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Digital-analog quantum computation with arbitrary two-body Hamiltonians
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Digital-analog quantum computing is a computational paradigm which employs an analog Hamiltonian
resource together with single-qubit gates to reach universality. Here, we design a new scheme which employs an
arbitrary two-body source Hamiltonian, extending the experimental applicability of this computational paradigm
to most quantum platforms. We show that the simulation of an arbitrary two-body target Hamiltonian of n qubits
requires O(n2) analog blocks with guaranteed positive times, providing a polynomial advantage compared to the
previous scheme. Additionally, we propose a classical strategy which combines a Bayesian optimization with
a gradient descent method, improving the performance by ∼55% for small systems measured in the Frobenius
norm.
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I. INTRODUCTION

When quantum computing was originally proposed [1,2],
it was envisioned as a way of simulating the dynamics of a
quantum system employing another controllable system. This
set the foundations of what we now call analog quantum
computing (AQC) [3]. A different approach was introduced
when Deutsch et al. proposed the concept of a quantum gate
[4], which finally led to the digital quantum computing (DQC)
paradigm.

One of the main advantages of AQC is the robustness of
the simulation. Quantum control techniques have been devel-
oped in the last decades, providing a high fidelity and further
protecting the dynamics against different sources of errors
[5,6]. Despite their robustness, AQC is strongly limited by
the dynamics of the system, making it difficult to implement
most dynamics of interest. In contrast, DQC is performed
through the sequential application of quantum gates in a dis-
crete manner, mimicking classical computations. It is proven
that any unitary can be decomposed with arbitrary precision
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in terms of single-qubit gates (SQGs) and at least one en-
tangling two-qubit gate (TQG) [7]. One of the main features
that DQC provides is the possibility of applying quantum
error correction (QEC) techniques [8]. In the current noisy
intermediate-scale quantum (NISQ) era [9], the qubits and the
gates available are noisy and prone to errors. Thus, the only
hope of reaching fault-tolerant quantum computing is through
the application of sophisticated QEC techniques [10] once we
fulfill the requirements for the quantum threshold theorem
[8,11,12].

The digital-analog quantum computing (DAQC) paradigm
was proposed as a way of combining the robustness of AQC
with the versatility of DQC [13,14]. The main idea behind
DAQC is employing the natural interaction Hamiltonian of
a system as an entanglement resource. By alternating the
evolution under this Hamiltonian (analog blocks) and the
application of SQGs (digital blocks), one can simulate an
arbitrary target Hamiltonian. Here, we can distinguish two
kinds of approaches. If the interaction Hamiltonian is turned
off during the application of the digital blocks, we call this
approach a stepwise-DAQC (sDAQC) circuit. Otherwise, if
for practical purposes the system Hamiltonian is always on,
and the SQGs are performed on top of this dynamics, we
call this approach a banged-DAQC (bDAQC) circuit. Interest-
ingly, although this introduces a systematic error, this scales
better than main error sources found in quantum computers
[15]. It has already been experimentally proven that DAQC
is a suitable paradigm for the NISQ era, for instance, in
the implementation of a variational quantum algorithm in a
system with up to 61 qubits [16].
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In order to enhance the range of quantum platforms suit-
able for DAQC, we must extend the techniques to arbitrary
resource Hamiltonians. Previously, the resource Hamiltonian
was the aforementioned Ising Hamiltonian. Additionally, the
construction of an arbitrary target Hamiltonian was performed
through a two-step procedure: first by transforming the source
Hamiltonian into an adequate ZZ Hamiltonian [17], then by
employing sequences of SQGs to build an arbitrary Hamilto-
nian [14]. A different step-by-step construction for arbitrary
qudit Hamiltonian simulation was proposed, in this case
for the analogue quantum computing paradigm [18]. This
technique also requires a step-by-step construction, which in-
volves additional ancillary qubits for the encoding. However,
the question of systematically performing the transformation
in a single step for DAQC and two-body qubit Hamiltonians
was still open.

In this article, we provide an explicit construction for a
DAQC protocol to approximate the evolution under an arbi-
trary target two-body Hamiltonian by evolving under another
arbitrary two-body resource Hamiltonian up to a certain Trot-
ter error. By means of the Trotter-Suzuki formula, we argue
that by repeating this sequence nT times one can reduce the
error exponentially with nT . The tools we develop in this
article allow for a practical realization of DAQC schedules
in faulty hardware, in which spurious couplings prevent us
from approximating the system as an Ising Hamiltonian. We
also solve the problem of the negative analog blocks times that
limited the implementability of previous protocols. Addition-
ally, we introduce a classical Bayesian optimization technique
to find optimal angles for the SQGs. Taking into account the
depth limitations of quantum circuits in the NISQ era, our
objective is to maximize the fidelity of the circuit employing
a fixed amount of digital-analog blocks. We show how it is
possible to employ DAQC schedules with a low number of
digital-analog blocks that achieves fidelities compared to a
systematic approach with a higher count of blocks.

The rest of the article is organized in the following manner.
In Sec. II, we review the previous protocol employing ZZ
Hamiltonians. In Sec. III, we present the new protocol, which
extends it to an arbitrary two-body source Hamiltonian, and
discuss the error scaling. Then, in Sec. IV, we introduce an
optimization technique for approximating arbitrary dynamics
employing a fixed number of blocks, and illustrate the tech-
nique for a particular problem. Finally, in Sec. V we conclude
with some final remarks.

II. WARMUP: DAQC PROTOCOL FOR ZZ HAMILTONIANS

As a warmup, let us review the previous protocol for sim-
ulating the dynamics during a time T of a target ZZ all-to-all
(ATA) Hamiltonian,

HT,ZZ =
n∑

i< j

gi, jσ
z
i σ z

j , (1)

by employing a source ZZ ATA Hamiltonian,

HS,ZZ =
n∑

i< j

hi, jσ
z
i σ z

j , (2)

for {gi, j, hi, j} ∈ R.
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FIG. 1. sDAQC circuit for the Ising ZZ ATA Hamiltonian for five
qubits. For simulating an arbitrary evolution, we sandwich several
analog blocks with a couple of X gates applied to all combinations
of two qubits. The blocks labeled with ti, j represent the unitary evo-
lution under the source Hamiltonian for the time ti, j ; this is e−iti, j HS .

For achieving this, in Refs. [14,19] the authors proposed a
universal protocol, pictorially shown in Fig. 1. It consists in
sandwiching each analog block with two X gates, applied to
a different pair of qubits each time. Effectively, this changes
the sign of all couplings in which only one of the qubits is
selected. Noticing that all terms of the Hamiltonian commute
with each other, we have that the Trotter formula is exact, so
we can write

UT = e−iT HT

=
∏
i< j

exp

(
−iti, j

∑
�<m

(−1)δi�+δim+δ j�+δ jm h�,mσ z
� σ

z
m

)
, (3)

where δi j is the Kronecker delta and ti, j is the analog time
for the corresponding analog block. Note that, throughout this
work, we are considering h̄ = 1. We can rewrite the equa-
tion more conveniently as a linear system of equations

M�t = T
−→
g/h, (4)

where the elements of the matrix M(i, j),(�,m) =
(−1)δi�+δim+δ j�+δ jm represent the effective signs of the
couplings between qubits (i, j) in every analog block (�, m),
�t is the vector of times of each analog block, and (g/h)(i, j) is
a vector of the proportion between the target and the source
coupling strengths between the qubits (i, j). If there is a
missing coupling in both source and target Hamiltonians,
gi, j = hi, j = 0, then we remove the corresponding element

from the vector
−→
g/h and the corresponding row in M. If the

coupling is missing but the target coupling is nonzero, then
the Hamiltonian cannot be simulated directly, as one would
need implement a SWAP strategy to simulate the Hamiltonian
[19]. It can be proven that the matrix M is nonsingular for
all numbers of qubits except 4, so we can obtain an exact
simulation of the desired dynamics employing this schedule.

III. EXTENSION OF DAQC TO ARBITRARY
TWO-BODY HAMILTONIANS

The proof that almost any entangling two-body Hamilto-
nian, together with SQGs, can be employed to simulate the
dynamics of another two-body Hamiltonian was shown in
Ref. [20], but no constructive method was provided. From
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FIG. 2. sDAQC circuit for an arbitrary ATA Hamiltonian for five
qubits. The protocol for simulating any target Hamiltonian can be
divided into two steps. In the first step (top), we select each of the
n(n − 1)/2 pairs of qubits in our system. In the second step (bottom),
for each pair of qubits, we apply all the nine possible combinations of
the Pauli gates. The number of analog blocks for this protocol scales
quadratically with the number of qubits, O(n2 ).

now on, we will refer to the source Hamiltonian as

HS =
n∑

i< j

∑
μ,ν∈{x,y,z}

hμ,ν
i, j σ

μ
i σ ν

j , (5)

and the target Hamiltonian as

HT =
n∑

i< j

∑
μ,ν∈{x,y,z}

gμ,σ
i, j σ

μ
i σ ν

j , (6)

where σ
μ
i is the Pauli operator μ acting on qubit i and

{gμ,ν
i, j , hμ,ν

i, j } ∈ R. Then, the objective is to obtain a circuit
to simulate the evolution of HT for a time T , U = e−iT HT .
The first step of the proof is to note that it is possible to
decouple a pair of qubits from the rest in an n-qubit system.
Then, by employing a 36-step digital-analog protocol, it can
be proven that any two-qubit interaction can be simulated.
The proof for universality can be obtained by extending this
to every coupling in the target Hamiltonian, and repeating
the circuit nT times for simulating a time � = T/nT in each
Trotter step. However, this protocol gets convoluted as the
number of qubits in the system, n, increases. In general, the
circuit requires O(n3nT) analog blocks, with an error of ε ∼
O(n2T 2/nT ). As it stands, the question of obtaining a more
efficient protocol is still open.

For the general case, we can extend the ideas reviewed
in Sec. II to arbitrary two-body Hamiltonians. The first step
for our protocol is to select each pair of qubits {i, j} of our
system. Now, instead of just applying an X gate to both of
them, we will apply all nine possible choices of pairs of
gates, {XX, XY, XZ,Y X,YY,Y Z, ZX, ZY, ZZ}. This is illus-
trated for a simple example in Fig. 2. Applying this to every

pair of qubits, we effectively change the sign of some of the
couplings, generating a nonsingular system of 9n(n − 1)/2
equations. As the number of equations coincides with the
number of variables and the number of parameters to define
an arbitrary two-body Hamiltonian, this protocol is optimal
in the number of digital-analog blocks. Unfortunately, in the
general case the Hamiltonian does not commute with itself.
This means that, unlike the warmup case, the Trotter formula
is not exact, and thus, if we want to achieve an arbitrarily
small error, we need to employ more Trotter steps. As a quick
sketch of the proof, we write the problem as a system of
equations similar to the one in Eq. (4),

M(n)�t = T
−→
g/h. (7)

The matrix for an n-qubit system can be constructed recur-
sively as a block matrix,

M(n) =
(

A(n) P(n)
Q(n) M(n − 1)

)
, (8)

where the blocks A(n), Q(n), and P(n) can be constructed
systematically by taking into account the change of signs of
the effective Hamiltonian terms after sandwiching them by
Pauli gates. Then, by using the properties of this matrix and
the definition of the formal determinant, we can prove that it
is nonsingular. Further details for the proof of the universality
of the protocol are given in Appendix A. With this result, we
can then employ the same results as in the original work by
Suzuki [21] to argue that an arbitrarily small error can be
attained.

A. Analysis of the errors

In order to obtain a bound for the maximum error of this
protocol, we can resort to the original error analysis of the
Suzuki-Trotter formula [21]. Since we have proven that the
sum of the effective Hamiltonians in each block is exactly the
target Hamiltonian, we can employ the formula for the (nT, 1)
approximant,

ε = ‖UT − US‖ =
∥∥∥∥∥e−iT HT −

(∏
k

e−i
tk
nT

H (k)
S

)nT
∥∥∥∥∥

� 2

nT

(∑
k

‖tkH (k)
S ‖

)2

e
nT+2

nT

∑
k ‖tkH (k)

S ‖
, (9)

where H (k)
S is the effective Hamiltonian in the kth analog block

and ‖ · ‖ is the Frobenius norm defined as ‖A‖ =
√

AA†. We
will employ this norm for matrices throughout the text.

Since in each block only the sign of some Pauli string
terms in the Hamiltonian changes, the norm is the same for
all blocks ‖H (k)

S ‖ = ‖HS‖. With this, we have that the error is
bounded by the sum of the times of the analog blocks. If we
assume that we have a correct protocol in which all the times
of the analog blocks are positive, we can rewrite

ε � 2

nT
t2
A‖HS‖2e

nT+2
nT

tA‖HS‖
, (10)

where tA = ∑
k tk .
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The total analog time will be lower bounded by the
norms of HS and HT and the time T of the simulation, tA �
T ‖HT‖/‖HS‖. This corresponds to a situation in which both
Hamiltonians are proportional to each other, HS ∼ HT. Let
us now study a general case. Assume an optimal protocol in
which the total time is minimized over all possible protocols.
In this case, tA is upper bounded by the weakest source cou-
pling and the strongest target coupling as

tA � C(n) T
max(i, j,μ,ν )

∣∣gμ,ν
i, j

∣∣
min(i, j,μ,ν )

∣∣hμ,ν
i, j

∣∣ , (11)

where C(n) � 1 is a constant depending both on the protocol
and the system size. In the case a coupling hμ,ν

i, j is zero we

take it out of the corresponding element from both �g and �h
and the corresponding row from the matrix M. In general, the
constant C(n) heavily depends on the protocol, but it does not
monotonically grow with the number of qubits. For example,
we find that the original protocol in Ref. [14] is upper bounded
by C(n) = n(n − 1)/(n − 4)(n − 5) � 15 when n > 5 for a
balanced solution (�t ∼ (1, . . . , 1)). Similarly, the protocol in
Ref. [19] for a nearest-neighbor Hamiltonian has C(n) � 3/2
for any system size.

Employing this result, we see that we can make the error
arbitrarily small by increasing the number of Trotter steps
of the protocol. However, this would only work for sDAQC
circuits. When working on the bDAQC paradigm, increasing
the number of Trotter steps would increase the bang error in
the protocol, as the time to apply the SQGs remains the same.
This means that there is a point at which increasing the num-
ber of Trotter steps actually reduces the fidelity of the circuit.
However, this analysis should be performed case by case, as
it heavily depends on the problem and the system characteris-
tics. As a rule of thumb, the time for the shortest analog block
in the circuit should be at least two orders of magnitude above
the time for applying a SQG, min(tk ) � 102tSQG.

B. A note about negative times

When computing the times of the analog blocks in Eq. (4),
one can obtain a solution comprising some negative times.
Simulating the evolution over a negative time would require to
completely flip the sign of all the terms in the corresponding
H (k)

S . However, this cannot be done in general. For instance,
one can straightforwardly prove that one cannot do this for
the three-qubit all-to-all connected system by exhausting all
possible combinations. As a suggestion for solving this prob-
lem, it was originally proposed to add one extra analog block,
without it been sandwiched by any SQG. However, this only
solves the problem in some particular cases. Approximate
solutions to similar problems have been proposed [22], but
the question of finding a systematic solution was still open.

Here we propose a method for constructing DAQC pro-
tocols in which the times are all positive. This method is
highly inefficient in single-qubit gate counts, but useful for
proving the existence of such a solution. The problem is
exactly the same as in Eq. (7) but, instead of a square matrix
M(n), we will employ all combinations of Pauli gates plus
the identity {1, X,Y, Z} to construct a matrix with 4n different
columns Mi. Then, we map the problem to a non-negative

least-squares (NNLS) problem, for which we then employ the
Algorithm NNLS to obtain a positive solution [23]. However,
we first need to prove that a positive solution exists. Here
we roughly sketch the proof for this claim. First, we note
that the columns Mi correspond to the vertices of a polytope.
Second, we prove that there is a strictly positive solution for

the homogeneous system
−→
g/h = �0, with �t = 4−n�1. Last, we

build a hypersphere centered in �0 with small radius with a
strictly positive vector���s =4−n�1 + �ε, from which we can reach

to any possible problem
−→
g/h by scaling with a positive number,−→

g/h = Mλ(4−n�1 + �ε) for λ > 0. Even though we are using an
exponential number of blocks for the proof, numerically we
observe that the solution contains only ∼9n(n − 1)/2 nonzero
elements. The full proof is provided in Appendix B.

IV. CLASSICAL OPTIMIZATION
OF THE DAQC SCHEDULE

The protocol discussed in the previous section is a system-
atic method to obtain an arbitrary target Hamiltonian using
another arbitrary Hamiltonian as a source. Its implementation
involves a number of digital-analog blocks that grow quadrati-
cally with the number of qubits. With the current limitations of
NISQ devices, long circuits can accumulate large experimen-
tal errors, so it becomes necessary to find a trade-off between
the accuracy of the theoretical approximation and the required
experimental resources.

With the goal of reducing the number of digital-analog
blocks, we propose a classical optimization strategy to find
a set of SQGs sandwiching K analog blocks such that the
digital-analog schedule is as close as possible to the ideal
evolution. This way, we propose an optimization problem
where the parameters to be optimized are the times of the
analog blocks, tk , and the parameters of an arbitrary SQG,

R(θ, φ, λ) =
⎛
⎝ cos

(
θ
2

) −eiλ sin
(

θ
2

)
eiφ sin

(
θ
2

)
ei(λ+φ) cos

(
θ
2

)
⎞
⎠, (12)

where {θ, φ, λ} ∈ [0, 2π ) are the rotation angles of the SQG.
The cost function we minimize is the Frobenius distance
between the target evolution UT and the circuit with the op-
timized parameters UC, similar to the calculation in Eq. (9).
By employing the Frobenius distance between the unitaries as
a proxy for the fidelity, we can test the approach in general,
without imposing any assumptions about the initial state of
the system or without expensive Haar integral calculations.

For simulating the circuits, we have employed two tech-
niques. In one, we simulated the exact evolution of an ideal
quantum computer. Since the cost of computing the exact
evolution under a Hamiltonian scales exponentially with the
number of qubits, n, O(23n), we have tested a less resource-
demanding method as well. By means of the first-order Trotter
expansion, we can approximate the evolution as

UT = e−it
∑n

i< j

∑
μ,ν∈{x,y,z} hμ,ν

i, j σ
μ
i σν

j

≈ Uappx =
n∏

i< j

e−it
∑

μ,ν∈{x,y,z} hμ,ν
i, j σ

μ
i σν

j ⊗ 1r(i, j), (13)
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where 1r(i, j) is the identity matrix for the subspace of all
qubits except i and j. Using this approximation, we can
reduce the cost of calculating the matrix exponential. Ad-
ditionally, since every term is a sparse matrix with sparsity
∼1 − 2−n, we can employ efficient functions for the matrix
products. Techniques involving matrix product states (MPSs)
or matrix product operators (MPOs) could be useful for ex-
tending this classical optimization strategy to larger systems
[24,25].

A. The parameter space

The complete parameter space is given by the parameters
of the SQG applied to qubit i of the kth analog block, {θ i

k, φ
i
k ,

λi
k} ∈ [0, 2π ), and the evolution time of the kth block, tk . We

have restricted the evolution time of the analog blocks to be
0 � tk � T ‖HP‖/K‖HS‖, where K is the number of analog
blocks, to avoid both negative and times much larger than
the total time T of the target evolution. As the number of
qubits increases, this quickly leads to a wide and hard-to-
explore parameter space, which makes convergence slow in
the optimization process. We found a good compromise in
reducing the kind of SQG applied on each block to just two,
one Rk (θk, φk , λk ) applied to all even qubits and an additional
R′

k (θ ′
k, φ

′
k , λ′

k ) applied to all odd qubits. These kind of odd-
even SQG layers are the same as those required to compute
the Trotterized evolution in many DAQC systems [26], which
gives a good starting point and sufficient flexibility for the
optimization.

Calculating the evolution under the source Hamiltonian for
all analog blocks is a resource-intensive task. As a mean of
simplifying the computational cost and reducing the number
of variables for the optimization, we have performed tests in
which we fix the analog-block times to a fraction of the total
evolution time of the target evolution, T , divided by the total
number of analog blocks, K . Even though in certain cases one
can achieve better results by having the evolution time tk as
an optimization parameter, fixing tk = T/K results not only
in a faster computation, but in a much faster and consistent
convergence as well, as we show in Sec. IV C.

B. Optimization protocol

Despite the compromises previously described, the op-
timization landscape is complex and shows multiple local
minima. Moreover, evaluating the cost function for a new
set of parameters is computationally very expensive. There
are many strategies to tackle an optimization of this kind
of “black-box” function, such as genetic [27] or swarm [28]
algorithms.

In this work, we propose a combined strategy of Bayesian
optimization and a gradient descent algorithm. The popular
gradient descent consists of evaluating a point, computing the
gradient of the function at that point, and tuning the parame-
ters following the slope of the function. It is a fast and efficient
tool to exploit local minima, but falls short when searching
for a global minimum and is highly dependent on the initial
point of the optimization. Meanwhile, Bayesian optimization
is especially advantageous to efficiently explore unknown and
computationally expensive functions. Bayesian optimization

treats the black-box function as a random function and con-
siders a prior upon it. Then, it evaluates only the function,
and not its derivative, to compute an acquisition function,
which usually is based in the expected improvement or the
probability of improvement. Finally, it uses this acquisition
function to find the next point to evaluate and updates the
prior for the next iteration. For an in-depth read on Bayesian
optimization, we refer the readers to Refs. [29,30].

As mentioned, the gradient descent is highly dependent on
its initial point, as it usually converges towards the nearest
local minimum, not the global one. A common way of dealing
with this problem is performing several gradient descent opti-
mizations by changing the initial point, such as with random
or grid searches on the parameter space [31]. The aforemen-
tioned Bayesian method allows us to minimize the number
of initial points by means of a guided search through its
acquisition function. The combined strategy leads to a much
faster convergence to the global minimum than random or grid
searches, achieving faster and better results.

C. Example: Nearest-neighbor Hamiltonian

A simple case of simulating the dynamics of the one-
dimensional XY model is presented as a test for this strategy.
Let us assume a target nearest-neighbor Hamiltonian of the
form

HT = g
n−1∑
i=1

σ x
i σ x

i+1 + σ
y
i σ

y
i+1. (14)

Let us also assume that the source Hamiltonian to which we
have access is

HS =
n−1∑
i=1

hxz
i σ x

i σ z
i+1 + hzx

i σ z
i σ x

i+1 + hzz
i σ z

i σ z
i+1. (15)

This problem was also studied within the DAQC paradigm in
Ref. [17].

In the following, we will discuss two cases: the homoge-
neous case, in which all coupling strengths are equal to the
target Hamiltonian coupling strength, hk

i = h ∀i, k, and the
inhomogeneous case. For the inhomogeneous case, we pro-
pose a more realistic scenario in which the coupling strengths
of the system follow a Gaussian distribution around the value
of the target coupling strength h̃k

i = N (g, σ ), where σ is the
variance of the distribution.

To simulate Eq. (14) using Eq. (15) in the homogeneous
case, the general approach can be simplified into applying
a single-qubit π rotation around the x axis to all the qubits,
R(n)

x (π ) = ⊗n
i=1σ

x, so that the crossed terms (σ xσ z and σ zσ x)
change signs. Then, since the rotated and system Hamiltonian
do not commute, we employ the Trotter approximation[(

R(n)
x (π )

)†
e−i HS T

2nT R(n)
x (π )e−i HS T

2nT

]nT ≈ e−iHZZ T , (16)

where HZZ = g
∑n−1

i=1 σ z
i σ z

i+1 and nT is the number of Trotter
steps. The second step consists in sandwiching the resulting
HZZ evolution in either a Rx(π/2) or Ry(π/2) to rotate all
qubits from σ z

i to σ
y
i or σ x

i , respectively. This, of course, re-
quires an additional Trotterization. This approximation can be
made arbitrarily precise by increasing the number of Trotter
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steps at the cost of increasing the number of required digital-
analog blocks (four blocks per Trotter step).

As previously described, we can use two or more analog
blocks sandwiched between arbitrary rotations on even and
odd qubits, and find the optimal rotation angles to achieve
the best approximation. Since the set of all arbitrary rotations
includes the specific rotations used for the Trotter approx-
imation, the optimization must result in values necessarily
equal to or better than the Trotter approximation for the same
amount of blocks.

In Fig. 3, we show a comparison between the performance
of a Trotter approximation and the proposed Bayesian plus
gradient descent optimization with N = 6 qubits. The chosen
coupling strengths for the studied case were hk

i = g = 1 ∀i, k
in the homogeneous case and h̃k

i = N (1, 0.175) for the inho-
mogeneous one. Additionally, we performed the optimization
process both with fixed evolution times and with tk as an
optimization parameter. For each point, we computed 20 runs,
using only a ten-step optimization for the Gaussian process.
Fixed-time optimizations achieve convergence in these ten
steps, as evidenced by their small error bars. Larger error bars
show a higher variance in the achieved value for the cases
with time as a parameter, meaning a lack of convergence and
the need for a longer optimization with more steps to reach
the global minimum. Comparing the results obtained with
the Trotter formula we see an improvement on the Frobenius
distance. In particular, we see an improvement of ∼68% and
∼78% for the four-block cases in which the time is not a pa-
rameter for the inhomogeneous case and homogeneous case,
respectively. When we include the analog block times as a
parameter, we only obtain mean improvements of ∼45% and
∼65%, respectively. Although leaving the time as a parameter
can lead to better results, the improved consistency and con-
vergence rates of fixed-time optimization, along with a much
lower computational cost, makes the fixed-time optimization
the most desirable approach.

Homogeneous and random inhomogeneous couplings per-
form comparably. As expected, the case with homogeneous
couplings has a slight advantage, as the target Hamiltonian is
also homogeneous. This is good evidence that, as long as the
coupling strengths associated with the system and the target
Hamiltonians are similar, the approach is suitable for arbitrary
two-body Hamiltonians.

Most importantly, all optimization approaches achieve a
significantly smaller Frobenius distance and, therefore, a
better fidelity than the traditional first-order Trotter approxi-
mation for the same number of analog blocks. This way, by
employing this classical optimization strategy on the digital
layers (SQGs) of the simulation, one can achieve the same
or better theoretical precision in the approximation, saving up
experimental resources. With current NISQ devices, this could
directly lead to reduced experimental errors.

Additional nonextensive testing has been done in com-
bining this optimization strategy with classical approximate
simulations of the system. As the cost of classically cal-
culating the unitary evolution under a Hamiltonian scales
exponentially with the number of qubits, we need to find an
alternative with a better scaling and which still can provide
some advantage. With this goal, we employed the first-
order Trotter formula for simulating the analog blocks, which

FIG. 3. Frobenius distance between the optimized circuit and the
exact evolution vs the number of digital-analog blocks. (a) We solve
the problem of the nearest-neighbor Hamiltonian for six qubits. We
show two cases, one in which the couplings in the system Hamil-
tonian is homogeneous, and the other where the coupling strengths
are in a normal distribution around the values of the former. We
also distinguish two versions for the optimization process, which
fixes the length of the analog blocks or leaves them as a variables.
As a baseline, we represent the distances obtained with first-order
Trotterization up to nT = 19 Trotter steps. The shown values indicate
the mean Frobenius distance and the error bars show the interquartile
range. The inset on top provides an extended view in the coordinate
axis for a higher number of blocks in logarithmic scale. (b) We repeat
the procedure for a single run with a different classical simulation
method, in which we employ a first-order Trotter approximation for
computing both the circuit and the target.

reduces the cost of the calculation when combined with sparse
matrix multiplication algorithms. Here, instead of exactly
calculating the evolution of our circuit, we employed the
first-order Trotter formula for approximating the evolution
under both the target and the system Hamiltonians. These
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approximations, UT,appx and US,appx, respectively, are em-
ployed during the Bayesian optimization process. For check-
ing the performance one would get when using the result of
the optimization for running the quantum circuit, we calculate
the Frobenius distance with the exact expressions. This way,
we can directly compare the results obtained in both tests. We
conclude that the Trotter approximation limits our capacity
for optimizing the circuit. For the lowest amount of blocks
for the Trotterization (four blocks), we can obtain ∼54%
(∼51%) of improvement for the inhomogeneous (homoge-
neous) problems when we discard the time as an optimizable
parameter, and ∼56% (∼55%) improvement when we include
it. This confirms the higher expressibility of the optimization
model when we include the time as a parameter, at the cost
of increasing the time to solution of the classical algorithm.
However, for shallow circuits, the improvement of the fidelity
is worth the optimization process. n particular, the fixed-time
optimization gives us a competitive Frobenius distance for
circuits with five or less blocks compared to the Trotter de-
composition. As it is also shown, we can simulate a system
with a single analog block while maintaining the fidelity of the
evolution obtained with four blocks employing the Trotter for-
mula, ‖Uexact − UTrotter‖ = 11.1, ‖Uexact − Uappx‖ = 10.3 for
the inhomogeneous problem, and ‖Uexact − Uappx‖ = 10.5 for
the homogeneous.

V. CONCLUSIONS

In this article, we provide a set of versatile tools to imple-
ment DAQC circuits in realistic scenarios, where the terms
in the Hamiltonians of both the system and the target do not
commute by pairs. Following on the universality of DAQC,
we have proposed a protocol for simulating an arbitrary two-
body Hamiltonian by employing another arbitrary two-body
Hamiltonian. This was achieved by sandwiching the analog
blocks with pairs of SQGs picked from the Pauli gate set.
This systematic method is universal, and provides an optimal
number of digital-analog blocks Q that scales quadratically
with the number of qubits for all-to-all Hamiltonians, Q �
9n2. This strategy employs less blocks compared to previous
approaches, which required Q � 36n3 steps. Additionally, we
have proposed a new method for obtaining DAQC protocols
in which all analog block times are positive and, thus, are
implementable in practice.

With the same objective, we have explored a less resource-
intensive approximation. We have proposed a classical
strategy in which all possible SQG rotations are considered
as digital blocks. Solving this optimization problem, we have
shown that one can achieve an accuracy comparable to or even
better than large sequences of Trotter steps employing signif-
icantly less analog blocks. The benefits are twofold, as not
only is the accuracy of the systematic error decreased, but a re-
duced amount of analog blocks also reduces the experimental
error. In this regard, we have proposed a classical optimization
strategy consisting in a Bayesian optimization method that ex-
plores the parameter space to find the optimal initial point of a
gradient descent. This process is done without any assumption
about the initial state, as the information given to the routine is
just the target unitary evolution. For a low number of Trotter

steps, we have shown that a precision comparable to that of
regular Trotter approximations can be achieved by using only
a fraction of the experimental resources.

The two approaches we have proposed in this work pro-
vide new tools for the implementation of DAQC circuits in
NISQ devices. These new protocols for working with arbi-
trary two-body Hamiltonians pave the way for generating and
scaling experimental implementations of this paradigm. The
next steps for widening DAQC should search for an optimal
solution for the negative analog block times problem, and
further extend the protocols for k-body Hamiltonians. The
exact method involves O(3kn2) digital-analog blocks in the
worst case, but ∼9n2 in numerical simulations. This suggests
that approximate solutions, similar to the one proposed in
this article, should be explored for obtaining implementable
DAQC circuits.

The code employed for the numerical experimentation is
available under reasonable request.
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APPENDIX A: UNIVERSALITY OF THE PROTOCOL

We want to solve the problem of simulating an arbitrary
n-qubit two-body ATA Hamiltonian

HT =
n∑

i< j

∑
μ,ν∈{x,y,z}

gμ,ν
i, j σ

μ
i σ ν

j , (A1)

with a DAQC schedule employing another arbitrary two-body
Hamiltonian,

HS =
n∑

i< j

∑
μ,ν∈{x,y,z}

hμ,ν
i, j σ

μ
i σ ν

j , (A2)

where {gμ,ν
i, j , hμ,ν

i, j } ∈ R. We are assuming that if we have a
nonzero gμ,ν

i, j term, we will have a nonzero hμ,ν
i, j coupling in

the source Hamiltonian.
The protocol we propose is the following: select each of the

possible pairs of qubits i, j, and apply all the combinations of
{x, y, z} gates, which are the corresponding Pauli gates. This
changes the signs of the effective couplings, according to a
(±1) matrix, which we will call M(n). Now, we want that our
DAQC schedule simulates our original problem; this is

e−iT HT ≈
n∏

i< j

∏
μ,ν∈{x,y,z}

exp

(
− itμ,ν

i, j

n∑
i′< j′

∑
μ′,ν ′∈{x,y,z}

× M(n)μ,ν,μ′,ν ′
i, j,i′, j′ gμ′,ν ′

i′, j′ σ
μ′
j′ σ ν ′

j′

)
. (A3)

To prove that this protocol is universal we have to prove that
we can always find a set of times for the duration of the analog
blocks, (tμ,ν

i, j ).
In our proof, we focus on the definition of universality pro-

vided in Ref. [20] for its simplicity. However, universality can
also be proven using a complementary definition, for example,
the one proposed in Refs. [18,32]. In this case, conditions i,
ii, iii, and iv from Ref. [18] are fulfilled by construction, and
condition iv can be obtained by controlling the Trotter error
following the discussion in Sec. III A.

1. Notation and definitions

We define the notation employed for the proof. We employ
a single index for labeling pairs of qubits,

b�(i, j, n) = n(i − 1) − i(i + 1)/2 + j, 1 � i < j � n.

(A4)
Whenever we refer to a label of a coupling or a pair of qubits,
we will be using this labeling convention. We also give a
formula for the inverse of this indexing [33]:

i�(b, n) = n − ⌊√
n(n − 1) − 2b + 2 + 1

2

⌋
,

j�(b, n) = b − n(i�(b) − 1) + 1
2 i�(b)(i�(b) + 1). (A5)

Additionally, we define an indexing method for the different
selection of SQGs for a pair of qubits, f�(μ, ν). These indices

are given from 1 to 9 according to the order in the following
list: {xx, xy, xz, yx, yy, yz, zx, zy, zz}. For example, the pair of
SQGs {y, z} has the index f�(y, z) = 6.

The elements M(n)μ,ν,μ′,ν ′
i, j,i′, j′ can be expressed as a ma-

trix by employing the previous labeling of the pair of
qubits, which can be then mapped to a matrix M(n)μ,ν,μ′,ν ′

i, j,i′, j′ =
M(n)g�(i′, j′,μ′,ν ′ ),g�(i, j,μ,ν ). The rows and columns of this matrix
are defined as

g�(i, j, μ, ν) = 9(b�(i, j) − 1) + f�(μ, ν). (A6)

The times for each analog block, tμ,ν
i, j , can be expressed as a

column vector by employing the same labeling as in Eq. (A6),

tμ,ν
i, j = tg�(i, j,μ,ν ). We also define a new column vector

−→
g/h,

which contains the information about the couplings in the
hardware and the couplings we want to simulate; again, we

employ the same labeling as in Eq. (A6) such that (
−→
g/h)μ,ν

i, j =
(
−→
g/h)g�(i, j,μ,ν ). Now, the problem of finding the times for the

analog blocks can be expressed as

M(n)
−→
t = T

−→
h/g. (A7)

Let us write the full M(n) matrix as a block matrix,

M(n) =
(

A(n) P(n)
Q(n) M(n − 1)

)
, (A8)

where A(n) is an (n − 1)×(n − 1) block matrix, and M(n)
an n(n − 1)/2×n(n − 1)/2 block matrix. Here, each row la-
bels a coupling in HS and each column labels the pair of
qubits where the SQGs are applied. For example, the cou-
pling between qubits 1 and 4 would be addressed in row I =
b�(1, 4) = 4, and the blocks in which the SQGs are applied
on qubits 2 and 3 correspond to the column J = b�(2, 3) = n.
Each of these terms is defined also as block matrices (which
we call from now on submatrices). These blocks are 9×9
matrices, that can be one of the four {M2, M1.1, M1.2, M0},
according to the following formula:

MI,J =

⎧⎪⎪⎨
⎪⎪⎩

M2 if I = J
M1.1 if i�(I ) = i�(J ) or i�(I ) = j�(J )
M1.2 if j�(I ) = i�(J ) or j�(I ) = j�(J )
M0 else.

(A9)

For a detailed construction of an M(n) matrix see
Appendix A 4.

Let us define each of these submatrices:
(i) M2: This is the matrix that represents the signs of the

effective couplings μ, ν when we apply a SQG to each of
the two qubits i, j. The columns represent each pair of gates,
in the order given by f�(μ, ν). Equivalently, each column
represents the sign of each effective coupling between the
pair of qubits i, j, with the same order as the columns. Then,
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we have the following matrix:

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 1 1 −1 1 1
−1 1 −1 1 −1 1 1 −1 1
−1 −1 1 1 1 −1 1 1 −1
−1 1 1 1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 1 1 −1 −1
1 −1 1 1 −1 1 −1 1 −1
1 1 −1 1 1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A10)

(ii) M1.1: In this case we only apply a SQG in the first qubit of the pair,

M1.1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1 −1 −1 1 −1 −1
−1 1 −1 −1 1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 −1 1
1 −1 −1 1 −1 −1 1 −1 −1

−1 1 −1 −1 1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 −1 1
1 −1 −1 1 −1 −1 1 −1 −1

−1 1 −1 −1 1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A11)

(iii) M1.2: In this case we apply one SQG on the second qubit,

M1.2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1 −1
−1 −1 −1 1 1 1 −1 −1 −1
−1 −1 −1 1 1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1 1 1 1
−1 −1 −1 −1 −1 −1 1 1 1
−1 −1 −1 −1 −1 −1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A12)

(iv) M0: In this case neither SQG is applied on any of the two qubits. This is the trivial case in which the sign of the effective
couplings does not change:

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A13)

For example, we apply an x gate to qubit 1 and a y gate
to qubit 3. We want to know how the sign of the coupling yz
changes between qubits 2 and 3. In this case, we are applying
a SQG only to the second qubit, so we have to look at the
M1.2 submatrix. Now, the SQGs we have applied are xy, so
this corresponds to the second column, and the yz coupling to
the sixth row. Looking at the matrix, we see that in this case
we have a change of sign of the effective coupling, and thus
we have a −1 in the corresponding matrix element.

We have some properties with these subblocks:
(1) All the {M2, M1.1, M1.2, M0} commute in pairs.
(2) M1.1M1.2 = M2M0 = M0.
(3) M1.1M0 = M1.2M0 = (−3)M0.

(4) (M0)2 = 9M0.
(5) (M1.1)2 = −3M2M1.1.
(6) (M1.2)2 = −3M2M1.2.
Also, we have some properties related to how these sub-

blocks appear in the matrix:
(1) M(n)I,I = M2.
(2) M(n)I,J = {M1.1, M1.2, M0},∀I �= J .
(3) M(n)I,J = M0 ⇔ M(n)J,I = M0.
(4) M(n)1,J = {M2, M1.1, M0}.
(5) M(n)n(n−1)/2,J = {M2, M1.2, M0}.
(6) The number of subblocks that fulfill M(n)I,J =

M(n)J,I = M1.1 is the same as the number of subblocks ful-
filling M(n)I,J = M(n)J,I = M1.2.
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From now on, we will employ N = n(n − 1)/2 to refer to
the total number of pairs of qubits.

2. Nonsingularity of M(n) through its determinant

The main argument that we use for proving that our pro-
tocol is universal is that the matrix M(n) that it generates is
nonsingular, and thus we can always obtain a set of times
for the analog blocks that solves Eq. (A3). We know that a
matrix is nonsingular if and only if its determinant is different
from zero. Thus, we try to prove that Det(M(n)) = 0. For this,
we employ the expansion of the formal determinant [34,35],
labeled with “det,” of our block matrix,

Det(M(n)) = Det(det(M(n))). (A14)

If we study properties 1–6, we see that if in a term of a
determinant we have an M0 element or a pair M1.1M1.2, that
term will be proportional to M0. The rest are cases in which
we have terms with {M2, M1.1}, {M2, M1.2}, or {M2}. By using
properties 1–6, we see that the last case appears only once,
and corresponds to the elements of the main diagonal. Thus,
we have that our formal determinant will be

det(M(n)) = (M2)N + αM0 +
N−1∑
k=2

[βk (M2)N−k (M1.1)k

+ γk (M2)N−k (M1.2)k], (A15)

where βk, γk ∈ Z. Looking at properties 2–4, we see that α =
±3q, with q ∈ N.

Now, we will reorder the rows and columns. What we will
do is to reorder them in such way that we obtain an expression
equal to the one from Eq. (A8) but with the M1.1 and M1.2

swapped. In the original ordering, we wrote the b indices
appearing in ascending order, such that the corresponding first
labels of the qubits appear in ascending order, and for the
same first label, the second labels are in ascending order. Now,
if we employ new labels for the pairs which inverts all the
ordering to be in descending order, b′(i, j) = n(n − j) − (n −
j + 1)(n − j + 2)/2 + (n − i + 1). Now, if we compute the
formal determinant of the matrix with the new labels, we have

det(M ′(n)) = (M2)N + αM0 +
N−1∑
k=2

[β ′
k (M2)N−k (M1.2)k

+ γ ′
k (M2)N−k (M1.1)k]. (A16)

Since we have performed as many changes in the rows as
in the columns, the number of total swaps of rows and
columns is even. Since the properties (P1)–(P4) are invariant
under this change, we have that Det(M(n)) = Det(M ′(n)) ⇒
det(M(n)) = det(M ′(n)). With this, we can conclude that
βk = β ′

k = γk = γ ′
k . For clarity, let us rewrite Eq. (A15) as

det(M(n)) = m(n) = (M2)N +
N−1∑
k=2

βkBk + αM0, (A17)

where we have evaluated the analytical expression for Bk in
Mathematica,

Bk = (M2)N−k (M1.1)k + (M2)N−k (M1.2)k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̃k ỹk ỹk ỹk z̃k z̃k ỹk z̃k z̃k

ỹk x̃k ỹk z̃k ỹk z̃k z̃k ỹk z̃k

ỹk ỹk x̃k z̃k z̃k ỹk z̃k z̃k ỹk

ỹk z̃k z̃k x̃k ỹk ỹk ỹk z̃k z̃k

z̃k ỹk z̃k ỹk x̃k ỹk z̃k ỹk z̃k

z̃k z̃k ỹk ỹk ỹk x̃k z̃k z̃k ỹk

ỹk z̃k z̃k ỹk z̃k z̃k x̃k ỹk ỹk

z̃k ỹk z̃k z̃k ỹk z̃k ỹk x̃k ỹk

z̃k z̃k ỹk z̃k z̃k ỹk ỹk ỹk x̃k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ Vk Wk Wk

Wk Vk Wk

Wk Wk Vk

⎞
⎠, (A18)

with the elements

x̃k = 2(−1)k3k−2(1 + (−1)N 2N+1),

ỹk = (−1)k3k−2(2 + (−2)N ),

z̃k = (−2)(−1)k3k−2(−1 + (−2)N ).

(A19)

We also evaluate the expression for the powers of M2,

(M2)N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã b̃ b̃ b̃ c̃ c̃ b̃ c̃ c̃
b̃ ã b̃ c̃ b̃ c̃ c̃ b̃ c̃
b̃ b̃ ã c̃ c̃ b̃ c̃ c̃ b̃
b̃ c̃ c̃ ã b̃ b̃ b̃ c̃ c̃
c̃ b̃ c̃ b̃ ã b̃ c̃ b̃ c̃
c̃ c̃ b̃ b̃ b̃ ã c̃ c̃ b̃
b̃ c̃ c̃ b̃ c̃ c̃ ã b̃ b̃
c̃ b̃ c̃ c̃ b̃ c̃ b̃ ã b̃
c̃ c̃ b̃ c̃ c̃ b̃ b̃ b̃ ã

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝ D E E

E D E
E E D

⎞
⎠, (A20)

with the elements

ã = 3−2(1 + (−2)N+2 + 22N+2),

b̃ = 3−2(1 + (−2)N − 22N+1),

c̃ = 3−2(1 + (−2)N+1 + 22N ).

(A21)

We can give an explicit expression for the matrix m(n),

m(n) =
⎛
⎝ P Q Q

Q P Q
Q Q P

⎞
⎠, (A22)

where

P = D +
N−1∑
k=2

βkVk + αm0,

Q = E +
N−1∑
k=2

βkWk + αm0, (A23)
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and

m0 =
⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠. (A24)

To evaluate the determinant of this matrix, since we have
again a block structure, checking that [P, Q] = 0, we can em-
ploy the formal determinant trick to evaluate the determinant
of the initial matrix. Evaluating this matrix, we obtain

Det(M(n)) = Det(det(M(n))) = Det(m(n))

= Det(det(m(n)) = Det(P3 − 3PQ2 + 2Q3)

= (p + q − 2r)4(p − 2q + r)4(p + 4q + 4r),

(A25)

with the elements

p = 3−2

[
1 + (−2)N+2 + 22N+2 + (−3)q+2

+
N−1∑
k=2

βk2(−3)k (1 + (−1)N 2N+1)

]
,

q = 3−2

[
1 + (−2)N − 22N+1 + (−3)q+2

+
N−1∑
k=2

βk (−3)k (2 + (−2)N )

]
,

r = 3−2

[
1 + (−2)N+2 + 22N+2 + (−3)q+2

+
N−1∑
k=2

βk (−2)(−3)k (−1 + (−2)N )

]
, (A26)

where we have already substituted the expression for
α = (−3)q, q ∈ N.

3. Modular arithmetic for proving that Det(M(n)) �= 0

To prove that the determinant is not zero, we have to prove
that each of the expressions for the determinant in Eq. (A25)
is not zero. For this, we will employ a result from modular
arithmetic for each of the terms:

(1) This term can be written as

(p + q − 2r)

= 3−2

[
22N+2 + 32(−2)N +

N−1∑
k=2

βk (−2)N (−3)k+2

]
.

(A27)

A fundamental property from modular algebra is that for an
integer a to be equal to zero, we have the necessary condition a
mod b = 0, ∀b ∈ N. In particular, we can check this condition

for modulo 3,

32(p + q − 2r)mod 3

=
[

22N+2 + 32(−2)N +
N−1∑
k=2

βk (−2)N (−3)k+2

]
mod 3

=
[

22N+2mod 3 + 32(−2)N mod 3

+
(

N−1∑
k=2

βk (−2)N (−3)k+2

)
mod 3

]
mod 3

= [22N+2mod 3 + 0 + 0]mod 3

= 1 �= 0, (A28)

where we have employed the compatibility with addition [36]
and multiplication [37], and the property that ak mod a = 0,
∀k ∈ N.

(2) The second term is trivially not zero, since

(p − 2q + r) = 3−24N �= 0. (A29)

(3) For the third term we employ a similar proof as for the
first one:

32(p + 4q + 4r)mod 3

=
[

32 + (−3)4+q + 22N+4 +
N−1∑
k=2

βk2(−3)k+2

]
mod 3

=
[

32mod 3 + (−3)4+qmod 3 + 22N+4mod 3

+
(

N−1∑
k=2

βk2(−3)k+2

)
mod 3

]
mod 3

= [0 + 0 + 1 + 0]mod 3

= 1 �= 0. (A30)

Thus, we have proved that the determinant of M(n) is not
zero, so that it is invertible, and thus we can find a solution for
solving the times for the analog blocks in this schedule. �

4. Detailed construction of the M(n) matrix

As we have seen in the previous section, we can build
the matrix M(n) by directly using the definition of the
{M0, M1.1, M1.2, M2} blocks. Also, we can build it iteratively
from all the M(n) matrices of smaller sizes. For simplicity, we
will employ the second method.

Let us start by assuming that we have already the M(n −
1) matrix. Now, we need to construct an explicit way for the
A(n), P(n), and Q(n) matrices from Eq. (A8).

For the (n − 1)×(n − 1) block matrix A(n) we have an
easy structure, with all the subblocks outside the main
diagonal being M1.1 and the elements in the diagonal
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being M2,

A(n) =

⎛
⎜⎜⎜⎝

M2 M1.1 . . . M1.1

M1.1 M2 . . .
...

...
. . .

. . . M1.1

M1.1 . . . M1.1 M2

⎞
⎟⎟⎟⎠. (A31)

For the P(n) matrix we know that the only submatrices that
can appear are M0 and M1.2. This property comes from the
fact that all the couplings that the matrix P(n) addresses have
the first qubit in common; thus the pairs of qubits can only
be equal to the second qubit or none. This makes it easier to
identify the blocks in this matrix. Employing the I, J indices

from Eq. (A8) we have that

P(n) = MI∗,J∗ =
{

M1.2 if j(I∗) = j(J∗) ∨ j(I∗) = i(J∗)
M0 else,

(A32)

with the indices restricted to 1 � I∗ � n − 1 and n � J∗ �
n(n − 1)/2.

The Q(n) matrix is defined in a similar manner, but here
we also have M1.1 blocks,

Q(n) = MI∗,J∗ =
⎧⎨
⎩

M1.1 if i(I∗) = j(J∗)
M1.2 if j(I∗) = j(J∗)
M0 else,

(A33)

with the indices restricted to n � I∗ � n(n − 1)/2 and 1 �
J∗ � n − 1.

With these definitions one can construct the M(n) matrix by starting from the smallest possible matrix M(2) and building the
matrix with one more qubit. As an example, we build the matrix for up to n = 5 qubits,

(A34)

APPENDIX B: OBTAINING POSITIVE TIMES
FOR THE DA SCHEDULE

In this Appendix, we will prove that we we can always
find a DAQC schedule for simulating an arbitrary ATA two-
body Hamiltonian with another one in which the analog block
times are positive. For this, we will first modify the prob-
lem such that we rewrite it as a non-negative least-squares
(NNLS) problem. Then, we will employ the algorithm NNLS
for solving the modified problem, which has a proven con-
vergence to the optimal solution [23]. However, for proving
that algorithm NNLS will converge to a correct solution,
we have to then prove that there exists at least one positive
solution.

1. Algorithm NNLS

The problem we want to solve is similar to the one in
Eq. (A7) but for an arbitrary protocol M,

M�t = T
−→
g/h ≡ �b, subject to �t � 0, (B1)

where the column vector �b ∈ R(9n(n−1)/2) with n the number
of qubits. From now on, we will employ N = 9n(n − 1)/2
to denote the dimension of the problem. The vector b has all
the information about both the target and the source Hamil-
tonians, and the simulation time. Within this section, we will
assume that the matrix M allows for a positive solution for any
�b, �t � 0 ∀i.
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The NNLS problem consists in the minimization task
‖E �x − �f ‖, with E ∈ MN,m(R) and �f ∈ RN , subject to xi � 0.
We can transform our problem in Eq. (B1) to a NNLS by
just substituting E → M, �x → �t , and �f → �b. For solving
our original problem we need to find a solution such that
‖M�t − �b‖ = 0.

For solving this problem, we will employ the algorithm
NNLS (see Ref. [23] for the details of the algorithm). A
key characteristic of this algorithm is that it is proven that it
converges to the optimal solution in a finite number of steps.
Thus, it is direct to see that if there exists a solution to our
original problem, there would also be a solution for its NNLS
version with ‖M�t − �b‖ = 0.

We have run several numerical experiments for uniformly
random problem vectors �b. We see that when employing this
algorithm, the number of nonzero times in the output coin-
cides with the number of coupling terms in the system.

2. Constructive method for obtaining a positive
solution for every problem

The proof that the algorithm NNLS converges to a positive
solution relies on the fact that such a solution exists. In this
section we will construct a general method for building posi-
tive solutions for this problem for all cases. With this we will
prove that we can construct a DAQC protocol which flips the
effective signs of the Hamiltonian terms such that the times of
the analog blocks are always positive.

As a sketch of the proof, we will start by noting that all
possible DAQC schedules generate up to 4n different columns
to choose from to build the matrix M. Then, we note that
these columns correspond to the vertices of a polytope with
center of mass in the origin of coordinates. We will prove that
we can find a sum of the coordinates of these vertices with
positive coefficients. Finally, we will show that projecting the
coordinates of a small hypersphere around the center of mass
we can write any other point in the hyperspace with a positive
sum, and thus we can solve any problem in the same manner.

Proof of the existence of a schedule with positive times Start-
ing from the the general case of arbitrary two-body Hamilto-
nians, we need to find a protocol for simulating a Hamiltonian
consisting of N two-body terms employing the same number
of terms. As we did for the new protocol, we can restrict
ourselves to sandwiching each analog block only with Pauli
gates. These gates plus the identity, {1, X,Y, Z}, generate a
pool of 4n different combinations. In turn, these combinations
of gates generate the same number of possible columns for the
matrix M, M = {Mi}4n

i=1 such that Mi ∈ {±1}N .
The rules to define a column Mi given a selection of

SQGs can be addressed qubit by qubit and coupling by
coupling, employing the following relations: Y XY = ZXZ =
−X , XY X = ZY Z = −Y , XZX = Y ZY = −Z , and μμμ =
μ for μ = {1, X,Y, Z}. From these properties, one can note
that each of the couplings σ

μ
i σ ν

j can only change if we apply
a gate, i.e., {X,Y, Z}, to at least one of the two qubits i or j.

Each selection of SQGs for the sandwiching will generate
a new column Mi which is linearly independent of every
other column from the set M, Mi ∦ Mj ∀i < j � 4n. As we
have proven in Appendix A, there is at least one combina-
tion of columns which forms a basis for an N-dimensional

space. This ensures that, taking any other extra column, we
can define an N-polytope. We define the convex N-polytope
P as the volume with vertices in Mi, P = {�p ∈ RN : �p =∑4n

i=1 αiMi,
∑4n

i=1 αi � 1, αi � 0 ∀i}.
Now we will employ a generalization of the theorem from

Ref. [38], which states the following:
Theorem 1 [39]. Let P be a d-polytope, p ∈ P, and k

and n positive integers with kn � d . Then, there are points
p1, . . . , pn in the k-skeleton of P with barycenter p = 1

n (p1 +
· · · + pn).

For our proof, we will particularize this theorem to the 0-
skeleton by taking the extreme points of 4n edges of the 1-
skeleton p1, . . . , p4n , such that these points exactly coincide
with the 0-skeleton, {p1, . . . , p4n} = skel0(P ). Now, we will
prove that the barycenter of the 0-skeleton corresponds to the
point �0 = (0, . . . , 0); that is, the next step is to prove that

4n∑
i=1

Mi =

⎛
⎜⎝0

...

0

⎞
⎟⎠. (B2)

We will start by focusing on a single row, the one
corresponding to the Z1Z2 coupling. As stated previously,
this coupling will change in a way that only takes into
account the gates applied to qubits 1 and 2. The com-
bination of gates that flips the sign of this coupling is
{11X2,11Y2, Z1X2, Z1Y2, X112,Y112, X1Z2,Y1Z2}. The SQGs
for the rest of the qubits can be chosen arbitrarily, so we
have a total of 8×4n−2 different columns in which the sign
flips. As this number is exactly half of the total number of
columns, the sum in Eq. (B2) for the row corresponding to the
Z1Z2 coupling is zero. This can be straightforwardly extended
to all couplings repeating the same argument. Employing
Theorem 1 and Eq. (B2), we find that the barycenter of
skel0(P ) is the point �0 = 4−n

∑4n

i=1 Mi.
Now, we will construct a hypersphere S with small radius

r � 4−n centered in the point �0. For this, we will slightly
distort the sum with an extra term �ε = (ε1, . . . , ε4n ) such that
this vector is in the surface of S , �s = 4−n�1 + �ε ∈ S with∑4n

i=1 εi = 0, | ∑4n

i=1 εiMi| = r, and |εi| � 4−n ∀i. Since we
are adding a small deviation around the barycenter, the points
in the surface of S are inside the polytope, S ∈ P .

By definition of the hypersphere centered at the origin,
any point �x can be obtained by projecting a point of the
hypersphere �s, ∃!�s ∈ S : �x = λ�s, λ � 0, ∀�x ∈ RN . We can
then write the original problem using this projection from the
hypersphere to solve the problem in Eq. (B1) with positive
solutions,

�b = λ�s = λ

[
4n∑

i=1

(4−n + εi )Mi

]
= Mλ

⎛
⎜⎝ 4−n + ε1

...

4−n + ε4n

⎞
⎟⎠ = M�t .

(B3)

By construction, all the times of the analog blocks are positive,
ti = λ(4−n + εi ) � 0 ∀i. With this, we have proven that there
exists at least one positive solution to the original problem,
so that we can always converge to a positive solution by
employing the algorithm NNLS. �
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