline

value while keeping everything else the same. The initial multiset associated with the

cytoplasm in this case is:

183



7. Modelling Signal Transduction

Figure 7.17.: Comparison between experimental data (top left, from [55]), previous

ODE simulation data (top right, [55]) and the P system simulation data

(down).

M ′
3 = (c, FADD10040 + CASP8401480 + FLIP 48786 + CASP3120460 + Bid15057+

Bax50189 + XIAP 18069 + Apaf 60230 + CASP912046, λ)

(7.4)

The P system model used in this experiment is PSM ′
a = (ΠFAS; (M1, M2, M

′
3, M4),

Ca). The results obtained after running simulations of this P system model show a

faster activation of caspase 3 which agrees well with the results obtained in [114].

We also study the sensitivity of the caspase 3 activation with regard to the number

of Bcl2 molecules. This was done by incresing the number of molecules 100 times with

respect to the initial multisets M3 to obtain a new initial multiset associated with the

cytoplasm that will be denoted by M ′′
3 . The P system model used in this experiment

is PSM ′′
a = (ΠFAS; (M1, M2, M

′′
3 , M4), C

a). Simulations of this model together with

the previous model representing Bcl2 at baseline, PSMa are presented in Figure 7.18.
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Figure 7.18.: Left the P system simulation, right the ODE simulation, from [55], for

the change in caspase 8 initial concentration.

These simulations show that caspase 3 activation is not sensitive to increases in Bcl2

concentration, when the pathway of type I is chosen.

Bcl2 is known to block the mitochondrial pathway; however, the mechanism through

which Bcl2 can block the pathway of type II is not clear. Next, we analyse caspase

3 activation kinetics in this type of pathway by considering different mechanisms for

blocking the mitochondrial pathway proposed in [85] and [127].

These blocking mechanisms and the corresponding P system models used to repre-
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Activation Caspase 3

(with overexpression of Bcl2)

Type I (death receptor pathway) Insensitivity

Type II (mitochondrial pathway) Sensitivity

Figure 7.19.: Sensitivity of caspase 3 activation to overexpression of Bcl2

sent them are presented next.

(a) Bcl2 might bind to Bax. This situation is represented in the P system model,

PSMa presented earlier where the rules r96 and r97 were associated with their

corresponding constants as presented in Figure 7.16 but the rules r′96, r
′
97, r

′′
96 and

r′′97 were turned off by associating a constant with value zero with them.

(b) Bcl2 might bind to Bid. This situation is described by setting to zero the con-

stants associated with rules r96, r97, r
′′
96 and r′′97 while rules r′96 and r′97 are associ-

ated with their corresponding constants, as presented in Figure 7.16. This set of

possible values for the rule constants are collected in Cb. Therefore the P system

model describing this situation is PSMb = (ΠFAS; (M1, M2, M3, M4), C
b).

(c) Bcl2 might bind to tBid. This situation is described by setting to zero the

constants associated with rules r96, r97, r
′
96 and r′97 while rules r′′96 and r′′97 are

associated with their corresponding constants, as presented in Figure 7.16. This

set of possible values for the rule constants are collected in Cc. Therefore the P

system model describing this situation is PSMc = (ΠFAS; (M1, M2, M3, M4), C
c).

(d) Bcl2 might bind to both Bax and tBid. This situation is described by setting to

zero the constants associated with rules r′96 and r′97 while rules r96, r97, r
′′
96 and r′′97

are associated with their corresponding constants, as presented in Figure 7.16.

This set of possible values for the rule constants are collected in Cd. Therefore the

P system model describing this situation is PSMd = (ΠFAS; (M1, M2, M3, M4), C
d).

Using the previous P system models the dynamics of caspase 3 activation were

studied. It was found that the binding of Bcl2 to both Bax and tBid is the most
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efficient mechanism out of the four presented previously. Figure 7.20 compares the

results obtained using the ODE model in [55] with the P system models presented in

this section.

Figure 7.20.: Above the P system simulation, below the ODE simulation, from [55].

Finally, Figure 7.19 depicts a table presenting the sensitivity of caspase 3 activation

to overexpression of Bcl2 in the functioning of the selected pathway.
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In this chapter we will study a communication mechanism in colonies of bacteria con-

sisting of a gene regulation system which, depending on the number of individuals,

allows the whole colony of bacteria to express certain and specific genes in a coordi-

nated way. This cell density dependent gene regulation system is referred to as quorum

sensing, and has been described as the most consequential molecular microbiology story

of the last decade [51].

In the first section we present a brief description of the quorum sensing system in the

marine bacterium Vibrio fischeri. In section 8.2 some principles for the development

of specifications and models for colonies of bacteria within the P system modelling

framework are presented in general and in particular for the quorum sensing system

in Vibrio fischeri. In colonies of bacteria the size of the environment is such that

it cannot be considered a well mixed volume (see the discussion in section 2.6) so the

environment will be partitioned into a grid represented by a multienviroment. A variant

of P systems called population P systems is introduced as a suitable framework for the

development of specifications and models of colonies of bacteria. Finally, in section 8.3

various P system models describing colonies of different sizes will be analysed using

the Multicompartmental Gillespie algorithm introduced in section 3.3.

8.1. Quorum Sensing System in Vibrio Fischeri

Bacteria are generally considered to be independent unicellular organisms. However

it has been observed that certain bacteria, like the marine bacterium Vibrio fischeri,

exhibit coordinated behaviour which allows an entire population of bacteria to regulate

the expression of certain or specific genes in a coordinated way depending on the size

of the population. This cell density dependent gene regulation system is referred to as

quorum sensing [128].

This phenomenon was first investigated in the marine bacterium Vibrio fischeri.

This bacterium exists naturally either in a free-living planktonic state or as a symbiont
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of certain luminescent squid. The bacteria colonise specialised light organs in the squid,

which cause it to luminesce. Luminescence in the squid is thought to be involved in

the attraction of prey, camouflage and communication between different individuals.

The source of the luminescence is the bacteria themselves. The bacteria only luminesce

when colonising the light organs and do not emit light when in the free-living state

[110].

The quorum sensing system in Vibrio fischeri relies on the synthesis, accumulation

and subsequent sensing of a signal molecule, 3-oxo-C6-HSL, an N-acyl homoserine

lactone or AHL, we will refer to as OHHL. When only a small number of bacteria are

present these molecules are produced by the bacteria at a low level. OHHL diffuses

out of the bacterial cells and into the surrounding environment. At high cell density

the signal accumulates in the area surrounding the bacteria and can also diffuse to the

inside of the bacterial cells. The signal is able to interact with the LuxR protein to

form the complex LuxR-OHHL. This complex acts as a transcription factor binding to a

region of DNA called the Lux Box causing the transcription of the luminescence genes,

a small cluster of 5 genes, luxCDABE. Adjacent to this cluster are two regulatory genes

for the transcription of LuxR and OHHL. In this sense OHHL and LuxR are said to

be autoinducers because they activate their own synthesis. A graphical representation

of the system can be seen in Figure 8.1.

The bacteria are effectively communicating, as a single bacterium is able to detect

and respond to signals produced by the surrounding bacteria. Bacteria sense their cell

density by measuring the amount of signals. Quorum sensing therefore explains why

the bacteria are dark when in the free living planktonic state at low cell density and

light when colonising the light organ of the squid at high cell density. A large number of

Gram negative bacteria have been found to have AHL-based quorum sensing systems

similar to Vibrio fischeri. For a review on quorum sensing in general and the system

in Vibrio fischeri see [128].

8.2. A P System Specification of the Quorum Sensing

in Vibrio fischeri

In this section we present a P system specification of the quorum sensing system in

Vibrio fischeri. Although this system consists of genes arranged in operons we will

not represent them using strings as described in section 4.3.2. Instead we will follow

section 4.3.1 and represent them as individual objects. We have chosen this approach

because in this case we are focused on the analysis of the behaviour of the whole colony

of bacteria rather than on the analysis of the behaviour of a single bacterium. In this
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Figure 8.1.: Quorum sensing system in Vibrio fischeri

respect, the representation of genes and the processes involved in gene regulation as

strings and rewriting rules on multisets of strings would have made the process of

analysing the system intractable.

In the quorum sensing system in Vibrio fischeri there are two relevant regions,

namely the environment and the bacteria. Each bacterium in the colony will be speci-

fied using a membrane. The representation of the environment is not straight forward

in this case. As discussed in section 4.1 , a membrane in a P system specification is

assumed to define a well mixed region. Formula (2.12) in section 2.6 states the condi-

tion a region must fulfill in order to be considered well mixed. Roughly speaking, this

condition states that the region must be small enough compared to the average time

a diffusing molecule needs to visit the whole region. The size of the environment in a

colony of bacteria does not fulfill this condition and therefore it cannot be represented

by a single membrane.

In order to solve this problem we introduce a variant of P systems where the envi-

ronment is partitioned into a grid big enough so that each piece can be considered a

well mixed region. Each of these regions is then represented using a membrane. This

structure will be referred to as a multienvironment.
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Figure 8.2.: A multienvironment with 25 different environments.

Definition 8.1 (multienvironment). A multienvironment is a collection of membranes

called environments and communication links between them. Formally, a multienviron-

ment is a graph, G = (V, S), whose nodes V are membranes representing environments.

These environments are connected according to the edges S that define the links be-

tween them.

Each environment will contain a multiset of objects representing molecular entities

and a number of P system specifications representing the individual bacteria or cells

located in the region of the system represented by this environment. Furthermore, each

environment will be associated with a set of rules of one of the following forms:

• The molecular entities in the environments can interact yielding new molecules.

These interactions are described by the following type of rules:

[ obj1 ]l
c−→ [ obj2 ]l (8.1)

These rules only change the content of one environment. In order to apply
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Gillespie’s theory of stochastic kinetics a propensity must be associated with

these types of rules. In this case this propensity is computed by multiplying

the stochastic constant c associated specifically with the rule by the number of

distinct possible combinations of the objects in the multiset obj1.

• In the case of movement of different substances from one environment to one of

the environments connected to it, the following type of rules will be used:

[ obj ]l − [ ]l′
c−→ [ ]l − [ obj ]l′ (8.2)

These rules are multiset rewriting rules that operate on two environments, one

labelled l which is linked to another environment labelled l′. A multiset obj is

removed from the first environment and placed in the second one. In this way,

we are able to capture in a concise way the diffusion of signals from one region to

another in a large environment. As in the previous case, a propensity is associated

with these type of rules.

• Besides multisets of objects representing molecules, a certain number of copies of

P system specifications are placed in the environments. These P system specifi-

cations represent individuals from a colony that can move from one environment

to another by applying rules of the form:

[ [ ]l′′ ]l − [ ]l′
c−→ [ ]l − [ [ ]l′′ ]l′ (8.3)

When a rule of this type is applied, a membrane with label l′′ and all its contents,

objects and other membranes, is moved from an environment labelled l to another

connected to it that must be labelled l′.

The propensity of this rule is computed by multiplying the stochastic constant c

by the number of membranes labelled by l′′ located inside the environment with

label l.

Finally in order to study a colony or population of individuals, each type of in-

dividual is represented by a P system specification. Then different copies of the P

system specifications describing different individuals are randomly distributed in the

environments of a multienvironment. This construct will be referred to as a Population

P system Specification.

Definition 8.2 (Population P system Specification). A population P system specifica-

tion is a construct:
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PΠ = (Σ, H,G,E1, . . . , Em, Rl1 , . . . , Rlt , Π1, . . . , Πp, k1, . . . , kp) (8.4)

where:

• Σ is a finite alphabet of objects.

• G = (V, S) is a graph whose nodes V = 1, . . . , m are membranes representing

environments labelled with elements from H = {l1, . . . , lt} and whose edges, S,

define how the environments are linked.

• Ej = (lj, wj) for each 1 ≤ j ≤ m, is the initial configuration of the environment

j with lj ∈ H and wj ∈ Σ∗ a finite multiset of objects.

• Rl1 , . . . , Rlt are finite sets of rules of the forms (8.1), (8.2) and (8.3) associated

with environments of the type specified by the labels l1, . . . , lt.

• Π1, . . . , Πp are P system specifications as in definition 3.1 describing the different

individual types in the population.

• k1, . . . , kp ∈ N is the number of copies of the P system specifications Π1, . . . , Πp

that are distributed randomly in the environments in the initial configuration of

the system.

Definition 8.3 (Parameters of a Population P system Specification). Given a Popu-

lation P system specification

PΠ = (Σ, H,G,E1, . . . , Em, Rl1 , . . . , Rlt , Π1, . . . , Πp, k1, . . . , kp)

the set of parameters of PΠ,

P(PΠ) = (E1, . . . , Em, Cl1 , . . . , Clt ,P(Π1), . . . ,P(Πp), k1, . . . , kp)

consists of:

• The initial multisets associated with the environments, E1, . . . , Em.

• The stochastic constants, Cl1 , . . . , Clt , associated with the rules assigned to the

environments Rl1 , . . . , Rlt .

• The parameters associate with the P system specification of the individual types

P(Π1), . . . ,P(Πp).

• The number of copies, k1, . . . , kp, of the P system specifications P(Π1), . . . ,P(Πp).
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This variant of P systems was introduced under the name of quorum sensing P

systems in [17] and their computational power studied.

These definitions will be used in the specification of the Quorum sensing system

in Vibrio fischeri. The specific population P system specification used in this work is

presented in what follows.

PΠV F = (Σ, {e}, G, E1, . . . , E25, Re,ΠV F , N) where: (8.5)

1. The alphabet Σ collects the objects which represent the molecular entities present

in the environments. In this case, Σ contains a single object, OHHL, representing

the signal 3-oxo-C6-HSL. This is the only molecule that can be present in the

environments.

2. In the specification of the quorum sensing system in Vibrio fischeri all envi-

ronments have the same label e. That is the set of labels associated with the

environments consists of a single label H = {e}.
3. The media where the colony of Vibrio fischeri bacteria is placed is represented

using a multienvironment, G, which consists of 25 environments. The way in

which the environments are connected in G is depicted in Figure 8.2.

4. The initial multisets, E1, . . . , E25 associated with the environments are part of

the parameters of this population P system specification. They will describe the

initial number of signal molecules in each environment.

5. The P system specification ΠV F represents a Vibrio fischeri bacterium.

ΠV F = (O, {b}, [ ], M1, Rb) where: (8.6)

a) In our specification of the quorum sensing system in Vibrio fischeri we will

take into account a cluster of genes, a signal molecule and a protein acting

as a transcription factor. Although the description of genes as single objects

is questionable in certain cases, we will adopt this approach in our study as

we are focused on the analysis of the whole colony of bacteria rather than on

a single bacterium. The alphabet O collects all the objects used to specified

the signals, proteins, complexes and genes present inside a Vibrio fischeri

bacterium. Figure 8.3 presents the objects in O and the molecular entities

they represent.

O = {OHHL, LuxR, LuxR-OHHL, LuxBox, LuxR-OHHL-LuxBox}
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Object Molecular Entity

OHHL Signal molecule 3-oxo-C6-HSL

LuxR Transcription factor, intracellular recpetor

LuxR-OHHL Active transcription factor

LuxBox Binding site for LuxR-OHHL

LuxR-OHHL-LuxBox Site occupied by LuxR-OHHL

Figure 8.3.: Objects in the P system specification of a Vibrio fischeri bacterium

b) A single membrane is used to describe a bacterium. This membrane defines

the bacterium itself separating it from the environment. This membrane

will be labelled b.

c) The initial multiset M1 represents the initial configuration of the membrane

describing a bacterium. As mentioned above the label b will be associ-

ated with this membrane. With regard to the multiset of objects, we are

interested in examining how bacteria communicate to coordinate their be-

haviours and how the population moves from a downregulated state, where

the protein and the signal are produced at basal rates, to an upregulated

state where there is a massive production of signals and proteins. There-

fore, in the initial multiset M1 we will only have the genes involved in the

quorum sensing system, represented by LuxBox, to start the production of

the signal, OHHL, and protein, LuxR.

d) In the set of rules, Rb, we specify the molecular interactions forming the

quorum sensing system inside the bacteria. In what follows we enumerate

these rules presenting a brief description of the interactions they describe.

(∗) In an unstressed bacterium the production of the signal OHHL and the

protein LuxR takes place at basal rates from the genes transcribed from the

site LuxBox.

r1 : [ LuxBox ]b
c1→ [ LuxBox + OHHL ]b

r2 : [ LuxBox ]b
c2→ [ LuxBox + LuxR ]b

(∗) The protein LuxR acts as an intracellular receptor and OHHL as its

ligand. Both together form the complex LuxR-OHHL which in turn can

dissociate into OHHL and LuxR again.

r3 : [ LuxR + OHHL ]b
c3→ [ LuxR-OHHL ]b

r4 : [ LuxR-OHHL ]b
c4→ [ LuxR + OHHL ]b
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(∗) The complex LuxR-OHHL acts as a transcription factor binding to the

regulatory region of the bacterium DNA called LuxBox. The complex LuxR-

OHHL can also dissociate from the LuxBox.

r5 : [ LuxR-OHHL + LuxBox ]b
c5→ [ LuxR-OHHL-LuxBox ]b

r6 : [ LuxR-OHHL-LuxBox ]b
c6→ [ LuxR-OHHL + LuxBox ]b

(∗) The binding of the complex LuxR-OHHL to the LuxBox produces a

massive increase in the production of the signal OHHL and of the protein

LuxR.

r7 : [ LuxR-OHHL-LuxBox ]b
c7→ [ LuxR-OHHL-LuxBox + OHHL ]b

r8 : [ LuxR-OHHL-LuxBox ]b
c8→ [ LuxR-OHHL-LuxBox + LuxR ]b

(∗) The signal OHHL can diffuse outside the bacterium and accumulate in

the environment.

r9 : [ OHHL ]b
c9→ OHHL [ ]b

(∗) OHHL, LuxR and the complex LuxR-OHHL undergo a process of degra-

dation in the bacterium

r10 : [ OHHL ]b
c10→ [ ]b

r11 : [ LuxR ]b
c11→ [ ]b

r12 : [ LuxR-OHHL ]b
c12→ [ ]b

6. All the environments will have the same set of rules associated with them, Re.

This set of rules describes the processes taking place in the environments. Below

we present an enumeration of the rules in Re and a brief description of the

processes they specify.

(∗) Once the signal OHHL accumulates in the environment it can also diffuse

inside the bacteria.

r13 : OHHL [ ]b
c13→ [ OHHL ]b

(∗) The signal, OHHL, can also be degraded in the environments.

r14 : [ OHHL ]e
c14→ [ ]e

(∗) The signal diffuses from one environment to another.
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Figure 8.4.: A possible initial configuration of our Population P system specification

r15 : [ OHHL ]e − [ ]e
c15→ [ ]e − [ OHHL ]e

(∗) Bacteria can also move freely from one environment to another.

r16 : [ [ ]b ]e − [ ]e
c16→ [ ]e − [ [ ]b ]e

7. Finally in order to study the behaviour of a colony of bacteria represented by

the P system specification ΠV F we have to distribute randomly N copies of ΠV F

in the multienvironment G. An example of a colony of bacteria consisting of 44

individuals is presented in Figure 8.4.

8.3. P Systems Models of the Quorum Sensing

System in Vibrio fischeri

Models of a population P system specification are obtained in the same way as in the

case of a simple P system specification. More precisely, in order to develop a population

P system model one has to assign specific values to the parameters of the corresponding

population P system specification.

As discussed previously the parameters associated with a population P system

specification consist of:
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• The initial multisets associated with the environments. In the models of the

quorum sensing system in Vibrio fischeri developed in this section all the envi-

ronments will be empty and they will be labelled with the same label e. That is,

E1 = · · · = E25 = E0 = (e, λ).

• The stochastic rule constants, Ce = {c13, c14, c15, c16}, of the set of rules Re,

associated with the environments. In our model these constants are assigned a

fixed value, c13 = 1, c14 = 5, c15 = 8 and c16 = 2.

• The parameters corresponding to the P system specification of a Vibrio fischeri

bacterium, ΠV F :

Recall that according to definition 3.2 the parameters of a simple P system spe-

cification are the initial multisets and the rule constants.

Regarding the initial multiset associated with the membrane describing a bac-

terium, recall that we are interested in examining how bacteria communicate to

coordinate their behaviours and how the population moves from a downregu-

lated state, where the protein and the signal are produced at basal rates, to an

upregulated state where there is a massive production of signals and proteins.

Therefore, in the initial multiset M1 we will only have the genome LuxBox to

start the production of the signal OHHL and protein LuxR at basal rates, M0 =

LuxBox.

Regarding the stochastic constants associated with the rules in Rb, Cb = {c1, c2, c3,

c4, c5, c6, c7, c8, c9, c10, c11, c12}. Where possible we have used estimates derived

from the literature [34, 47, 48, 118, 132]. For parameter values not available from

these sources we used a ”trial-and-error” approach, making an initial ”guess” at

the values of the missing constants and then comparing the resulting behaviour

with known properties of the system. If they did not match the unknown con-

stants were then adjusted systematically, one parameter at a time.

By following this process the following set of parameters were chosen: c1 =

2, c2 = 2, c3 = 9, c4 = 1, c5 = 10, c6 = 2, c7 = 250, c8 = 200, c9 = 50, c10 =

30, c11 = 20, c12 = 20, c13 = 1, c14 = 5, c15 = 8, c16 = 2. These values have been

set such that the degradation rates compensate the basal production of the signal

and the protein and such that the production rates when the regulatory region

is occupied produce a massive increase in the transcription of the signal and the

protein.

• Finally, the last parameter is N , the number of copies of the P system specification

ΠV F distributed randomly in the environments. This parameter constitutes the

198



8. Modelling Quorum Sensing

only variable parameter of the system in contrast to the previous ones that are

assigned fixed values. This parameter represents the size of the colony of Vibrio

fischeri bacteria and will allow us to study the behaviour of colonies of different

sizes.

Summing up the population P system models that will be used in this section

consists in the following construct:

PPSMV F (N) = (PΠV F ; (E0, . . . , E0), Ce, (ΠV F ; M0, Cb), N) (8.7)

This model has been represented in the Systems Biology Markup Language using

CellDesigner, a structured diagram editor for drawing gene-regulatory and biochemical

networks [37].

The analysis of the behaviour of a colony of bacteria of different sizes will be through

running simulations. We have run our simulations using a program written in C with

an SBML input file specifying our model. This software tool is available from [134].

The emergent behaviour of the system has been studied for two colonies of different

size to examine how bacteria can sense the number of bacteria in the colony and produce

light only when the number of individuals is big enough.

• First we have considered a population of 100 bacteria represented in the Popula-

tion P system model PPSMV F (100).

In Figure 8.5 we show the evolution over time of the number of quorated bacteria
1 and the number of OHHL signals in the environments.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

time

Q
uo

ra
te

d 
B

ac
te

ria

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

time

O
H

H
L 

m
ol

ec
ul

es

Figure 8.5.: Number of quorated bacteria (left) and signals in the environment (right)

1We will say that a bacterium is quorated if the LuxBox in this bacterium is occupied by the complex
producing the transcription of the enzymes involved in the production of light.

199



8. Modelling Quorum Sensing

Observe that the signal, OHHL, accumulates in the environments until saturation

and then, when this threshold is reached, bacteria are able to detect that the size

of the population is big enough. At the beginning, a few bacteria get quorated

and then accelerate a process of recruitment that makes the whole population of

bacteria behave in a coordinated way.

Note that there exists a correlation between the number of signals in the envi-

ronments and the number of quorated bacteria such that, when the number of

signals in the environment drops, so does the number of quorated bacteria and

when the signal goes up it produces a recruitment of more bacteria.

In our approach the behaviour of each individual in the population can be tracked.

In Figure 8.6 we have taken a sample of three bacteria and have studied the

correlation between the number of signals inside each bacterium (first row) and

the occupation of the LuxBox by the complex (second row) which represents that

the bacterium has been quorated.
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Figure 8.6.: A sample of three bacteria: Signal and Occupation of the LuxBox

Observe in Figure 8.6 that the number of signal molecules inside each bacterium

has to exceed a threshold of approximately seven molecules in order to recruit the

bacterium. On the one hand, when the number of molecules is greater than seven

the LuxBox is occupied, that is, the bacterium is quorated or upregulated. On

the other hand, when there are fewer than seven signals the bacterium switches

off the system and it goes downregulated.

We can also study how rules are applied across the evolution of the system. Figure
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8.7 shows the evolution of the number of applications of the rules representing

the basal production (first two graphs) and the rules representing the production

of the signal and protein induced by the binding of the complex to the LuxBox.
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Figure 8.7.: Number of applications of rules r1, r2 (first row) and r7,r8 (second row)

Figure 8.7 shows how at the beginning the basal production rules are the most

applied rules while the other two are seldomly applied. But then, as a result of

the recruitment process the bacteria sense the size of the population and they

behave in a coordinated way, with a massive application of the third and fourth

rules. So the system moves from a downregulated state to an upregulated state

where the bacteria are luminescent.

• In order to study how bacteria can sense the number of individuals in the colony

and get quorated only when the size of the colony is big enough we have exa-

mined the behaviour of a colony of only 10 bacteria. This colony of bacteria is

represented in the Population P system model PPSMV F (10).

In this case no recruitment process takes place and the signal does not accumulate

in the environment. Only one of the bacteria wrongly guessed the size of the

population and entered an upregulated state, see Figure 8.8. But then, after
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Figure 8.8.: Quorated bacteria and signals in the environment in a population of 10

bacteria.

sensing that the signal did not accumulate in the environment, it switched off its

system.

In Figure 8.9 the behaviour of the bacterium that got quorated is depicted. Ob-

serve that this bacterium got quorated because the number of signals inside it

exceeded the threshold of seven signals. Then it started to produce signals mas-

sively, these signals diffused to the environment where there was not enough

bacteria to sense them and they were degraded. When the bacterium sensed that

the signal did not accumulate in the environment it switched off its system.
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Figure 8.9.: Behaviour of a bacterium in a population of 10 bacteria.

Finally, observe in Figure 8.10 that for only ten bacteria the system remains in an

downregulated state only applying the rules representing the basal productions

while the rules associated with the production of light are seldomly applied.

Summing up, our simulations show that Vibrio fischeri has a quorum sensing sys-
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Figure 8.10.: Number of applications of rules r1, r2, r7 and r8 in 10 bacteria

tem where a single bacterium can guess that the size of the population is big enough

and start to produce light. This bacterium starts to massively produce signals, but

if the signal does not accumulate in the environment it means that the guess was

wrong and it switches off the system. In contrast, if the signal does accumulate in

the environment meaning that the number of bacteria in the colony is big enough, a

recruitment process takes place that causes the entire population of bacteria to become

luminescent. Observe that this emergent behaviour is a result of local interactions in

the environments between different simple agents, the bacteria, which only able to

produce and receive molecular signals. In this respect, our approach, using population

P systems, confirms the ability to reveal emergent behaviour, which has already been

proved within the more abstract framework of general self-assembly [39] or for the

specific case of graph self-assembly [16, 18]. The key difference between our approach

and the previous models is given by the strategy used in selecting the rules that are

applied.
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According to the original motivation [89] P systems were not intended to provide a

comprehensive and accurate model of the living cell. Rather, they were introduced

to explore the computational nature of various features of biological membranes. In-

deed, most research in P systems concentrates on the study of simplified variants of

the original membrane systems trying to show whether or not they are computation-

ally complete and/or computationally efficient. Nevertheless, at the beginning of the

development of the research described in this thesis P systems started to be used to

model biological phenomena.

The first attempts presented a semi-quantitative framework taking into account

the discrete character of the molecular interactions taking place inside a single com-

partment [6, 20]. Although these preliminary attempts were proved to achieve some

success, they failed to model quantitative aspects that are key to the functioning of

many cell systems. Specifically they kept the classical strategy for the evolution of

P system models based on non determinism and maximal parallelism. This approach

produces two inaccuracies:

• Rewriting rules are not applied at the correct rate.

• All time steps are equal and do not represent the time evolution of the real cellular

system.

These two problems are interdependent and have been solved in this thesis by

applying Gillespie’s theory of stochastic kinetics to P systems.

Our modelling framework was not restricted to the simple generation of simulations

of our models as it was the case in the previous works. In this thesis we have taken the

first steps towards the development of techniques to analyse P system models based

on probabilistic and symbolic model checking.

The starting point of the research discussed here was the study of various case

studies involving signalling and transcription networks. Our experience gained during

these investigations showed that the classical rewriting rules used in P systems lack a
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systematic analysis of what molecular interactions could be specified and model using

them. In this thesis we have developed a description of how to specify and model

the most important molecular interactions taking place in living cells. Furthermore,

our investigations uncovered the fact that individual objects were not adequate to

specify certain molecular entities, like operons and clusters of genes, with a relevant

internal structure. In order to solve this problem the use of strings to specify such

molecules were introduced together with specific rewriting rules on multisets of objects

and strings.

At this point it worth recalling the features generally required in a good modelling

framework for cellular systems, namely relevance, understandability, extensibility and

computability. In what follows we present some benefits and limitations of the use

of P systems as a modelling framework for systems biology with regard to these four

desirable properties.

• Relevance: A relevant abstraction of cellular systems should capture two essen-

tial properties of these systems: their structural organisation and their dynamic

behaviour. In this respect we believe that P systems are indeed highly relevant.

On the one hand, the compartmentalisation of cellular systems is explicitly speci-

fied using membrane structures. Furthermore, strings are used to describe molec-

ular entities with an important internal structure. Nevertheless, when the internal

structure of the molecular entities are not crucial individual objects are used.

On the other hand, the dynamic behaviour of cellular systems is very closely

mimic using rewriting rules which are very similar to the classical equations

written by biologists to describe biochemical interactions. Two alternative ap-

proaches are presented in this work, rewriting rules on multisets of objects and

rewriting rules on multisets of objects and strings. These two abstractions for

molecular interactions present a tradeoff between relevance and utility. Rewriting

rules on multisets of objects are simpler but suffer from a relevance problem as

for many molecular entities their internal structure is crucial being questionable

to represent them as individual objects. Rewriting rules on multisets of strings

and objects take into account the internal structure of molecules but we appre-

ciate that they can be computationally very expensive depending on the size of

the cellular system under study. For instance, this approach to study colonies of

millions of bacteria is intractable.

A key benefit of our proposed modelling framework is its ability to handle com-

partmentalisation and the key role played by membranes in the functioning of

living cells. This is demonstrated by our collection of case studies presented in
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Part III. Our approach has been shown very suitable to model selective uptake of

molecules from the environment, signalling at the cell surface and colonies of in-

teracting bacteria which communicate by sending and receiving diffusing signals.

Nevertheless, we have not investigated other important processes where mem-

branes are crucial like cell division, cell adhesion, biofilm formation, etc. The

specification and simulation of this type of processes remain an open problem

and a future direction to explore.

• Understandability: Perhaps the most important property in a modelling frame-

work is understandability. The abstractions used in a good modelling framework

for cellular systems should correspond well to the informal concepts and ideas

from molecular cell biology. A model should provide a better and integrated

understanding of the real cellular system instead of producing a complicated and

hard to decipher formalism.

In this respect, although P systems were not introduced to provide an under-

standable modelling framework for cellular systems but rather as an abstraction

of the computational aspects of membranes the concepts and terminology they

use are very close to those used in molecular cell biology. This makes the abstrac-

tions developed within this framework comprehensible to cell biologist. Since P

systems were inspired by the structure and functioning of living cells there exists

a direct correspondence between P system abstractions and the real components

of cellular systems. For instance, compartments in cellular systems correspond

to the regions define by the membrane structure of a P systems; the multisets

associated with each membrane represent the molecular entities present in the

compartment represented by the corresponding membrane and finally the rewrit-

ing rules describe the molecular interactions taking place in cellular systems.

Although very easy to understand P systems present a current limitation to the

transparency and utility of the specifications and models designed within their

framework. The P system abstractions are purely textual and so far lack of a

graphical formal representation for the visualization of the modelled systems.

In this text we have very occasionally used a graphical representation based on

[71] but a formal correspondence between P system models and this graphical

representation remains an open problem.

• Computability: A good modelling framework for cellular systems should be

computable in order to allow both the simulation of the dynamic behaviour of

the systems and the reasoning on the systems properties. In this respect P sys-

tems constitute a suitable modelling framework due to their easy computability
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and implementation. These properties are mostly a consequence of the fact that

P systems consists of rule based systems distributed in specific structures. In

particular P system specifications and models are easily implemented using ob-

ject oriented languages. Each membrane can be thought as an object whose

attributes are the multiset associated with it and the label representing its type.

The set of rules associated with each membrane can be considered as the func-

tions or methods associated with the object representing the membrane. Fur-

thermore, the algorithms used in this work to simulate P system models are

local in the sense that almost all computations only consider a single compart-

ment. The only remaining global computation is the location of the index of

the rule to be applied and the compartment where it is applied. The advantage

of having local computations is that our approach is easily implemented in an

event-driven object-oriented programming style, such an implementation could

be multithreaded on a hyper-threading machine and would also lend itself to full

message-passing implementation on a parallel computing cluster. In spite of this

no such implementation has been addressed yet.

• Extensibility: Another interesting property of P system models and of the P

system framework in general is the easy extensibility. The P system modelling

framework presented in this work in easy extensible in two aspects.

On the one hand, specific P system models can be easily extended and modified

to incorporate new knowledge. In P system models molecular interactions are

represented separately in rewriting rules. In this respect, when newly discovered

molecular interactions need to be integrated in an old model all the modifications

are limited to add new rewriting rules describing the found interactions. When

an hypothetical interaction already incorporated in a P system model is proved

to be wrong the P system model is changed by simply removing the rewriting

rule used to describe this interaction.

On the other hand, the whole P system modelling framework itself is easily

extensible. This thesis itself present an example of this. The application of

Gillespie’s theory of stochastic kinetics to the compartmentalised structure of P

systems were achieved easily. Furthermore, the use of strings to represent some

molecular entities and the use of rewriting rules on multisets of objects and strings

were incorporated to the P system modelling framework without producing much

disturbance.

In fact the knowledge obtained during the development of this thesis has made

obvious the necessity of extending the P system modelling framework to incor-
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porate more quantitative information of the components of cellular systems. For

instance, a future direction consists of incorporating some attributes to the ob-

jects representing molecules and to the membranes describing compartments.

Some of the proposed attributes so far are interaction capabilities, coordinates,

shape, temperature, etc.

Finally, the use of modules introduced in this work will provide a more easier ex-

tensibility in P system specifications which can be obtained by combining simple

building blocks represented using P system modules. In this respect, the study

of more complex P systems modules representing modular patterns in cellular

systems remains a promising and challenging future work open in this thesis.

Summing up the work developed in this thesis was intended to adapt the origi-

nal P system framework to the modelling of cellular systems by providing them with

stochastic dynamics and with the necessary elements to specify the most relevant in-

teractions in cellular systems. This approach has been proved to be a good modelling

framework fulfilling to a large extent the four generally required properties in mod-

elling frameworks of cellular systems, relevance, understandability, computability and

extensibility.

Nevertheless, this thesis has also uncovered several open problems opening various

future directions to extend the proposed formalism to be able to specify and model in

a more accurate manner cellular systems.
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[39] Gheorghe,M., Păun, Gh. (2007) Computing by self-assembly: DNA molecules,

polynominoes, cells. In N. Krasnogor, S. Gustafson, D. Pelta, and J.L. Verdegay,

editors, Systems Self-Assembly: Multidisciplinary Snapshots, Studies in Multidis-

ciplinarity, Elsevier.

[40] Gillespie, D.T. (1976) A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions, J. Comp. Phys., 22, 403 – 434.

[41] Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions,

J. Phys. Chem., 81, 2340 – 2361.

[42] Gillespie, D.T. (1992) A rigorous derivation of the chemical master equation,

Physics A, 188, 404–425.

[43] Gillespie, D.T. (2001) Approximate accelerated stochastic simulation of chemically

reacting systems. J. Chem. Phys., 115, 1716 – 1733.

[44] Gillespie, D.T., Petzold, L. (2003) Improved leap-size selection for accelerated

stochastic simulation. J. Chem. Phys., 119, 8229 – 8234.

[45] Girault, C., Valk., R. (2003) Petri Nets for Systems Engineering. Springer Verlag.

[46] Goss, P.J.E., Peccoud, J. (1998) Quantitative modelling of stochastic system in

molecular biology by using stochastic Petri nets, Proc. Natl. Acad. Sci. USA, 95,

6750 – 6755.

[47] Greenberg, E.P., Kaplan, H.B. (1985). Diffusion of Autoinducer Is Involved in

Regulation of the Vibrio fischeri Luminescence System. Journal of Bacteriology

163(3), 1210–1214

[48] Greenberg, E.P., Kaplan, H.B. (1997). Overproduction and Purification of the

luxR Gene Product: Transcriptional Activator of the Vibrio fischeri Luminescence

System. Proc. Natl. Acad. Sci. 84, 6639–6643

215



Bibliography

[49] Greenberg, E.P., Lupp, C.; Ruby, E.G., Urbanowski, M. (2003). The Vibrio fis-

cheri Quorum-sensing System ain and lux Sequentially Induce Luminescence Gene

Expression and Are Important for Persistence in the Squid Host. Molecular Mi-

crobiology, 50(1) 319–331

[50] Hansson, H., Jonsson, B. (1994) A logic for reasoning about time and reliability.

Formal Aspects of Computing, 6 (5), 512 – 535.

[51] Hardie, K.R., Williams, P., Winzer, K. (2002). Bacterial cell-to-cell communica-

tion: sorry, can’t talk now, gone to lunch. Current Opinion in Microbiology, 5,

216–222

[52] Harel, D. (1987). Statecharts: A visual formalism for Complex Systems. Science

of Computer Programming, 8 (3), 231274.

[53] Hartwell, L.H., Hopfield, J.J., Leibler, S. Murray, A.W. (1999) From Molecular to

Modular Cell Biology, Nature, 402, C47 – C52.

[54] Holcombe, M., Gheorghe, M., Talbot, N. A hybrid machine model of rice blast

fungus, Magnaphorte Grisea. BioSystems, 68, 2–3 (2003), 223–228.

[55] Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D. Effects of Bcl-2

Levels on FAS Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests

of Computational Model Predictions. The Journal of Immunology, 175, 2 (2005),

985–995 and correction 175, 9 (2005), 6235–6237.

[56] Hucka, M., A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano, A. Arkin, B.

Bornstein, D. Bray, A. Cornish-Bowden, A. Cuellar, S. Dronov, E. Gilles, M.

Ginkel, V. Gor, I. Goryanin, W. Hedley, T. Hodgman, J. Hofmeyr, P. Hunter,

N. Juty, J. Kasberger, A. Kremling, U. Kummer, N. Le Novere, L. Loew, D. Lu-

cio, P. Mendes, E. Minch, E. Mjolsness, Y. Nakayama, M. Nelson, P. Nielsen, T.

Sakurada, J. Schaff, B. Shapiro, T. Shimizu, H. S. andJ Stelling, K. Takahashi,

M. Tomita, J. Wagner, and J. Wang (2003). The systems biology markup lan-

guage (SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics, 19, 524531.

[57] Huang, K.C., Meir, Y., Wingreen, N.S. (2003) Dynamic structures in Escherichia

coli: Spontaneous formation of MinE rings and MinD polar zones. Proc. Natl.

Acad. Sci. USA, 100, 12724 – 12728.

[58] Huber, R.E., Wallenfels, K., Kurz, G. (1975). Action of β−galactosidase on allo-

lactose. Canad. J. Biochem., 53, 1035–1038.

216



Bibliography

[59] Ideker, T., T. Galitski, and L. Hood (2001). A new approach to decoding life:

systems biology. Annual Review of Genomics and Human Genetics, 2, 34372.

[60] Ionescu, M., Sburlan, D. (2004) On P systems with Promoters/Inhibitors, J. UCS,

10 (5) 581 – 599.
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