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CROSS PRODUCTS, AUTOMORPHISMS, AND GRADINGS

ALBERTO DAZA-GARCÍA, ALBERTO ELDUQUE, AND LIMING TANG

Abstract. The affine group schemes of automorphisms of the multilinear r-

fold cross products on finite-dimensional vectors spaces over fields of character-
istic not two are determined. Gradings by abelian groups on these structures,
that correspond to morphisms from diagonalizable group schemes into these
group schemes of automorphisms, are completely classified, up to isomorphism.

1. Introduction

Eckmann [Eck43] defined a vector cross product on an n-dimensional real vector
space V , endowed with a (positive definite) inner product b(u, v), to be a continuous
map

X : V r −→ V (1 ≤ r ≤ n)

satisfying the following axioms:

b
(
X(v1, . . . , vr), vi

)
= 0, 1 ≤ i ≤ r, (1.1)

b
(
X(v1, . . . , vr), X(v1, . . . , vr)

)
= det

(
b(vi, vj)

)
, (1.2)

There are very few possibilities.

Theorem 1.1 ([Eck43, Whi63]). A vector cross product exists in precisely the
following cases:

• n is even, r = 1,
• n ≥ 3, r = n− 1,
• n = 7, r = 2,
• n = 8, r = 3.

Multilinear vector cross products X on vector spaces V over arbitrary fields of
characteristic not two, relative to a nondegenerate symmetric bilinear form b(u, v),
were classified by Brown and Gray [BG67]. These are the multilinear maps X :
V r → V (1 ≤ r ≤ n) satisfying (1.1) and (1.2). The possible pairs (n, r) are again
those in Theorem 1.1.

The exceptional cases: (n, r) = (7, 2) and (8, 3), are intimately related to the
octonion, or Cayley, algebras.

These multilinear vector cross products have become important tools in Differ-
ential Geometry or Nonassociative Algebras (see, for instance, [Kar05, EKO05]).
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In particular, they are closely related to the exceptional classical simple Lie super-
algebras: G(3), F (4), D(2, 1;α) ([KO03]).

An elementary account on multilinear cross products, and of their connections
with the exceptional basic classical simple Lie superalgebras can be found in [Eld04].

The nondegenerate symmetric bilinear form b(u, v) is part of the definition given
by Eckmann and Brown and Gray. However, this is not, in general, uniquely
determined. Therefore, we will make use of the following definition.

Definition 1.2. Let V be a finite-dimensional vector space over a field F of char-
acteristic not two, and let r be a natural number with 1 ≤ r ≤ n (n = dimF V ).

An r-fold cross product X on V is a multilinear map

X : V r −→ V

such that there is a nondegenerate symmetric bilinear form b : V ×V → F satisfying
conditions (1.1) and (1.2).

In this situation we will say that X is a cross product on V relative to b, or that
b admits the r-fold cross product X .

Alternatively, we will simply say that (V,X) (or (V,X, b), if b is fixed) is a cross
product.

Two such pairs (V1, X1) and (V2, X2) are said to be isomorphic if the rank r is
the same in both cases and there is a linear isomorphism ϕ : V1 → V2 such that
ϕ
(
X1(v1, . . . , vr)

)
= X2

(
ϕ(v1), . . . , ϕ(vr)

)
for any v1, . . . , vr ∈ V1; while two such

triples (V1, X1, b1) and (V2, X2, b2) are said to be isomorphic if there is a linear
isometry ϕ : (V1, b1) → (V2, b2) such that ϕ

(
X(v1, . . . , vr)

)
= X

(
ϕ(v1), . . . , ϕ(vr)

)

for any v1, . . . , vr ∈ V1.

Therefore, given a cross product X on the vector space V relative to the bilin-
ear form b, we will consider two automorphism groups, depending on whether the
bilinear form b is considered a part of the definition:

Aut(V,X) := {ϕ ∈ GL(V ) |

ϕ
(
X(v1, . . . , vr)

)
= X

(
ϕ(v1), . . . , ϕ(vr)

)
∀v1, . . . , vr ∈ V },

Aut(V,X, b) := Aut(V,X) ∩O(V, b),

where GL(V ) denotes the general linear group of V , and O(V, b) the orthogonal
group of (V, b). The last group Aut(V,X, b) is the one considered in [BG67].

More generally, we will consider the corresponding affine group schemes, which
will be treated in a functorial point of view (see [Wat79] or [KMRT98, Chapter
VIII]). That is, for any unital, associative, commutative F-algebra R, the corre-
sponding group of R-points are the following:

Aut(V,X)(R) = {ϕ ∈ GL(V )(R) |

ϕ
(
XR(v1, . . . , vr)

)
= XR

(
ϕ(v1), . . . , ϕ(vr)

)
∀v1, . . . , vr ∈ VR},

Aut(V,X, b)(R) = Aut(V,X)(R) ∩O(V, b)(R),

where VR = V ⊗F R, XR denotes the scalar extension of X to VR, and GL(V ) and
O(V, b) denote the general linear affine group scheme and the orthogonal group
scheme attached to V and b.

All vector spaces considered from now on will be assumed to be finite-dimensional
and defined over a ground field F of characteristic not two.

The paper is organized as follows. Section 2 will be devoted to reviewing the
basic results and examples of cross products and will answer the question as to what
extent the form b is uniquely determined by the cross product. In section 3, the
affine group schemes of automorphisms of r-fold cross products will be determined.
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In the most interesting cases, these are simply connected algebraic groups of types
G2 and B3. In case r = dimF V − 1, these group schemes are close to the special
orthogonal group scheme, but they may fail to be smooth. Finally, Section 4 will
be devoted to classifying gradings by abelian groups, up to isomorphism, on cross
products. Fine gradings, up to equivalence, will be classified too, and the associated
Weyl groups will be computed. In future work, these classifications will be used
to study gradings by abelian groups on the exceptional simple basic classical Lie
superalgebras.

2. Cross products

In this section, some results on cross products will be reviewed in a way suitable
for our purposes. The problem of the uniqueness of the associated bilinear form
will be tackled too.

If (V,X, b) is an r-fold cross product, then it is clear that for any nonzero scalars
α, β ∈ F, with βr−1 = α2, (V, αX, βb) is an r-fold cross product too.

Let us review the main examples of cross products. First, let us recall from
[BG67, §3] the notion of star operator. Let b be a nondegenerate symmetric bilinear
form of discriminant 1 on the vector space V of dimension n. Then b extends to
the exterior algebra

∧
V as follows:

b
(
u1 ∧ · · · ∧ up, v1 ∧ · · · ∧ vq

)
=

{
det

(
b(ui, vj)

)
if p = q,

0 otherwise.

As the discriminant is 1, there exists an element ω ∈
∧n V , unique up to sign,

such that b(ω, ω) = 1. The star operator relative to b and ω is the linear map
∗ :

∧
V →

∧
V , such that ∗

(∧p
V
)
=

∧n−p
V , 0 ≤ p ≤ n, defined by

b
(
∗x, y

)
= b

(
x ∧ y, ω

)
,

for any 0 ≤ p ≤ n, x ∈
∧p

V , y ∈
∧n−p

V .
In this case, the multilinear map

X : V n−1 −→ V

(v1, . . . , vn−1) 7→
∗(v1 ∧ · · · ∧ vn−1)

is an (n− 1)-fold cross product on V relative to b.

Let now C be a Cayley algebra with norm n. That is, C is an eight-dimensional
unital nonassociative algebra endowed with a nondegenerate quadratic form n ad-
mitting composition:

n(xy) = n(x)n(y)

for all x, y ∈ C. Any x ∈ C satisfies the Cayley-Hamilton equation:

x2 − n(x, 1)x+ n(x)1 = 0 (2.1)

where n(x, y) = n(x + y) − n(x) − n(y) is the polar form of n. Write bn(x, y) =
1
2n(x, y). The linear map x 7→ x̄ := n(x, 1)1− x is the canonical involution of C. It
satisfies the equations

n(xy, z) = n(y, x̄z) = n(x, zȳ) (2.2)

for all x, y, z ∈ C. Any two elements in C generate an associative subalgebra.
Let C0 be the subspace orthogonal to the unity 1: C0 = {x ∈ C | n(x, 1) = 0}.

For any x, y ∈ C0, the product xy in C splits as:

xy = −bn(x, y)1 + x× y (2.3)
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for some x × y ∈ C0. Then × is an anticommutative multiplication on C0 that
satisfies:

(x× y)× y = bn(x, y)y − bn(y, y)x (2.4)

for all x, y ∈ C0 (see, e.g., [KMRT98, Chapter VIII] or [EK13, Chapter 4]).
Moreover, (C0, X

C0 , bn) is a 2-fold cross product, with XC0(x, y) = x× y.

On the other hand, (C, XC
ǫ , bn), with ǫ = ±1, where XC

ǫ is given by the formulas:

XC

1 (x, y, z) = (xȳ)z − bn(x, y)z − bn(y, z)x+ bn(x, z)y, (2.5)

XC

−1(x, y, z) = x(ȳz)− bn(x, y)z − bn(y, z)x+ bn(x, z)y, (2.6)

is a 3-fold cross product on C (see [BG67, Theorem 5.1]).
Moreover, the following holds for all ui, vi ∈ C, 1 ≤ i ≤ 3 (see [Eld96, Proposition

3]):

bn

(
XC

ǫ (u1, u2, u3), X
C

ǫ (v1, v2, v3)
)
= det

(
bn(ui, vj)

)

+ ǫ
∑

σ even

∑

τ even

bn(uσ(1), vτ(1))bn

(
uσ(2), X

C

ǫ (uσ(3), vτ(2), vτ(3))
)
. (2.7)

(ǫ is either 1 or −1, and the sums are over the even permutations of 1, 2, 3.)

Now we have all the ingredients to review the classification of cross products.
The trace of a linear operator X will be denoted by tr(X).

Theorem 2.1. Let X be an r-fold cross product on a vector space V of dimension
n, 1 ≤ r ≤ n. Then one, and only one, of the following conditions holds:

(i) n is even, r = 1, X2 = −id, and tr(X) = 0.

(ii) n ≥ 3, r = n− 1, and

X(v1, . . . , vn−1) =
∗(v1 ∧ · · · ∧ vn−1)

for all v1, . . . , vn−1 ∈ V , where ∗ is the star operator relative to a non-
degenerate symmetric bilinear form b of discriminant 1 and an element
ω ∈

∧n
V with b(ω, ω) = 1.

(iii) n = 7, r = 2, and (V,X) is isomorphic to (C0, X
C0) for a Cayley algebra

C.

(iv) n = 8, r = 3, and (V,X) is isomorphic to (C, αXC
1 ) for a Cayley algebra C

and a nonzero scalar α ∈ F.

Conversely, all the pairs (V,X) in items (i)–(iv) are cross products.

Proof. With the exception of a few details, everything follows from [BG67]. In
particular, it is proved in [BG67] that the only possible pairs (n, r) are (2s, 1),
(n, n− 1), (7, 2) and (8, 3).

If r = 1 and X is a 1-fold cross product relative to the bilinear form b, then
X satisfies b

(
X(u), u

)
= 0 and b

(
X(u), X(v)

)
= b(u, v) for all u, v ∈ V . That is,

X is both a skew-symmetric transformation and an isometry relative to b. If X∗

denotes the adjoint of the endomorphism X relative to b, then we have X∗ = −X
and XX∗ = id, and this implies X2 = −id and tr(X) = 0.

Conversely, let X : V → V be an endomorphism such that X2 = −id and
tr(X) = 0. If −1 ∈ F

2 and we pick i ∈ F with i2 = −1, then V = V+ ⊕ V− with
V± = {v ∈ V | X(v) = ±iv}. The condition tr(X) = 0 gives dimF V+ = dimF V− so
n is even and X is a 1-fold cross product relative to any nondegenerate symmetric
bilinear form b : V × V → F with b(V+, V+) = 0 = b(V−, V−).

If −1 6∈ F
2, then the subalgebra K = Fid ⊕ FX of EndF(V ) is a field, and V

is a vector space over K. For any K-basis {v1, . . . , vs} of V , n = 2s and X is
a 1-fold cross product relative to the bilinear form b defined so that the F-basis
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{v1, X(v1), . . . , vs, X(vs)} is orthogonal and b(vi, vi) = b
(
X(vi), X(vi)

)
= 1 for all

i.
The case n ≥ 3, r = n − 1 is proved in [BG67, Theorem 3.3]. For n = 7, r = 2

it follows from [BG67, Theorem 4.1].
Finally, if n = 8, r = 3, and (V,X, b) is a 3-fold cross product, then we have

(2.7) for ǫ = 1 (type I) or ǫ = −1 (type II). If (V,X, b) is of type I, then (V,X,−b)
is of type II. Hence, changing b by −b if necessary, we may assume that (V,X, b) is
of type I and (iv) follows from [BG67, Theorem 5.1] and [Eld96, Proposition 3]. �

Remark 2.2. The proof of Theorem 2.1 shows that the bilinear form b is not de-
termined at all from the cross product X for r = 1. Equation (2.3) shows, on the
other hand, that b is uniquely determined by X in case n = 7, r = 2.

The remaining cases are dealt with in the next result.

Proposition 2.3. Let X be an r-fold cross product on an n-dimensional vector
space V relative to the nondegenerate symmetric bilinear forms b and b′.

• If n ≥ 3 and r = n − 1, then there is a scalar µ ∈ F with µn−2 = 1, such
that b′ = µb.
In particular, for n = 3, b is uniquely determined.

• If n = 8 and r = 3, then b′ equals either b or −b. In particular, the bilinear
form b is unique if (V,X, b) is assumed to be of type I.

Proof. Let n ≥ 3, r = n − 1, and without loss of generality, assume that F is
algebraically closed. Let {v1, . . . , vn} be an orthogonal basis relative to b, with
b(vi, vi) = 1 for all i.

As b
(
X(v1, . . . , vn−1), vi

)
= 0 for all i = 1, . . . , n− 1, and

b
(
X(v1, . . . , vn−1), X(v1, . . . , vn−1)

)
= det

(
b(vi, vj)

)
= 1,

changing if necessary vn by −vn, we may assume that X(v1, . . . , vn−1) = vn. From
the fact that Φ : V n → F, given by Φ(u1, . . . , un) = b

(
X(u1, . . . , un−1), un

)
, is

multilinear and alternating, we conclude that for any permutation σ,

X(vσ(1), . . . , vσ(n−1)) = (−1)σvσ(n), (2.8)

where (−1)σ denotes the signature of σ.
But Φ′ : V n → F given by Φ′(u1, . . . , un) = b′

(
X(u1, . . . , un−1), un

)
, is also

alternating, and hence there is a nonzero scalar µ such that Φ′ = µΦ. For any
permutation σ,

b′(vσ(n), vσ(i)) = (−1)σΦ′
(
vσ(1), . . . , vσ(n−1), vσ(i)

)
= µb(vσ(n), vσ(i)),

so that we get b′ = µb. Equation (1.2) gives µn−2 = 1.

In case n = 8, r = 3, assume again that F is algebraically closed and let
Φ : V 4 → F (respectively Φ′ : V 4 → F) be the alternating multilinear map
given by Φ(u1, u2, u3, u4) = b

(
X(u1, u2, u3), u4

)
(respectively Φ′(u1, u2, u3, u4) =

b′
(
X(u1, u2, u3), u4

)
). Using (1.2) we get:

∣∣∣∣∣∣

b(x, x) b(x, y) b(x, v)
b(y, x) b(y, y) b(y, v)
b(u, x) b(u, y) b(u, v)

∣∣∣∣∣∣
= b

(
X(x, y, u), X(x, y, v)

)

= Φ
(
x, y, u,X(x, y, v)

)

= −Φ
(
x, y,X(x, y, v), u

)

= −b
(
X(x, y,X(x, y, v)), u

)
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The nondegeneracy of b gives

X(x, y,X(x, y, v)) =

∣∣∣∣
b(x, x) b(x, v)
b(y, x) b(y, v)

∣∣∣∣ y−
∣∣∣∣
b(x, y) b(x, v)
b(y, y) b(y, v)

∣∣∣∣x−
∣∣∣∣
b(x, x) b(x, y)
b(y, x) b(y, y)

∣∣∣∣ v,

and hence we get

X
(
x, y,X

(
x, y,X(x, y, v)

))
= −

∣∣∣∣
b(x, x) b(x, y)
b(y, x) b(y, y)

∣∣∣∣X(x, y, v),

that is,

X(x, y, .)3 = −

∣∣∣∣
b(x, x) b(x, y)
b(y, x) b(y, y)

∣∣∣∣X(x, y, .),

and the same happens replacing b by b′.
Thus, for any x, y ∈ V with X(x, y, .) 6= 0 we obtain:

b(x, x)b(y, y)− b(x, y)2 = b′(x, x)b′(y, y)− b′(x, y)2. (2.9)

As the set of such pairs (x, y) is Zariski dense in V × V , we conclude that (2.9)
holds for any x, y ∈ V .

For any x ∈ V with b(x, x) 6= 0, the subspace Sx = {v ∈ V | b(x, v) = 0 =
b′(x, v)} has dimension at least 6, so it is not isotropic for both b and b′. For any
v ∈ Sx, (2.9) gives

b(v, v) =
b′(x, x)

b(x, x)
b′(v, v)

so that b = µb′ on the subspace Sx with µ = b′(x,x)
b(x,x) . But (2.9) gives

(1− µ2)

∣∣∣∣
b(u, u) b(u, v)
b(v, u) b(v, v)

∣∣∣∣ = 0

for any u, v ∈ Sx and this implies µ2 = 1. Thus µ = ±1 and hence b′(x, x) =
±b(x, x) for any x ∈ V with b(x, x) 6= 0. Therefore, the polynomial map

(
b(x, x) − b′(x, x)

)(
b(x, x) + b′(x, x)

)

is 0 on the Zariski dense set of nonisotropic vectors for b, so it is 0, and hence so is
one of its factors. Thus either b′ = b or b′ = −b. �

3. Automorphisms

This section is devoted to computing the affine group schemes of automorphisms
of cross products.

3.1. n even, r = 1.
Let X : V → V be a 1-fold cross product on the even-dimensional vector space

V , relative to a nondegenerate symmetric bilinear form b. Theorem 2.1 and its
proof tell us that K = Fid ⊕ FX is an étale F-algebra (either isomorphic to F × F

if −1 ∈ F
2, or a quadratic field of F otherwise). In any case, K is endowed with a

canonical involution: X 7→ −X . Recall that b is far from being determined by X .
Denote by CentGL(V )(X) the group scheme of elements that commute with X

in the general linear group scheme. The first part of the next result is trivial.

Theorem 3.1. Let X : V → V be a 1-fold cross product on the even-dimensional
vector space V , relative to a nondegenerate symmetric bilinear form b.

• Aut(V,X) = CentGL(V )(X).
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• Aut(V,X, b) = U(V, h), where h is the hermitian nondegenerate form given
by

h : V × V −→ K

(u, v) 7→ b(u, v)id− b
(
X(u), v

)
X

for any u, v ∈ V , and U(V, h) is the corresponding unitary group scheme,
whose R-points are those ϕ ∈ EndK⊗FR(VR) such that hR

(
ϕ(u), ϕ(v)

)
=

hR(u, v) for all u, v ∈ VR = V ⊗F R. (The subindex R denotes the natural
scalar extension.)

Proof. The fact that h is hermitian (i.e., h is F-bilinear, h
(
X(u), v

)
= Xh(u, v),

and h(u, v) = h(v, u), for all u, v ∈ V , where denotes the canonical involution of
K) is clear.

Note that for ϕ ∈ EndK⊗FR(VR) and u, v ∈ VR, hR
(
ϕ(u), ϕ(v)

)
= hR(u, v) if,

and only if, bR
(
ϕ(u), ϕ(v)

)
= bR(u, v) and bR

(
XR(ϕ(u)), ϕ(v)

)
= bR

(
XR(u), v

)
.

Hence ϕ is an element of U(V, h)(R) if and only if ϕ is an R-point in the intersec-
tion of CentGL(V )(X) = Aut(V,X) and of the orthogonal group scheme O(V, b),
whence the result. �

In case −1 ∈ F
2, K is split and Theorem 3.1 gives:

Corollary 3.2. Let X : V → V be a 1-fold cross product on the even-dimensional
vector space V , relative to a nondegenerate symmetric bilinear form b, over a field
F containing a square root i of −1. Then, the following conditions hold:

• Aut(V,X) is isomorphic to GL(V+) × GL(V−), where V± = {v ∈ V |
X(v) = ±iv}.

• Aut(V,X, b) is isomorphic to GL(V+).

Proof. Any automorphism of (V,X) preserves V+ and V−, and any automorphism
of (V,X, b) is determined by its action on V+, because V+ and V− are paired by
b. �

3.2. n ≥ 3, r = n− 1.
Given a vector space V endowed with a nondegenerate symmetric bilinear form,

we will consider the special orthogonal group scheme O+(V, b) and the group scheme

Õ(V, b) whose R-points are those invertible linear automorphisms ϕ of VR such that
bR

(
ϕ(u), ϕ(v)

)
= det(ϕ)bR(u, v) for all u, v ∈ VR.

Theorem 3.3. Let X : V n−1 → V be an (n − 1)-fold cross product on the n-
dimensional vector space V , relative to a nondegenerate symmetric bilinear form b.
Then the next two equations hold:

• Aut(V,X) = Õ(V, b).
• Aut(V,X, b) = O+(V, b).

Proof. Let ϕ be a linear automorphism of V . After extending scalars we may
assume, as in the proof of Proposition 2.3, that there exists a basis {v1, . . . , vn}
satisfying Equation (2.8). Then ϕ ∈ Aut(V,X) if, and only if, we have

X
(
ϕ(vσ(1)), . . . , ϕ(vσ(n−1))

)
= ϕ

(
X(vσ(1), . . . , vσ(n−1))

)
= (−1)σϕ(vσ(n))
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for any permutation σ, and this happens, as b is nondegenerate, if and only if we
have

b
(
ϕ(vσ(n−1)), ϕ(vσ(i))

)
= (−1)σΦ

(
ϕ(vσ(1)), . . . , ϕ(vσ(n−1)), ϕ(vσ(i))

)

= (−1)σ det(ϕ)Φ(vσ(1), . . . , vσ(n−1), vσ(i))

=

{
det(ϕ) if i = n

0 otherwise

= det(ϕ)b
(
vσ(n), vσ(i)

)

where Φ is the alternating multilinear form considered in the proof of Proposition
2.3. We conclude that ϕ is an automorphism of (V,X) if and only if it satisfies

b
(
ϕ(u), ϕ(v)

)
= det(ϕ)b(u, v) (3.1)

for all u, v ∈ V .

The argument above is functorial, so we conclude Aut(V,X) = Õ(V, b). More-
over, Aut(V,X, b) = Aut(V,X) ∩O(V, b) = O+(V, b). �

Denote by µm the scheme of m-th roots of unity. A natural short exact sequence
appears:

Proposition 3.4. Let X : V → V be an (n − 1)-fold cross product on the n-
dimensional vector space V , relative to a nondegenerate symmetric bilinear form b.
Then the determinant provides a short exact sequence:

1 −→ O+(V, b) −→ Õ(V, b)
det
−→ µn−2 −→ 1 .

Proof. For any (unital, associative, commutative) F-algebra R and any element

ϕ ∈ Õ(V, b)(R), Equation (3.1) shows that det(ϕ)2 = det(ϕ)n, so that det(ϕ) is an
(n− 2)-th root of unity, thus showing that the exact sequence is well defined. Now,

the only thing left is to prove that det gives a quotient map Õ(V, b) → µn−2.
Given any F-algebra R and a root of unity r ∈ µn−2(R), consider the degree

two extension S = R[T ]/(T 2 − r). Denote by t the class of T modulo (T 2 − r).
The algebra S is a free R-module of rank two, so S/R is a faithfully flat extension.
Take an orthogonal basis {v1, . . . , vn} and consider the linear automorphism ϕ ∈
GL(V )(S) such that

ϕ(vi) = tvi, 1 ≤ i ≤ n; ϕ(vn) = tn−1vn.

Note that t2 = r = rn−1 = (tn−1)2, so that ϕ lies in Õ(V, b)(S), and det(ϕ) =
(tn−1)2 = r.

This shows that det : Õ(V, b) → µn−2 is a quotient map. �

In particular, for n = 3, Aut(V,X) = Aut(V,X, b) = O+(V, b).

Remark 3.5. As O(V, b) is smooth, we get that Õ(V, b) is smooth if and only if so
is µn−2 (see, e.g., [KMRT98, (22.12)]). Therefore we obtain the following:

Õ(V, b) is smooth if and only if the characteristic of F does not divide n− 2.

The Lie algebra of Õ(V, b) is

Lie
(
Õ(V, b)

)
= {f ∈ EndF(V ) | b

(
f(u), v

)
+ b

(
u, f(v)

)
= tr(f)b(u, v) ∀u, v ∈ V }.

Hence, for any f ∈ Lie
(
Õ(V, b)

)
, 2tr(f) = ntr(f), so that (n− 2)tr(f) = 0 and we

get:

Lie
(
Õ(V, b)

)
=

{
so(V, b) if charF does not divide n− 2 (smooth case),

so(V, b)⊕ Fid otherwise,
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where so(V, b) denotes the orthogonal Lie algebra, i.e., the Lie algebra of skew-
symmetric endomorphisms of V relative to b.

3.3. n = 7, r = 2.
If (V,X) is a 2-fold cross product on a seven-dimensional vector space, then

(V,X) is isomorphic to (C0, X
C0) for a Cayley algebra C (Theorem 2.1). Moreover

(Remark 2.2), the bilinear form is uniquely determined in this case.
The restriction map

Aut(C) −→ Aut(C0, X
C0)

f 7→ f |C0

is an isomorphism of affine group schemes (see, e.g., [CRE16]), and this gives the
next result (see [SV00]).

Theorem 3.6. Let (V,X, b) be a 2-fold cross product on a seven-dimensional vector
space. Then Aut(V,X) = Aut(V,X, b) is a simple algebraic group of type G2.

3.4. n = 8, r = 3.
If (V,X) is a 3-fold cross product on an eight-dimensional vector space V , then by

Theorem 2.1, (V,X) is isomorphic to (C, αXC
1 ), for a Cayley algebra C and a nonzero

scalar α ∈ F, where XC
1 is given by Equation (2.5). But Aut(V,X) = Aut(V, αX)

for any nonzero α, so it is enough to study the group scheme Aut(C, XC
1 ). By

Proposition 2.3, this is the same as Aut(C, XC
1 , bn).

Consider, as in [Sha90a] or [Eld96] the triple product on the Cayley algebra C

given by

{xyz} = (xȳ)z (3.2)

that satisfies the equation

{xxy} = n(x)y = {yxx}. (3.3)

This is called a 3C-product, and the pair (C, {...}) a 3C-algebra.
Because of (3.3), the norm of C is determined by the 3C-product, and hence we

have the equality Aut(C, {...}) = Aut(C, {...}, n). Moreover, Equation (2.5) and
Proposition 2.3 give:

Aut(C, XC

1 ) = Aut(C, XC

1 , bn) = Aut(C, {...}) = Aut(C, {...}, n) (3.4)

and hence it is enough to compute Aut(C, {...}). The group of rational points has
been computed in [Eld96, Proposition 7] and shown to be isomorphic to the spin
group of (C0,−n). Here we will extend the results in [Eld96] to the group scheme
setting, and will relate them to the triality phenomenon.

To begin with, let C be a Cayley algebra with norm n, and consider the para-
Cayley product x • y := x̄ȳ. Let lx : y 7→ x • y and rx : y 7→ y • x be the operators
of left and right multiplication by the element x in the para-Cayley algebra (C, •).
Consider, following [KMRT98, §35] and [EK13, §5.1], the linear map:

C −→ EndF(C⊕ C)

x 7→

(
0 lx
rx 0

)
.

For any x, y ∈ C, rxlx(y) = (x̄ȳ)x̄ = (yx)x̄ = n(x)y = lxrx(y). Hence we have
(
0 lx
rx 0

)2

= n(x)id,
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and the above linear map induces an isomorphism

Φ : Cl(C, n) −→ EndF(C⊕ C), (3.5)

which restricts to an isomorphism of the even Clifford algebra Cl(C, n)0̄ onto the
diagonal subalgebra EndF(C) × EndF(C). Under this isomorphism, the canonical
involution τ of Cl(C, n): τ(x) = x for all x ∈ C, corresponds to the orthogonal
involution σn⊥n associated to the quadratic form n ⊥ n on C⊕ C.

To prevent confusions between the unity of the Clifford algebra Cl(C, n) and the
unity of the Cayley algebra C, we will denote in what follows the unity of Cl(C, n)
by 1, and the unity of C by e0. Also, the multiplication in C will be denoted by
juxtaposition, as usual, and the one in Cl(C, n) by a dot: x · y.

The associated spin group is the group:

Spin(C, n) = {u ∈ Cl(C, n)0̄ | u · τ(u) = 1, u · C · u−1 = C},

The vector representation of Spin(C, n) on C works as follows. For any x ∈ C and
u ∈ Spin(C, n), χu(x) := u · x · u−1 = u · x · τ(u).

For any u ∈ Spin(C, n), Φ(u) lies in the even part of EndF(C⊕ C):

Φ(u) =

(
ρ−u 0
0 ρ+u

)
,

and as u · τ(u) = 1, it follows that ρ+u and ρ−u are orthogonal transformations:
ρ±u ∈ O(C, n).

The equality u · x = χu(x) · u transfers by Φ to
(
ρ−u 0
0 ρ+u

)(
0 lx
rx 0

)
=

(
0 lχu(x)

rχu(x) 0

)(
ρ−u 0
0 ρ+u

)
.

This gives,

ρ−u (x • y) = χu(x) • ρ
+
u (y), ρ+u (y • x) = ρ−u (y) • χu(x),

for all u ∈ Spin(C, n) and x, y ∈ C. It is easy to check ([EK13, Lemma 5.4]) that
there is a cyclic symmetry here: if three isometries fi ∈ O(C, n), 0 ≤ i ≤ 2 satisfy
f0(x • y) = f1(x) • f2(y) for all x, y ∈ C, then also f1(x • y) = f2(x) • f0(y), and
f2(x • y) = f0(x) • f1(y).

All the above arguments are functorial and give an isomorphism of affine group
schemes (see [KMRT98, §35])

Spin(C, n) ∼= {(f0, f1, f2) ∈ O+(C, n)3 | f0(x • y) = f1(x) • f2(y) ∀x, y ∈ C}

u 7→ (χu, ρ
+
u , ρ

−
u ).

(3.6)

Recall that we denote by e0 the unity of the Cayley algebra C.

Proposition 3.7. The above isomorphism of affine group schemes induces an iso-
morphism

Spin(C0,−n) ∼= {(f0, f1, f2) ∈ O+(C, n)3 |

f0(x • y) = f1(x) • f2(y) and f0(e0) = e0 ∀x, y ∈ C}.

Proof. Consider the linear map

C0 −→ Cl(C, n)

x 7→ e0 · x,

whose image lies in the even part Cl(C, n)0̄. Since (e0 ·x)
·2 = e0 ·x·e0 ·x = −e·20 ·x·2 =

−n(e0)n(x)1 = −n(x)1, because e0 and x are orthogonal relative to n, this linear
map induces an embedding

Ψ : Cl(C0,−n) −→ Cl(C, n),
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which, by dimension count, restricts to an isomorphism (also denoted by Ψ):

Ψ : Cl(C0,−n) −→ Cl(C, n)0̄. (3.7)

Recall that τ denotes the canonical involution on Cl(C, n). Denote by τ ′ the in-
volution on Cl(C0,−n) which is −id on C0. That is, τ ′ is the composition of the
canonical involution on Cl(C0,−n) with the parity automorphism. The restriction
of τ ′ to the even part equals the restriction of the canonical involution.

For all x ∈ C0 we get

Ψ
(
τ ′(x)

)
= −Ψ(x) = −e0 · x = x · e0 = τ(x) · τ(e0) = τ(e0 · x) = τ

(
Ψ(x)

)
,

so that we have
Ψτ ′ = τΨ. (3.8)

As the elements of C0 anticommute with e0 in Cl(C, n) we get

Ψ
(
Cl(C0,−n)0̄

)
= {a ∈ Cl(C, n)0̄ | e0 · a = a · e0},

Ψ
(
Cl(C0,−n)1̄

)
= {a ∈ Cl(C, n)0̄ | e0 · a = −a · e0}.

In particular, for any u ∈ Spin(C0,−n), we have Ψ(u) · e0 = e0 ·Ψ(u). Hence, for
any x ∈ C0 we get

Ψ(u · x · u−1) = Ψ(u) · e0 · x ·Ψ(u)−1 = e0 ·Ψ(u) · x ·Ψ(u)−1,

so that we obtain

Ψ(u) · x ·Ψ(u)−1 = e0 ·Ψ(u · x · u−1) = e0 · e0 · χu(x) = χu(x) ∈ C0,

and we conclude that Ψ(u) lies in Spin(C, n).
Conversely, for any v ∈ Spin(C, n) with e0 · v = v · e0, v is the image v = Ψ(u) of

some element u ∈ Cl(C0,−n)0̄. From (3.8) we get u · τ ′(u) = 1, and for any x ∈ C0,

Ψ(u · x · u−1) = v · e0 · x · v−1 = e0 · χv(x) = Ψ
(
χv(x)

)
∈ Ψ(C0),

and we conclude that u · x · u−1 lies in C0, so that u lies in Spin(C0,−n).
Therefore Ψ restricts to a group isomorphism

Spin(C0,−n) ∼= CentSpin(C,n)(e0),

from the spin group of (C0,−n) onto the centralizer in Spin(C, n) of e0 under the
vector representation.

But all these arguments are functorial, so actually Ψ induces an isomorphism of
affine group schemes:

Spin(C0,−n) ∼= {u ∈ Spin(C, n) | u · e0 = e0 · u}.

Finally, if we compose this isomorphism with the one in Equation (3.6) we obtain
the isomorphism of affine group schemes:

Spin(C0,−n) −→ {(f0, f1, f2) ∈ O+(C, n)3 | f0(x • y) = f1(x) • f2(y)

and f0(e0) = e0 ∀x, y ∈ C}

u 7→
(
χΨ(u), ρ

+
Ψ(u), ρ

−
Ψ(u)

)
,

(3.9)

as required. �

Remark 3.8. If C is a Cayley algebra, and (f0, f1, f2) is a triple of isometries satisfy-
ing f0(x•y) = f1(x)•f2(y) for all x, y ∈ C, then we also have f1(x•y) = f2(x)•f0(y).

If f0(e0) = e0, then with y = e0 above we get f1(x̄) = f2(x) for all x, so that

f1(x) = f2(x̄). Then both f0 and f1 are determined by f2.

Conversely, with (f0, f1, f2) as above, if f1(x̄) = f2(x) for all x ∈ C, we get

f1(x̄) = f1(x • e0) =

{
f2(x) • f0(e0),

f2(x) = f2(x) • e0,
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and we conclude that f0(e0) = e0.
As both f0 and f1 are then determined by f2, projecting on the third component

in (3.9) gives an injective homomorphism (i.e., a closed embedding):

θ : Spin(C0,−n) −→ O+(C, n)

u 7→ ρ−Ψ(u).
(3.10)

This is actually the spin representation of Spin(C0,−n).

Our goal now is to show that the image of the homomorphism θ in (3.10) is the
automorphism group scheme Aut(C, {...}) = Aut(C, XC

1 ) (see (3.4)).

Remark 3.9. Composing the isomorphisms Φ in (3.5) and Ψ in (3.7), for any x ∈ C0

we obtain:

ΦΨ(x) = Φ(e0 · x) =

(
0 le0
re0 0

)(
0 lx
rx 0

)
=

(
le0rx 0
0 re0 lx

)
=

(
Lx 0
0 Rx

)

where Lx : y 7→ xy, Rx : y 7→ yx, are the operators of left and right multiplication
by x in C. This follows from le0rx(y) = le0(ȳx̄) = ȳx̄ = xy and from re0 lx(y) =
re0(x̄ȳ) = x̄ȳ = yx.

Thus for x1, . . . , x2s ∈ C0, with
∏2s

i=1 n(xi) = 1, the image by θ in (3.10) of
u = x1 · · · · x2s ∈ Spin(C0, n) is Lx1 · · ·Lx2s . These elements are shown in [Eld96,
Theorem 10] and, in a different way, in [Eld00, Corollary 2.5], to exhaust the
elements in Aut(C, {...}).

We are now ready for the computation of the affine group schemes in (3.4). This
result extends the results in [Sha90b] and [Eld96], where only the groups of rational
points were computed. It also gives a new perspective on the automorphisms of
3-fold cross products.

Theorem 3.10. The group scheme of automorphisms Aut(C, {...}) is isomorphic
to Spin(C0,−n).

Proof. The homomorphism θ in (3.10) factors through Aut(C, {...}) because if a
triple (f0, f1, f2) ∈ O+(C, n)3(R), for an F-algebra R, satisfies f0(x • y) = f1(x) •

f2(y) for all x, y, z ∈ CR, and with f0(e0) = e0, then we have f1(x̄) = f2(x) and

f2({xyz}) = f2
(
(xȳ)z

)

= f2
(
(yx̄) • z̄

)
= f0(yx̄) • f1(z̄)

= f0
(
ȳ • x

)
• f2(z)

=
(
f1(ȳ) • f2(x)

)
• f2(z)

=
(
f2(y) • f2(x)

)
• f2(z)

=
(
f2(y)f2(x)

)
f2(z)

=
(
f2(x)f2(y)

)
f2(z) = {f2(x)f2(y)f2(z)},

and hence we get an injective morphism θ : Spin(C0,−n) → Aut(C, {...}) (which
we denote also by θ).

Remark 3.9 and [Eld96, Theorem 10] show that θ
F
is bijective, where F denotes

an algebraic closure of F. Also, the differential dθ is injective, because θ in (3.10)
is injective. But the Lie algebra Lie

(
Aut(C, {...})

)
= Der(C, {...}) is isomorphic to

the orthogonal Lie algebra so(C0,−n) ([Eld96, Theorem 12]), so by dimension count
dθ is an isomorphism Lie

(
Spin(C0,−n)

)
→ Lie

(
Aut(C, {...})

)
. We conclude from

[EK13, Theorem A.50] that θ : Spin(C0,−n) → Aut(C, {...}) is an isomorphism.
�
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4. Gradings

Let G be an abelian group and let (V,X) be an r-fold cross product. A G-grading
on (V,X) is a vector space decomposition Γ : V =

⊕
g∈G Vg, such that

X
(
Vg1 , . . . , Vgr

)
⊆ Vg1···gr

for all g1, . . . , gr ∈ G. The subspaces Vg are called the homogeneous components
and we write deg(v) = g (or degΓ(v) = g) for any 0 6= v ∈ Vg. The support of Γ is
the (finite) subset Supp Γ := {g ∈ G | Vg 6= 0}.

Two G-gradings Γ : V =
⊕

g∈G Vg and Γ′ : V =
⊕

g∈G V ′
g on (V,X) are iso-

morphic if there is an automorphism ϕ ∈ Aut(V,X) such that ϕ(Vg) = V ′
g for all

g ∈ G.
For the basic facts on gradings on algebras, the reader is referred to the mono-

graph [EK13]. Here we will review the main facts, adapted to cross products.

Any G-grading Γ on (V,X) determines a homomorphism of affine group schemes

ρΓ : Gdiag −→ Aut(V,X)

where Gdiag is the diagonalizable affine group scheme represented by the group
algebra FG. This is the Cartier dual of the constant group schemeG (see [KMRT98,
§20]).

The homomorphism ρΓ factors through the subgroup schemeAut(V,X, b) if and
only if b(Vg, Vh) = 0 unless gh = e (the neutral element of G). In this case, Γ will
be said to be compatible with b.

Two G-gradings on (V,X) are isomorphic if and only if the corresponding ho-
momorphisms are conjugate by an element in Aut(V,X) [EK13, Proposition 1.36].

Conversely, any homomorphism ρ : Gdiag → Aut(V,X) determines a grading Γ
on (V,X) as follows. Take the generic element (the identity map) idFG ∈ Gdiag(G) =
Hom(FG,FG) (algebra homomorphisms). The automorphism

ρFG(idFG) ∈ Aut(VFG, XFG)

will be called the generic automorphism attached to ρ, and Γ : V =
⊕

g∈G Vg is
given by:

Vg = {v ∈ V | ρFG(idFG)(v ⊗ 1) = v ⊗ g}.

We will say that ρFG(idFG) is the generic automorphism of Γ and will be denoted
by ϕΓ.

Let Γ : V =
⊕

g∈G Vg be a G-grading on the r-fold cross product (V,X). The

diagonal group scheme Diag(Γ) is the diagonalizable group scheme whose group
of R-points, for any F-algebra R, consists of those automorphisms of the scalar
extension (VR, XR) that act by a scalar on each homogeneous component:

Diag(Γ)(R) = {f ∈ Aut(VR, XR) | f |Vg⊗FR ∈ R×idVg⊗FR}.

Up to isomorphism, Diag(Γ) is Udiag for a finitely generated abelian group U ,
which is called the universal grading group of Γ. The morphism ρΓ factors through
Diag(Γ) and hence induces a natural group homomorphism U → G. Moreover, Γ
may be considered, in a natural way, a grading by U , which is the most natural
grading group for Γ.

Given a G-grading Γ : V =
⊕

g∈G Vg and an H-grading Γ′ : V =
⊕

h∈H V ′
h on

(V,X), Γ is said to be a refinement of Γ′, or Γ′ a coarsening of Γ, if for any g ∈ G
there is an element h ∈ H such that Vg ⊆ V ′

h. In other words, each homogeneous
component for Γ′ is a sum of homogeneous components for Γ. The refinement is said
to be proper if we have that Vg is strictly contained in V ′

h for at least one nonzero
homogeneous component. In particular, given a G-grading Γ : V =

⊕
g∈G Vg and

a group homomorphism α : G → H , the grading Γα : V =
⊕

h∈H V ′
h, where
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V ′
h =

⊕
α(g)=h Vg for all h ∈ H , is a coarsening of Γ. Any homogeneous element for

Γ of degree g is homogeneous too for Γα of degree α(g).
A grading Γ is said to be fine if it admits no proper refinement. In that case,

Diag(Γ) is a maximal diagonalizable subgroup scheme of Aut(V,X).
Thus the classification of fine gradings up to equivalence is equivalent to the

classification of maximal diagonalizable subgroup schemes of Aut(V,X) up to con-
jugation by elements in Aut(V,X).

Here two gradings Γ : V =
⊕

g∈G Vg and Γ′ : V =
⊕

h∈H V ′
h on (V,X) are

equivalent if there is an automorphism ϕ ∈ Aut(V,X) such that for any g ∈ G
there is h ∈ H such that ϕ(Vg) = V ′

h.
Equivalence is weaker than isomorphism. For equivalence, the diagonal group

schemes are imposed to be conjugate by an automorphism of (V,X), while for iso-
morphism, we require that the morphisms of affine group schemes ρΓ are conjugate
by an automorphism.

Given a grading Γ : V =
⊕

g∈G Vg, the automorphism group of Γ, Aut(Γ) is the

group of self-equivalences, that is, of automorphisms of (V,X) that permute the
homogeneous components. The stabilizer of Γ: Stab(Γ), is the kernel of the natu-
ral induced map Aut(Γ) → Sym

(
Supp(Γ)

)
, where Sym(S) denotes the symmetric

group on the set S. That is, Stab(Γ) is the subgroup of self-isomorphisms of Γ.
The quotient W (Γ) := Aut(Γ)/ Stab(Γ) is called the Weyl group.

In this section, the ground field F will be assumed to be algebraically closed (and,
as always, of characteristic not two), unless otherwise stated. All gradings by
abelian groups on cross products will be classified up to isomorphism. The fine
gradings will be classified up to equivalence too, thus obtaining the maximal diag-
onalizable subgroup schemes of the corresponding automorphism group schemes.

4.1. n even, r = 1.
Let X : V → V be a 1-fold cross product on the even-dimensional vector space

V over an algebraically closed field F.
Let G be an abelian group, a G-grading Γ : V =

⊕
g∈G Vg on (V,X) is noth-

ing else than a vector space decomposition of V on subspaces invariant under the
endomorphism X : V → V .

Hence, if V+ and V− are the subspaces defined in Corollary 3.2, a G-grading on
(V,X) determines G-gradings on the vector subspaces V+ and V− and, conversely,
any pair of G-gradings on V+ and V− (as vector spaces) determines a G-grading on
(V,X).

In particular, up to equivalence, there is a unique fine grading Γ, with universal
group Z

n, n = 2s, obtained by fixing bases {v1, . . . , vs}, {w1, . . . , ws}, of V+ and
V−, and assigning degrees as follows:

deg(vi) = ǫi, deg(wi) = ǫs+i, i = 1, . . . , s,

where ǫ1, . . . , ǫn is the canonical basis of Zn. The Weyl groupW (Γ) is Syms × Syms,
where Syms is the symmetric group on s symbols, because any self-equivalence
permutes the homogeneous components of V+ and V− separately.

Remark 4.1. The above is valid for arbitrary fields F with −1 ∈ F
2, and implies

that a fine grading on (V,X) is given by a pair of fine gradings on V+ and V− as
vector spaces. In particular, there is a unique fine grading up to equivalence, and
the corresponding maximal diagonalizable subgroup scheme is just a maximal torus
of Aut(V,X) = GL(V+)×GL(V−). (All maximal tori are conjugate.)

If −1 6∈ F
2, then K = Fid⊕FX is a field. Hence any homogeneous component of

a grading Γ : V =
⊕

g∈G Vg on (V,X) is a vector space over K, so dimF Vg is even
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for any g ∈ G. In particular, Γ is a coarsening of a grading by Z
s (n = 2s) obtained

by taking a K-basis {v1, . . . , vs} of V and declaring that deg(vi) = ǫi, where the
ǫi’s are the canonical generators of Zs. Hence again there is a unique fine grading,
up to equivalence, and the corresponding diagonalizable group scheme is a maximal
split torus of Aut(V,X) = CentGL(V )(X) (see Theorem 3.1).

4.2. n ≥ 3, r = n− 1.
Let (V,X) be an r-fold cross product with dimF V = n ≥ 3 and r = n− 1, over

an algebraically closed field F, relative to a nondegenerate symmetric bilinear form
b, unique up to a scalar (Proposition 2.3). Equation (2.8) shows that X is unique,
up to isomorphism.

Let G be an abelian group and let Γ : V =
⊕

g∈G Vg be a G-grading on (V,X).

The generic automorphism ϕΓ is in Aut(V,X)(FG) = Õ(V, b)(FG).
Therefore, for any g1, g2 ∈ G and v1 ∈ Vg1 , v2 ∈ Vg2 , on the group algebra FG

we have
b(v1, v2)g1g2 = b

(
v1 ⊗ g1, v2 ⊗ g2

)
= det(ϕΓ)b(v1, v2),

and hence we get

b(Vg1 , Vg2) = 0 unless g1g2 = det(ϕΓ). (4.1)

Write h = det(ϕΓ) and consider the map

δ : G −→ Z≥0

g 7→ δ(g) := dimF Vg ,

which satisfies the following restrictions:

•
∑

g∈G δ(g) = n,

• h = det(ϕΓ) =
∏

g∈G gδ(g),

• δ(g) = δ(g−1h) for all g ∈ G. This is a consequence of (4.1).

By Proposition 3.4, the determinant h = det(ϕΓ) satisfies h
n−2 = e. (e denotes the

neutral element of G.)
Note that h is the neutral element if and only if Γ is compatible with b. Also,

because of (4.1), for an element g ∈ SuppΓ, the restriction b|Vg
is nondegenerate

if and only if g2 = h, otherwise Vg is totally isotropic.
Conversely, given a map δ satisfying the restrictions above, we can always define

a G-grading on (V,X). For example, let n = 5, g1, g2, h ∈ G with h3 = e, g21 = h,
g22 6= h. (This implies that the elements g1, g2 and g−1

2 h are different.) Assume

that δ(g1) = 1, δ(g2) = 2 = δ(g−1
2 h), and δ(g) = 0 for any g 6= g1, g2, g

−1
2 h.

Since F is algebraically closed we can take a basis {v1, v2, v3, v4, v5} of V with
b(v1, v1) = 1 = b(v2, v4) = b(v3, v5), and all the other values of b(vi, vj) equal to
0. Then with Vg1 = Fv1, Vg2 = Fv2 + Fv3, Vg

−1
2 h = Fv4 + Fv5, and Vg = 0 for

g 6= g1, g2, g
−1
2 h, we get a G-grading on (V,X), as its generic automorphism lies in

Õ(V, b).
Up to isomorphism, the G-grading associated to a map δ satisfying the restric-

tions above is unique, and will be denoted by Γ(G, δ).
We have proved our next result:

Theorem 4.2. Let X : V n−1 → V be an (n − 1)-fold cross product on the n-
dimensional vector space V (n ≥ 3) over an algebraically closed field F, relative to
a nondegenerate symmetric bilinear form b. Let G be an abelian group.

Then any G-grading on (V,X) is isomorphic to a grading Γ(G, δ) for a unique
map δ : G → Z≥0 satisfying the restrictions:

•
∑

g∈G δ(g) = n,



16 A. DAZA-GARCÍA, A. ELDUQUE, AND L. TANG

• δ(g) = δ(g−1h) for all g ∈ G, where h =
∏

g∈G gδ(g).

Let δ be a map satisfying the restrictions in Theorem 4.2, and let Γ = Γ(G, δ)
be the associated grading. Then, joining suitable bases of the homogeneous com-
ponents, we obtain a basis of V consisting of homogeneous elements:

{u1, . . . , up, v1, w1, . . . , vq, wq} (p, q ≥ 0, n = p+ 2q),

with b(ui, ui) = 1 for all i = 1, . . . , p, b(vj , wj) = 1
(
= b(wj , vj)

)
for all j = 1, . . . , q,

and all other values of b being 0, and with

deg(ui) = gi for i = 1, . . . , p, deg(vj) = g′j , deg(wj) = g′′j for j = 1, . . . , q,

for group elements g1, . . . , gp, g
′
1, g

′′
1 , . . . , g

′
q, g

′′
q satisfying

g2i = h = g′jg
′′
j , where h := g1 · · · gpg

′
1g

′′
1 · · · g

′
qg

′′
q .

Note that n = p+ 2q.
Let U be the abelian group, defined by generators and relations, with generators

x1, . . . , xp, y1, z1, . . . , yq, zq, subject to the relations:

x2
1 = · · · = x2

p = y1z1 = · · · = yqzq = x1 · · ·xpy1z1 · · · yqzq . (4.2)

(We will write U = 〈x1, . . . , xp, y1, z1, . . . , yp, zp | x2
1 = · · · = x2

p = y1z1 = · · · =
yqzq = x1 · · ·xpy1z1 · · · yqzq〉.)

Also, let δU : U → Z≥0 be the map defined by

δU (xi) = δU (yj) = δU (zj) = 1

for all i = 1, . . . , p, j = 1, . . . , q, and δU (u) = 0 for any other element u ∈ U .
This is well defined and satisfies the conditions of Theorem 4.2 because the

elements x1, . . . , xp, y1, z1, . . . , yq, zq are all different. Actually, we get the following
possibilities:

• If p = 0, then n = 2q is even with q ≥ 2, and

U = 〈y1, z1, . . . , yq, zq | y1z1 = · · · = yqzq = y1z1 · · · yqzq〉.

With u = y1z1 = · · · = yqzq = y1z1 · · · yqzq, we have u = uq. Then
U is generated by the elements u, y1, . . . , yq and is isomorphic to Z

q ×
Z/(q − 1) by means of the map that takes (0, . . . , 1, . . . , 0; 0̄) to yj, and
(0, . . . ,−1, . . . , 0; 1̄) to zj (1 in the jth position). This shows that the
elements yi, zi are all different.

• If p = 1, then q ≥ 1, n = 1 + 2q is odd, and

U = 〈x1, y1, z1, . . . , yq, zq | x
2
1 = y1z1 = · · · = yqzq = x1y1z1 · · · yqzq〉.

Thus x2
1 = x1(x

2
1)

q = x1+2q
1 , so x2q−1

1 = e. If q = 1, we get x1 = e and U
is isomorphic to Z. If q ≥ 2, then U is generated by x1, y1, . . . , yq and it is
isomorphic to Z

q ×Z/(2q− 1) by means of the map that takes (0, . . . , 0; 1̄)
to x1, (0, . . . , 1, . . . , 0; 0̄) to yj , and (0, . . . ,−1, . . . , 0; 2̄) to zj (±1 in the jth
position).

• Finally, if p ≥ 2, write xi = x1ti, with t2i = e, for i = 2, . . . p. The rela-

tions (4.2) imply x2
1 = x1 · · ·xpy1z1 · · · yqzq = xp+2q

1 t2 · · · tp, so t2 · · · tp =

xp+2q−2
1 = xn−2

1 and x2n−4
1 = e. Then U is generated by the elements

x1, t2, . . . , tp−1, y1, . . . , yq and it is isomorphic to Z
q×Z/(2n−4)×(Z/2)p−2

by means of the map that takes

(0, . . . , 0; 1̄; 0̄, . . . , 0̄) 7→ x1 (0, . . . , 1, . . . , 0; 0̄; 0̄, . . . , 0̄) 7→ yj

(0, . . . , 0; 1̄; 0̄, . . . , 1̄, . . . , 0̄) 7→ xi (0, . . . ,−1, . . . , 0; 2̄; 0̄, . . . , 0̄) 7→ zj

(0, . . . , 0;n− 1; 1̄, . . . , 1̄) 7→ xp

for 2 ≤ i ≤ p− 1, 1 ≤ j ≤ q.
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The map δU satisfies the restrictions in Theorem 4.2, so it determines a grad-
ing Γ(U, δU ), with one-dimensional homogeneous components, and hence fine, that
refines Γ(G, δ). Moreover, U is its universal grading group.

This gives the classification of fine gradings, up to equivalence:

Corollary 4.3. Let X : V n−1 → V be an (n − 1)-fold cross product on the n-
dimensional vector space V (n ≥ 3) over an algebraically closed field F, relative to
a nondegenerate symmetric bilinear form b.

Up to equivalence, the fine gradings on (V,X) are the gradings Γ(U, δU ), where
U is the abelian group

U = 〈x1, . . . , xp, y1, z1, . . . , yp, zp |

x2
1 = · · · = x2

p = y1z1 = · · · = yqzq = x1 · · ·xpy1z1 · · · yqzq〉

with p+ 2q = n, and δU : U 7→ Z≥0 is the map given by

δU (xi) = δU (yj) = δU (zj) = 1

for all i = 1, . . . , p, j = 1, . . . , q, and δU (u) = 0 for any other element u ∈ U .
Moreover, U is, up to isomorphism, the universal grading group of Γ(U, δU ) and

the following conditions hold:

• if p = 0, U is isomorphic to Z
q × Z/(q − 1),

• if p = 1, U is isomorphic to Z
q × Z/(2q − 1),

• if p > 1, U is isomorphic to Z
q × Z/(2n− 4)× (Z/2)

p−2
.

Any self-equivalence of a fine grading Γ(U, δU ) in Corollary 4.3 permutes the
homogeneous spaces of degrees xi, 1 ≤ i ≤ p, and the pairs of homogeneous spaces
of degrees yi and zi. Therefore, the Weyl group is the Cartesian product of the
symmetric group on p symbols, and the ‘signed permutation group’ on q symbols:

W
(
Γ(U, δU )

)
= Symp ×

(
(Z/2)

q
⋊ Symq

)
.

Example 4.4. Let Q be the algebra of quaternions over the algebraically closed field
F, with norm n, which is multiplicative. Up to isomorphism Q is the algebra of 2×2
matrices over F, and the norm is given by the determinant. Let x 7→ x̄ = n(x, 1)1−x
be the canonical involution. It satisfies xx̄ = n(x)1 = x̄x for all x ∈ Q. Define the
multilinear map

X : Q3 −→ Q

(x, y, z) 7→ X(x, y, z) := xȳz − zȳx.

This map is alternating, because X(x, x, z) = xx̄z − zx̄x = n(x)z − n(x)z = 0,
and X(x, y, y) = xȳy − yȳx = n(y)x − n(y)x = 0. Besides, for all x, y, z ∈ Q,
n
(
X(x, y, z), x

)
= n(xȳz, x)− n(zȳx, x) = n(x)n(ȳz − zȳ, 1) = 0.

It turns out that X is a 3-fold cross product on Q. Indeed, for any x, y, z ∈ Q

and λ ∈ F, the coefficient of λ2 in both sides of the equality n
(
(x+λz)ȳ(x+λz)

)
=

n(x+ λz)2n(y), gives

n(xȳz + zȳx) + n(xȳx, zȳz) =
(
n(x, z)2 + 2n(x)n(z)

)
n(y). (4.3)

Also we have

n(xȳz + zȳx) = n(xȳz) + n(zȳx) + n(xȳz, zȳx)

= 2n(x)n(y)n(z) + n(xȳz, zȳx),
(4.4)

and

n(xȳx, zȳz) = n
(
n(x, y)x − n(x)y, n(y, z)z − n(z)y

)

= n(x, y)n(y, z)n(z, x)− n(x)n(y, z)2

− n(z)n(x, y)2 + 2n(x)n(y)n(z).

(4.5)
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Putting all these together, we get:

n
(
X(x, y, z),X(x, y, z)

)

= n(xȳz − zȳx, xȳz − zȳx)

= n(xȳz, xȳz) + n(zȳx, zȳx)− 2n(xȳz, zȳx)

= 8n(x)n(y)n(z)− 2n(xȳz + zȳx) (by (4.4))

= 4n(x)n(y)n(z) + 2n(xȳx, zȳz)− 2n(x, z)2n(y) (by (4.3))

=

∣∣∣∣∣∣

n(x, x) n(x, y) n(x, z)
n(y, x) n(y, y) n(y, z)
n(z, x) n(z, y) n(z, z)

∣∣∣∣∣∣
(by (4.5)),

so that X turns out to be a 3-fold cross product relative to the polar form n(., .).
Corollary 4.3 shows that, up to equivalence, there are three different fine gradings

on (Q, X) with universal groups Z
2 (p = 0, q = 2), Z × Z/4 (p = 2, q = 1), and

Z/4×
(
Z/2

)2
(p = 4, q = 0).

In contrast to this, the quaternion algebra Q has only two fine gradings, with

universal groups Z and
(
Z/2

)2
(see, e.g., [EK13, Example 2.40]).

4.3. n = 7, r = 2.
Any 2-fold cross product on a seven-dimensional vector space over an alge-

braically closed field F is isomorphic to (C0, X
C0) for the unique Cayley algebra

C over F (Theorem 2.1).
Given an abelian group G, any G-grading on (C0, X

C0) extends uniquely to a
grading on the Cayley algebra C, and two such gradings on (C0, X

C0) are isomorphic
if and only if so are the extended gradings on C (see [Eld98] or [EK13, Corollary
4.25]).

Moreover, the classification of G-gradings, up to isomorphism, on the Cayley
algebra C is given in [EK13, Theorem 4.21], based on [Eld98]. There are two types
of gradings, those obtained as a coarsening of the Z

2-grading given by the weight
space decomposition relative to a maximal torus of Aut(C), and those equivalent

to the (Z/2)3-grading obtained by means of the Cayley-Dickson doubling process.
In particular, there exist only two fine gradings, up to equivalence, with universal

group Z
2 and (Z/2)

3
, respectively. The respective Weyl groups are the Weyl group

of the root system of type G2 (i.e., the dihedral group of order 12) and the general
linear group GL3(F2) of degree 3 over the field of two elements (see [EK13, Theorems
4.17 and 4.19]).

4.4. n = 8, r = 3.
Any 3-fold cross product on an eight-dimensional vector space over an alge-

braically closed field F is isomorphic, by Theorem 2.1 and using that F is alge-
braically closed, to (C, XC

1 ) for the unique Cayley algebra C over F, where XC
1 is

given by Equation (2.5).
Equation (3.4) shows that the group schemesAut(C, XC

1 ) andAut(C, {...}) coin-
cide, where the triple product {...} is given in (3.2): {xyz} := (xȳ)z for x, y, z ∈ C.
Moreover, Theorem 3.10 and its proof show that Aut(C, {...}) is isomorphic to
Spin(C0,−n) and is contained in the special orthogonal group scheme O+(C, n),
where n denotes the norm of the Cayley algebra C.

Therefore, in order to study gradings on the cross product (C, XC
1 ), it is enough

to study gradings on (C, {...}).
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We need some previous results. Continuing the discussion in Remark 3.9, [Eld96,
Theorem 10] and [Eld00, Corollary 2.5] give:

Aut(C, {...}) =

{
m∏

i=1

Lxi
| m ≥ 0, xi ∈ C0 ∀i, and

m∏

i=1

n(xi) = 1

}
, (4.6)

where Lx : y 7→ xy denotes the left multiplication by x in C. Take a standard basis
{e1, e2, u1, u2, u3, v1, v2, v3} of C (see, e.g., [EK13, p. 41]), with multiplication given
by:

• e1 and e2 are orthogonal idempotents: e21 = e1, e
2
2 = e2, e1e2 = e2e1 = 0,

• e1ui = uie2 = ui, e2ui = uie1 = 0, for all i = 1, 2, 3,
• e2vi = vie1 = vi, e1vi = vie2 = 0, for all i = 1, 2, 3,
• uivi = −e1, viui = −e2, for all i = 1, 2, 3,
• uiui+1 = −ui+1ui = vi+2, vivi+1 = −vi+1vi = ui+2, indices modulo 3,
• all other products between basic elements are 0.

Lemma 4.5. Let C be the Cayley algebra over an algebraically closed field F.

(i) The orbit of 1 under Aut(C, {...}) is the ‘unit sphere’:

orbitAut(C,{...})(1) = {x ∈ C | n(x) = 1}.

(ii) The orbit of e1 is the set of nonzero isotropic elements:

orbitAut(C,{...})(e1) = {x ∈ C | n(x) = 0, x 6= 0}.

(iii) The orbit of the pair (e1, e2) under the diagonal action of Aut(C, {...}) on
C× C is the set

orbitAut(C,{...})(e1, e2) = {(x, y) ∈ C× C | n(x) = 0 = n(y), n(x, y) = 1}.

Proof. As Aut(C, {...}) is contained in the orthogonal group of the norm, it is
clear that the orbit of 1 is contained in the set of norm 1 elements. Conversely,
if x ∈ C and n(x) = 1, take z ∈ C orthogonal to 1 and x of norm 1. Then
x = (xz̄)z = Lxz̄Lz(1) and Lxz̄Lz ∈ Aut(C, {...}).

It is clear that the orbit of e1 is contained in the set of nonzero elements of zero
norm.

If 0 6= x ∈ C0 is an element with n(x) = 0, take y ∈ C0 with n(y) = 0 and
n(x, y) = 1. Then −xy − yx = xȳ + yx̄ = n(x, y)1 = 1 and (xy)(xy) = (xy)(−1 −
yx) = −xy, as y2 = 0 because of (2.1). It turns out that f1 = −xy and f2 = −yx
are orthogonal idempotents, and thus (see, e.g. [EK13, pp. 128-129]) there is an
automorphism of C (hence also of (C, {...})) such that ϕ(f1) = e1, ϕ(f2) = e2.

Also, f2x = −yx2 = 0, xf1 = −x2y = 0, and hence f1x = xf2 = x, so that
ϕ(x) ∈ {z ∈ C : e1z = ze2 = z} = U := Fu1+Fu2+Fu3. But any u ∈ U is mapped
to −u3 by a suitable automorphism of C that preserves e1 and e2. Hence we may
assume that ϕ(x) = −u3. Note that Lu2+v2Lu1+v1(e1) = −u3 and we conclude
that x is in the orbit of e1.

If n(x) = 0 but x 6∈ C0, take y ∈ C0 orthogonal to x and with n(y) = 1. Then
Ly ∈ Aut(C, {...}) and Ly(x) = yx satisfies yx = −x̄y = −n(x, y)1 + ȳx = −yx, so
yx ∈ C0. By the previous paragraph, yx lies in the orbit of e1, and so does x.

Finally, since Aut(C, {...}) is contained in the orthogonal group, it is clear that
the orbit of (e1, e2) is contained in {(x, y) ∈ C× C | n(x) = 0 = n(y), n(x, y) = 1}.
Conversely, let x, y ∈ C with n(x) = 0 = n(y), n(x, y) = 1, and take z ∈ C

orthogonal to 1, x, and y, with n(z) = 1, and take t ∈ C orthogonal to 1 and
z with n(t) = 1. Let a = zt−1 = zt̄, b = t. Then a, b ∈ C0, n(a) = n(b) = 1,
so LaLb ∈ Aut(C, {...}). Besides, use (2.2) to get n(LaLb(x), 1) = n(x, b̄ā) =
n(x, ab) = n(x, z) = 0, and n(LaLb(y), 1) = n(y, z) = 0 too. Therefore, we may
assume that x and y are elements in C0. With some of the arguments above we may
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then assume that xy = −e2 and yx = −e1, x ∈ V =
⊕3

i=1 Fvi, y ∈ U =
⊕3

i=1 Fui,
and even that x = v1 and y = u1. The operator ϕ = Lu1−v1Le1−e2 is in Aut(C, {...})
and ϕ(v1) = e1, ϕ(u1) = e2. The result follows. �

Let us define a few natural gradings on (C, {...}).

Example 4.6 (Cartan grading). The following assignment of degrees in Z
3 gives

a grading on (C, {...}), which is called the Cartan grading, as its homogeneous
components are the weight spaces relative to a maximal torus T of Aut(C, {...}):

deg(u1) = (1, 0, 0) = − deg(v1),

deg(u2) = (0, 1, 0) = − deg(v2),

deg(u3) = (0, 0, 1) = − deg(v3),

deg(e2) = (1, 1, 1) = − deg(e1).

This grading, denoted by ΓC

Cartan, is fine since all the homogeneous components
have dimension 1, and it is straightforward to check that Z3 is its universal grading
group.

The maximal torus T is precisely Diag(ΓC

Cartan), and we will identify the asso-
ciated Weyl group W (ΓC

Cartan) with a subgroup of GL3(Z) = Aut(Z3). Note that
Aut(Γ) is the normalizer of T = T(F) in Aut(C, {...}), while Stab(Γ) is its central-
izer. The quotient W (ΓC

Cartan) is then the Weyl group of the root system of type

B3, which is the signed permutation group (Z/2)3 ⋊ Sym3.
Given any abelian group G and a group homomorphism α : Z3 → G, denote by

ΓC(G,α) the G-grading on (C, {...}) obtained as a coarsening of ΓC

Cartan by means
of α. That is, the degree in ΓC(G,α) is the image under α of the degree in ΓC

Cartan

for any homogeneous element relative to ΓC

Cartan.

There is another interesting basis {1, wi | 1 ≤ i ≤ 7} of C, with multiplication
determined by

w2
i = −1 for all i,

wiwi+1 = −wi+1wi = wi+3 (cyclically in i, i+ 1, i+ 3, indices modulo 7).
(4.7)

Thus, for example, w1w2 = w4, w4w1 = w2, ...
This will be called a Cayley-Dickson basis, or CD-basis for short. Any CD-basis

is an orthonormal basis relative to n. For example, one can take w1 = i(e1 − e2),
w2 = u1 + v1, w3 = u2 + v2, and then w4 = w1w2 = i(u1 − v1), w5 = u3 + v3,
w6 = i(u3 − v3), w7 = i(u2 − v2), where i is a square root of −1.

Example 4.7. Let H be an elementary 2-subgroup of rank 3 of an abelian group

G, so that H is isomorphic to (Z/2)
3
, and let h1, h2, h3 be generators of H . Denote

by ΓC(G,H) the grading on the Cayley algebra C determined by deg(wi) = hi for
i = 1, 2, 3 (the elements wi, i = 1, 2, 3, generate the algebra C). Then we have
deg(w4) = h1h2, deg(w5) = h2h3, deg(w6) = h1h2h3 and deg(w7) = h1h3.

This grading is, up to isomorphism, independent of the choice of generators of
H , because of [EK13, Theorem 4.19]. Its support is, precisely, the subgroup H .

Any grading on C is a grading on (C, {...}), so this gives a grading of (C, {...}),
also denoted by ΓC(G,H).

Given a grading Γ of (C, {...}) by an abelian group G, and given an order two
element h ∈ G, the shift of Γ by h is the new grading Γ[h] with degΓ[h](x) =
h degΓ(x). It is clear that Γ

[h] is a grading of (C, {...}) too.

Example 4.8. Let H be an elementary 2-subgroup of rank 4 of an abelian group
G, and let K be a subgroup of H of index two (and hence K is isomorphic to

(Z/2)
3
). Take an element h ∈ H \K, and consider the shift

(
ΓC(G,K)

)[h]
.
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Item (i) of Lemma 4.5 shows that, up to isomorphism, this grading is independent
of h, and will be denoted by ΓC(G,H,K). Its support is H \K.

We are ready to classify the gradings of the 3-fold cross product (C, XC
1 ) or,

equivalently, of the triple system (C, {...}), up to isomorphism.

Theorem 4.9. Let C be the Cayley algebra over an algebraically closed field F, let
G be an abelian group and let Γ : C =

⊕
g∈G Cg be a grading of (C, {...}). Then Γ

is isomorphic to one of the following gradings:

• ΓC(G,α), for a group homomorphism α : Z3 → G.
• ΓC(G,H) for an elementary 2-subgroup H of rank 3.
• ΓC(G,H,K) for an elementary 2-subgroup H of rank 4 and a subgroup K
of H of index 2.

Gradings on different items are not isomorphic, and

• Two gradings ΓC(G,α) and ΓC(G,α′) are isomorphic if and only if there is
an element ω in the Weyl group W (ΓC

Cartan) such that α′ = αω.
• Two gradings ΓC(G,H) and ΓC(G,H ′) are isomorphic if and only if H =
H ′.

• Two gradings ΓC(G,H,K) and ΓC(G,H ′,K ′) are isomorphic if and only if
H = H ′ and K = K ′.

Proof. Let Γ : C =
⊕

g∈G Cg be a grading by the abelian group G of (C, {...}).

Assume first that there is a nonzero homogeneous element x ∈ Cg with n(x) = 0.
As Aut(C, {...}) ⊆ O+(C, n), n(Cg1 ,Cg2) = 0 unless g1g2 = e, so there is an element
y ∈ Cg−1 such that n(x, y) = 1 and n(y) = 0. By Lemma 4.5(iii), we may assume
that e1 and e2 are homogeneous, and deg(e1) = g, deg(e2) = g−1. But then
{e1Ce2} = e1Ce2 = U = Fu1 +Fu2 +Fu3, and {e2Ce1} = V = Fv1 +Fv2 +Fv3, are
graded subspaces of C. In particular, we can take a homogeneous basis {u′

1, u
′
2, u

′
3}

of U and, multiplying by a nonzero scalar u′
3 if needed, with n(u′

1, u
′
2u

′
3) = 1. There

is then an automorphism of C that fixes e1 and e2 and takes ui to u′
i for i = 1, 2, 3,

so we may assume that the ui’s are homogeneous too, and so are the vi’s (for
instance, v3 = {u1e1u2}). Therefore, Γ is a coarsening of the Cartan grading, and
hence isomorphic to ΓC(G,α) for a group homomorphism α : Z3 → G.

Otherwise, all homogeneous components are one-dimensional and not isotropic.
As {x, x, x} = n(x)x for all x ∈ C, we conclude that the support of Γ generates a
2-elementary abelian subgroup. There are two possibilities:

• If the neutral element e of G is in the support, by Lemma 4.5(i) we may
assume that the unity 1 of C is homogeneous of degree e: 1 ∈ Ce. But then,
as xy = {x, 1, y}, it follows that Γ is a G-grading of C, with one-dimensional
nonisotropic homogeneous components. This gives the second possibility
(see [Eld98] or [EK13, Theorem 4.21]).

• Otherwise, again by Lemma 4.5(i) we may assume that the unity 1 of C
is homogeneous: 1 ∈ Cg, for an order 2 element g ∈ G. Then in the shift

Γ[g], 1 is homogeneous of degree g2 = e, and we are in the situation of the
previous item. If K is the support of Γ[g], then the subgroup generated by

g and K is 2-elementary of rank 4, and Γ =
(
Γ[g]

)[g]
is, up to isomorphism,

the grading ΓC(G,H,K).

Now it is clear that gradings in different items are not isomorphic. The support
of ΓC(G,H) is H , and of ΓC(G,H,K) is H \ K. The isomorphism condition for
gradings of type ΓC(G,α) follows from [EK13, Proposition 4.22]. �

The homogeneous components of the gradings ΓC(G,H) and ΓC(G,H,K) in
Theorem 4.9 are the subspaces spanned by the elements of a CD-basis (Equation
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(4.7), and hence they are all equivalent to the grading ΓC

CD over the grading group

(Z/2)
4
with

deg(1) = (1̄, 0̄, 0̄, 0̄), deg(w1) = (1̄, 1̄, 0̄, 0̄),

deg(w2) = (1̄, 0̄, 1̄, 0̄), deg(w3) = (1̄, 0̄, 0̄, 1̄).

(All the other homogeneous components are determined from these ones.)

Corollary 4.10. Up to equivalence, the only fine gradings of (C, {...}) are ΓC

Cartan

and ΓC

CD, with universal groups Z
3 and (Z/2)4.

Any element of the Weyl group of ΓC

CD permutes its support and gives an auto-
morphism of the universal grading group. Consider Z/2 as the field F2 of elements,
then W (ΓC

CD) embeds in {γ ∈ GL(F4
2) | ϕ(1×F

3
2) ⊆ 1×F

3
2}, which is identified with

the affine group Aff(3,F2). Lemma 4.5(i) shows that W (ΓC

CD) acts transitively on

the support. Also, the grading ΓC

CD is equivalent to the fine
(
Z/2

)3
-grading on C,

with Weyl group GL3(F2). As Aut(C) is a subgroup of Aut(C, {...}), it follows that
GL3(F2) is contained in W (ΓC

CD) ≤ Aff(3,F2). It turns out that the Weyl group
W (ΓC

CD) is the whole affine group Aff(3,F2).
The corollary above and the computation of the Weyl groups have been consid-

ered independently in [AOCMpr], devoted to the classification of the fine gradings
on certain Kantor systems attached to Hurwitz algebras. One such triple system
corresponds to our 3-fold cross product (C, XC

1 ).

Corollary 4.11. Let Q be a quasitorus (i.e., diagonalizable) subgroup scheme of
Spin(C0,−n). Then either:

• Q is contained in a maximal torus, and hence conjugate to Diag(ΓC

Cartan),
or

• Q is conjugate to Diag(ΓC

CD), which is isomorphic to µ
4
2.

Remark 4.12. The group scheme Spin(C0,−n) is the simply connected group of
type B3. In contrast, the corresponding adjoint group, that is, the special orthogo-
nal group scheme O+(C0,−n), contains four maximal quasitori, up to conjugation,
which are isomorphic to G3

m (a maximal torus), G2
m × µ

2
2, Gm × µ

4
2, and µ

6
2 (see

[EK13, Theorem 3.67]).
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