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Solar energy is one of the most common and promising sources of renewable energy. In photovoltaic (PV)
systems, operators can benefit from future solar irradiance predictions for efficient load balancing and
grid stability. Therefore, short-term solar irradiance forecasting plays a crucial role in the transition to
renewable energy. Modern PV grids collect large volumes of data that provide valuable information for
forecasting models. Although the nature of these data presents an ideal setting for online learning
methodologies, research to date has mainly focused on offline approaches. Hence, this work proposes a
novel data streaming method for real-time solar irradiance forecasting on days with variable weather
conditions and cloud coverage. Our method operates under an asynchronous dual-pipeline framework
using deep learning models. For the experimental study, two datasets from a Canadian PV solar plant
have been simulated as streams at different data frequencies. The experiments involve an exhaustive
parameter grid search to evaluate four state-of-the-art deep learning architectures: multilayer percep-
tron (MLP), long-short term memory network (LSTM), convolutional network (CNN), and Transformer
network. The obtained results demonstrate the suitability of deep learning models for this problem. In
particular, MLP and CNN achieved the best accuracy, with a high capacity to adapt to the evolving data
stream.
1. Introduction

The field of renewable energies is attracting growing political
and research attention due to its potential to address climate
change and the energy crisis. Solar energy is one of the most sus-
tainable energy sources used worldwide and is considered a pow-
erful alternative to fossil fuel energy [1]. However, the volatility of
photovoltaic (PV) affects energy production stability. A reliable and
accurate short-term forecast of solar radiation is fundamental for
the efficient and correct operational management of solar plants.
Some studies have demonstrated that accurate predictions of solar
irradiance could imply a substantial cost reduction [2].

The field of solar irradiance forecasting has received increasing
interest during the past few decades. The different approaches
found in the literature can be classified into three main subgroups:
deterministic, statistical or machine learning, and hybrid methods
[3]. Deterministic models are empirically based and use individual
equations derived from physical phenomena specific to the electri-
cal specification of PV devices. These models are presented as reli-
able and explainable solutions [4]. They became standard models
in the industry during the late 1980s and 1990s. This approach is
included in commonly used commercial software such as PVSyst,
PV SunVisor, Energy-10, DOE-2, or the System Advisor Model
(SAM). These tools provide support to diagnose problems with
the performance of the array by monitoring the difference between
the predicted and actual performance of PV systems [5]. However,
deterministic methods face some drawbacks for short-term predic-
tion performance. More complex methodologies, such as statistical
models and machine learning techniques, are more suitable for this
task.

Unlike deterministic methods, machine learning models ignore
any technical specifications of PV systems. Instead, this approach
attempts to model the relationship and patterns within the time
series data. Many studies have demonstrated the benefits of
machine learning applied to solar radiation forecasting. [6] carried
out an experimental study to compare three techniques: k nearest
neighbor (kNN), multiple regression, and decision tree regressors.
Similarly, [7] compared kNN, random forest, linear regression,
and multilayer perceptron for the hourly solar irradiance of a Tai-
wanese PV system. Both studies agreed on the remarkable effec-
tiveness of machine learning models applied to solar irradiance
forecasting, especially kNN, which outperformed the others
in terms of mean absolute error. Other studies have explored the
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possibility of combining different methods in a hybrid approach.
[8] combined four models - ARIMA, SVM, ANN, and ANFIS - using
genetic algorithms for one-hour-ahead solar forecasting in a build-
ing in Malaysia. The performance of single and ensemble models
for solar energy prediction is analyzed in a detailed experimental
study [9], where voting-ensemble techniques proved to outper-
form single models.

Recent improvements in the solar radiation prediction task
have benefited from novel deep learning-based methods [10–12].
Complex neural network architectures have been established as
state-of-the-art approaches for time series forecasting problems.
These models are capable of capturing and extracting rich features
and patterns from time series to achieve higher predictive accuracy
[13]. [14] provided a detailed review of the latest developments in
deep learning methods for this problem. In [15], a comprehensive
study on the application of artificial neural networks is presented.
Similarly, a feed-forward network with wavelet-based analysis is
proposed for short-term energy prediction in [16]. More complex
architectures, such as recurrent neural networks (RNN), have been
successfully applied for irradiance forecasting in a Canadian PV
plant [17,18]. Likewise, a deep convolutional neural network
(CNN) obtained the best accuracy results compared to other
machine learning algorithms such as Random Forest, Decision
Trees, or Support Vector Machines [19]. Furthermore, in [20], a
combined CNN-LSTM network outperformed other traditional
machine learning methods in terms of prediction accuracy. Other
studies have proposed hybrid regression models to reduce the pre-
diction error [21,22].

Most of the existing literature in this field focuses on offline
prediction. However, considering the nature of this problem, an
online approach would provide a more practical solution for real-
world applications. [23] presented an online sequential extreme
learning machine for real-time solar radiation prediction. This
technique is compared to other batch-learning algorithms. The
experimental results of online learning have demonstrated good
adaptability to changes in data over time. [24] also proposed an
online solution based on the least mean square algorithm. This
study proved the advantages of the online scenario over batch
approaches due to the better tracking ability. To the best of our
knowledge, the applicability of deep learning models for real-
time solar irradiance forecasting has not yet been studied.

The particular data-streaming scenario requirements present a
challenging machine learning problem [25]. Unlike traditional
batch learning methods, data stream models must be able to effi-
ciently process high-speed data. Therefore, an online model must
be able to provide a prediction each time a new instance arrives.
At the same time, the model must be updated to changes in the
data distribution, which is known as concept drift [26]. Further-
more, since the stream can be infinite, historical data cannot be
stored in memory, and the training and prediction phases of the
model must be interleaved. The literature presents decision trees
and ensemble algorithms as state-of-the-art techniques for data
stream mining [27]. For instance, Hoeffding adaptive trees intro-
duced by [28] have proven to have an excellent capacity to adapt
to evolving data. Ensemble methods, such as Adaptive Random
Forest [29], ADWIN, and Leveraging bagging [30] or Kappa Updated
Ensemble [31], also provide competitive performance for data
stream problems [29]. Most of these models use the so-called ac-
tive approaches, which monitor the distribution of the arriving data
and update or discard the models when a concept drift is detected.
Another solution is to use a passive approach, which aims to keep
the model updated by continuously training the model over the
most recent instances [32]. This is particularly suitable for incre-
mental learning models such as k-nearest neighbors or neural
networks. This concept was implemented in the Asynchronous
dual-pipeline Deep Learning framework for data Streams
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(ADLStream) [33]. This framework alleviates the computational
cost of deep learning models by splitting the training and inference
phases into two parallel processes. A detailed description of the
ADLStream framework can be found in the following section.

In this work, we study the applicability and performance of
deep learning models for short-term solar irradiance forecasting
in a real-time streaming setting. For the experiments, we simulate
a data stream of two different weather conditions at different
speeds for a Canadian PV grid. Our study aims to achieve high fore-
casting accuracy, using a real-time model that can adapt to the
evolution of the stream. For that reason, we have designed an
extensive experimental study to evaluate four deep learning archi-
tectures: MLP, LSTM, CNN, and Transformer.

The main contribution of this work can be summarized as
follows:

� An application of the ADLStream deep learning framework to
real-time solar irradiance prediction in an online learning
scenario.

� A thorough experimental study comparing state-of-the-art
deep learning architectures for solar irradiance forecasting in
streaming.

� An analysis of the forecasting accuracy across the photovoltaic
grid depending on the spatial position.

The rest of the paper has been divided into the following parts: Sec-
tion 2 introduces the materials used and the methods explored in
the experimentation, together with the design of the experimental
setup; Section 3 reports and discusses the results obtained; Sec-
tion 4 presents the conclusions and future work.
2. Materials and methods

This section introduces the materials and methods involved in
the experimental study. SubSection 2.1 describes the details of
the solar irradiance dataset and the preprocessing steps are dis-
cussed in SubSection 2.2.1. Furthermore, SubSections 2.2.2 and
2.2.3 provide a review of the asynchronous dual-pipeline deep
learning framework used to simulate the streaming scenario and
the different architectures considered. Finally, in SubSection 2.3
the design of the experimental setup is presented.
2.1. Datasets

The solar irradiance data used for the experimental study is
obtained from the Canadian government [34]. The dataset provides
short-term irradiance measurements for a PV system located in
Varennes (Québec). As can be seen in Fig. 1a, the system consists
of 17 irradiance sensors. Each PV unit takes a measurement every
millisecond and averages them over a period of 10 ms. However,
the data is not saved unless it changes by more than 5 W/m2 or
every 1 min. This setup allows recording cloud shades and high
ramp-rate events, such as birds or insects obstructing the unit.

The dataset provides recordings for four complete days. Each
day represents a different category based on cloud cover. As can
be seen in Fig. 1b, the solar irradiance for the clear sky day presents
a truly predictable distribution. With little to no short-term pertur-
bations, this time series can be easily modeled using a traditional
power modeling algorithm [35]. Similarly, the overcast day pre-
sents little variations in the short term. Therefore, we have
excluded these two days from our study as they do not pose a sig-
nificant challenge for short-term irradiance forecasting. Instead,
we have selected the days with variable and very variable weather
conditions. As shown in Fig. 1b, both datasets present a much more
challenging problem with more disturbances.



Fig. 1. Solar irradiance dataset.
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Fig. 1c depicts several example instances at different time scales
from the selected Variable and Very Variable datasets. This plot
illustrates the difficulty of the short-term forecasting task
addressed in this study. In the Variable case, the trend of the time
3

series can be better observed, but there can be important changes,
such as 100 units, in a matter of five minutes. The Very variable
dataset poses an even more challenging problem. By observing
the scale of the ordinate axis, it can be seen that the variations
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can range more than 1000 units in just a couple of minutes. Fur-
thermore, the figure shows that the spatial position of the panels
plays an important role, given their different irradiance values at
the same instant.

2.2. Methodology

In this subsection, we first describe the data preprocessing
steps. Secondly, we describe the ADLStream framework, which is
used to train and validate the models. Lastly, we present the four
deep learning architectures used in this study.

2.2.1. Data preprocessing
As described in the previous section, the measuring process

generates unevenly-spaced multivariate time-series data. In order
to train the deep learning models, the datasets are sampled at
specific rates: 1, 2, and 4 measurements per second for each sensor.
This procedure is carried out by simply propagating the last valid
observation forward. The resulting datasets are equally-spaced
time series that can be used to simulate the streaming at three dif-
ferent speeds. Secondly, the values are scaled between 0 and 1 by
applying min–max normalization. Finally, for the model selection
experiments, the time series are shortened to the central six hours
of the day, which represents the most challenging period given the
high variability of the data.

In this study, we predict the next 30-s measurements of one
sensor based on the previous values of all the sensors in the grid.
The input of deep learning models must have a fixed length, known
as the past history, which has been set to 3 min. By varying the fre-
quency of the stream, the input and output length of the model
changes accordingly. For instance, when the speed is set to 1
instance per second, the input length will be 180, corresponding
to 3 min. However, when the speed is increased to 2 instances/s
(0.5 Hz frequency), the 3 min of input will become 360 timesteps.
Similarly, for a speed equal to 4 instances per second, the length of
the input and output becomes 720 and 120 timesteps respectively.
Table 1 shows the past-history and forecasting-horizon sequence
length depending on the sample rate of the data. Furthermore,
each timestep in the input sequence contains data from all 17 PV
sensors at that particular moment in time. For example, for the fre-
quency of 4 instances per second, the input sequence contains 720
timesteps � 17 sensors per timestep = 12240 sensor data points,
compared to 3060 for the frequency of 1 instance per second.

The traditional moving-window scheme generates the input–
output instances to feed the models [13]. The dashed box in
Fig. 2 illustrates this process. The model’s input is a 2D matrix with
the past history information for each sensor. The aim of using this
multivariate input is to capture not only temporal patterns within
the time series, but also spatial dependencies between sensors in
the grid [36].

2.2.2. ADLStream framework
In this study, we use the ADLStream framework introduced by

[33]. The implementation is available as a Python library in [37].
Fig. 2 shows the architecture of this framework. As can be seen,

the training and prediction phases are split into two asynchronous
processes running in parallel. First, the data stream instances are
preprocessed by the so-called stream generator. The preprocessing
Table 1
Data preprocessing hyperparameters.

Data Stream Speed
(instances/s)

1 2 4

Past History(3’) 180 360 720
Forecasting Horizon(30”) 30 60 120
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produces the input–output pairs for the models using a sliding
window. As soon as an input window (x) is available, it passes to
the prediction layer that generates a prediction (o). The input is
then fed to the training process along with the expected output
(y). The model is trained without blocking the prediction layer,
which continues to generate forecasts as soon as a new input is
available. Once a training epoch is over, the updated weights are
forwarded to the prediction process. The training process uses
the most recent instances, which allows adjusting the model to
the evolution of the stream.

ADLStream is an end-to-end framework that integrates the
whole data streaming process: from data preprocessing to model
training and, ultimately, performance evaluation. The asyn-
chronous nature of this framework facilitates the use of complex
deep learning models, such as recurrent or convolutional, which
would not be feasible in a data streaming scenario if they are
trained sequentially. Furthermore, by constantly updating the
model weights, it has shown to outperform current state-of-the-
art alternatives for evolving data streams [25].

2.2.3. Deep learning architectures
There exists a wide variety of architectures within the family of

artificial neural networks. With the aim of improving solar irradi-
ance forecasting, we explore the most relevant deep learning mod-
els from the literature: multi-layer perceptron, recurrent and
convolutional networks, and transformer models.

Multi Layer Perceptron (MLP) It is the most basic type of artificial
neural network. MLP is a feed-forward architecture that consists of
an arbitrary number of hidden layers between the input and out-
put layers. Each layer is composed of neurons called perceptrons.
By combining these neurons, MLPs can approximate complex
non-linear functions [38]. For regression tasks, the input layer
has one neuron for each lagged feature, while the output layer
has as many neurons as the prediction horizon.

Long-Short Term Memory Network (LSTM) The LSTM architecture
is a recurrent neural network specifically designed for sequential
data. Unlike the feed-forward approach, the LSTM neurons have a
recurrent loop that connects the output of one layer with its input
for the next timestep. The LSTM cell consists of three logic gates.
The cell state acts as the long-termmemory controlled by the input
gate. In addition, the cell includes a forget gate that resets the cell
state content when it becomes irrelevant. Finally, the output gate
determines what information should propagate to the next step.
This three-gate design makes this model capable of remembering
patterns in larger horizons, hence suitable for time series data [39].

Convolutional Neural Network (CNN) Initially designed for image
recognition, the CNN is a feed-forward architecture that assumes
that inputs have a specific structure. These networks extract fea-
tures from different regions of the input data. It is based on convo-
lutional filters and the pooling operator. The model implements
multiple convolutional filters that generate a feature map preserv-
ing the spatial information of the data. Then, the pooling operator
reduces the dimensionality of the feature map. Unlike the MLP,
each generated feature is connected to a small input region. This
structure allows sharing the weights for each location of the input.
By doing so, the network has significantly fewer weights. The
result is a considerably faster and more efficient model. These
characteristics also make CNNs suitable for dealing with sequential
data such as time series [40]. In particular, one-dimensional convo-
lutional filters extract meaningful features and capture repeated
patterns within the input sequence.

Transformer Network Introduced by [41], the Transformer archi-
tecture is based on the Multi-Head Attention algorithm. The atten-
tion mechanism gives the model the ability to focus on the most
relevant elements of long sequences. The attention layer has three
main components, values, keys, and queries. The output is com-



Fig. 2. Asynchronous dual-pipeline deep learning framework for solar irradiance forecasting. The dashed box illustrates how the input and output pairs are generated.

Table 2
The parameter grid studied for the different deep learning architectures.

Model Parameter Values

MLP Num H. Layers {2, 4, 6}
Neurons {64, 128}

CNN Num Layers {2, 4}
Filters {64, 128}

Pooling factor {0, 2}

LSTM Num Layers {2, 4}
Num Units {64, 128}
Return seq. {True, False}

Transformers Num Layers {2, 4}
dmodel {64, 128}

h {4, 8}
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puted as a weighted sum of the values, where the weights are
based on a compatibility function of the queries with the keys.
For time series forecasting, a decode-only architecture is com-
monly used [42]. This transformer variant consists of several
stacked decoder blocks that pass the features extracted from the
previous decoder as input to the next one. The decoder block com-
prises a masked self-attention layer, followed by a multi-head
attention layer and a fully-connected feed-forward layer. Unlike
other deep learning architectures, the transformer predicts one
step at a time for multi-step-ahead forecasting problems. Each pre-
diction is used as an input to compute the next value. However,
during the training process, the actual ground truth values are used
at each step. This is known as the teacher forcing scheme, and it
helps the model to converge faster [43].
2.3. Experimental study

In this subsection, we present the design of the experimental
study. First, in SubSection 2.3.1 the exhaustive grid-search
parametrization conducted for each architecture is described.
Then, in SubSection 2.3.2, the evaluation process is introduced.
This involves the error metrics selected, the prequential methodol-
ogy required for a correct evaluation in an online scenario, and the
statistical analysis for a proper comparison of the models’
performance.
2.3.1. Models
Finding the optimal architecture for deep learning models is a

very challenging task. In order to find the best model for solar irra-
diance forecasting, we conducted an extensive grid search for each
architecture. Table 2 presents the parameters and values explored
for each deep learning architecture.

For the MLP, the experiments explore the main two properties
of the model: the number of hidden layers and the number of neu-
rons. The number of hidden layers defines the depth of the net-
work, while the number of neurons defines the complexity of
each layer. The resulting combinations derived from these two
parameters provide a wide variety of architecture configurations.

In the case of the CNN, the search considers three characteris-
tics: the number of stacked convolutional layers, the number of fil-
ters, and whether adding a pooling step after each layer. The kernel
sizes follow a decreasing pattern at each layer with values ranging
5

from 9 to 3, as commonly found in the literature [39]. The two-
layer models have kernel sizes of 5 and 3. The models with four
layers have kernel sizes of 9, 7, 5, and 3.

Similarly to CNN, eight different LSTM architectures have been
studied. The grid search considers three parameters: the number
of recurrent layers, the number of units of each layer, and whether
to return the complete sequences. If the return sequence is set to
true, the output of the last layer will be the output of each unit
for each timestep. Otherwise, only the last step is returned, with
one value for each unit. This study considers a multi-step-ahead
forecasting problem. Therefore, for both the CNN and LSTM, the
output of the convolutional and recurrent block is connected to a
fully-connected layer that consists of as many neurons as the pre-
diction horizon.

Finally, the grid on the Transformer architecture involves three
parameters: the number of decoder blocks, the dimension of the
model (dmodel), and the number of attention heads (h) are studied.
The number of layers refers to the number of stacked decoder
blocks, while the dimension of the model describes the number
of features in the decoder input. Lastly, the number of heads repre-
sents the number of linear projections in the multi-head attention
module.

Besides the architecture-specific parameters, the experimental
study considers various data frequencies, hence different stream
speeds. The set of training hyperparameters explored can be found
in Table 3. The forecasting horizon has been fixed to 30 s, with the
aim of evaluating the short-term prediction performance. The past



Table 3
Training hyperparameters grid.

Parameter Values

Data Stream Frequency 1, 2, 4 (instances/s)
Past History 3 min

Forecasting Horizon 30 s
Batch Size 90

Num. Batches Fed 60
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history window has been set to 3 min, since it provided better
results after exploring with other values such as 1 or 5 min. This
configuration results in different numbers of time steps as input
and output depending on the data frequency (Table 1). For the
batch size and the number of batches fed, the optimal values are
selected as previously studied in [33].

2.3.2. Evaluation process
The deep learning models are evaluated using the prequential

MAE and prequential MAPE as accuracy metrics. Furthermore, a
statistical analysis of the results is carried out.Prequential Evalua-
tion Unlike in a traditional batch-learning scenario, cross-
validation techniques are not feasible for data stream problems.
The high speed and unlimited data coming from the stream make
cross-validation computationally expensive. Furthermore, in tradi-
tional batch learning, it is commonly assumed that the data is inde-
pendently and identically distributed, the data has no particular
order, and its distribution does not change. However, in a stream-
ing scenario, this assumption cannot be sustained. The stream is
generated in a particular order, and the data distribution evolves
over time. Therefore, creating a picture of accuracy over time is
essential to evaluate a data stream model [44]. This study imple-
ments the prequential evaluator with a decaying factor. This
method uses an interleaved test-then-train approach with chunks
of k ¼ 10 instances. Moreover, a decaying factor of a ¼ 0:99 is used
to give more importance to recent examples. The prequential accu-
racy (Pa) at the moment i can be computed as described in the fol-
lowing recursive equation.

PaðiÞ ¼

Xi

k¼1

ai�kLðyk; okÞ

Xi

k¼1

ai�k

¼ SaðiÞ
BaðiÞ ð1Þ

SaðiÞ ¼ Lðyi; oiÞ þ a� Saði� 1Þ; BaðiÞ ¼ ni þ a� Baði� 1Þ
where y and o refer to real and predicted values respectively, Li is
the loss function -MAE or MAPE in our study- and ni is the number
of processed instances at time i.Validation Metric Two error metrics
are used to assess the accuracy of the models. First, the Mean Abso-
lute Error (MAE) reports the absolute difference between the pre-
dicted and real values. The error is measured in the original units
(W/m2) as it is an absolute metric. In contrast, the other metric used
provides the percentage error. The Mean Absolute Percentage Error
(MAPE) metric provides a more intuitive interpretation in terms of
relative error. These metrics are defined as follows.

MAE y; oð Þ ¼

Xn

i¼1

yi � oij j

n
;MAPE y; oð Þ ¼ 100%

n

Xn

i¼1

yi � oi
yi

����

���� ð2Þ

where y and o are two vectors with the real and predicted values,
respectively. Both vectors have a length equal to the forecasting
horizon (n). These metrics are among the most widely used for
forecasting problems and will help to provide a complete analysis
of the results.Statistical analysis For a correct comparison of the
6

performance of the models, a statistical analysis is carried out using
Friedman’s procedure. This non-parametric test allows for the
detection of global differences and provides a ranking of the algo-
rithms. The Friedman test assumes the null hypothesis that all algo-
rithms perform similarly. This hypothesis can be rejected if the p-
value obtained is below the significance level (a ¼ 0:05). In that
case, Hommel’s post hoc analysis is conducted to determine
whether there is statistical significance in the performance of the
different techniques when compared pairwise.
3. Results and discussion

In this section, the experimental results are presented and dis-
cussed. For reproducibility purposes, the complete source code of
the experimental study is available in [45]. The experiments were
carried out with an Intel Core i7-770 K CPU and two NVIDIA
GeForce GTX 1080 8 GB GPUs.
3.1. Hyperparameter sensitivity analysis

First, it is important to analyze the hyperparameter search car-
ried out. For this set of experiments, we predict a single PV farm
sensor (VAR 01) based on the solar irradiance history of the entire
PV grid. The grid search with the different data frequencies results
in 90 models for each dataset. The experiments are conducted in
real-time, which implies a high computational cost for finding
the best hyperparameter values. A single experiment with one
model configuration lasts as many hours as the length of the data-
set, which is six hours in this case. Therefore, a total of 1,080 h
(45 days) have been required to complete the hyperparameter
search for all 90 models. We explored two different datasets, and
each experiment lasted 6 h (90 models x 6 h x 2 datasets = 1080 h).

Table 4 presents the MAE distribution of the experimental grid-
search parametrization conducted for each architecture and
stream speed. The results indicate that a speed of 4 instances per
second is too fast for a prediction horizon of 30 s. At this speed,
the input and output sequences reach a length of 720 and 120
timesteps, respectively, as explained in Table 1. The larger dimen-
sion of the output increases the complexity of the problem signif-
icantly. Furthermore, the input windows are larger, and the income
rate of the data is much higher than the case of one instance per
second. Considering the limitations of the available hardware,
these aspects imply that the model is re-trained less frequently
and it is harder to adapt to changes in the data stream.

In terms of mean performance among all configurations, the
MLP is the best for both datasets, closely followed by the CNN
architecture. By analyzing the standard deviation of the results
reported in Table 4, it is possible to assess the complexity of the
parameterization of each architecture. The transformer is the most
difficult model to parametrize as it presents the widest variety of
results. On the other hand, the easiest architectures to parametrize
are, MLP, CNN, and LSTM, respectively.

After analyzing the average performance of all possible hyper-
parameter settings, Table 5 presents the best configuration found
for each architecture. Furthermore, Table 6 reports the results
obtained with these optimal configurations for both datasets. The
experiments involve a multi-step forecasting problem, hence the
models produce an output of length forecasting horizon. Therefore,
we report the prequential MAE and MAPE averaged across the
entire forecasting horizon (Avg. column). We also include the error
for the last prediction - i.e. thirty seconds ahead (30” column). For
the Variable dataset, the MLP model achieves the best results, clo-
sely followed by the CNN. With regard to the Very Variable dataset,
the CNN provides the best performance. The LSTM ranked second
in this dataset, and the MLP achieved significantly worse results.



Table 4
Mean and standard deviation of prequential MAE among all configurations for each model and each stream speed.

Weather Model Mean Standard deviation

Variable MLP 8.581 10.604 342.540 0.529 0.927 8.397
CNN 10.731 10.661 334.796 1.308 0.848 12.228
LSTM 15.552 14.823 334.605 3.327 1.496 9.235

Transformer 33.450 34.018 339.129 11.602 11.639 12.026

Very variable MLP 34.424 26.794 477.299 0.285 1.043 20.993
CNN 34.781 17.027 591.384 5.383 2.286 0.013
LSTM 42.362 20.471 551.733 4.582 2.198 51.867

Transformer 110.074 80.914 423.333 36.206 48.981 105.429

Stream speed (instances/s) 1 2 4 1 2 4

Table 5
Configuration of the best models for each architecture and dataset.

Architecture Parameter Dataset
Variable Very Variable

MLP Num. H. Layers 6 2
Neurons 64 64

CNN Num. Layers 2 4
Filters 128 64

Pooling factor 0 0

LSTM Num. Layers 2 2
Num. Units 64 128
Return seq. True False

Transformer Num. Layers 4 2
dmodel 64 128

h 4 8
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We hypothesize that the poor performance of the Transformer
architecture is due to their longer training time, which prevents
the model from adapting to the fast changes in the stream. In terms
of stream frequency, the results show that all models agree on the
best stream speed for each dataset. For the Variable weather, the
slowest stream achieved the best result. However, for the Very
Variable dataset, a faster speed (2 instances per second) helps to
improve the forecasting accuracy. Overall, the 2% and 6% MAPE
results in the Variable and Very variable datasets, respectively,
demonstrate the effectiveness of our proposal given the complex-
ity of this short-term forecasting task. The worse results obtained
with Transformers also demonstrate that the errors can be doubled
if a wrong architecture configuration is selected. This fact illus-
trates the importance of the extensive grid search carried out in
the experimental study.

Fig. 3 shows the evolution of the prequential MAE over time for
each model for both data sets. For variable weather, all models
show similar behavior. They achieve fast convergence and good
adaptation to the concepts drifts in the data. However, the very
variable weather dataset seems to be a significantly more complex
dataset, as all architectures encounter more difficulties in model-
Table 6
Best results for each model and dataset. The prequential MAE averaged over the forecastin
30) are reported.

Dataset Model Stream speed
(instances/s)

Variable MLP 1
CNN 1
LSTM 1

Transformer 1

Very Variable MLP 2
CNN 2
LSTM 2

Transformer 2
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ing the distribution of the series. The prequential MAE plot exhibits
some up-and-down patterns corresponding to drifts in the data
distribution. It is worth noting that CNN and LSTM are the fastest
to converge and adjust to concept drifts. The MLP performed well
for the Variable dataset, but struggled to give accurate predictions
for more complex time series such as the Very Variable dataset. On
the other hand, the Transformer fails to converge and adapt to the
evolving data stream.

3.2. Qualitative analysis

The findings discussed in the previous section are further con-
firmed when analyzing visually particular examples of predictions.
In this part of the study, we select the best model configuration for
each type of network and analyze the MAE error over the complete
datasets. In this case, the datasets are not limited to the central six
hours of the day.

Figs. 4 and 5 illustrate four examples of predictions for each
dataset. The first two line plots of each figure show the actual val-
ues of the time series, and the evolution of the prequential error
obtained for each model architecture over time. The position of
the selected examples within the series is indicated and numbered
with purple rectangles.

For the Variable dataset (Fig. 4), the irradiance values in the cen-
tral hours of the day range from 400 to 600 W/m2. The prequential
MAE during this period remains below 25 W/m2 for CNN and MLP
models. In contrast, the MAE for LSTM is always higher, reaching
peaks of 40 W/m2. Four time intervals have been selected as
diverse examples for further analysis. Example 1, which covers
the period from 10:15 to 10:25, shows a relatively gradual drop
in irradiance lasting about 3 min (dashed grey line). It can be seen
that both CNN and MLP are able to predict the time series behavior
nearly in real-time. Example 2 (from 10:55 to 11:05) displays
sharp rises and falls between 300 and 600 W/m2 within a minute.
In this case, the models experience a significant rise in MAE. As can
be observed, the CNN andMLP react fairly quickly and efficiently to
the drift. However, the Transformer could not adapt to the evolving
stream, with its output being rather stable and unaware of the data
g horizon predictions and the prequential MAE of the single last prediction (at second

MAE MAPE
Avg. 30” Avg. 30”

8.034 11.925 2.272 3.317
8.749 14.141 2.458 3.934
12.415 17.765 3.526 5.133
19.383 21.964 5.494 6.053

25.621 38.103 7.244 11.86
14.591 20.399 6.106 8.136
17.562 22.344 7.304 8.606
42.386 42.671 12.556 13.152



Fig. 3. Prequential MAE over time for the best models for each dataset.

Fig. 4. Examples of some of the worst and best predictions for Variableweather. The first two plots show the actual value of the time series (grey line) and the evolution of the
prequential error for each model over time (colored lines). The purple numbered squares correspond to each selected and zoomed example in the subsequent figures.
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Fig. 5. Examples of some of the worst and best predictions for Very Variable weather. The first two plots show the actual value of the time series (grey line) and the evolution
of the prequential error for each model over time (colored lines). The purple numbered squares correspond to each selected and zoomed example in the subsequent figures.
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changes. Similarly, the LSTM did not adapt effectively to the con-
cept drift. Although it showed a positive reaction to the drift, the
predictions are quite variable, leading to high errors. Example 3
(between 13:10 and 13:20) presents a gradual rise and fall of solar
irradiance of almost 100W/m2. In this example, all models perform
well in capturing the rise and fall. Nevertheless, as in the previous
examples, MLP and CNN achieve the best results. Finally, Example
4 (between 14:00 and 14:10) illustrates an interval with minor but
short upward and downward movements. In this scenario, CNN
and MLP were able to predict the trend. However, they were not
able to capture all the changes in the stream and suffered delays
in some predictions. Again, LSTM and Transformer experience dif-
ficulties in this scenario. They exhibit what could be an overfitting
pattern and perform significantly worse than the CNN and MLP.
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In the Very Variable dataset (Fig. 5), the irradiance varies more
than 800 W/m2 within a few minutes. The prequential MAE plot
shows that the CNN model offers the best performance, remaining
almost always below the other three models. Over the entire day,
the maximum MAE value of the CNN was below 100 W/m2, except
before 4 p.m., when it occasionally exceeded 400 W/m2. In Exam-
ple 5 (between 8:25 and 8:35), the CNN model behaves in a fairly
stable way even with drops up to 600 W/m2. CNN outperforms
MLP, which has more erratic behavior, achieving worse results
than LSTM. In Example 6, a very good performance of the CNN
can be observed again. While MLP is able to model the trend, the
predictions present too many oscillations. In this more stable
example, even Transformer performs better than LSTM. Example
7 is almost an impossible prediction case, as it presents consecu-



Table 8
Hommel’s post hoc analysis.

Comparison z p-value

CNN – Transformer 4.58 <0.0001
CNN – LSTM 1.79 0.15
CNN – MLP 1.23 0.22

Fig. 6. PV grid map with the selected sensors colored in red.

Table 9
Accuracy results for CNN model across different sensors of the PV grid.

Weather Sensors MAE MAPE

Avg 30” Avg 30”

Variable VAR 01 8.72 14.10 2.45 3.93
VAR 03 7.82 14.78 2.18 4.02
VAR 09 10.39 17.58 2.73 4.57
VAR 12 12.97 21.37 3.62 6.00
VAR 15 11.70 20.70 3.31 5.81
VAR 17 14.60 26.25 3.86 6.93

Very variable VAR 01 14.44 20.19 6.25 8.29
VAR 03 10.93 15.46 1.97 2.84
VAR 09 11.82 17.84 2.43 3.85
VAR 12 22.28 31.42 6.13 9.17
VAR 15 13.30 20.01 2.27 3.44
VAR 17 16.24 20.87 2.49 3.17
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tive and almost instantaneous rises and falls of more than 700 W/
m2. Understandably, no model is capable of accurately predicting
this series. However, CNN can quickly capture the changes in both
upward and downward trends, albeit with some delay. Finally,
Example 8 is a stable window in which all models, except the
Transformers, are able to adjust smoothly to the data. In summary,
the Transformer struggles to model the time series, resulting in
inaccurate predictions. The LSTM performed better than in the
Variable dataset, achieving results similar to those of the MLP. In
general, CNN shows the best performance among all architectures.
It achieves nearly ideal predictions for the most stable examples
(Ex. 6 and 8) and shows a fast adaptation to the changes in the data
for the more variable examples (Ex. 5 and 7).

3.3. Statistical analysis

The MAE andMAPE results have been analyzed through a statis-
tical test to correctly evaluate the performance of each DL architec-
ture. The global ranking obtained from the application of the
Friedman test is presented in Table 7. CNN leads, the ranking fol-
lowed by MLP and LSTM. The null hypothesis can be rejected since
the p-value (< 0:00001) is below the significance level (a ¼ 0:05).
This means that the experimental data provide enough evidence
to confirm that the different architectures do not behave similarly.
Therefore, we have to carry on with the post hoc analysis where a
pair-wise comparison between the CNN and the rest of the models.
The result of this analysis is reported in Table 8. Using a signifi-
cance level of a ¼ 0:05, Hommel’s procedure determines that
CNN outperforms the Transformer significantly. However, there
are no significant differences compared to MLP and LSTM.

3.4. Forecasting accuracy across the PV grid

As the final part of our contribution, we have studied the spatial
dependencies in the dataset and how the position of the sensors
may affect the forecasting performance. We have evaluated the
results of the best CNN model across different PV sensors of the
grid. As shown in Fig. 6, we selected a sample of 6 sensors covering
the edges of the PV plant map.

Table 9 reports the MAE and MAPE results for the six sensors for
both datasets: Variable and Very Variable. There is a considerable
variation between the results obtained for the different PV sensors.
For the Variable dataset, sensors 03 and 01 obtain the best results,
while sensors 12 and 17 perform the worst. By observing the loca-
tion of these sensors, it is evident that the best results are obtained
for those on the southeast edge, while the worst results are found
in the opposite location (northwest). Something similar happens
for the Very Variable dataset, but in this case, the best results are
obtained for the sensors positioned on the right side of the map
(sensor 03), while the worst ones are located on the left side (sen-
sor 12). In both datasets, a clear spatial dependence is observed.
This behavior allows us to deduce the wind direction for the mea-
surement days: from northeast to southwest in the case of Vari-
able, and from east to west for Very Variable. These results
confirm the effectiveness of the deep learning model in accurately
capturing the spatial information, as well as external factors such
as wind speed and direction, without the need to explicitly provide
Table 7
Friedman Test Ranking.

Model Rank

CNN 1.79
MLP 2.25
LSTM 2.46
Transformer 3.50
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them. Furthermore, this study demonstrates the suitability of using
an online-learning scenario for this problem. The proposed model
is able to learn and adapt to meteorological changes instantly.
Instead, a model trained offline would need a sufficiently large
dataset to cover all possible meteorological scenarios, which still
does not ensure encountering different conditions.
4. Conclusions

In this study, we propose a deep learning model to perform
short-term solar irradiance forecasting in an online-learning sce-
nario. For the experiments, we simulated a data stream at three
different speeds based on a Canadian photovoltaic (PV) system
for two separate days with high solar radiation volatility. The
state-of-the-art deep learning architectures for time series fore-
casting were considered: multilayer perceptron (MLP), long-short
term memory network (LSTM), convolutional neural network
(CNN), and Transformer network. Consequently, an extensive grid
search parametrization was conducted to obtain the best model
architecture, testing a total of 90 models for each dataset. Further-
more, the mean absolute error (MAE) and the mean absolute per-
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centage error (MAPE) were reported and analyzed in order to com-
pare the forecasting performance of the different models.

Overall, these results confirmed the great potential of deep
learning models for short-term solar irradiance forecasting. In par-
ticular, the MLP achieved the best performance for the dataset with
less irradiance variability. The simplicity of this architecture allows
rapid convergence, and efficient adaptation to the concept drifts
when the problem is not overly complex. However, MLP performed
worse in the most volatile and challenging dataset. In this case, the
CNN architecture outperformed the forecasting accuracy of the
other architectures, closely followed by LSTM. The statistical anal-
ysis found no significant differences in the performance of these
three architectures. In contrast, the Transformer architecture could
not successfully capture the temporal dependencies of the series,
achieving the worst results for both datasets. This issue confirmed
that the complexity of the Transformer poses a disadvantage in a
streaming scenario. In addition, the results of the grid search
showed that LSTM and Transformer are significantly more difficult
to parametrize than MLP and CNN. Regarding the stream fre-
quency, the results showed that, for the variable dataset, a slow
stream of 1 instance per second is preferred. In contrast, for the
very variable dataset, a faster stream of 2 instances per second
helps to capture the higher-frequency disturbance of the stream.
Finally, streams at 4 instances per second proved to be too fast
and too complex to successfully address the problem. Furthermore,
the forecasting accuracy analysis across the different PV sensors
proved the advantages of using an online-learning scenario for this
problem. The model effectively captured the spatial and external-
factors information, such as wind speed and direction, from the
input data.

Future research should consider the potential benefit of com-
bining various deep learning architectures for this problem, such
as CNN-LSTM hybrid models. Additional studies should explore
other sampling methods that consider the distribution of the
stream, and more sophisticated hyper-parameter search tech-
niques. Another interesting research direction is the use of external
data, such as environmental conditions variables, to improve the
accuracy of irradiance forecasting. Finally, a more in-depth analysis
of the spatial component of the solar irradiance problem could be
carried out. Future work should study the importance of feature
selection for forecasting tasks based on the spatial distribution of
the photovoltaic grid.
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