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Abstract

Introduction: Biocrust cyanobacteria have a large potential as biofertilizers for restoring

degraded ecosystems because of their ability to improve soil nutrition and stabilisation,

and to produce metabolites such as phytohormones to enhance plant growth. However,

important aspects regarding the effects of cyanobacteria on native plants, such as

metabolite production or concentration of inoculants, remain unknown. Here, we

investigated the effects of different concentrations of cyanobacteria, on the germina-

tion and seedling growth of keystone plant species used in dryland restoration. We

hypothesised that the studied inoculant would improve germination and seedling

growth rates, with specific effects associated with the inoculant's concentration and

metabolomic profiles.

Methods: We bioprimed seeds of four native plant species, using a cyanobacterial

inoculant with different proportions of Nostoc and Leptolyngbya at two different

concentrations. We recorded germination, measured seedling growth, and determined

the corrected vigour for each treatment and species. Metabolites produced by the

cyanobacterial inoculant were assessed to identify plant growth hormones potentially

driving any effects.

Results: There was a clear positive effect on the total germination of Triodia epactia and

Triodia wiseana, but negative impacts for Senna notabilis and Grevillea wickhamii. There

were also positive effects on root growth, but only for T. epactia, with negative or

neutral impacts on the root and shoot growth of other species tested. We detected

phytohormones, salicylic acid and indole‐3‐acetic acid, that were produced by our

cyanobacteria inoculant, which are strongly linked to positive effects in early plant

growth stages, but also known to inhibit growth when in higher concentrations.

Conclusion: The positive effects of the biopriming protocol used are not uniform and

highlight the need to improve our understanding of the effects provided both from

different consortia and the concentrations applied when inoculating. There is a very high
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value in improving restoration outcomes for native vegetation communities in arid and

semi‐arid regions.
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1 | INTRODUCTION

Cyanobacteria are primary components of biological soil crusts or

‘biocrusts’ that have essential roles in soils and ecosystems, including

nitrogen and carbon fixation, promotion of phosphorous bio-

availability, protection against erosion and improvement of soil

hydrology (Chamizo et al., 2018; Mager & Thomas, 2011; Singh

et al., 2016). Because of these abilities, biocrust cyanobacteria have

been harnessed for improving soil stabilisation and chemical nutrition

within the context of ecological restoration (Giraldo‐Silva et al., 2019;

Román et al., 2020; Su et al., 2009; Wang et al., 2009). Cyanobacteria

can also influence seed germination and plant growth through

exudated phytohormones such as auxins (Shariatmadari et al., 2015;

Zarezadeh et al., 2020) gibberellic acid, (Rodríguez et al., 2006), and

cytokinins (Bayona‐Morcillo et al., 2020). Thus, cyanobacterial‐based

inoculants are commonly used in agriculture to stimulate root and

shoot growth and increase seedling weight, grain yield, levels of

carbohydrates, proteins and oils (Gavilanes et al., 2020; Osman

et al., 2020; Righini et al., 2021; Zarezadeh et al., 2020). Despite their

extended use as a plant growth‐promoting bacteria for agricultural

applications, these organisms have only recently emerged as a

potentially beneficial tool for promoting plant growth in the context

of natural ecosystem restoration (Chua et al., 2020; Muñoz‐Rojas

et al., 2018).

Cyanobacteria is a broad phylum with multiple functions, and

variation in morphology, physiology and ecology (Whitton &

Potts, 2012). The family Nostocaceae, which belongs to the order

Nostocales, are characterised by their unbranched filaments of cells

and the development of heterocysts amongst the cells of the

filaments. Cyanobacteria from this family, for example, those from

the genera Nostoc, have been targeted for soil restoration because of

their ability to fix nitrogen and potentially contribute to the total

nitrogen input in ecosystems with poor soils, such as in semi‐arid and

arid lands where nitrogen may be limited (Yeager et al., 2007). In

addition, species of Nostocaceae can form symbiotic relationships

with particular plants (Meeks, 2007). Other types of cyanobacteria

inhabiting arid ecosystems and forming the so‐called ‘light biocrusts’

are the filamentous and nonheterocytous cyanobacteria, such as

Microcoleus and Leptolyngbya (Pietrasiak et al., 2013). Leptolyngbya is

less cited in studies involving land restoration, (Pietrasiak et al., 2013)

however, species within this genus have the ability to arrange

filaments entangled with soil grains, produce exopolysaccharides and

bind soil particles (Mager & Thomas, 2011; Mugnai et al., 2018).

Moreover, Leptolyngbya has shown a substantial potential for ex

situ cultivation, unlike Microcoleus, (Prufert‐Bebout & Garcia‐

Pichel, 1994) which could help overcome the current barriers to

the production of cyanobacterial biomass for large‐scale application

in soils (Roncero‐Ramos et al., 2019). Therefore, the genus can be

considered an effective inoculant able to enhance soil cohesion and

stabilisation.

Seed biopriming is a seed enhancement technology that refers to

the inoculation of seeds with beneficial organisms, such as micro-

organisms, to increase the number of seeds germinating and

germination rates (speed) in suboptimal environments, suppress

disease, control plant pathogens, promote growth, restrain side

effects caused by drought, and increase tolerance to high tempera-

tures, salinity and heavymetals (Bisen et al., 2015; Pedrini et al., 2020).

Seed biopriming with cyanobacterial consortia has shown positive or

neutral effects on the germination and growth of several dryland

native plants, (Chua et al., 2020; Muñoz‐Rojas et al., 2018) but the

responses have been species‐specific and there are still several

knowledge gaps related to these plant–microbial relationships.

Furthermore, we still do not know whether different concentrations

of cyanobacteria, and therefore potentially larger amounts of

metabolites, would result in distinct effects on seed germination

and seedling growth. Previous studies have shown that variants of

the same bacteria species (wild vs. mutant) can produce different

concentrations of auxins (Xie et al., 1996). Also, different concentra-

tions of inoculant, a producer of indole‐3‐acetic acid (IAA—a primary

auxin in plants), can generate a range of beneficial and deleterious

effects in plant roots (Persello‐Cartieaux et al., 2001). However,

previous studies investigating the use of cyanobacteria as bioprimers

for seed restoration have not tested the production of plant

hormones by the inoculants, missing the link of cause and effect.

Here, we bioprimed seeds of four keystone native plant species

used in dryland restoration, Senna notabilis, Grevillea wickhamii,

Triodia epactia, Triodia wiseana, using a cyanobacterial inoculant with

different proportions of Nostocaceae and Leptolyngbya cyanobacter-

ia, to assess their effects on seed germination and seedling growth. In

a novel approach, we also analysed the metabolites produced by this

inoculant to identify plant growth hormones potentially driving these

effects, and we tested two different concentrations, that is, 1

and 5 g L−1 of our inoculant. To evaluate whether phytohormone

concentration was the driver of the effects, we also bioprimed seeds

of two of our study species, T. wiseana and T. epactia, with IAA alone.

This allowed an evaluation of the response caused by a single

chemical component rather than a combination of chemicals

potentially found in our tested inoculant. We hypothesised that our

inoculant would improve germination and seedling growth rates, with

specific effects associated with the metabolomic profiles and

concentration of the cyanobacteria inoculants. Higher concentrations

of inoculant were expected to induce stronger responses in the
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studied plants whereas similar responses were expected in closely

related plant species.

2 | MATERIALS AND METHODS

2.1 | Study region

Seeds and cyanobacteria used in this study were native to the Pilbara

region in the northwest of Western Australia (22°03′S, 118°07′E to

23°19′S, 119°43′E). This region is semi‐arid, with low annual rainfall

(250–400mmyear−1) and temperatures regularly exceeding 40°C in

summer (Bureau of Meteorology, Australian GovernmentWebsite, 2022).

The region covers 179,000 km2 and contains a high diversity of plant

species, many of them endemic to the Pilbara (Doughty, 2013). Dominant

genera include Acacia and Senna from the Fabaceae family, Grevillea from

the Proteaceae family and Triodia from the Poaceae family, (Erickson

et al., 2016) in hummock grasslands, tussock grasslands and sclerophyll

shrubland communities. Due to its large iron ore deposits, the region

experiences high‐intensity iron ore extraction which disturbs more

than 2300 km2 of the surrounding habitat, (Environmental Protection

Authority, 2014) placing stress on the native vegetation communities that

inhabit the region.

2.2 | Cyanobacteria culturing and identification

A mixed‐cyanobacterial culture composed predominantly of Leptolyngbya

and other Nostocaceae (hereby referred as ‘LeptoNos’), available at the

Ecology Laboratory at the School of Biological, Earth and Environmental

Sciences laboratories (UNSW, Sydney) was selected for the biopriming

experiment (Supporting Information: Figure S1a).

Cyanobacteria had been previously isolated from soil biocrusts

collected from Gallery Hill (Pilbara region), and cultured in BG11

medium (Cyanobacteria BG11 Freshwater Solution; Merck) (Muñoz‐

Rojas et al., 2018). Trichomes and colonies (lately mats) of different

cyanobacteria were repeatedly inoculated in new tubes for the

establishment of fresh cultures. The mixed culture, composed of

Leptolyngbya and Nostocaceae, showed a higher growth rate and

they were therefore cultivated together. The culture was maintained

in nonaxenic conditions, as many studies have found that the

association of cyanobacteria with other bacteria develop symbiotic or

mutually beneficial relationships, resulting in nutrient availability and

growth promotion for the cyanobacteria (Salomon et al., 2003; Wang

et al., 2022). Rossi et al. (2022) support the idea that the

cyanobacteria and the bacteria in the cyanosphere create a

microcosm that involves crucial nutrient exchange processes. These

authors also caution against working with axenic cultures, which is

counterproductive (Rossi et al., 2022). We maintained the proportion

of bacteria in the cultures low (Supporting Information: Figure S1)

through careful manipulation of the initial colonies and trichomes

(being clean while dragged over BG11 solid media), and during the

following constant subculturing. Since cyanobacteria is the dominant

bacteria in our consortium, it is likely that it is primarily responsible

for the majority of metabolic production. Nevertheless, we stress the

significance of considering our consortium as a unified entity that

comprises other bacteria as well. Populations were cultivated and

maintained under a regime of 24°C ± 1°C and a 16:8 h light–dark

cycle (80 µmol photons m−2 s−1 of irradiance) in plant growth cham-

bers (Thermoline Scientific Climatron 2400‐TH‐CO2).

To confirm the composition of the culture, we used molecular

methods. The total biomass was extracted using the DNeasy PowerSoil

Kit (Qiagen) following the manufacturer's instructions. The 16S V1–V3

region from 16S ribosomal RNA gene was then amplified by polymerase

chain reaction (PCR) using the barcoded primers 27F (AGAGTTT-

GATCMTGGCTCAG) and 519R (GWATTACCGCGGCKGCTG) including

an overhand Illumina adapter. Subsequently, a second PCR was

performed to incorporate index barcodes using the Nextera XT Index

Kit (Illumina). A paired‐end sequencing was performed on an Illumina

Miseq sequence platform (Illumina) using the Miseq Reagent kit v3.

2 × 300 cycle. Amplifications and sequencing were performed by the

Ramaciotti Centre for Genomics (UNSW, Australia). Raw sequence data

processing was carried as in Machado de Lima et al. (2021) Briefly, the

OTUreporter v1.0.0‐beta (9b72c8e) pipeline (https://bitbucket.org/

xvazquezc/otureporter) based on Mothur v1.39.5 (Schloss et al., 2009)

was used to ensure quality filtering, assignments of respective samples,

and trimmings of reads. Chimeras were detected through the script

Chimera. vsearch, (Rognes et al., 2016) and taxonomy was assigned by

comparison with the SILVA database v 132 (Quast et al., 2013). The

unprocessed sequence information has been shared with NCBI and is

accessible to the public through the BioProject identifier PRJNA944785.

2.3 | Seed preparation and Cyanobacteria
biopriming of seeds

We used seeds of T. wiseana C. A. Gardner, T. epactia S. W. L. Jacobs,

S. notabilis (F. Muell.) Randell and G. wickhamii Meisn. previously

collected from the Pilbara region and stored in a controlled

environment room at 15°C and 15% relative humidity at Kings Park

Science (Department of Biodiversity, Conservation and Attractions,

Western Australia). These native species, representative of Australian

semi‐arid environments, have been prioritised in restoration pro-

grams in the Pilbara region (Bateman et al., 2018; Erickson

et al., 2016). Seeds were checked for viability by microscopy and

surface sterilised in 1% (wt/vol) calcium hypochlorite solution for

30min. Then, the seeds were washed with autoclaved milli‐Q water.

S. notabilis seeds were immersed in hot water at 90°C for 2min and

T. wiseana seeds had their covering floret structure removed to

overcome dormancy (Erickson et al., 2016).

Cyanobacterial biomass from the selected culture was filtered

and resuspended in milli‐Q water, to maintain the biopriming

inoculant at concentrations of 1 and 5 g L−1. Biomass concentration

was determined based on cyanobacteria dry weight, by oven‐drying

filtered subsamples at 60°C for 24 h. Seeds were grouped in separate

plastic tubes by species and treatment. The cyanobacteria biopriming
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inoculant was added to the tubes at both concentrations (1 and

5 g L−1), except for the control treatment which contained the same

volume of milli‐Q water only (Supporting Information: Figure S1b).

Then, plastic tubes were agitated on an orbital shaker (Ratek EOM5)

for 20 h at low speed and 25°C. After agitation, seeds were

transferred to Petri dishes for the germination step.

2.4 | Seed preparation and biopriming different
concentrations of auxin, germination and early
seedling growth

Batches of T. wiseana and T. epactia seeds were used in a second

experiment, where they were bioprimed with IAA. As per the original

approach, seeds were checked for viability by microscopy and surface

sterilised in 1% (wt/vol) calcium hypochlorite solution for 30min, and

then washed with autoclaved milli‐Q water. A stock solution of

10mg/mL of IAA was diluted to produce solutions of 2 and

50 µg/mL. Seeds of each species were immersed in tubes containing

2 and 50 µg/mL of IAA, and also in autoclaved milli‐Q water as a

control. Plastic tubes were agitated on an orbital shaker (Ratek

EOM5) for 25 h at low speed and 25°C. After agitation, seeds were

transferred to Petri dishes for germination assessment.

2.5 | Seed germination and early seedling growth
measurement

Seeds bioprimed with cyanobacteria or hydro‐primed were plated on

90mm Petri dishes with agar 5 g L−1 (n=4 dishes per treatment; 25 seeds

per dish = 100 seeds per treatment). For the IAA and control (hydro‐

primed) experiment, T. wiseana and T. epactia seeds were also plated on

90mm Petri dishes with agar 5 g L−1 but at slightly different levels of

replication (n=3 dishes per treatment; 33 seeds per dish =99 seeds per

treatment). All seeds were incubated under 16/8 h alternating tempera-

ture (20°C/29°C) and light:dark cycles in a plant growth chamber

(Thermoline Scientific Climatron 2400‐TH‐CO2). Germination was scored

on the emergence of the radicle and was recorded daily until no new

germination was observed for 3 days. After that, seedlings bioprimed with

cyanobacteria or hydro‐primed were randomly selected (around 30–40

seedlings per species) and measured root and shoot length. While

seedlings bioprimed with IAA and hydro‐primed were also randomly

selected, but 16–24 seedlings were selected per species, and measured

root and shoot length.

2.6 | Metabolomics analyses

For the metabolomic analyses, 250mL of cyanobacterial culture were

grown in BG‐11 growth medium under a 16:8 day–night cycle at

25°C until sufficiently dense, following established protocols

(Hussain et al., 2010). The cyanobacterial culture was then filtered

using 11 μm pore size filter paper (Whatman Ltd.) and the resulting

pellets freeze‐dried to remove any excess water. Metabolites were

extracted via the addition of 50mL methanol to the lyophilised

pellets followed by 24 h incubation at 4°C, and the methanol was

then filtered using 11 μm pore size filter paper (this step was

repeated twice). Methanol was collected and evaporated under a

fume hood before derivatization. To derivatize the samples for gas

chromatography–mass spectrometry (GC–MS) analysis, 40 μL N,O‐is

(trimethylsilyl)trifluoroacetamide (BSTFA) and 20 μL of molecular

sieved acetonitrile were added to the extracts before incubation at

55°C for 1 h. The derivatized extracts were analysed using a Focus

DSQII GC‐MS (GER; Thermo Fisher Scientific). A Thermo TriPlus II

autosampler set‐up was used to inject liquid samples, with a sample

volume of 10 μL injected splitless, and five pre‐ and postwashes

carried out for each injection using acetonitrile. The run was repeated

three times. The carrier gas was helium with a flow rate of 1.7 mL/

min. The initial oven temperature was set at 70°C, ramping to 75°C

over 5min before increasing to 325°C at 5.6 Cmin−1 with a 10min

holding time, following previously published metabolite analysis

methods (Wong et al., 2015). The instrument was run using positive

electron ionisation full scan mode from 40 to 650Da.

2.7 | Data analysis

All the analyses were performed using the R statistical platform Version

4.0.2 (R CoreTeam, 2021). Boxplots and line plots were constructed using

the package ‘ggplot2’ (Wickham, 2011). Germination was checked from

the day after biopriming until the third day without any new observed

germination. Seeds germinated during this period were used to calculate

the total proportion of seeds germinated. Additionally, ‘T50’ (time to

reach 50% germination), ‘slope’ (indication of how long seed germination

reaches completion), and ‘Max’ (maximum germination rate) (Kniss &

Streibig, 2018) were calculated using the dose–response models in the

RStudio drc package, (Ritz et al., 2015) and the germination rate was

plotted using cumulative germination over time. We used the ‘compParm’

function to evaluate the differences in the ‘T50’, ‘Slope’ and ‘Max’. The

package ‘SeedCalc’ (Silva et al., 2019) was used to calculate the corrected

vigour index (Medeiros & Pereira, 2018). Using a linear model framework,

we investigated how root and shoot lengths and corrected vigor were

influenced by inoculants, while the ‘emtrends’ function (‘emmeans’

package) (Lenth et al., 2019) was applied to make comparisons across

treatments. A similar approach was applied for total germination data, but

instead using a generalised linear model with binomial error distribution.

For metabolomic data processing and identification, we used the AMDIS

software package, identifying known plant metabolites. The identities of

peaks were ascertained using the NIST library version 11.

3 | RESULTS

Overall, our results showed that the effects of the different

concentrations of cyanobacterial inoculant on seed germination and

seedling growth were specific to each plant species. For T. epactia,
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LeptoNos consortia increased the maximum germination (p < 0.05)

10.2% (Table 1 and Supporting Information: Figure S2) when used at

high concentrations (5 g L−1). Roots inoculated with the LeptoNos

consortium at 5 g L−1 were 1.5 times longer compared to those in

the control (p < 0.05) (Figure 1 and Supporting Information: Table S1).

The corrected vigour index was 78% higher (p < 0.001) than

the control at the highest dose (5 g L−1; Figure 2 and Supporting

Information: Table S2).

Germination of T. wiseana inoculated with LeptoNos consortium

was 9.2% higher (p < 0.005) than that found in the control (Table 1

and Supporting Information: Figure S2). However, the consortium

reduced root lengths by 22.2% compared to the control (p < 0.05),

and shoots by 17.8% and 16% at 1 and 5 g L−1 concentrations,

respectively (Figure 1 and Supporting Information: Table S1). The

corrected vigour index was significantly lower (18%; p = 0.01) in the

seeds treated with the lower concentration (1 g L−1), while the higher

concentration of this consortium did not show any effect. Germina-

tion rates of S. notabilis decreased (7.1% on average; p < 0.005) in

response to the consortia and their different concentrations.

Inoculation with LeptoNos (both concentrations) increased the

germination time T50 (Table 1 and Supporting Information:

Figure S2), and reduced root length (28%; p < 0.0001) and shoot

length (over 22%; p < 0.005) (Figure 1 and Supporting Information:

Table S1). Lower vigor index values (18.0%–29.7%; p < 0.001) were

observed in seeds treated with either concentration of the LeptoNos

consortium (Figure 2). The LeptoNos 1 g L−1 consortium reduced

maximum germination of G. wickhamii by 7.4% (p = 0.01; Table 1 and

Supporting Information: Figure S2), while both concentrations

resulted in none of the seeds reaching the seedling developmental

stage.

Metabolomic analysis through GC–MS identified the common

plant hormone IAA in the consortia using the NIST database

(Supporting Information: Figure S3). Another potential phyto-

hormone, that is, salicylic acid was also identified using the NIST

database in the consortia (Supporting Information: Figure S4).

T. epactia seeds treated with 2 and 50 µg/mL of IAA did not

show significant changes in their maximum germination (Table 1),

however, presented significantly longer roots in comparison with the

control when treated with 2 µg/mL (p < 0.005; Figure 3). Conversely,

T. wiseana bioprimed with IAA, displayed no significant differences in

their germination rate (Table 1) and root length when treated with

the lower dose of 2 µg/mL, but showed shorter root length when

treated with the higher dose (p < 0.0001; Figure 3).

4 | DISCUSSION

Overall, our results suggest that the LeptoNos consortium can be

beneficial, but the contrasting responses across our native study

species and at different life‐cycle stages uncovered a more complex

relationship. There was a clear positive effect on the total

germination of T. epactia and T. wiseana, but negative impacts for

S. notabilis and G. wickhamii. There were also positive effects on root

growth, but only for T. epactia, with negative or neutral impacts on

the root and shoot growth of other species tested. We detected two

phytohormones, salicylic acid and IAA, that were produced by our

cyanobacteria inoculant, both of which are strongly linked to positive

effects in early plant growth stages, but also known to inhibit growth

when applied at higher concentrations (Toribio et al., 2020;

Zarezadeh et al., 2020). This suggests a potential mechanism for

the mixed growth rate response, however, other metabolites may

also play a role, for example, toxic metabolites at a critical

concentration and further work is required to confirm the biological

mechanism behind the observed responses. While this research

analysed recognised plant growth‐promoting metabolites, it is

conceivable that there are additional unknown metabolites being

produced that are not documented in metabolite libraries or

detectable by GC–MS. The contrasting results, when compared to

previous studies that have included the same native species, highlight

the need to understand how different cyanobacterial compositions,

TABLE 1 Maximum germination (%) and T50 (days) for each plant species and treatment (mean ± SE).

Treatment

Triodia epactia Triodia wiseana Senna notabilis Grevillea wickhamii

Max T50 Max T50 Max T50 Max T50

Control 36.3 ± 3.0 2.89 ± 0.2 74.6 ± 1.6 1.90 ± 0.1 98.2 ± 0.0 0.69 ± 0.1 13.4 ± 1.6 6.54 ± 0.5

LeptoNos 1 g L−1 40.5 ± 2.9 2.74 ± 0.2 74.3 ± 1.4 1.85 ± 0.3 89.0 ± 1.6* 1.15 ± 0.1* 6.0 ± 1.0* 6.71 ± 0.7

LeptoNos 5 g L−1 46.5 ± 3.8* 2.775 ± 0.2 83.8 ± 1.2* 1.811 ± 0.3 93.1 ± 1.3* 1.37 ± 0.7* 8.6 ± 1.3 6.26 ± 0.6

Control 66.9 ± 2.1a 1.9 21.8 ± 0.02b 2.33 ± 0.3 – – – –

Auxin 2 µg/mL 70.0 ± 2.0 1.9 19.4 ± 0.02 2.20 ± 0.4 – – – –

Auxin 50 µg/mL 66.8 ± 2.3 2.00 ± 0.06 18.8 ± 0.02 3.35 ± 0.4 – – – –

Note: Asterisks (*) and bold indicates significance levels at p < 0.05.

Assessing treatment efficacy: utilising a generalised linear model approach with binomial error distribution with the ‘emtrends’ function to uncover
significant differences between control and treatment groups.
aValue generated using around 16 seedlings per treatment.
bValue generated using around 24 seedlings per treatment.
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and the concentrations of their different metabolites, interact with

native species. This is particularly important for clarifying the

potential benefits of using cyanobacteria in native vegetation

restoration.

IAA has been previously identified as a product of cyanobacteria

organisms, with several benefits provided to plants, including growth

promotion (Zarezadeh et al., 2020). However, the concentration of

IAA determines whether effects are positive or negative, with many

studies showing that excessive amounts of IAA can inhibit growth,

have negative effects on plant physiology, and potentially promote

seed dormancy (Gamalero & Glick, 2011; Liu et al., 2013; Noel

et al., 1996; Tsavkelova et al., 2007). Positive plant responses are

therefore concentration‐dependent, as well as controlled by the

spatial‐temporal distribution of IAA, (Cao et al., 2020) meaning that

F IGURE 1 Seedling length (mm) for Triodia epactia, Triodia wiseana, Grevillea wickhamii and Senna notabilis. Levels of significance represented
by red asterisks *p < 0.05. Assessing treatment efficacy: utilising a linear model approach with the ‘emtrends’ function to uncover significant
differences between control and treatment groups.

F IGURE 2 Corrected vigor index for the four studied species (Triodia epactia, Triodia wiseana and Senna notabilis) and its respective
treatments (LeptNos consortia, both concentrations, 1 and 5 g L−1). Levels of significance represented by red asterisks *p < 0.05. Assessing
treatment efficacy: utilising a linear model approach with the ‘emtrends’ function to uncover significant differences between control and
treatment groups. Graphs highlighted in green represent the treatments that positively impacted the tested seed, while the ones highlighted in
red represented the negatively impacted.
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optimal levels can vary between plant species and as a result of plant

tissue sensitivity to auxins (Gamalero & Glick, 2011). One of our

study species, S. notabilis, was very sensitive to the LeptoNos

inoculant, suffering negative effects regardless of the applied

inoculant concentration. This followed different findings for the

same species in other studies where only low concentration of

inoculant and different inoculant composition were used, with

positive effects on germination (Chua et al., 2020) and seedling

growth (Muñoz‐Rojas et al., 2018). This suggests that much lower

concentrations of our inoculant need to be tested to identify whether

our inoculant composition can provide promotive effects for Senna.

Perhaps the clearest example of the importance of inoculant

concentration and composition is found in the response of Triodia.

Previous studies found no effects of cynobacteria biopriming on

either of our Triodia study species' germination, however, both had

used inoculant concentrations of 1 g/L and different cyanobacterial

composition (Chua et al., 2020; Muñoz‐Rojas et al., 2018). In our

study, both Triodia species produced significantly greater germination

but only at the high 5 g/L concentration. Previously undetected

effects of biopriming on these species could therefore be a result of

the concentration of inoculant applied. Impacts on Triodia root and

shoot growth was more complex, with T. wiseana growth reduced and

T. epactia growth increased by cyanobacteria biopriming. These

different response patterns in growth were mirrored in the

experiment using isolated IAA, where T. epactia was positively

influenced at moderate but not high concentrations of IAA, while T.

wiseana showed a clear negative response. The different responses of

these two closely related species suggest that they have different

sensitivities to the growth hormones tested, and potentially others

present in the consortium, at the seedling growth stage.

Species‐specific testing and the determination of the concentra-

tion of hormones produced by the inoculant may be beneficial in the

restoration context when aiming to use cyanobacteria as a plant

promoter. This approach is already considered in agricultural settings

and has helped to develop a much finer‐scale understanding of

biopriming with inoculants. For example, Dubeikovsky et al. (1993)

experimentally tested the bacteria Pseudomonas fluorescens, an IAA

overproducing mutant, and observed positive effects in the root

development of blackcurrant cuttings. However, the same bacterium

caused an inhibitory effect in cherry cuttings. Glick interpreted these

results as being driven by prior suboptimal levels of IAA in the

blackcurrant cuttings, which had become optimal after the bacterial

effect (Glick, 2012). The auxin levels of cherry cuttings, however,

were already optimal before bacterium addition, and the generated

supraopitimal level produced an inhibitory response. These findings

are aligned with the fact that plants have their own ontogeny and

react differently to the organisms on their surrounding, (Havrilla

et al., 2019) being very specific in relation to their microbial

recruitment (Ramakrishna et al., 2019). For species with high

restoration value, like Triodia which is a keystone genus across much

of arid and semi‐arid Australia, investment in research at a similar

resolution to that conducted in the agricultural sector would help to

identify the full potential of biopriming, particularly in large‐scale

restoration.

Differences in response of our study species to the inoculant and

IAA applied highlights the importance that concentration can play in

determining outcomes for improved germination and growth in

restoration. However, factors beyond microbial hormonal production

should also be considered when interpreting our, and future, results.

Cyanobacteria are able to produce a multitude of chemical

compounds, and some might be deleterious or have impacts on

plant establishment and growth while affecting their symbiotic

bacteria. For example, cyanobacteria can produce secondary metab-

olites possessing antibacterial activity, (Gupta & Vyas, 2021) able to

impact plant resilience. Also, they can affect plants directly through

the production of toxins that deplete processes in plant tissues

(Romanowska‐Duda et al., 2002). While our study has demonstrated

the complexity surrounding biopriming, it highlights the need for

F IGURE 3 Seedling length (mm) for Triodia epactia and Triodia wiseana bioprimed with different concentrations of Auxin. Levels of
significance represented by red asterisks *p < 0.05. Assessing treatment efficacy: utilising a linear model approach with the ‘emtrends’ function
to uncover significant differences between control and treatment groups.
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further studies to understand associations between bacterial inocu-

lation and plant growth. This work also reaffirms the importance of

plant–soil microbial interactions at early growth stages (seed

germination and seedling growth), particularly in the design of

bioinoculants for plant growth and health promotion.

The positive relationships we found between our inoculant and

theTriodia species studied, in addition to previous studies investigat-

ing arid‐zone species, (Chua et al., 2020; Muñoz‐Rojas et al., 2018)

support the fact that biopriming native plant species with cyano-

bacteria provides a pathway forward for improving restoration. At

the same time, the mixed results for G. wickhamii and S. notabilis

(when comparing our study with previous positive results [Chua

et al., 2020]) highlights the need to improve our understanding of the

effects provided both from different consortia and the concentra-

tions applied when inoculating. There is a very high value in

improving restoration outcomes for native vegetation communities

in arid and semi‐arid regions, and particularly their keystone species,

which are subject to multiple pressures from large‐scale clearing, for

example, Triodia has a wide distribution, extending from arid inland to

coastal areas, and has multiple important uses, including in restora-

tion practices and traditional indigenous culture (Erickson et al., 2016;

Gamage et al., 2012). The hummock grasslands where Triodia

dominates covers over 18% of the Australian continent (Department

of the Environment and Water Resources, 2007). Subsequently,

Triodia is the primary species in the Pilbara, and other regions, that

practitioners have long focused on to restore areas that have been

disrupted by mining activities (Erickson et al., 2016). However, seed‐

based restoration in arid zones has had limited success, (Bateman

et al., 2019) highlighting the urgent need for new seed enhancement

technologies, especially for Triodia, given its tightly regulated

recruitment patterns (Lewandrowski et al., 2018). The benefits of

fine‐tuning the application of a bioinoculant like cyanobacteria are

not only the positive outcomes for germination and growth of

keystone species like Triodia, but also its dual role as a bio‐tool, which

can enhance soil fertility and initiate the recovery of soil functions in

dryland infertile substrates. The development of artificial

cyanobacteria‐dominated biocrust could lead to other benefits,

including a reduced need for external fertiliser and amendment

inputs (Muñoz‐Rojas et al., 2018).
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