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ABSTRACT
In this work we extend and improve the results done in a
previous work on simulating Spiking Neural P systems (SNP
systems in short) with delays using SNP systems without
delays. We simulate the former with the latter over sequen-
tial, iteration, join, and split routing. Our results provide
constructions so that both systems halt at exactly the same
time, start with only one spike, and produce the same num-
ber of spikes to the environment after halting.

Keywords: Membrane Computing, Spiking Neural P sys-
tems, delays, simulation, routing

1. INTRODUCTION
SNP systems, first presented in [7] and with some recent
results in [12], [13] and [10] (among others), are computing
devices inspired by how biological neurons represent infor-
mation: using electro-chemical signals called spikes. Since
spikes are indistinct, information is taken not from the spikes
themselves, but from their multiplicity or time of arrival.
One motivation for SNP systems (as is the case in the area
of Membrane Computing [11] in general) is to abstract ideas
from biology for computational use. For SNP systems in
particular, the neuron from our brains is the motivation.
It can be argued that the human brain is one (if not cur-
rently) the most complicated and powerful “supercomputer”
known to us at the moment. The brain performs complex
computations from billions of interconnected neurons while
consuming only around 10 to 20 Watts of energy [8], and
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it is small enogh to fit in our skulls. It is therefore desir-
able to work with as little quantity of “energy” as possible,
and we can think of the spike in SNP systems as being such
quantity.

SNP systems are Turing complete devices [7, 5] and have
been used as (among others) transducers [6], generating vec-
tors of numbers [1], as well solving hard problems [9]. Spik-
ing rules (rules that produce spikes) are usually of two types:
with delays and without delays. If an SNP system has at
least one rule with a delay, we refer to it as an SNP system
with delay labeled as Π, otherwise it is known as an SNP
system without delay labeled as Π.

In this work we extend the work presented in [3], with the
goal of simulating a Π that peforms sequential, iteration,
join, and split routing with a Π that performs the same
routings. By routing we mean the transfer or movement of
spikes from one neuron to another. By simulation in [3] it
is meant that the following two requirements are satisfied:

R1 : Halting time of Π coincides with the halting time of Π,
or is offset either by a fixed timestep or by a function
of the delays in Π,

R2 : number of spikes in the final configuration of Π is the
same number in Π, or is offset by a function of the
delays in Π.

In [3], the construction of Π from Π is such that the initial
spikes of Π is a function of the delay (or delays) in Π. In
particular, the initial spikes of Π are multiples of the delays
in Π. Aside from the increased initial spike number in Π,
the exponents in the regular expressions and the number
of consumed spikes of certain spiking rules in Π are also
multiples of all the delays in a given routing of Π.

We improve the work done in [3] by providing alternative
constructions in this work. Our specific contributions are as
follows:

• we construct a Π that simulates a Π that performs
sequential, iteration, join, and split routing,

• both Π and Π start with only one spike each in the
initial neuron,

• halting time of Π and Π coincide i.e. there are no
offsets,
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• number of spikes sent to the environment after halting
are equal for Π and Π.

• our construction allows split routing even if the delays
of the output neurons are not equal.

The trade-off is that for every delay d in Π, we add d neurons
in Π. If the initial neuron of Π has a delay, following our con-
struction means we simply modify Π and Π such that their
new halting time involves one additional time step. The
succeeding sections are as follows: Section 2 provides pre-
liminaries and assumptions for our work. Section 3 presents
our main results. We end with our final remarks and direc-
tions for future work in Section 4.

2. PRELIMINARIES
It is assumed that the readers are familiar with the basics
of Membrane Computing (a good introduction is [11] with
recent results and information in the P systems webpage
at http://ppage.psystems.eu/ and a recent handbook in
[13] ) and formal language theory. We only briefly mention
notions and notations which will be useful throughout the
paper.

Let V be an alphabet, V ∗ is the free monoid over V with
respect to concatenation and the identity element λ (the
empty string). The set of all non-empty strings over V is
denoted as V + so V + = V ∗ − {λ}. We call V a single-
ton if V = {a} and simply write a∗ and a+ instead of {a∗}
and {a+}. The length of a string w ∈ V ∗ is denoted by
|w|. If a is a symbol in V , a0 = λ. A language L ⊆ V ∗ is
regular if there is a regular expression E over V such that
L(E) = L. A regular expression over an alphabet V is con-
structed starting from λ and the symbols of V using the
operations union, concatenation, and +, using parentheses
when necessary to specify the order of operations. Specifi-
cally, (i) λ and each a ∈ V are regular expressions, (ii) if E1

and E2 are regular expressions over V then (E1∪E2), E1E2,
and E+

1 are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each expression
E we associate a language L(E) defined in the following
way: (i) L(λ) = {λ} and L(a) = {a} for all a ∈ V , (ii)
L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1E2) = L(E1)L(E2), and
L(E+

1 ) = L(E1)
+, for all regular expressions E1, E2 over V .

Unnecessary parentheses are omitted when writing regular
expressions, and E+ ∪ {λ} is written as E∗. Next we have
the definition for an SNP system.

Definition 1 (SNP system). An SNP system of a fi-
nite degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike).

2. σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤
i ≤ m, where:

(a) ni ≥ 0 is an integer representing the number of
spikes in σi

(b) Ri is a finite set of rules of the general form

E/ac → ab; d

where E is a regular expression over O, c ≥ 1, if
b > 0 then d ≥ 0 and c ≥ b, else if b = 0 then
d = 0.

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m}, (i, i) /∈ syn for
1 ≤ i ≤ m, are synapses between neurons.

4. out ∈ {1, 2, . . . ,m} is the index of the output neuron.

A spiking rule is where b ≥ 1. A forgetting rule is a rule
where b = 0 is written as E/ac → λ. If L(E) = {ac}
then spiking and forgetting rules are simply written as ac →
ab and ac → λ, respectively. Applications of rules are as
follows: if neuron σi contains k spikes, ak ∈ L(E) and k ≥ c,
then the rule E/ac → ab ∈ Ri is enabled and the rule can
be fired or applied. If b ≥ 1, the application of this rule
removes c spikes from σi, so that only k− c spikes remain in
σi. The neuron sends b number of spikes to every σj such
that (i, j) ∈ syn. The output neuron has a synapse not
directed to any other neuron, only to the environment. The
neuron σ1 is referred to as the initial neuron.

If a spiking rule (forgetting rules cannot have delays) has
d = 0, the b number of spikes are sent immediately i.e. in
the same time step as the application of the rule. If d ≥ 1
and the spiking rule was applied at time t, then the spikes
are sent at time t + d. From time t to t + d− 1 the neuron
is said to be closed (inspired by the refractory period of the
neuron in biology) and cannot receive spikes. Any spikes
sent to the neuron when the neuron is closed are lost or
removed from the system. At time t+d the neuron becomes
open and can then receive spikes again. The neuron can
then apply another rule at time t+ d + 1. If b = 0 then no
spikes are produced. SNP systems assume a global clock, so
the application of rules and the sending of spikes by neurons
are all synchronized.

A configuration of the system at time k is denoted as Ck =
〈n1/t1, . . ., nm/tm, ne〉, where each element of the vector
(except for ne, denoting the spikes in the environment) is
the configuration of a neuron σi, with ni spikes and is open
after ti ≥ 0 steps. An initial configuration C0 is therefore
〈n1/0, . . . , nm/0, 0〉 since no rules whether with or without
delay, have yet been applied and the environment is ini-
tially empty. A computation is a sequence of transitions
from an initial configuration. A computation may halt (no
more rules can be applied for a given configuration) or not.
If an SNP system does halt, all neurons should be open.
Computation result in this work is obtained by checking the
number of spikes in the environment once the system halts.
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Figure 1: SNP system with delay Π0.
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As an example, let us have an SNP system shown in Figure
1 formally defined as follows: Π0 = (O, σ1, σ2, σ3, syn, out)
where σ1 = (1, a+/a → a), σ2 = (0, a+/a → a; 2), σ3 =
(0, a+/a → a), syn = {(1, 2), (2, 3)}, initial neuron is σ1,
and out = 3. Only neuron σ1 has one spike initially and
only σ2 has a rule with a delay d = 2. We have C0 =
〈1/0, 0/0, 0/0, 0〉. At the next step, σ1 can use its rule (it
has at least one spike) and consumes one spike and sends one
spike immediately to σ2 so we have C1 = 〈0/0, 1/0, 0/0, 0〉.
At step 2, σ2 consumes its spike and closes for 2 time steps,
so C2 = 〈0/0, 0/2, 0/0, 0〉. At step 3 we have C3 = 〈 0/0, 0/1,
0/0, 0〉. At time step 4, σ2 opens and sends one spike to σ3,
so C3 = 〈0/0, 0/0, 1/0, 0〉. Finally, at time step 5 the output
neuron sends one spike to the environment, Π0 halts and we
have C5 = 〈0/0, 0/0, 0/0, 1〉.
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Figure 2: Routing constructs (from left to right):
sequential, split, and join.

SNP systems where each neuron has exactly one rule are
called simple, while the systems that have the same set of
rules are called homogeneous [14]. In this work, if SNP sys-
tems only have rules of the restricted form (ak)+/ak → a
where k is a non-negative integer, we refer to them as semi-
homogeneous. We only consider SNP systems Π and Π that
are simple and semi-homogeneous, where their initial con-
figurations have one spike in the initial neuron only, and no
spike in every other neuron (as in Figure 1) in this work. We
make no restrictions on the values of the delays in a (rule
of a) neuron. The objective is to route or move the single
spike in the initial neuron through the system, towards the
output neuron, and eventually to the environment. Spikes
are routed via paths, where a path consists of at least two
neurons σi, σj such that (i, j) ∈ syn. Using paths, we can
have four basic routing constructs (referring to Figure 2):

1. sequential where, given at least two neurons σ1, σ2

such that σ2 spikes only after σ1 spikes and there is a
path from σ1 to σ2,

2. iteration, where at least two neurons spike multiple
(possibly an infinite) number of times and a loop is
formed e.g. adding a synapse (2, 1) which creates a
loop between σ1 and σ2,

3. split, where a spike from σ3 is sent to at least two
output neurons σ4 and σ5 and (3, 4), (3, 5) ∈ syn,

4. join, where spikes from at least two input neurons
σ6, σ7 are sent to a neuron σ8, where (6, 8), (7, 8) ∈
syn, so that σ8 produces a spike only after accumulat-
ing spikes from σ7 and σ8.

Notice that iteration routing can be formed by combining
the three other constructs. Also notice that if there exists
a sequential path from σi (with delay d1) to σj (with delay
d2) so that d1 < d2 and the number of spikes of the initial
neuron σ1 in C0 is n1 > 1, it is possible for some spikes to
be lost. The reason is that it is possible for σj to still be
closed when spikes from σi arrive. We avoid lost spikes by
considering SNP systems where the initial neuron has only
one spike. We say in this work that a Π simulates a Π if two
requirements are satisfied:

R′

1 : halting time of Π spikes is the same halting time of Π,

R′

2 : number of spikes in the environment of Π when Π halts
is equal to the number of spikes in the environment of
Π when Π halts.

3. MAIN RESULTS
We begin presenting our results with a fundamental idea on
sequential routing.

Lemma 1 (Sequential routing). Given an SNP sys-
tem with delay Π performing sequential routing, there exists
an SNP system without delay Π peforming sequential routing
that simulates Π.

Proof. We refer to Figure 3 for illustrations. Let

Π = (O, σ11, σ12, {(11, 12)}, 12) with σ1 = (1, a+/a → a)
and σ2 = (0, a+/a → a; d)

we then let

Π = (O, σ21, σ22-i, σ23, syn, 23) where 1 ≤ i ≤ d, syn =
{(21, 22-1), . . . , (21, 22-(d − 1)), (22-1, 22-d), . . . , (22-(d −
1), 22-d), (22-d, 23)}, σ21 = (1, a+/a → a), σ22-i = (0, a+/a →
a), σ23 = (0, (ad−1)+/ad−1 → a).

The additional d neurons, immediately after initial neuron
σ21 in Π, are used to multiply the single spike from σ21.
The additional neurons then send one spike each to σ22-d.
Neuron σ22-d accumulates d− 1 spikes, and consumes these,
one spike at a time and sending one spike every time to
σ23. This consumption of one spike every time step creates
a delay of d − 1 time steps. Due to the regular expression
of the rule in σ23, the neuron will have to accumulate d− 1
spikes before the rule is used. Once σ23 accumulates d − 1
spikes, it immediately sends one spike to the environment.
This spiking and halting occurs at time t+ d+1 for both Π
and Π (satisfying R′

1 and R′

2) if we let t be the time when
σ11 and σ21 spike.

We can repeatedly apply the previous construction if there
exist more than one neuron with a (rule having a) delay
in a sequential path as seen in Figure 4. It can be easily
shown that if there exists σi without delay in a sequential
path between σ11 and σ12, the time to halt for both Π1 and
Π1 still coincide. In particular, every additional σi having a
rule without a delay adds one time step to the halting time
of both Π and Π. Both R′

1 and R′

2 are still satisfied.



✗
✖

✔
✕

✗
✖

✔
✕

✗
✖

✔
✕

✗
✖

✔
✕

✗
✖

✔
✕

✗
✖

✔
✕
✗
✖

✔
✕

✲ ✲

�
��✒
✲

❅
❅❅❘

❅❅❘
✲

��✒

✲

❄

11

a
a+/a → a

12
a+/a → a; d

21

a
a+/a → a

22-1
a+/a → a

. . .

22-(d − 1)
a+/a → a

22-d

a+/a → a

23

(ad−1)+/ad−1 → a

Figure 3: Sequential routing: Π1 (top) with delay d,
and Π1 (bottom) simulating Π1.

A sample computation of Π1 and Π1 is shown in Table 1.
For sample computations of Π2 and Π2 we refer to Table 2.
From Lemma 1 we have the following observation.

Observation 1. If Π has more than one neuron with a

delay in a rule, the total additional neurons in Π is
m∑

i=1

di

where di is the delay of the rule in σi.

Steps Π1 Π1

t0 〈1/0, 0/0, 0〉 〈1, 0, 0, 0, 0, 0〉
t1 〈0/0, 1/0, 0〉 〈0, 1, 1, 0, 0, 0〉
t2 〈0/0, 0/3, 0〉 〈0, 0, 0, 2, 0, 0〉
t3 〈0/0, 0/2, 0〉 〈0, 0, 0, 0, 1, 0〉
t4 〈0/0, 0/1, 0〉 〈0, 0, 0, 0, 2, 0〉
t5 〈0/0, 0/0, 1〉 〈0, 0, 0, 0, 0, 1〉

Table 1: Sample computations of Π1 and Π1, d = 3.

Steps Π2 Π2

t0 〈1/0, 0/0, 0/0, 0〉 〈1, 0, 0, 0, 0, 0, 0, 0, 0〉
t1 〈0/0, 1/0, 0/0, 0〉 〈0, 1, 0, 0, 0, 0, 0, 0, 0〉
t2 〈0/0, 0/2, 0/0, 0〉 〈0, 0, 1, 0, 0, 0, 0, 0, 0〉
t3 〈0/0, 0/1, 0/0, 0〉 〈0, 0, 0, 1, 0, 0, 0, 0, 0〉
t4 〈0/0, 0/0, 1/0, 0〉 〈0, 0, 0, 0, 1, 1, 0, 0, 0〉
t5 〈0/0, 0/0, 0/3, 0〉 〈0, 0, 0, 0, 0, 0, 2, 0, 0〉
t6 〈0/0, 0/0, 0/2, 0〉 〈0, 0, 0, 0, 0, 0, 1, 1, 0〉
t7 〈0/0, 0/0, 0/1, 0〉 〈0, 0, 0, 0, 0, 0, 0, 2, 0〉
t8 〈0/0, 0/0, 0/0, 1〉 〈0, 0, 0, 0, 0, 0, 0, 0, 1〉

Table 2: Sample computations of Π2 and Π2, d1 = 2,
d2 = 3.

Lemma 2 (Iteration routing). Given an SNP sys-
tem with delay Π performing iteration routing, there exists
an SNP system without delay Π peforming iteration routing
that simulates Π.

Proof. We refer to Figure 5 for illustrations. Let

Π = (O, σ11, σ12, {(11, 12), (12, 11) }, 12) where σ11 = (1,
a+/a → a; d, σ2 = (0, a+/a → a)

we then let
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Figure 4: Sequential routing with multiple delays:
Π2 (top) with delays d1 and d2, and Π2 (bottom)
simulating Π2.

Π = (O, σ21, σ22-i, σ23, syn, 23) where σ21 = (1, a+/a → a),
σ22-i = (0, a+/a → a) for 1 ≤ i ≤ d, σ23 = (0, (ad−1)+/ad−1 →
a) and syn = {(21, 22-1), . . . , (21, 22-(d − 1)), (22-1, 22-d),
. . . , (22-(d− 1), 22-d), (22-d, 23), (23, 21)}, out = 23

The construction of Π uses the construction idea in Lemma
1 i.e. the neuron with a delay d in Π is replaced with d addi-
tional neurons in Π. In Figure 5 an infinite loop is created:
a spike starts at σ11 and it uses its rule at time t so that
the spike is sent to σ12 at time t+ d, then σ12 immediately
sends a spike back to σ11 (and the environment) at time
t+d+1, and so on and so forth. Similarly, σ21 sends a spike
to neurons σ22-1 to σ22-(d−1) at time t. At time t+ 1, σ22-d

accumulates d − 1 spikes from the d − 1 neurons from the
previous time step. The spikes in σ22-d are consumed and
then sent one at a time to σ23. At time t + d, σ23 accumu-
lates d− 1 spikes so that it sends one spike back to σ21 and
at the environment at time t + d + 1, coinciding with the
time of spiking of σ12. Thus, R

′

1 and R′

2 are satisfied.

Lemma 2 for iteration routing makes use of the construction
used in Lemma 1 for sequential routing. This construction
will again be used for the join and split routings as follows.
From Lemma 2 we have the following observation.

Observation 2. If the initial neuron of Π has a delay
and its halting time is t + d, we add a new initial neuron
σ1′ in Π with (1′, 1) ∈ syn so that Π halts at time t+ d+1.
We then add a new initial neuron similarly to Π and modify
its syn (following Lemma 1 construction) so that Π halts at
t+ d+ 1 instead, simulating Π.

Although the premise of Observation 2 is different from our
assumption in Section 2 that the initial neuron has no de-
lay, the observation provides a solution on how to approach
such a premise. For example, if σ11 has a delay instead
of σ23 in Π3, we add a new initial neuron to σ11′ and a



new synapse (11′, 11) ∈ syn in Π. For Π3, we modify it as
follows: add a new initial neuron σ21′ and σ21 is replaced
with d neurons (instead of σ22). The synapse set of Π is
changed to {(21′, 21-1), . . . , (21′, 21-(d−1)), (21-1, 21-d), . . .,
(21-(d−1), 21-d), (21-d, 22), (22, 21-1), . . . , (22, 21-(d−1))},
we remove σ23 and have σ22 as the output neuron instead.
Both Π3 and Π3 halt at the same time at t+ d+ 2.
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Figure 5: Iteration routing: Π3 (top) has a delay d
simulated by Π3 (bottom).

Lemma 3 (Join routing). Given an SNP system with
delay Π performing join routing, there exists an SNP system
without delay Π peforming join routing that simulates Π.

Proof. We refer to Figure 6 for illustrations. Let

Π = (O, σ11, σ12, σ13, {(11, 13), (12, 13)}, 13) where σ11 =
σ12 = (1, a+/a → a), σ13 = (0, (a2)+/a2 → a; d)

we then let

Π = (O, σ21, σ22, σ23-i, σ24, syn, 24) where 1 ≤ i ≤ d, σ11 =
σ22 = (1, a+/a → a), σ23-1 = . . . = σ23-(d−1) = (0, (a2)+/a2 →

a2), σ23-d = (0, (a2)+/a2 → a), syn = {(21, 23-1), . . . ,
(21, 23-(d− 1)), (22, 23-1), . . . , (22, 23-(d− 1)), (23-1, 23-d),
. . . , (23-(d− 1), 23-d), (23-d, 24)}.

For Π and Π we have as initial neurons σ11, σ12 and σ21, σ22

respectively. Using the construction in Lemma 1, Π has d
additional neurons corresponding to σ13 in Π. Let time t be
the time when the initial neurons spike. At time t, neurons
σ23-1 to σ23-(d−1) have two spikes each, so that in total, Π
at this time has 2(d− 1) spikes. At the next time step t+1,
the d− 1 neurons send two spikes each to σ23-d so that σ23-d

accumulates 2(d−1) spikes. Since σ23-d consumes two spikes
every time and it has 2(d − 1) spikes, σ23-d will take d − 1
time steps to consume all of its 2(d− 1) spikes. Every time
σ23-d spikes, it sends only one spike to σ24. At time t+d, σ24

has accumulated d − 1 spikes from σ23-d so that σ24 sends
one spike to the environment and halts at t + d + 1. This
time step coincides with the halting time of σ13 in Π, sending
one spike to the environment. We therefore satisfy R′

1 and
R′

2.

A sample computation of Π4 and Π4 is shown in Table 3.
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a+/a → a

12

a

a+/a → a 13

(a2)+/a2 → a; d

22

a

a+/a → a

24

(ad−1)+/ad−1
→ a

21

a

a+/a → a

23-1

(a2)+/a2
→ a2

. . .

23-(d − 1)

(a2)+/a2
→ a2

23-d

(a2)+/a2
→ a

Figure 6: Join routing : Π4 (top) has delay d simu-
lated by Π4 (bottom).

Steps Π4 Π4

t0 〈1/0, 1/0, 0/0, 0〉 〈1, 1, 0, 0, 0, 0, 0〉
t1 〈0/0, 0/0, 2/0, 0〉 〈0, 0, 2, 2, 0, 0, 0〉
t2 〈0/0, 0/0, 0/3, 0〉 〈0, 0, 0, 0, 4, 0, 0〉
t3 〈0/0, 0/0, 0/2, 0〉 〈0, 0, 0, 0, 2, 1, 0〉
t4 〈0/0, 0/0, 0/1, 0〉 〈0, 0, 0, 0, 0, 2, 0〉
t5 〈0/0, 0/0, 0/0, 1〉 〈0, 0, 0, 0, 0, 0, 1〉

Table 3: Sample computations of Π4 and Π4, d = 3.

Lemma 4 (Split routing). Given an SNP system with
delay Π performing split routing, there exists an SNP system
without delay Π peforming split routing that simulates Π.

Proof. We refer back to the split routing in Figure 2.
Notice that a split routing can be thought of as two separate
paths, either from σ3 to σ4 or σ3 to σ5. We let t be the time
that σ3 spikes and modify the split routing in Figure 2 as
follows and let it be

Π = (O, σ3, σ4, σ5, σo, syn, o) where σ3 = (1, a+/a → a),
σ5 = (0, a+/a → a), σ4 = (0, a+/a → a; d), syn = {(3, 4),
(3, 5), (4, o), (5, o)}.

We arbitrarily chose σ4 to have a delay instead of σ5 in this
case. Next we let

Π = (O, σ3′ , σ4′-i, σ5′ , σo, syn, o) where 1 ≤ i ≤ d, σ3′ =
(1, a+/a → a), σ4′-1 = . . . = σ4′-(d−1) = σ5′ = (0, a+/a →

a), σ4′-d = (0, (ad−1)+/ad−1 → a), syn = {(3′, 4′-1), . . . ,
(3′, 4′-(d−1)), (3′, 5′), (4′-1, 4′-d), . . . , (4′-(d−1), 4′-d), (4′-d, o),
(5, o)}.

Since σ4 has delay d, we simply follow Lemma 1 and add d
neurons in Π corresponding to σ4. Let t be the time when σ3

and σ3′ spike. The time that σo spikes the second time (since
the spike from σ5 makes σo spike the first time, followed by
the delayed spike from σ4) i.e. the halting time, is t+ d+ 1
and the environment receives two spikes in total. This time
coincides with the halting time of Π, which also sends two
spikes to its environment. R′

1 and R′

2 are both satisfied for
this case.



In the case where both σ4 and σ5 have delays d4 and d5
respectively, then following Lemma 1, Π has d4 + d5 addi-
tional neurons. For both systems, halting time is t+dmax+1
where dmax = max(d4, d5), and two spikes are sent to the
environment, satisfying R′

1 and R′

2.

We can now have the following theorem.

Theorem 1. Given an SNP system Π with delays con-
taining one or more of the following routings: sequential,
iteration, join, split, there exists an SNP system Π that sim-
ulates Π.

Proof. Proof follows from Lemma 1, 2, 3, 4.

Notice that Observation 1 and 2 hold for all four routing
constructs.

4. FINAL REMARKS
We have presented an alternative construction of a Π that
simulates a given Π, improving the previous work so that
we use only one initial spike for both systems. The halting
time of both systems also exactly coincide with one another.
The trade off is that there is an “explosion” of neurons in Π
for every delay in Π i.e. we add di neurons in Π for every σi

that has a delay.

For our further work, we will consider nondeterministic SNP
systems i.e. neurons having more than one applicable rule,
since we only consider deterministic systems in this work.
Minimization of the number of neurons of a Π simulating a Π
is also desirable, including providing bounds to the number
of neurons, spikes, and types of spiking rules. We will also
use the matrix representation of SNP systems without delays
from [15] and then use massively parallel processors such as
graphics processing units to create simulations of computa-
tions as was done in [2]. Lastly, certain results and appli-
cations of SNP systems that use delays can be converted to
SNP systems without delays e.g. generating automatic se-
quences as in [4], and performing arithmetic operations as
in [16], among others.
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Rozenberg, G., Salomaa, A. (eds) Membrane
computing, international workshop, WMC7, revised,
selected, and invited papers, Leiden, The Netherlands.
LNCS, vol 4361. Springer, Berlin, pp 123-134, (2006)

[2] Cabarle, F.G.C., Adorna, H.N., Mart́ınez-del-Amor,
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