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Abstract. Autonomous vehicles are equipped with complimentary sensors to perceive the environment accurately. Deep learning
models have proven to be the most effective approach for computer vision problems. Therefore, in autonomous driving, it is
essential to design reliable networks to fuse data from different sensors. In this work, we develop a novel data fusion architecture
using camera and LiDAR data for object detection in autonomous driving. Given the sparsity of LIDAR data, developing multi-
modal fusion models is a challenging task. Our proposal integrates an efficient LIDAR sparse-to-dense completion network into
the pipeline of object detection models, achieving a more robust performance at different times of the day. The Waymo Open
Dataset has been used for the experimental study, which is the most diverse detection benchmark in terms of weather and lighting
conditions. The depth completion network is trained with the KITTI depth dataset, and transfer learning is used to obtain dense
maps on Waymo. With the enhanced LiDAR data and the camera images, we explore early and middle fusion approaches using
popular object detection models. The proposed data fusion network provides a significant improvement compared to single-modal
detection at all times of the day, and outperforms previous approaches that upsample depth maps with classical image processing
algorithms. Our multi-modal and multi-source approach achieves a 1.5, 7.5, and 2.1 mean AP increase at day, night, and dawn/dusk,
respectively, using four different object detection meta-architectures.
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1. Introduction

Autonomous driving is attracting growing attention
due to its potential to revolutionize mobility, improve
road safety, and reduce environmental pollution. Al-
though significant progress in computer vision has been
achieved over the last few years [1-3], developing re-
liable perception systems for autonomous vehicles re-
mains challenging [4-6]. Among the problems to be
addressed, object detection is an essential perception
task that has received considerable interest in the litera-
ture. Recently, many self-driving car companies such
as Waymo Open Dataset [7], nuScenes [8], or Pan-
daSet [9] have publicly released high-quality detection

*Corresponding author: Manuel Carranza-Garcia, Division of
Computer Science, University of Sevilla, Sevilla, Spain. E-mail:
mcarranzag @us.es.

ISSN 1069-2509/$35.00 © 2022 — IOS Press. All rights reserved.

datasets. This increase in the amount and quality of data
has allowed researchers to push the state-of-the-art in
this field, with deep learning-based models as the main
approach. However, the area of data fusion for object
detection has not yet been explored in depth. What,
how, and when to fuse remains an important challenge
to be studied [10].

Self-driving vehicles need to be accurate and robust
enough to operate safely in complex scenarios, such
as mixed urban traffic or adverse weather conditions.
Therefore, these modern vehicles are equipped with
multiple sensors to better perceive the environment,
such as red-green-blue (RGB) cameras, light detection
and ranging (LiDAR), or radar. Since each type of sen-
sor has its own limitations, multiple sensing modalities
can be fused to exploit their complementary properties.
For instance, RGB cameras provide high-resolution se-
mantic information but cannot provide optimal perfor-
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mance with poor illumination at night. LIDAR devices
have been used in several areas of knowledge, such as
work safety [11], health [12,13] or construction [14].
Their depth sensors can provide useful geometric infor-
mation even at night, but they generate low-resolution
sparse point clouds [15]. However, how to efficiently
combine multi-sensor data to leverage their advantages
for object detection remains an open question. Further-
more, the real-time requirements of this context increase
the complexity of multi-modal approaches, which have
received considerably less attention than uni-modal pro-
posals. Therefore, there is a need for more studies on
data fusion neural networks to increase the reliability
of real-time object detection for self-driving vehicles.

As supported by previous studies in the literature,
LiDAR information is essential to detect objects in sit-
uations of low illumination, such as nighttime [15].
Therefore, in this work, our aim is to design a better
RGB and LiDAR fusion network to enhance the perfor-
mance of the 2D object detection task for autonomous
driving. We propose a novel data fusion method, in-
vestigating how to efficiently integrate the depth in-
formation into existing deep learning architectures that
have been traditionally used for RGB data. For the ex-
perimental study, the Waymo dataset is used, which is
the most extensive and diverse self-driving dataset in
terms of geographic coverage and weather conditions.
This dataset provides a unique opportunity to explore
the performance of multi-modal detection under differ-
ent illumination situations. To the best of our knowl-
edge, this work is the first that studies RGB-D 2D ob-
ject detection using the large-scale Waymo dataset. The
presented study can be divided into two fundamental
parts, the LIiDAR depth completion method and the data
fusion network for 2D object detection.

The sparse nature of LiDAR data presents several
challenges since their projection into the 2D space
leaves many pixels without information. This work pro-
poses a deep learning-based depth completion model,
combining sparse depth maps with camera images
to obtain dense depth maps in a supervised manner.
This encoder-decoder depth completion network is fast,
lightweight, and can be integrated as a module into
the pipeline of traditional 2D detection architectures.
The network is trained using the KITTI dataset [16],
which is the only existing autonomous driving dataset
with labeled dense depth maps. Then, we use transfer
learning to directly infer the Waymo dataset’s depth
maps with no additional supervision. The experimental
study compares our proposal to the usual approach of
related studies, which is to upsample the depth maps

using classical image processing algorithms such as bi-
lateral filtering [17]. These algorithms only use sparse
projections for the depth completion task and often fail
to preserve the structure of objects due to the lack of se-
mantic cues. In contrast, our depth completion network
uses RGB guidance to better reconstruct the scene.

With the obtained dense LiDAR depth maps, we per-
form a thorough study of data fusion at different stages
using popular detection networks such as Faster R-
CNN [18], ATSS [19], RetinaNet [20], or YOLO [21].
We explore early and mid-fusion approaches and com-
pare the dual-modal and uni-modal detection perfor-
mance. The diversity of the Waymo dataset allows for
examining the influence of combining RGB images
with accurate depth information under three different
lighting conditions: day, night, and dawn/dusk. The
analysis also includes the proposed models’ efficiency
(computation time and memory cost), given that real-
time performance is essential in this context. This multi-
source and multi-modal study is expected to contribute
to our understanding of how to effectively fuse depth
with RGB camera data with a small computational over-
head for 2D object detection.

In summary, the main contributions of this work are
the following:

— An efficient LiDAR sparse-to-dense completion
network that can be plugged into existing object
detectors to increase the robustness of detection
under all lighting conditions.

— A novel data fusion (RGB+LiDAR) object detec-
tion architecture that significantly improves the
performance over the large-scale Waymo Open
Dataset by using transfer learning from KITTI for
LiDAR depth completion.

— A thorough analysis of the influence of the qual-
ity of LiDAR depth maps on the object detection
downstream task with different illumination con-
ditions (day, night, dawn/dusk).

The rest of the paper is organized as follows: Sec-
tion 2 reviews relevant related work; Section 3 describes
the materials and methods proposed in the study; Sec-
tion 4 presents the results obtained from the experi-
mental study and discusses the main findings; Section 5
presents the conclusions and potential future work.

2. Related work
2.1. Deep learning for 2D object detection

Object detection recognizes and localizes objects be-
longing to different classes in an image. As for many
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computer vision tasks, deep learning models are cur-
rently state-of-the-art for this task. There are two main
approaches in terms of 2D object detection networks:
two-stage, such as Faster R-CNN [18], or one-stage
models, such as RetinaNet [20] or YOLO [21].

In general, two-stage architectures run slower but
achieve higher accuracy than one-stage models. Two-
stage architectures divide the process into a category-
agnostic region proposal stage and the classification
and refinement stage. In contrast, one-stage detectors
directly infer category-specific box candidates. Both
approaches share a common structure: a convolutional
backbone as a feature extractor, such as ResNet [22],
and a dual prediction head for regression and classi-
fication. Commonly, these models use Feature Pyra-
mid Networks (FPN) in the feature extractor to detect
objects at multiple scales [23].

The mentioned models rely on predefined reference
boxes, known as anchors or fiducial points, to generate
detections. However, other approaches have proposed
anchor-free architectures. For instance, FCOS [24] and
CenterNet [25] directly regress the bounding box from
key points, such as the object’s center. Another recent
trend in the literature is to combine convolutional fea-
ture extractors with attention-based layers, as seen in
Transformer networks [26].

In the object detection field, novel proposals are usu=
ally validated using the general-purpose COCO bench-
mark [27], and often ignore the computational effi-
ciency of the models. Recent performance improve-
ments have been achieved at the cost of introducing
significantly more computational overhead. For exam-
ple, using more advanced feature extractors such as
ResNeXt [28], cascading detectors as in ‘Cascade R-
CNN [29], or with ensembles [30]. However, the au-
tonomous driving field has specific requirements in
terms of high latency and limited computational re-
sources. Therefore, top-performing models.in COCO
may not be suitable for this real-time application.

Nevertheless, with the increase in data, there have
been more studies on camera-only object detection for
autonomous driving. In a previous paper, we performed
an experimental review of state-of-the-art detectors over
the Waymo Open Dataset, analyzing the trade-off be-
tween accuracy and speed [31]. Several works have
proposed anchor optimization methodologies consid-
ering the perspective of the vehicle’s cameras [32,33].
There have also been efforts to improve vehicle de-
tection in adverse weather with visibility enhancement
techniques [34]. Other studies have focused on specifi-
cally improving the detection of pedestrians [35], small
objects [36], or traffic signs [37].

2.2. LiDAR depth completion

Depth completion is the problem of inferring a dense
depth map of a 3D scene given an image and a sparse
depth map from sensors, such as LiDAR. To date, re-
search on depth completion in the autonomous driving
field has focused primarily on KITTI, which is the only
labeled outdoor dataset for this task [16].

Existing studies can be classified into depth-only
and multiple-input methods that include RGB features
in the pipeline. Among depth-only proposals, some
defend using classical image processing techniques,
such as bilateral filtering, to solve this task [17]. In
contrast, others introduce sparse invariant convolutions
to upsample the raw LiDAR map [38]. Recent works
have proposed light-weight networks using depthwise
convolutions [39]. However, these methods are less
accurate due to the sparse nature of the data and the
lack of semantic cues [40].

Therefore, recent studies have developed more ad-
vanced deep learning models that combine both in-
puts and achieve superior performance. Several works
have ‘developed pseudo-depth completion networks
guided by RGB features, fusing information at mul-
tiple stages [41,42]. Furthermore, given the lack of
dense ground truth depth labels, a novel self-supervised
training framework was presented in [43]. However, it
achieves significantly lower precision than the super-
vised network. A more accurate approach proposed a
convolutional network with depth-normal constraints
and recurrent refinement stages for noise reduction [44].
More recently, Tang et al. developed a guided network
to predict kernels for depth feature extraction [45]. Hu
et al. designed a two-stage encoder-decoder network
with geometric convolution, which is more efficient
than previous models [46].

All these works are focused solely on the depth com-
pletion task using the KITTI dataset. These studies in-
spire our proposal, which is more focused on building a
faster network that introduces a small overhead on the
downstream object detection task, which is the problem
addressed in this paper.

2.3. Data fusion for 2D object detection in
autonomous driving

Given the limitations of individual sensors, multi-
modal approaches for object detection have gained
greater importance over the past years. A detailed re-
view of existing multi-modal datasets for autonomous
driving is provided in [10]. Premebida et al. carried out
one of the first studies on the KITTI dataset using RGB
and dense LiDAR fusion for pedestrian detection [47].
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This work inspired several studies searching for optimal
sensor data fusion architectures when using detectors
originally designed for camera inputs [48,49].

There have also been efforts to develop efficient data
fusion approaches with YOLO models, upsampling the
sparse depth maps through bilateral filtering [50,51].
Other works have focused on evaluating the suitabil-
ity of data fusion when simulating low-light environ-
ments [15] or adverse weather conditions [52]. In this
case, the dense depth maps are obtained by simple in-
terpolation, averaging values within a small neighbor-
hood. More recent studies using the KITTI dataset have
proposed combining bilateral filtering and trigonomet-
ric interpolation to upsample the depth channel before
the fusion layer [53]. Furthermore, Geng et al. explored
several dual-modal architectures for segmentation on
KITTI, with dense depth maps also obtained using bi-
lateral filtering [54].

The fact that Waymo provides synchronized LiDAR
to camera projections has opened an interesting re-
search area that a few studies have explored for vehi-
cle [55] and pedestrian detection [56]. The first explores
early fusion using an RGD approach in which the blue
channel is replaced with sparse depth filled with zeros.
Similarly, the latter concatenates RGB with raw sparse
depth values, exploring early fusion on a YOLO-based
detector with the Waymo dataset.

In all these studies, the sparse LiDAR depth maps
are either kept raw or upsampled using morphological
operations such as interpolation or bilateral filtering. In
contrast, our proposal designs a supervised deep neural
network to produce high-quality dense depth maps.
The novelty of our approach is the introduction of an
efficient sparse-to-dense depth completion network into
the object detection pipeline. Furthermore, most 2D
object detection studies in the sensor fusion area use
KITTI. This dataset has a relatively low diversity since
it only has recordings during daytime and sunny days.
Our work studies object detection over the large-scale
Waymo dataset, which has a much wider diversity in
terms of weather and lighting conditions.

3. Materials and methods

This section first presents the autonomous driving
datasets, followed by the LiDAR preprocessing method
and the proposed data fusion architecture.

3.1. Autonomous driving datasets

This study uses two datasets for different purposes:

the Waymo Open Dataset for the object detection task
and the KITTI dataset for training the supervised Li-
DAR depth completion network.

3.1.1. Waymo 2D object detection dataset

The main goal of this study is to improve the perfor-
mance of the 2D object detection task in self-driving
vehicles. For this purpose, the Waymo Open Dataset has
been selected [7]. This large-scale dataset contains more
than a thousand driving scenes recorded across differ-
ent urban areas (Phoenix, San Francisco, and Mountain
View). It also includes recordings at different times of
the day (day, night, and dawn/dusk) and weather con-
ditions. This diversity of lighting situations is key for
our study on the importance of including LiDAR depth
information in the detection pipeline.

The detection task is a multi-class problem with three
types of objects: vehicles, pedestrians, and cyclists. The
vehicle is equipped with five cameras, three front with
aresolution of 1920 x 1280 and two lateral of 1920
x 886. The images obtained from all cameras are con-
sidered a single dataset for evaluation purposes. Fur-
thermore, this dataset offers synchronized LiDAR to
camera projections, providing sparse depth maps that
can be useful for detection under complex environmen-
tal conditions. Given the different perspectives of the
cameras, the LiDAR projections are provided for each
one of them. Figure 1 presents an example image of
the dataset, including the sparse LiDAR projections.
The mean of pixels with projected depth values in the
dataset is less than 1%, which illustrates the sparsity of
the LiDAR data.

The complete dataset contains over 1,150 driving
scenes that capture synchronized LiDAR and camera
data for 20 seconds, resulting in around 200 frames per
scene. For computational reasons, we sample the dataset
every ten frames. The training and validation division
is provided directly by Waymo when downloading the
dataset.

Of 99,190 images, about 75% are used for training
and 25% for testing. Among the 950,080 labeled objects
in the dataset, 78.07% are vehicles, 21.29% are pedes-
trians, and 0.64% are cyclists. As can be seen, there is
a high imbalance between the number of vehicle in-
stances and the other two classes, which is particularly
severe for cyclists.

3.1.2. KITTI depth completion dataset

In order to obtain dense depth maps from sparse Li-
DAR projections with a supervised neural network, we
need a fully labeled dataset to train a model for this task.
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(b)

Fig. 1. Waymo 2D object detection dataset. (a) RGB camera image
with object bounding boxes; (b) RGB camera image with liDAR
sparse projections.

(b)

Fig. 2. KITTI depth completion dataset. (a) RGB camera image with
LiDAR sparse projections; (b) Dense depth ground truth map.

KITTT is the only dataset with dense LiDAR depth an-
notated maps for autonomous driving [16]. It provides

projections of 3D LiDAR points to the correspond-
ing image frames, with about 5% of valid pixels. The
ground truth dense maps have about 16% of pixels with
depth values. The dataset contains over 90,000 images
with a resolution of 1216 x 352. Figure 2 shows an ex-
ample scene of this dataset, with the sparse projections
and the dense depth map that has to be predicted.

3.2. LiDAR depth completion

This section describes the proposed depth completion
method, which aims to provide better performance than
traditional image processing algorithms in the down-
stream multi-modal object detection task. Our objec-
tive is to develop a multi-task network in which color
and sparse depth maps produce dense depth maps, and
that enhanced LiDAR information is again fused with
RGB images for object detection. Therefore, our novel
proposal focuses on building an efficient LIDAR depth
completion network that can be easily integrated into
an object detection architecture. Given the importance
of LiDAR data to detect objects under adverse weather
and illumination conditions, our goal is to obtain higher
quality depth maps and enhance the detection perfor-
mance.

As stated in Section 3.1.1, the recorded LiDAR data
in the Waymo dataset is very sparse, with less than
1% of pixels having depth information. Furthermore,
projections are often irregular and noisy around object
boundaries. Given these issues, directly fusing sparse
depth maps with RGB images may degrade the detec-
tion performance. Moreover, depth-only upsampling
techniques such as bilateral filtering adopted in related
studies fail to preserve the structure of many objects.
Therefore, an encoder-decoder neural network has been
built to solve the upsampling of a sparse depth map in a
supervised manner. The proposal is inspired by the net-
work designed in [46], but is simpler and more focused
on efficiency. It adopts a single branch scheme to make
it more suitable for this real-time application.

Figure 3 presents the proposed depth completion net-
work (LDCNet) with a convolutional encoder-decoder
architecture. The model inputs are the sparse LIDAR
projections and the RGB camera image. Both inputs
are stacked along their depth before the first layer. The
network uses geometric convolutions to encode 3D ge-
ometric information by appending a 3D position map
to the layer’s input [46]. Before applying the stan-
dard convolution operation, three channels with coor-
dinate information are concatenated to the input fea-
ture map [57]. These channels represent a position map



246 M. Carranza-Garcia et al. / Object detection using depth completion and camera-LiDAR fusion for autonomous driving

Encoder - Geometric Convolution

- K=3,8=2
> K=3, S=i

Decoder - Deconvolution

= K=5, S=1

— K=5 5=2

RGB image

£

=
£
Q
o
o]
[

258

131
67

Y]

SparseLDAR 4 35 i

o
@
£
=
=1
%=
a
=
a

Fig. 3. Our proposed LiDAR Depth Completion network (LDCNet) that outputs a dense depth map combining a camera image and sparse LIDAR
projections. The numbers below the maps indicate the number of channels. K and S are the kernel size and stride in the convolution, respectively.

with hard-coded coordinates in the z, ¥, and z-axis as
follows:

(i—i)Z , _(J—jo)Z
fo fy
where (4, j) are the pixel coordinates, and D are depth
values obtained by pooling the LiDAR sparse projec-
tions. The rest of the values indicate the positional con-
figuration of the camera. The values iy and jj are the
optical centers and f,, and f,, refer to the focal length.

In the proposed LDCNet, the encoder contains one
conventional convolutional block and five geometric
convolutional blocks. These blocks have residual con-
nections and subsequently reduce the spatial dimen-
sions of the feature maps. Each convolutional operation
is followed by batch normalization and ReLU activa-
tion. The decoder has five deconvolution layers and one
convolutional block. Convolutional kernels of size 3 x
3 are used in the encoder, which is the usual dimen-
sion in ResNet architectures [31]. The decoder uses
a slightly larger kernel of 5 x 5 to better recover the
structure of the objects in the upsampling process. The
spatial upsampling and downsampling are achieved us-
ing convolutions with a stride of two. Residual connec-
tions are employed within the encoder and between the
encoder and decoder symmetrical maps. For training
the model, the loss is the mean squared distance be-
tween the predicted depth values and the actual ground
truth. The calculation only considers valid pixels with
values different from zero.

As explained in the next section, the obtained dense
depth maps are fused with RGB images for object de-
tection. With the proposed LDCNet, we carry out an
inductive transfer learning setting [58]. Consider depth
completion the source task with KITTI as the source do-
main, and object detection the target task with Waymo
as the target domain. The aim is to achieve higher per-
formance on object detection on Waymo by transferring
knowledge from a depth completion model trained on
another dataset. The LDCNet is trained using the KITTI

X = . Z=D (1)

depth completion dataset, and it is directly used to ob-
tain depth maps for object detection with the Waymo
dataset without additional supervision. The fully con-
volutional architecture allows for this zero-shot transfer
learning, even though the images from both datasets
have different dimensions and aspect ratios, 1216 x
352 in KITTI versus 1920 x 1280 in Waymo. However,
the geometric convolutional layers of LDCNet have to
be adapted. The values of the coordinates in the position
maps change according to the new dimensions.

Given the depth completion literature analysis pro-
vided in Section 2.3, we have designed a robust ex-
perimental framework to compare our proposal with
existing methods. As a baseline, we study the perfor-
mance when fusing raw sparse LiDAR depth projec-
tions with camera data, which is the common method-
ology followed in related studies that use the Waymo
dataset [55,56]. Furthermore, our method is compared
to the classical image processing algorithm (CIPA) pro-
posed in [17]. CIPA only uses LiDAR data and con-
catenates a series of image processing operations to fill
empty pixels, such as inversion, dilation, hole filling,
bilateral filtering, and median/gaussian blurring. These
operations are the usual approach to obtain upsampled
depth maps in studies proposing RGB and LiDAR fu-
sion for 2D object detection [50-54].

3.3. Data fusion for object detection

The next step is to fuse the enhanced LiDAR depth
map with camera images to perform object detection.

RGB images provide important semantic cues, but
LiDAR sensors are not affected by adverse lighting con-
ditions. By fusing high-resolution color and depth in-
formation, we aim to exploit the complementary prop-
erties of both modalities and improve detection accu-
racy. For this purpose, we propose a novel data fu-
sion method on top of state-of-the-art object detec-
tion meta-architectures such as Faster R-CNN [18],
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Fig. 4. Different data fusion approaches for object detection explored in this study. These examples illustrate the data fusion process in the
single-stage RetinaNet detector. (a) Early fusion architecture; (b) Middle fusion architecture.

ATSS [19], RetinaNet [20] or YOLOF [21]. In order
to prove the effectiveness of our proposal, the study
includes four architectures with diverse approaches
and different speed/accuracy trade-offs. Faster R-CNN
is a two-stage detector, while ATSS, RetinaNet, and
YOLOF are single-stage. Furthermore, Faster R-CNN,
ATSS, and RetinaNet employ feature pyramid networks
(FPN) to obtain multi-scale features for detection. In
contrast, YOLOF proposes using one-level features to
improve efficiency. ATSS is based on‘RetinaNet, but
with an adaptive training sample selection.

Despite their differences, the general pipeline of all
these detectors has two fundamental parts: the feature
extraction network and the detection head. Given this
structure, there are several possibilities to carry out
the multi-sensor fusion. The stage at which LiDAR
and RGB information is fused can significantly affect
the efficiency of the network and the detection perfor-
mance. Figure 4 illustrates how the proposed LDCNet
can be integrated into state-of-the-art object detection
meta-architectures to fuse data from both modalities.
It presents the data fusion process using an efficient
one-stage RetinaNet model with ResNet-50 and a single
FPN neck.

Following previous studies [54], we explore early
and mid-fusion methodologies in the backbone of the

detection architecture. The novelty of our approach is
the addition of a depth completion network that en-
hances the quality of the LiDAR data. Therefore, as
seen in Fig. 4, the data fusion happens in two different
parts of the network, in the LDCNet and the feature
extractor of the detector.

The proposed fusion layer comprises a 1 x 1 2D
convolution followed by the ReLLU activation function.
Using 1 x 1 convolutions is less expensive than larger
kernels, hence more suitable for fusing data efficiently.
Before the convolutional layer, the feature maps from
both modalities are combined by concatenation.

Formally, feature maps are tridimensional matrices.
Given two feature maps A and B of size W x H x
R and W x H x D, respectively. Denote (C) as their
concatenation along the third dimension (depth), the
resulting feature maps C' can be defined as:

C=A0©B
where
Cijk = 2)

ayr 1<ESRIS<I<KWILKi<H
bijr R<ESKR+D,1I<K<i<WI1<j<H
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In particular, the RGB input f{ is a tridimensional
matrix of size W x H x 3, and the LiDAR input fOD
is a matrix of size W x H x 1. The concatenation
of both feature maps is a matrix of size W x H X
4. In general, we denote the tridimensional matrices
[ and fP as the feature maps of RGB and LiDAR
modalities, respectively, in the [*" layer of the network.
Mathematically, the proposed fusion operation & can
be expressed as follows:

fii=fo P =6 (o ) 3)

The feature maps f;, are obtained applying the op-
eration (G; on the concatenation of RGB and LiDAR
features from layer [.

In general, G () is the feature transformation at layer
[ using 1 x 1 convolution and the ReLU layer. Consider
the feature maps f;41 of size W x H X N, and f; of size
W x H x M. The elements of f; are neurons denoted
asa’’,withe=1..W,y=1...H,z=1...M.
The operator G; calculates the values of the neurons of
fi+1 depending on the neurons of f; as follows:

M
ay¥; = ReLU (Z wia™ + bf)

m=1

Ve=1.. W, Vy=1...H, Vz=1...N (4)

where w; stands for the weight in the convolutional
kernel, and b7 is the bias.

In this work, we study the data fusion at two differ-
ent stages in the detection network, early and middle.
In the early fusion approach, the depth map obtained
from LDCNet and the RGB image are stacked along
their depth, as can be observed in Fig. 4. Those four
channels pass through the fusion layer that combines
both modalities and generates three channels that are
the input of the detection network. The feature extrac-
tion backbone (ResNet with or without FPN) obtains
features from the fused map, and the detection head
generates the bounding-box predictions: Early fusion
can jointly process the information from both modali-
ties, saving computation time and memory. However,
this scheme is more sensitive to the quality of the input
data.

Given an object detection network with L layers in
the feature extraction backbone, the early fusion ap-
proach can be described as:

fi1 = CL(Craa(..CCL(fFF @ 1)) 5

where f{* and fP are the RGB and LiDAR raw in-
puts, respectively. C; is any convolutional feature trans-
formation applied in layer [ of the backbone network
(ResNet and FPN), with [ € [1,2,..., L].

In contrast, middle fusion allows the network to learn
feature representations of both modalities and fuse them
at intermediate layers. This approach is less efficient
than early fusion because the feature extractor runs for
both modalities separately. As can be seen in Fig. 4b,
two independent backbones process the RGB image
and the depth map from LDCNet. Note that the depth
map channels are increased from one to three using a 1
% 1 convolution before being fed to the ResNet. In this
case, the data fusion happens in the multi-scale feature
maps obtained from the feature pyramid network of
both branches. The feature maps with the same spa-
tial dimensions are concatenated along their depth and
fused using the same fusion layer as in early fusion (1
X 1 convolution and ReLU). Finally, the fused features
are used to predict the bounding boxes.

With the same premises mentioned before, the middle
fusion process is formulated in Eq. (6). Denote [* as the
intermediate layer where features are fused, with [* €
[2,...5L—1]:

fE=CECE (.. Cf(f)
fE=CR(CR_i(...cP ()
fie1 =Cr(Cr_1(...Crp1(fF® £2)) (6)

It is important to mention the difference between the
selected meta-architectures in the middle fusion case.
Figure 4b illustrates the data fusion in the single-stage
RetinaNet architecture. In the two-stage Faster R-CNN
detector, the process is the same except that the fu-
sion happens at the region proposal network, while the
second-stage network remains unmodified. In contrast,
YOLOF does not use feature pyramid networks, and
only one fusion operation happens at the single-scale
feature map.

3.4. Implementation details

The code implemented for this study uses the Py-
Torch MMDetection toolbox [59] and is publicly avail-
able at [60]. Except for the additional layers required
for fusing RGB and LiDAR data, the rest of the train-
ing hyper-parameters are consistent for all experiments
and follow the original implementation provided in
the MMDetection repository. Given that this real-time
application requires efficient models, all experiments
use the ResNet-50 backbone network. All models are
trained with mixed-precision using the default 1 x
learning rate schedule, 12 epochs with a learning rate
decay of 1/10 at epochs 8 and 11. The SGD optimizer
is used with learning momentum 0.9 and weight de-
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cay le-4. This training configuration is recommended
in popular object detection repositories and many re-
lated studies [61]. The batch size is 4, split across two
NVIDIA RTX 2080Ti 12 GB GPUs. Scale augmenta-
tion is not applied during training, only random hori-
zontal flip. With this setup, training the largest model
(Faster R-CNN middle fusion) takes about two days.

The LiDAR depth completion network is separately
trained, and the frozen weights are used for inference
inside the object detection pipeline. The proposed LD-
CNet is trained for 25 epochs using the KITTI dataset,
with a batch size of 4. This training uses the Adam
optimizer with an initial learning rate of 0.001 and ex-
ponential decay.

4. Results and discussion
4.1. Experimental setup and evaluation metrics

Firstly, this section presents the experimental study
carried out for the design of the sparse-to-dense depth
completion network using the KITTI dataset. The per-
formance of our proposed LDCNet is compared to other
state-of-the-art models, and the sensitivity analysis to
determine its architecture is reported. For the depth
completion problem on KITTI, the evaluation metric is
the root mean squared error (RMSE) of the distances
between the predicted and actual depth of valid pixels.

After analyzing the depth completion task, we
present the results obtained on the 2D object detection
task using multi-modal data with the Waymo dataset.
The average precision (AP) evaluates the detection ac-
curacy. The AP metric computes the area under the
precision-recall curve using numerical integration, as
shown in Eq. (7). Given N recall (r) thresholds, the cal-
culation is the sum of the precision (p) at every thresh-
old k£ multiplied by the change in recall Ar (k).

1 N
AP = / p(r)dr = p(k)Ar(k) (7)
0 k=1

For calculating the precision-recall curve, the inter-
section-over-union (IoU) is used to determine whether a
prediction is a true positive or a false positive. The IoU
is the area of overlap between a ground truth box and
a predicted box. All detections matching an object box
with IoU above a certain threshold are considered true
positives, and false positives otherwise. In the Waymo
dataset, the required IoU is 0.7 for vehicles and 0.5 for
pedestrians and cyclists [7].

Table 1
Sensitivity analysis carried out for the design of the LDCNet using
the KITTI depth completion validation set

N. blocks Geom. Conv. RMSE (mm) Inf. time (ms)
3 893.9 3.0
3 v 855.6 32
5 995.6 5.0
5 v 826.3 5.1
7 981.2 5.6
7 v 870.8 6.7

For the analysis of the experimental study, the
Waymo dataset is divided into three subsets depending
on the lighting conditions: day, night, and dawn/dusk.
First, we evaluate the two different data fusion method-
ologies (early and mid-fusion) on all four detection ar-
chitectures. Second, we analyze the effect of the quality
of LiDAR depth maps on the detection performance
and compare them against single-modal detection using
only RGB images. Then, we study the difference in ac-
curacy when using sparse depth maps, upsampled maps
obtained through image processing algorithms, or the
dense depth maps obtained from LDCNet. Finally, we
evaluate the efficiency of all the studied models, both
in terms of speed and memory requirements.

4.2. LiDAR depth completion

The first step of our study is the design of the depth
completion network for enhancing the sparse LIDAR
maps. As stated in Section 3.2, the LDCNet is trained on
the KITTI depth completion dataset, and then transfer
learning is used to obtain dense depth maps for Waymo
and improve the precision over the object detection task.
Although our main focus in this work is not the depth
completion task itself, the performance of the proposed
LDCNet is essential for the final object detection pur-
pose. Therefore, it is important to previously evaluate
our depth completion method on the KITTI validation
set, which is the only labeled dataset available in this
context.

Table 1 presents the sensitivity analysis carried out
to determine the architecture of the LDCNet. The grid
search involves experimenting with different numbers
of blocks in the encoder-decoder network and whether
using geometric or standard convolution. As can be
seen, using geometric convolutions provides better re-
sults. Since the inference time is very similar for all con-
figurations, we select the architecture with the lowest
RMSE, which has five blocks.

Besides our sensitivity analysis, the quantitative dif-
ferences between our proposed LDCNet and other state-
of-the-art depth completions models are worth men-
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Table 2
Performance of state-of-the-art depth completion models on the
KITTI validation set. Our proposal is highlighted in bold

Model RMSE (mm) Inf. time (ms) Mem. (GB)
PENet [46] 772.8 18.2 3.7
GuideNet [45] 777.7 21.7 5.1
PwP [44] 811.0 100.0* -
LDCNet (ours) 826.3 5.1 1.8
RASP [42] 830.5 200.0* -
Sparse-to-dense [43] 878.6 11.3 10.8
DepthNet [39] 991.9 90.0%* -
DFuseNet [62] 1206.7 47.0 3.7
CIPA [17] 1288.5 9.2 -
ADNN [63] 1350.0 40.0* -

tioning. Table 2 presents a comparison over the KITTI
validation set in terms of RMSE, inference time, and
memory usage between our proposal and several meth-
ods found in the literature. For fair efficiency compari-
son, the models with publicly available code have been
tested, and the time and memory usage have been mea-
sured on our server (NVIDIA RTX 2080Ti GPU). The
models with a star sign do not have a public implemen-
tation, and the inference times have been taken from
the official KITTI leaderboard.

The main motivation behind the design of the LDC-
Net is to build an efficient depth completion network
that can be easily integrated into an object detection
meta-architecture without a significant increase in the
computational cost. As seen in Table 2, our proposal is
the most efficient method while also being very com-
petitive in depth completion accuracy. LDCNet is four
times faster than the two most accurate models (PENet
and GuideNet) and requires less memory. The infer-
ence time of object detection models on Waymo images
varies, for instance, from 40 ms using YOLOF to 57 ms
using Faster R-CNN. Considering this aspect, intro-
ducing a depth completion network in the pipeline that
adds 20 ms, such as PENet, is not convenient for this
real-time application. Therefore, these results support
the advantages of LDCNet for the downstream object
detection task for autonomous driving. Our proposal
introduces a minimal computation time overhead and
has a lower memory usage than other state-of-the-art
depth completion models.

4.3. Multi-modal detection using LDCNet

Table 3 presents the average precision (AP) results
obtained with the proposed data fusion network using
the dense LiDAR depth maps obtained from LDCNet.
We compare the performance of this multi-modal detec-
tion approach using early and middle fusion on all four
meta-architectures studied. As found in previous stud-

ies with this dataset [31], the two-stage Faster R-CNN
architecture provides the best detection accuracy. For
instance, with early fusion at daytime, the AP of Faster
R-CNN is 4.4 and 6.9 points better than RetinaNet and
YOLOF. ATSS also provides competitive results, out-
performing Faster R-CNN only in a few cases, such as
the mean AP of dawn/dusk images.

Regarding the fusion stage of the two modalities,
some differences can be observed between both ap-
proaches. In general, middle fusion provides a better AP
at daytime and dawn/dusk, while early fusion obtains
a better detection accuracy at night. For instance, with
Faster R-CNN, the AP is slightly better using middle fu-
sion with daylight, but early fusion provides a 1.4 mAP
increase at night. Furthermore, with ATSS, the AP at
daytime and dawn/dusk is over one point better with the
middle fusion approach. In contrast, more vehicles can
be detected at night when using early fusion in ATSS.
The same conclusions can be derived from the results
obtained by the RetinaNet model. These results suggest
that, with bad illumination at night, it is better to jointly
learn features from both modalities at an early stage.

Different behavior can be seen with the YOLOF
meta-architecture. With this model, early fusion out-
performs middle fusion in all lighting conditions. We
hypothesize that this difference between the detection
meta-architectures is because of the absence of feature
pyramid networks in YOLOF. The LiDAR features can
be less important during the daytime than the visual
cues provided by RGB images. Therefore, the FPN can
help to better assign the importance of depth features at
different scales. In contrast, middle fusion is ineffective
with the single-scale feature map in YOLOF, and the
detection performance is degraded.

Overall, these results show that our depth completion
network (LDCNet) effectively transforms the sparse
LiDAR projection into a dense map with rich depth
information for detection. However, selecting the opti-
mal data fusion method highly depends on the detection
model used and the time of the day in which objects
have to be detected. Given the results from Table 3, our
selected approach is to adopt early fusion at night and
middle fusion when there is better illumination (at day-
time and dawn/dusk). This proposed data fusion archi-
tecture offers a robust performance throughout different
times of day with a small computational overhead, as
analyzed in Section 4.6.

4.4. Importance of accurate LiDAR depth completion
for object detection

This section evaluates the influence of different Li-
DAR inputs on the multi-modal object detection task.
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Table 3

251

AP results fusing RGB images with the LDCNet dense depth maps at different stages (early and middle) using the four detection meta-architectures.

Best results are highlighted in bold

Day Night Dawn/dusk

Model LiDAR fusion Veh Ped Cyc Mean Veh Ped Cyc Mean Veh Ped Cyc Mean
Faster Early 55.5 68.5 49.7 57.9 55.9 61.0 64.5 60.5 62.6 62.8 40.2 55.2
R-CNN Middle 55.7 68.8 49.6 58.0 55.2 61.0 61.2 59.1 62.6 64.3 38.9 55.3
ATSS Early 54.9 67.5 47.0 56.5 56.4 61.5 59.4 59.1 61.9 63.0 40.8 55.2
Middle 55.9 68.7 48.5 57.7 55.5 61.7 62.9 60.0 62.3 64.6 42.5 56.5

RetinaNet Early 51.4 65.6 434 53.5 54.8 59.9 57.1 57.3 58.6 60.7 38.5 52.6
CUnanet  Middle 519 665 421 535 533  60.0 516 550 592 6Ll 366 523
YOLOF Early 47.8 60.4 44.2 50.8 51.6 58.2 58.2 56.0 54.7 55.3 39.6 49.9
Middle 47.1 60.1 44.1 50.4 49.5 54.1 53.8 52.5 54.0 55.1 40.5 49.9

Table 4
AP results fusing RGB images with different LiDAR inputs on the four studied meta-architectures. Best results are highlighted in bold
Day Night Dawn/dusk

Model LiDAR input Veh Ped Cyc Mean Veh Ped Cyc Mean Veh Ped Cyc Mean

Faster RGB only 55.6 68.7 50.0 58.1 53.3 52.1 53.9 53.1 62.0 62.6 36.9 53.8

R-CNN Raw sparse 54.7 67.4 46.9 56.3 54.6 56.2 58.7 56.5 61.5 62.4 37.5 53.8

CIPA 54.7 67.1 49.7 57.2 53.7 54.3 58.8 55.6 60.7 61.3 39.0 53.7

LDCNet 55.7 68.8 49.6 58.0 55.9 61.0 64.5 60.5 62.6 64.3 38.9 55.3

ATSS RGB only 55.5 67.8 46.0 56.4 53.8 52.6 51.7 52.7 61.7 62.4 38.0 54.0
Raw sparse 54.6 66.5 42.2 54.4 55.4 56.9 54.8 55.7 60.8 61.6 36.5 53.0

CIPA 53.0 65.5 44.8 544 56.8 59.6 57.5 58.0 60.4 61.2 39.9 53.6

LDCNet 55.9 68.7 48.5 57.7 56.4 61.5 59.4 59.1 62.3 64.6 42.5 56.5

RetinaNet RGB only 51.6 65.8 43.1 53.5 52.0 50.9 51.9 51.6 58.4 59.7 36.3 51.5
Raw sparse 50.6 63.6 40.5 51.6 52.6 54.1 56.2 54.3 57.6 59.1 32.0 49.6

CIPA 50.3 63.6 40.8 51.6 52.9 57.5 53.3 54.6 56.8 58.5 344 49.9

LDCNet 51.9 66.5 42.1 53.5 54.8 59.9 571 57.3 59.2 61.1 36.6 523

YOLOF RGB only 46.9 59.1 39.6 48.5 48.0 47.9 41.6 45.8 53.5 52.8 32.6 46.3
Raw sparse 46.4 58.4 42.4 49.1 49.5 53.0 49.7 50.7 52.9 53.9 34.3 47.0

CIPA 46.9 59.9 43.0 49.9 51.0 57.9 55.0 54.6 54.5 55.4 38.0 49.3

LDCNet 47.1 60.1 44.1 50.4 51.6 58.2 58.2 56.0 54.0 55.1 40.5 49.9

The accuracy of the four meta-architectures is inves-
tigated when using sparse LiDAR depth maps, up-
sampled maps from classical image processing algo-
rithms (CIPA), and dense depth maps from the proposed
LDCNet. Table 4 presents the results obtained using
these three different depth inputs and compares them
to camera-only detection. All dual-modal models use
early fusion at night and middle fusion with day and
dawn/dusk images.

As expected, single-modal RGB detection suffers
a significant performance drop under adverse light-
ing conditions. For instance, with the best performing
model (Faster R-CNN), the mean AP drops from 58.1%
in the daytime to 53.1% at night. A similar decrease can
be observed in the other models when using only cam-
era image inputs. The main strength of our proposal,
fusing RGB images with accurate dense LiDAR depth
maps, is that it consistently enhances accuracy under
different lighting conditions. The detection precision
improves not only at nighttime but also with day and

dawn/dusk images, when there is better illumination
and the importance of LiDAR is not as obvious. With
the infinite diversity of driving situations and environ-
mental conditions, leveraging the complementary prop-
erties of the multi-modal sensors is essential for the
perception systems of autonomous vehicles.

At night, our multi-modal approach improves RGB-
only by 7.4, 6.4, 5.7, and 10.2 points on Faster R-CNN,
ATSS, RetinaNet, and YOLOF, respectively. The AP in-
crease in the minority classes, pedestrians and cyclists,
is particularly interesting. As can be observed, our pro-
posed data fusion network detects up to 10% more
pedestrians and cyclists. The improvement is lower but
still very significant regarding the vehicle class, ranging
from 2.6 to 3.6 points. At dawn/dusk, following the
order of detectors in Table 4, the mAP is enhanced by
1.5, 2.5, 0.8, and 3.6 with dual-modal detection. With
daytime images, fusing both modalities provides an im-
portant advantage over RGB-only on two out of the four
models studied, ATSS and YOLOF.
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Furthermore, our approach is better than fusing with
the other LiDAR inputs considered. As can be seen
in Table 4, using LiDAR sparse depth maps leads to
similar results as CIPA, with this last method obtain-
ing slightly better outcomes than raw data. With both
approaches, there is a significant decay of AP at day-
time and dawn/dusk compared to RGB detection. For
instance, day mAP drops 1.8 (sparse) and 0.9 (CIPA)
points on Faster R-CNN. In contrast, the AP using LD-
CNet remains comparable to or even better than camera-
based detection thanks to the better quality depth in-
formation. These results support the superiority of our
LDCNet when upsampling depth maps. They indicate
that, with good illumination, dual-modal detection can
perform worse if sparse LiDAR data is not accurately
preprocessed.

All LiDAR inputs improve detection at nighttime.
For instance, introducing raw sparse depth inputs al-
ready provides an AP increment of about 3 points. How-
ever, the greatest performance improvement at night is
obtained with LDCNet inputs. Our depth completion
network outperforms CIPA by 4.9, 1.4, 2.7, 1.0 mAP
with the different detectors studied. At dawn/dusk, LD-
CNet also provides more accurate detections, with AP
increases ranging from 1.5 to 3 points.

Overall, our proposed method outperforms both raw
data and CIPA inputs in all times of day situations.
Furthermore, it considerably enhances the performance
of RGB-only models. We achieve these improvements
thanks to our study of the optimal data fusion archi-
tecture and the better quality depth maps generated by
LDCNet.

Figure 5 presents a qualitative comparison between
our dual-modal detection approach and RGB-only mod-
els. This figure illustrates typical examples of objects
detected using the proposed RGB-LiDAR fusion, but
not when using only camera images as input. The se-
lected examples include diverse lighting conditions
such as night, dawn, or rain. They also include all three
types of objects with different dimensions.

For instance, the first row of Fig. 5 illustrates two
cyclists at night that are not detected with RGB-only
detectors. In the first case, the object is classified as a
pedestrian. In the second case, the object is missed due
to its small size and bad illumination. The associated
depth maps clearly show that LiDAR provides essential
information to detect these cyclists in the dark. Further-
more, the second and third rows in Fig. 5 display cars
and pedestrians that are very close to the vehicle but
are not detected with camera images given their dark
colors. These missed detections may compromise the

safety of the system, and illustrate the need for fusing
RGB and LiDAR at night to increase the robustness of
the detection model.

The rest of the scenes in Fig. 5 illustrate various sit-
uations in which LiDAR is fundamental for detecting
small and occluded pedestrians. Even with better il-
lumination conditions, the LDCNet dense maps help
identify pedestrians wearing clothes with colors similar
to the road (fourth row) and pedestrians occluded by
other objects (fifth row). In summary, this qualitative
analysis supports the results presented in Table 4. It
demonstrates the suitability of the proposed LiDAR
depth completion method, which helps to build a more
reliable multi-modal detection system.

4.5. Comparison between dense LiDAR inputs

Figure 6 presents a visual comparison of the differ-
ent LiDAR depth maps used in the experimental study.
Unlike KITTI, the Waymo images have significantly
higher resolution, and the LiDAR projections are ex-
tremely sparse. The second row of Fig. 6 illustrates the
sparse depth maps, with less than 1% of pixels with
valid values. In this figure, dark blue colors illustrate
pixels with depth values near zero, hence belonging to
objects close to the LiDAR sensor. In contrast, lighter
blues, yellow and red colors, in this order, indicate dis-
tant depth values belonging to far-away objects. As seen
in the third row, it is difficult for the CIPA approach
to upsample the sparse map accurately. These image
processing algorithms still leave many pixels without
information, propagating many zero values all over the
image, especially due to mirror reflection on vehicles.
The very dark pixels within the boundaries of the shape
of distant vehicles illustrate this issue.

In contrast, our proposed LDCNet better preserves
the structure of objects in the scene. Our neural network
approach can better reconstruct the shape of thin ele-
ments, such as traffic signal poles. Thanks to the RGB
guidance in the depth completion process, LDCNet can
also avoid glass reflection issues and model faraway
small objects more accurately. Furthermore, it can in-
fer objects’ shapes that span beyond the LiDAR de-
vice height range, such as trees, buildings, or tall traffic
signals. It is essential to highlight that the supervised
LDCNet was trained on the KITTI dataset, and used
to infer the Waymo dense maps without additional su-
pervision. The obtained results show the capacity of
generalization of the network and the advantages of this
transfer learning approach compared to classical algo-
rithms, such as bilateral filtering. Our approach allows
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=3 Vehicle

Il Pedestrian

=3 Cyclist

Fig. 5. Typical examples illustrating the advantages of the proposed dual-modal detection approach. The highlighted objects are detected by our
RGB-LDCNet fusion network, but the RGB-only models fail to detect them. For each scene, the camera images and the dense LDCNet depth

maps are displayed.

Table 5
AP detection results using LiDAR only inputs
Model Input (LiDAR only) Veh. Ped. Cyc. Mean
Faster R-CNN  CIPA 282 450 206 313
LDCNet 30.0 50.3 233 345
ATSS CIPA 285 475 242 334
LDCNet 30.8 50.2 251 354

leveraging the information of a different dataset from a
similar domain to solve this specific task efficiently and
effectively.

In addition to the visual comparison, a quantitative
analysis between both dense LiDAR inputs is provided
in Table 5. The detection performance using the depth

maps obtained from CIPA and LDCNet is evaluated to
provide more evidence of the superiority of our pro-
posal. This comparison uses LiDAR-only inputs for de-
tection without fusing them with RGB images. As can
be seen in Table 5, LDCNet inputs outperform CIPA
by 3.2 and 2.0 mAP using Faster R-CNN and ATSS
models, respectively. The difference in depth comple-
tion accuracy between LDCNet and CIPA translates to
better performance on the downstream object detection
task on Waymo, which is the final aim of our study.
These experiments further support the results presented
in Table 4, where LDCNet outperformed other data
fusion approaches.
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Fig. 6. Illustrations of the different LIDAR depth maps that can be fused with RGB images for object detection on the Waymo dataset. From top to
bottom: RGB camera image, raw sparse LiDAR depth projections (SD), upsampled maps obtained using classical image processing algorithms
(CIPA), and dense depth map obtained with the proposed LDCNet.

4.6. Efficiency analysis

This section analyzes the computational efficiency
of all the architectures and the different data fusion
methods explored. Table 6 presents the speed in frames
per second (FPS) and the memory requirements of the
studied models. These metrics are essential aspects to
consider for autonomous driving, where fast predictions
are needed to operate in real-time and the computational
resources are limited. Furthermore, in order to facilitate
the accuracy/speed comparison, Table 6 also provides
a summary of the mean AP at different times of the
day. We report the frames per second for inference with
batch size one using an NVIDIA RTX 2080Ti GPU.
The speed values of the models using RGB-LiDAR fu-
sion include the depth completion method in the object
detection pipeline.

As can be seen, in the early fusion approach, the
addition of the LDCNet provides a significant AP im-
provement without sacrificing speed. For instance, in

Faster R-CNN the computational overhead is minimal.
The FPS drop from 17.4 at single-modal detection to
15.0 when LiDAR data is incorporated. These values
illustrate that the proposed depth completion network
is efficient and suitable for this application. LDCNet
runs in only 5 ms, which is about 7% of the total time
of Faster R-CNN when using the early fusion approach
(66 ms). Note that the time employed by LDCNet is
independent of the detection meta-architecture used,
hence the analysis is similar for the rest of the models.

In contrast, the middle fusion approach is less effi-
cient since features are extracted separately for both
modalities. Compared to early fusion, there is a drop
of about 5, 4, 4, and 8 FPS in Faster R-CNN, ATSS,
RetinaNet, and YOLOF, respectively. Furthermore, as
expected, dual-modal detection increases the memory
usage by about 2 x with early fusion and 4 x with mid-
fusion. It is also important to mention that the other al-
ternative considered for depth completion, CIPA, is not
practical for this application. CIPA requires about 40 ms
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Table 6
AP summary, frames per second (FPS), and memory usage of the four detection meta-architectures with different data fusion approaches
Model LiDAR fusion APpay APNight APDwn /Dusk FPS Mem. (GB)
Faster RGB only 58.1 53.1 53.8 17.4 2.8
R-CNN Raw sparse 56.3 56.5 53.8 16.2 3.8
CIPA 57.2 55.6 53.7 9.9 3.8
LDCNet-early 57.9 60.5 55.2 15.0 5.8
LDCNet-middle 58.0 59.1 55.3 9.7 8.7
ATSS RGB only 56.4 52.7 54.0 15.6 2.6
Raw sparse 54.4 55.7 53.0 14.8 3.5
CIPA 544 58.0 53.6 9.3 35
LDCNet-early 56.5 59.1 55.2 13.8 55
LDCNet-middle 57.7 60.0 56.5 10.1 7.0
RetinaNet RGB only 53.5 51.6 51.5 16.5 2.0
Raw sparse 51.6 54.3 49.6 15.8 29
CIPA 51.6 54.6 49.9 10.0 29
LDCNet-early 53.5 57.3 52.6 14.6 5.0
LDCNet-middle 53.5 55.0 52.3 10.3 6.2
YOLOF RGB only 48.5 45.8 46.3 25.2 1.7
Raw sparse 49.1 50.7 47.0 23.3 2.6
CIPA 49.9 54.6 49.3 12.1 2.6
LDCNet-early 50.8 56.0 49.9 20.9 4.6
LDCNet-middle 50.4 52.5 49.9 13.7 6.0
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Fig. 7. Speed/accuracy trade-off of the studied uni-modal and dual-modal object detection architectures. The mAP displayed is the mean of the

three times of day considered.

to upsample the sparse maps, which is even slower than
the complete YOLOF detection architecture.

Figure 7 presents a graphical summary of the speed/
accuracy trade-off of the uni-modal an dual-modal de-
tection networks studied. The lines in the figure connect
the same meta-architectures, and illustrate the mAP im-
provement obtained when fusing both modalities with
early and middle approaches. In general, it can be seen
that the proposed early fusion network is the most suit-
able option for efficiently improving the robustness of
detectors. Using LDCNet and feeding a single back-
bone with both modalities introduces a small overhead,
allowing all models to have a higher processing speed

than the capture rate of Waymo’s vehicle LiDAR sensor
(10 Hz). In contrast, middle fusion runs slower than
early fusion but provides a higher detection precision
when there is daylight.

5. Conclusions

This study proposed a novel multi-modal network for
object detection in autonomous driving. Our aim was
to improve the robustness of detectors under adverse
lighting conditions by fusing data from two different
sensors, RGB cameras and LiDAR. For this purpose,
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we designed a data fusion method and evaluated its per-
formance at different times of the day over the Waymo
Open Dataset, which is the most diverse self-driving
dataset.

First, our proposal integrated an efficient sparse-to-
dense depth completion network (LDCNet) into the
detection pipeline. This supervised network allowed
to upsample the resolution of sparse LiDAR projec-
tions using RGB guidance, and improved the quality of
the depth information. The LDCNet was trained with
the KITTI depth dataset, and the dense depth maps for
Waymo were obtained using transfer learning. The ex-
perimental study demonstrated that this novel multi-
source deep learning approach provided more accu-
rate dense depth maps than classical image processing
algorithms.

With the enhanced LiDAR data, we explored two dif-
ferent data fusion approaches, early and middle, using
popular detection meta-architectures such as Faster R-
CNN, ATSS, RetinaNet, and YOLOF. The performance
of dual-modal detection was compared against single-
modal RGB detection in terms of precision and compu-
tational cost. The study showed that incorporating the
dense depth maps into the object detection pipeline is
essential when there is bad illumination, but can also be
beneficial with dawn/dusk or daytime images if sparse
depth maps are accurately processed.

The improvement obtained with our proposal was
consistent across four meta-architectures with different
characteristics, with early fusion achieving higher de-
tection precision at night and middle fusion at daytime
and dawn/dusk.

Overall, the results showed that our LDCNet ap-
proach successfully leverages the complementary prop-
erties of both modalities for object detection. Further-
more, the efficiency analysis showed that the depth
completion network could easily be integrated into tra-
ditional detection architectures with minimal compu-
tational overhead. Early fusion proved to be the most
efficient alternative, obtaining a more reliable detec-
tion system while running at a speed comparable to
single-modal camera detection.

In future studies, we aim to exploit the temporal na-
ture of autonomous driving data by developing recurrent
approaches for sequential perception. We plan to design
novel adaptive fusion methods that can learn how to
combine different modalities in a streaming fashion.
Moreover, with the increasing amount of available self-
driving data, further research should develop effective
transfer learning and domain adaptation approaches.
We are also interested in the advantages and promising

results that could offer recent supervised algorithms,
such as the enhanced probabilistic networks [64], or
dynamic ensemble learning algorithms [65]. The ex-
tent to which more complex models and more diverse
training data offer an advantage is an interesting ques-
tion to be addressed. Finally, another important line of
work is to further study the proposed models’ efficiency
and suitability when deployed on embedded devices in
vehicles.
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