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Abstract. The development of smart homes, equipped with devices connected to the Internet of Things (IoT), has opened up new
possibilities to monitor and control energy consumption. In this context, non-intrusive load monitoring (NILM) techniques have
emerged as a promising solution for the disaggregation of total energy consumption into the consumption of individual appliances.
The classification of electrical appliances in a smart home remains a challenging task for machine learning algorithms. In the
present study, we propose comparing and evaluating the performance of two different algorithms, namely Multi-Label K-Nearest
Neighbors (MLkNN) and Convolutional Neural Networks (CNN), for NILM in two different scenarios: without and with data
augmentation (DAUG). Our results show how the classification results can be better interpreted by generating a scalogram image
from the power consumption signal data and processing it with CNNs. The results indicate that the CNN model with the proposed
data augmentation performed significantly higher, obtaining a mean F1-score of 0.484 (an improvement of +0.234), better than
the other methods. Additionally, after performing the Friedman statistical test, it indicates that it is significantly different from the
other methods compared. Our proposed system can potentially reduce energy waste and promote more sustainable energy use in
homes and buildings by providing personalized feedback and energy savings tips.
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1. Introduction1

In recent years, the increasing availability of smart2

homes has led to an explosion of data related to the use3

of household appliances. These data provide valuable4

information for many applications, such as predicting5

energy consumption, device fault detection, and user6

behavior analysis. Furthermore, with rising energy costs7

and growing concerns about climate change, there is a8

growing need for innovative solutions to help reduce9

energy waste and promote more sustainable energy use.10

Accurate appliance recognition plays a crucial role in11
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the realm of energy conservation [1]. Gaining a compre- 12

hensive understanding of the energy consumption pat- 13

terns exhibited by individual appliances enables build- 14

ing managers and consumers to identify energy-saving 15

opportunities and make informed decisions about their 16

energy use. An in-depth study of appliance consump- 17

tion patterns holds particular significance in this con- 18

text. By disaggregating the power consumption data 19

for each appliance, it becomes possible to identify the 20

energy usage patterns of individual appliances, as well 21

as the overall energy consumption of the household. 22

This information can be used to develop more sophis- 23

ticated energy management systems and provide per- 24

sonalized feedback to consumers, empowering them to 25

make well-informed choices about their energy use and 26

actively reduce their consumption. Emphasizing the im- 27

portance of accurate appliance recognition as an integral 28

part of energy conservation reinforces the importance 29
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of understanding and controlling energy consumption30

in the home.31

The development of smart homes, equipped with de-32

vices connected to the Internet of Things (IoT) [2,3],33

has opened up new possibilities for monitoring and34

controlling energy use. In this context, non-intrusive35

load monitoring (NILM) techniques have emerged as36

a promising solution for the disaggregation of total en-37

ergy consumption into the consumption of individual38

appliances. Some studies indicate that it can help house-39

holds save electricity [4–8]. For this reason, the analysis40

of the consumption of electrical energy by households41

has gradually become a research field that is attracting42

attention.43

One of the most challenging tasks in NILM is to44

accurately identify the operation of each appliance.45

This problem has traditionally been tackled with su-46

pervised learning algorithms, such as k-Nearest Neigh-47

bors (kNN) and Support Vector Machines (SVM),48

among others [9–12]. More recently, deep learning49

techniques [13,14], such as Convolutional Neural Net-50

works (CNNs) [15], or Long Short-Term Memory51

(LSTM), have shown promising results in NILM appli-52

cations [16–18].53

On the other hand, in the case of household appli-54

ances, a refrigerator that works 24 hours a day does55

not have the same use as a washing machine that is56

used more occasionally, resulting in a lack of sufficient57

labels for some appliances. When using classification58

algorithms, it is essential that the models know the be-59

havior of all appliances. For this, sufficient samples60

are needed to represent the variability of the data in61

different situations.62

Therefore, a data augmentation algorithm is recom-63

mendable, and, in our case, we compare the results with64

and without data augmentation. This data augmentation65

is based on generating new data by adding the con-66

sumption of appliances with other disaggregated energy67

consumption of household appliances in another time68

window. In this way, the model is trained to identify the69

appliance in other situations that would make it chal-70

lenging to identify and allows one to obtain a model71

with better generalization.72

In this work, we propose comparing and evaluat-73

ing the performance of two different multiclass clas-74

sification algorithms, namely Multi-Label K-Nearest75

Neighbors (MLkNN) and Convolutional Neural Net-76

works (CNN), for NILM. This comparison will be car-77

ried out on two datasets: one original from the REDD78

dataset [19], and an augmented version of the same79

dataset. The augmented dataset aims to increase the80

variability of the original data and improve the gener- 81

alizability of the algorithms. In addition, we will use 82

the data in two different ways: on the one hand we 83

will use the CWT which is a mathematical technique 84

used to analyze signals or data in both the time and 85

frequency domains, and provides a way to examine the 86

time-varying frequency content of a signal at different 87

scales. And on the other hand, we use scalograms which 88

are a visual representation used in signal processing and 89

time-frequency analysis. It is derived from the CWT 90

and provides a way to analyze the frequency content of 91

a signal over time. The scalogram is typically presented 92

as a two-dimensional plot, where the vertical axis repre- 93

sents frequency and the horizontal axis represents time. 94

It helps in identifying the presence of specific frequen- 95

cies or patterns in a time-varying signal. Therefore, on 96

one side we will use CWTs for MLkNN, and on the 97

other side, scalograms to work with CNNs. 98

In summary, this paper presents three major con- 99

tributions to the classification of disaggregated power 100

consumption by appliance. 101

1. An innovative method for enhancing the inter- 102

pretability of classification results in energy con- 103

sumption data. By converting power consumption 104

signals into scalogram images and analyzing them 105

with Convolutional Neural Networks (CNNs), we 106

offer a novel approach that surpasses traditional 107

methods in both accuracy and interpretability. 108

2. The introduction of novel data augmentation tech- 109

niques, commonly utilized in machine learning, 110

to energy consumption data classification. This 111

approach not only expands the dataset size and 112

diversity but also demonstrates a significant im- 113

provement in classification performance, con- 114

tributing a novel methodology to the field. 115

3. A comprehensive comparative analysis of two 116

prevalent classification algorithms in energy con- 117

sumption data analysis: MLkNN and CNN. This 118

analysis goes beyond mere comparison, offering 119

valuable insights into the efficacy of these algo- 120

rithms in disaggregating electrical consumption 121

by appliances, thereby advancing the current state 122

of knowledge in this domain. 123

These three contributions represent a significant step 124

forward in developing techniques for classifying dis- 125

aggregated power consumption by appliance. A poten- 126

tial application of our research is to integrate an ap- 127

pliance containing the trained model with the smart 128

meter in a home. This device would provide real-time 129

appliance classification to the end user. By disaggregat- 130

ing the energy consumption of individual appliances, 131
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NILM enables users to gain insight into how each de-132

vice contributes to their overall energy usage. With133

real-time appliance classification and the availability of134

appliance-level energy data, users can identify which135

devices consume the most energy in their homes. This136

detailed understanding allows them to make informed137

decisions about how to optimize their energy use and138

make adjustments to reduce consumption. Moreover,139

by having appliance-specific energy consumption data140

in real-time, users can identify inefficient or wasteful141

usage patterns. This presents an opportunity for them142

to modify their daily habits and routines to use energy143

more efficiently. In addition, the system could provide144

personalized feedback and energy-saving tips to users.145

For example, it could alert users when a specific ap-146

pliance is consuming more energy than usual or sug-147

gest specific actions to reduce consumption, such as148

using energy-efficient appliances or scheduling the use149

of certain devices during periods of lower demand. In150

summary, integrating NILM with the trained model and151

the smart meter empowers users with detailed energy152

information at the appliance level. This enables them to153

make more informed decisions, optimize their energy154

usage, and embrace sustainable practices. By promoting155

energy-conscious behaviors and efficient energy utiliza-156

tion, NILM contributes to a more sustainable approach157

to energy consumption.158

The remainder of the paper is organized as fol-159

lows. Section 2 reviews the state-of-the-art with NILM-160

related studies. Section 3 describes the data used and161

the proposed methodology followed by the results in162

Section 4. The last section concludes the study and163

highlights future work.164

2. Related work165

Efficient energy management is an increasingly im-166

portant issue in the current context of climate change167

and growth in energy demand. With this in mind, non-168

intrusive load monitoring (NILM) [20] has been pre-169

sented as a valuable tool to identify the energy con-170

sumption of different electrical devices in a home or171

building without the need to install sensors on each de-172

vice. Traditional NILM methods are based on voltage173

and current measurement techniques. However, these174

methods can be challenging to implement and may re-175

quire costly installation. For this reason, the use of ma-176

chine learning algorithms for non-intrusive load moni-177

toring has been explored in recent years. Machine learn-178

ing algorithms have been used to identify patterns in179

energy consumption data, allowing us to distinguish the 180

different electrical appliances that consume energy in a 181

home or building. 182

The most common machine learning techniques used 183

in NILM are classification, regression, and clustering. 184

In the classification technique, machine learning models 185

are used to classify the power consumption of different 186

devices. In the regression technique, machine learning 187

models are used to predict the power consumption of 188

a specific device based on global power consumption 189

data. The clustering technique uses machine learning 190

models to cluster the power consumption of different 191

devices based on the patterns identified in the power 192

consumption data. 193

We can find numerous articles in the literature that 194

address this problem, done through different method- 195

ologies. Xie et al. [21] propose a solution that involves 196

identifying the different types of appliances in a power 197

load environment with a probabilistic clustering prin- 198

ciple to evaluate the characteristics of the load appli- 199

ance. On the other hand, we can find numerous articles 200

dealing with the problem by applying deep learning 201

techniques. For instance, Kelly and Knottenbelt [17] 202

studied in 2015 the effectiveness of deep learning meth- 203

ods in NILM for energy disaggregation. They enhanced 204

the state-of-the-art by introducing three approaches 205

(LSTM, denoising autoencoders, and regressive neural 206

network). 207

The process of disaggregating electricity consump- 208

tion can provide a high level of detail, but it may not 209

always be required for specific users or applications. In 210

such scenarios, classifying appliances as events could 211

prove to be a more appropriate approach. This method 212

can help identify high-energy-consuming devices or 213

monitor specific appliance usage patterns. In this re- 214

gard, several research studies have proposed different 215

classification approaches. 216

In 2018, Machlev et al. [22] proposed a novel algo- 217

rithm for classifying appliance state events by modi- 218

fying the cross-entropy (CE) method. Their main con- 219

tribution lies in presenting a formulation and solution 220

using the CE method as a constrained optimization 221

problem, which they term the modified CE method. 222

Their approach shows promising results in terms of ac- 223

curacy and computational efficiency, especially when 224

compared to traditional CE-based approaches. 225

Singh and Majumdar presented a different ap- 226

proach [23] in 2019, a modified sparse representation- 227

based classification (SRC) specifically tailored for 228

multi-label classification problems. The original SRC 229

technique was primarily developed for computer vision 230
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applications and has since been utilized across various231

domains. One of the key advantages of the SRC method232

is its ability to learn from limited samples, making it a233

valuable addition to the field of NILM.234

The authors Verma et al. [24], in 2021, have ac-235

counted for the first time the dynamic modeling of the236

system while posing it as a multi-label classification237

problem. Their approach hinges on an LSTM autoen-238

coder where the representation from the deepest layer of239

the encoder maps directly to the appliance labels. This240

method presents an innovative way of understanding241

and tackling the complexity of the NILM problem con-242

dition by recognizing the dynamic nature of appliance243

usage patterns.244

Hur et al. [25], in their study, optimize domain adap-245

tation by employing various techniques such as ro-246

bust knowledge distillation based on the teacher-student247

structure, reduced complexity of feature distribution248

based on gkMMD, TCN-based feature extraction, and249

pseudo-labeling-based domain stabilization. They per-250

form classification tasks for device usage detection in251

NILM by incorporating powerful feature information252

distillation based on the teacher-student structure and253

pseudo-labeling into domain adaptation.254

Recently, CNN has shown promising potential in the255

field of NILM as indicated by new studies. Shahab et256

al. [26] proposed a seq2-[3]-point CNN model to tackle257

problems in both home and site-NILM. They built upon258

the existing 2D-CNN models, like AlexNet, ResNet-18,259

and DenseNet-121, by training them on two custom260

datasets incorporating wavelets and STFT-based 2D261

electrical signatures of appliances.262

The CWT, which has gained significant attention263

in the field, is widely recognized as an effective ap-264

proach to address this problem. Several studies have265

acknowledged the efficacy of wavelet-based methods266

in various applications [27–29]. The CWT is one of the267

trends in addressing this issue. Ferrandez et al. [30] pro-268

pose a method based on the CWT to decompose energy269

into a more straightforward time series, corresponding270

to the consumption of household appliances. We can271

also find a publication that works with two datasets,272

GREEND [31] and REDD, to show a NILM system273

that reads the data and then, using the wavelet, applies274

an ensemble bagging tree classifier [32]. The results of275

this work were correct for a set of 29 household appli-276

ances, which confirms that they can be easily identi-277

fied. A review of the techniques used for NILM can be278

found in [33]. This review analyzed the state-of-the-art279

learning algorithms and feature sets used to develop280

classifiers. Supervised learning techniques are the most281

widely used and typical features are based on the time 282

domain and the frequency domain (wavelet). 283

Tabatabaei et al. [9] used the CWT to classify 284

NILM in two houses from the REDD dataset. In this 285

case, the authors applied two multi-label classifica- 286

tion algorithms: Random sets of k-label (RAKEL) 287

and Multi-Label k-NearestNeighbor (MLkNN) and ob- 288

tained promising results; however, the algorithms did 289

not perform well for all the appliances studied. The 290

study pointed out that multilabel classifiers are more 291

practical, but less studied. 292

On the other hand, as mentioned in Section 1, nu- 293

merous studies have worked with the scalogram, but 294

in different domains than the one we are working on. 295

Copiaco et al. [34] carry out a study in which they show 296

that the use of scalograms as a feature of the data model 297

significantly improves the results in the classification 298

of, in this case, domestic acoustic sounds. 299

The use of scalograms has other applications in the 300

field of forecasting. We can see in [35] the proposal of a 301

deep learning framework to predict earthquakes in real 302

time. In this work, the authors propose to transform the 303

data to encode them in a time-frequency representation, 304

which results in the scalogram. The results of this work 305

are promising and proof of its performance. There is 306

work aimed at predicting epileptic seizures [36]. They 307

use the data generated by the electroencephalogram. 308

This is transformed by the CWT and then into scalo- 309

grams. After this transformation, they proposed a neural 310

network architecture that obtained excellent results with 311

the data used. 312

Several approaches [37–39] use the CWT and scalo- 313

grams applied to NILM to detect two new features 314

that help identify the appliance: Centroid and boundary 315

points of the CWT. The main difference from our ap- 316

proach is that they use the scalogram to detect a feature. 317

Still, we process the entire scalogram using CNNs to 318

detect and classify the operating appliances. 319

In summary, many studies address the problem of 320

detecting and classifying household appliances accord- 321

ing to their energy consumption. As mentioned above, 322

several machine learning techniques have been applied 323

to achieve this goal, including deep learning architec- 324

tures, and satisfactory results have been obtained. On 325

the other hand, numerous works on detection or classi- 326

fication use scalograms generated from the data. This 327

type of data transformation has been applied in other 328

domains, but to the best of our knowledge, it has not 329

been applied to the problem of home appliance detec- 330

tion. Another difference between our approach and the 331

state-of-the-art is the comparison of machine learning 332

techniques with and without data augmentation, which 333

shows the strong influence of data augmentation. 334
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Fig. 1. REDD sample of the power consumption of different household appliances and the aggregated consumption.

3. Materials and methods335

In this section, we present the dataset and the method-336

ology proposed for the experimental study. First, we337

will analyze the content and characteristics of the338

dataset we have been working on. Finally, the experi-339

mental framework is described step by step along with340

the procedure followed.341

All experiments were carried out on a machine342

equipped with a 4.35 GHz AMD Ryzen 7 3700x CPU,343

32GB of DDR4 3200 RAM, and an NVIDIA GeForce344

3080 graphics card with 10GB of GDDR6X memory.345

Python 3.9 has been used to perform all the experi-346

ments, and among the libraries used, we can find: scikit-347

learn, for machine learning functions; scaleogram, for348

the generation of the scalograms; and matplotlib, for349

the creation of the graphs. The source code used in this350

study is available in the GitHub repository [40]. The351

repository contains implementations of the machine352

learning models used as well as the datasets used in our353

experiments.354

3.1. REDD dataset355

For this work, we have selected the Reference En-356

ergy Disaggregation Data Set (REDD) [19]. The dataset357

contains 24 hours power consumption data from six358

residential buildings in the United States with a total359

duration of 119 days. The dataset contains the house’s360

total power consumption, that is, with the sum of the361

appliances (aggregated consumption) and the consump-362

tion of each appliance separately (disaggregated con-363

sumption). The measurements consist of two types of364

data sampling frequencies. The mains data are recorded365

at a sampling period of 1 second, while the appliances’366

measurements are taken at a sampling period of 3 sec- 367

onds. Additionally, high-frequency current and voltage 368

measurements are available, sampled at a frequency of 369

15 kHz. Figure 1 shows the sample data we will work 370

with. The graph represents the energy consumption (y- 371

axis) of different appliances over time (x-axis). As seen, 372

the “Mains” time series represents the aggregate en- 373

ergy. In contrast, multiple series shows the power con- 374

sumption of different appliances, such as the washing 375

machine, the dishwasher, or the microwave. 376

An approach to evaluating the performance of a 377

machine learning model on a dataset with a limited 378

number of observations is to use cross-validation. This 379

study used a six-fold cross-validation (one per house) 380

to consider each house as a test split and improve the 381

model’s generalizability. To perform cross-validation, 382

the dataset was divided into six equal folds. In each 383

cross-validation iteration, one of the six houses was 384

used as the test set, and the other five houses were used 385

as the training set. 386

The model was trained in the training set with five 387

houses and its performance in the test set was evaluated. 388

We repeated this process six times, each with a different 389

house held as the test set. 390

Using a 6-fold cross-validation, we obtained an esti- 391

mate of the model’s generalization performance on the 392

entire dataset. This approach allowed us to evaluate the 393

performance of the model in each individual house as 394

well as the overall performance in all six houses. 395

To carry out the experiments, different transforma- 396

tions were made to the dataset. These transformations 397

are detailed in the following section (Section 3.2). 398

3.2. Methodology 399

This section develops the methodology used to carry 400
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Fig. 2. Summary representation of the methodology followed. The arrows indicate the number of datasets passed to the next step. Two arrows
indicate when the step produces a result with and without data augmentation.

out the study. Starting from the dataset documented in401

Section 3.1, in order to obtain the datasets on which to402

work and thus apply machine learning techniques, some403

transformations have been applied and are summarized404

in Fig. 2.405

As shown in Fig. 2, the methodology consists of the406

following six steps: First, based on the REDD data set,407

it is necessary to check and verify which devices are408

working at any given time (1). Second, the data are409

divided into sliding temporal windows to improve data410

processing, with a window size of 600 samples and411

a temporal shift of 200 samples. In this step, we also412

apply a data augmentation algorithm to enhance the413

dataset. From this step, we start working in parallel414

with the original data and the data with data augmen-415

tation (DAUG) (2); in the third place, the Continuous416

Wavelet Transform (CWT) is computed for each time417

window, and the wavelet dataset (WAV-DS) is built (3);418

in the fourth place, the scalograms are extracted from419

the CWT of the previous step, and with this set of im-420

ages, the scalogram dataset (SCA-DS) is built (4). In421

the fifth step, the machine learning method (MLkNN)422

and the deep learning method (CNN) are applied to423

the generated datasets (5 and 6). Finally, the results424

are discussed, and a statistical analysis is performed.425

It should be noted that when the methodology starts426

working with the original data set and with those with427

data augmentation, it is illustrated in Fig. 2 with two428

arrows.429

3.2.1. Data preprocessing430

As mentioned above, the methodology starts with431

REDD. The first step is to check which appliances are432

working at any given time. Considering that REDD433

has aggregated and disaggregated data, it is possible434

to know at any moment in time which appliance is 435

working. Therefore, using the disaggregated datasets, 436

a threshold value is calculated by which we will know 437

whether the appliance is active or not. Therefore, a 438

threshold value was calculated for each household ap- 439

pliance to confirm that it is working at that moment and 440

therefore use this as a binary class. To achieve this, the 441

threshold was calculated based on the mean value of 442

the consumption peaks and adjusted for a bias error of 443

30%. In other words, the consumption peaks of these 444

appliances were calculated and if their value exceeded 445

the threshold, it was confirmed that this appliance was 446

activated. In Fig. 3 we can see an example of the calcu- 447

lation of this threshold for the refrigerator case. Here, 448

we can see an extract of the refrigerator’s consumption 449

and those consumption peaks derived from this appli- 450

ance marked in red. Furthermore, we can see a horizon- 451

tal line in the graph that represents the threshold calcu- 452

lated by which we will define whether the refrigerator is 453

working. In this way, the refrigerator operates when the 454

consumption of the refrigerator is above this threshold. 455

Once we have identified when each device operates 456

in the time series, we move on to the next step: generat- 457

ing the time series window. This study aims to identify 458

which devices are working within a time period, and in 459

this step we define the time-space window with which 460

we will work. After several tests focusing on the sys- 461

tem’s usability for the end user, it was concluded that a 462

time window of 600 seconds with a shift of 200 samples 463

would be optimal. By analyzing the data, we observed 464

that certain devices tended to operate in at specific time 465

intervals. For example, some appliances have recurring 466

patterns of activity every 10 minutes such as the re- 467

frigerator. Therefore, by setting a time window of 600 468

seconds (10 minutes) and a shift of 200 samples, we 469
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Fig. 3. Bias threshold calculation sample for the refrigerator.

could effectively capture the operating patterns of such470

devices. A time window of 600 seconds allows us to471

examine a sufficiently long duration to identify recur-472

ring activity patterns and to extract meaningful insights473

from the data. The shift of 200 samples ensures that474

we capture overlapping segments within the time win-475

dow, which allows us to detect the activity of devices in476

adjacent intervals. Through iterative testing and anal-477

ysis, we found that this configuration provided a good478

balance between capturing device performance at the479

desired interval. It allowed to effectively identify and480

monitor devices operating at 10-minute intervals, which481

is valuable information to understand energy consump-482

tion patterns and making informed decisions. Next, we483

divide our entire dataset into 10-minute intervals where484

we know which devices are running at that time.485

3.2.2. Data augmentation486

In this step, the data augmentation algorithm is ap-487

plied. As mentioned in Section 1, one of the key find-488

ings of this study is the improvement of the models489

by using data augmentation to identify applications by490

power consumption. New windows, including new ap-491

pliance uses, were added to the original time-series492

window dataset to perform data augmentation. In other493

words, new windows were created in which different494

appliances were aggregated.495

The idea is to increase the frequency of the appear-496

ance of household appliances. To this end, new win-497

dows have been created based on the disaggregated498

consumption of each household appliance. For each499

window of our training set, we disaggregate the con-500

sumption of each appliance and select another random501

window from that set as the target. Given the disaggre-502

gated consumption and the window of another random503

time, both energy consumptions are aggregated, thus 504

generating a new window with the same appliance but 505

in a new situation. In this way, the data of each appli- 506

ance is augmented, allowing the network to identify it 507

with other appliances that may hinder its detection. The 508

proposed data augmentation method is also detailed on 509

Pseudo-Code 1. 510

In this way, new windows are created, including sit- 511

uations where one or more appliances operate simulta- 512

neously. At the end of this step, we will work with two 513

sets of time series: one containing the original REDD 514

data and a second set of time series containing data 515

generated by the data augmentation algorithm (DAUG). 516

Table 1 shows the number of examples we have ob- 517

tained for each appliance. The number of samples in the 518

“# Samples” column indicates the number of samples 519

containing the data in which the appliance operates. The 520

column “After DAUG” shows the maximum number 521

of samples after applying the data augmentation. Since 522

data augmentation uses random windows in the training 523

set, some appliances have more presence than others. 524

However, since this selection of windows is random, the 525

number of samples per appliance in each run will vary. 526

Therefore, the maximum number obtained from each 527

appliance is shown. This is the maximum contemplated 528

and may be slightly lower due to some iterations due to 529

the random selection of windows during data augmen- 530

tation. The “DAUG Factor” column indicates the factor 531

of data augmentation. A factor of “1” indicates that a 532

new sample is created for each original sample. 533

As appliances may appear in windows of data aug- 534

mentation that contain other appliances, it is possible 535

that the data augmentation factor may not correspond 536

to the maximum number of samples generated. This 537

happens because when we increase an appliance, for ex- 538
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Algorithm 1: Pseudo-code of Energy-Based Data Augmentation.
Require: min_augmentations: minimum number of augmentations per label.
Require: max_occurrences: maximum number of occurrences per label not to apply data augmentation.
1: windows_per_label = get_windows_per_label (house_idx, label)
2: daug_factors = get_daug_factors (windows_per_label, min_augmentations, max_occurrences)
3: annotations = get_annotations (fold_idx, split = ‘train’)
4: new_annotations = []
5: for label, daug_factor in daug_factors do
6: for window, appliances, _, _ in annotations do
7: for appliance in appliances do
8: meter = get_disaggregated_meter (window, appliance)
9: for _ in range (daug_factor) do

10: new_window, new_appliances, new_labels = get_random (annotations)
11: new_window = new_window + roll_meter (meter)
12: new_appliances.add (appliance)
13: new_labels.add (label)
14: new_scalogram = create_scalogram (new_window)
15: new_annotations.add ((new_window, new_appliances, new_labels, new_scalogram))
16: end for
17: end for
18: end for
19: end for
20: annotations = concat ([annotations, new_annotations])
21: save_annotations (annotations, fold_idx)

Table 1
Number of samples used in the two different types of datasets. The
quantity of samples after DAUG corresponds to the maximum number
of augmented samples per house. The DAUG Factor column indicates
the factor of data augmentation applied to each appliance. In bold are
the labels that will be used to evaluate the models

Appliance # Samples After DAUG DAUG factor
air_conditioning 330 9,630 10
bathroom_gfi 216 4,479 14
dishwasher 169 4,284 18
disposal 57 3,260 53
electric_heat 44 6,116 69
electronics 220 4,401 14
furnace 577 7,321 6
kitchen_outlets 469 6,615 7
lighting 2,710 25,431 2
microwave 527 6,589 6
miscellaneous 6 3,006 500
none 1,894 1,894 0
outlets_unknown 529 7,917 6
oven 54 6,102 56
refrigerator 6,273 44,120 1
smoke_alarms 6 3,026 500
stove 98 3,518 31
subpanel 88 5,128 35
washer_dryer 258 6,643 12

ample, “microwave”, we have to add it to a new random539

window containing other appliances, for example, a540

window with the appliances “refrigerator” and “oven”.541

Therefore, even if we do not want to increase the “re-542

frigerator” anymore directly, it appears again through543

the newly created window. Consequently, although the544

refrigerator increase factor is “1” and this should corre-545

spond to 12,546 instances, 44,120 samples have been546

counted, with a difference of 31,574 samples resulting547

from the occurrence of increases in other appliances. 548

This allows the model to learn from appliances such as 549

microwaves alongside more common appliances such 550

as refrigerators and less common appliances such as 551

ovens. 552

As can be seen, there is a large variability in the data 553

between appliances, where we can see that appliances 554

such as the smoke alarm have only 6 scalograms. On the 555

contrary, we have 6,273 samples from the refrigerator. 556

This situation occurs because we are using real data. 557

Therefore, we use appliances that are used 24 hours a 558

day and others that consume only energy when neces- 559

sary, such as the smoke detector. Considering that there 560

are certain appliances for which there are not enough 561

data available, data augmentation (DAUG) techniques 562

have been applied to work with a sufficient dataset. 563

Therefore, at this point, the study is carried out taking 564

into account these two different types of datasets: the 565

first one, in which deep learning techniques are applied 566

to the transformation calculated based on the initial 567

data; and a second type of dataset in which, in addi- 568

tion to the initial data, also includes the augmented data 569

from the DAUG algorithm. However, not all the appli- 570

ances listed will be used in the experiments because the 571

six houses used do not have all of them. Therefore, we 572

will keep only the appliances that have at least, for each 573

fold, five samples on test and also contain that label on 574

training. These appliances are in bold in Table 1. 575

The DAUG function combines disaggregated con- 576

sumption and the total consumption of other intervals, 577

thus generating new wavelets with different overlaps 578
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Table 2
Mean consumption per appliance in the different houses. The presented value corresponds to the
mean consumption in watts of the appliances when they are considered active. In bold are the
labels that will be used to evaluate the models

Appliance House 1 House 2 House 3 House 4 House 5 House 6
air_conditioning 974.39
bathroom_gfi 1,606.44 1,275.04 1,146.83 1,610.10 946.04
dishwaser 1,072.46 1,198.56 736.86 1,317.63 1,249.69
disposal 394.29 358.26
electric_heat 804.79 444.31
electronics 210.89 242.14 486.92
furance 679.45 594.26 652.96
kitchen_outlets 1,522.48 1,054.50 755.18 516.46
lighting 152.29 191.23 141.57 393.74 125.53
microwave 1,519.50 1,836.58 1,712.79
miscellaeneous 41.00
outlets_unknown 121.15 79.50 201.19
oven 2,051.95
refrigerator 201.07 171.52 128.82 173.47 148.93
smoke_alarms 44.00 29.00
stove 1,502.10 1,671.89
subpanel 265.32
washer_dryer 2,700.21 2,519.77 784.81

of appliances. In addition, to add more variety, random579

time shifts are performed, adding more variety to the580

augmented data. Table 1 in the column “After DAUG"581

shows the total number of examples available after data582

augmentation.583

We established a minimum number of 3,000 in-584

stances per appliance to perform data augmentation,585

thus ensuring a minimum amount for a proper training586

process. However, this number may increase due to the587

accumulation of other appliances as they appear in other588

windows during their generation.589

As can be seen, much more data is now available.590

We can see how we have gone from having 169 dish-591

washer scalograms to having 4,479, or from having 57592

examples where the disposal was used to having 3,260.593

At this point, we could consider that we have enough594

data for the Deep Learning algorithms in the second595

scenario to obtain better results.596

Table 2 presents the mean consumption obtained597

in Watts for the different household appliances. It is598

important to recognize that households may differ in599

terms of the appliances they have. Among the avail-600

able appliances, the most prevalent are “bathroom_gfi”,601

“dishwaser”, “lighting” and “refrigerator”, which are602

found in five out of six homes. Furthermore, it can603

be observed that there are some appliances that have604

a lower consumption compared to others, such as the605

“refrigerator”, with a mean consumption of 164.76 W,606

which has a much lower consumption than, for ex-607

ample, “bathroom_gfi”, with a mean consumption of608

1316.89 W.609

In summary, we have two different scenarios. In each 610

scenario, we have two different types of dataset, that is, 611

first, we have a scenario in which we will work with 612

the wavelet transformed data (WAV-DS); and a second 613

scenario in which we will work with the scalograms 614

extracted from these wavelet transforms (SCA-DS). 615

In each of these scenarios, we have worked with two 616

datasets on each: one in which we work with the origi- 617

nal data, which is composed of 8,972 instances; and a 618

second dataset which includes the data augmentation in 619

which a maximum of 58,031 instances are used. 620

3.2.3. Wavelet and scalogram transformations 621

Once we have the sets of time intervals, we apply the 622

CWT [41] to the data. The CWT is a signal process- 623

ing technique that uses a wavelet function to analyze 624

signals in the time-frequency domain. This allows for 625

identifying features in the signal that change over time 626

and can provide valuable information about the signal’s 627

properties. 628

The wavelet is shifted and scaled to analyze the signal 629

at various positions and scales to compare the signal. 630

Scaling is accomplished by dilating or compressing the 631

wavelet, which is equivalent to modifying its width, and 632

shifting refers to moving the wavelet along the signal. 633

The CWT produces a function of two variables, known 634

as the wavelet coefficient function, by comparing the 635

signal to the wavelet at various scales and positions. 636

Figure 4 shows an example of the convolution under- 637

gone by an example interval of the time series with the 638

Morlet wavelet. 639

The wavelet coefficient function obtained from the 640
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Fig. 4. Example of consumption signal (a), wavelet with a width of 1 and frequency of 2 (b), and the convolution of the selected wavelet with the
signal (c).

CWT provides a detailed representation of the signal641

frequency content at different scales and positions, mak-642

ing it a powerful tool for signal analysis. It can be used643

to identify and characterize different patterns or struc-644

tures within the signal that are not easily observable645

using other methods. The CWT is a valuable technique646

for analyzing signals with complex frequency content647

and temporal dynamics.648

In the present work, it has been used to decompose649

the power consumption signal from each house into650

different time and frequency scales, which would help651

identify specific patterns and trends in power consump-652

tion over time. In this way, we will go from having time653

series intervals to wavelet transforms. As mentioned654

above, WAV-DS is built with a set of wavelet trans-655

forms. It is worth recalling that after executing this step,656

we will obtain WAV-DS without and with DAUG.657

Finally, once we have our sets of wavelet trans-658

forms (without and with DAUG), the fourth part of the659

methodology is reached. In this case, the scalograms660

are extracted for each wavelet transform by using py-661

wavelets library [42]. A scalogram is a graphical repre-662

sentation of the results of the continuous wavelet trans-663

form. It is a two-dimensional graph that displays the664

wavelet coefficient function, which provides informa-665

tion about the signal’s frequency content at different 666

scales and positions. The x-axis of the scalogram rep- 667

resents the time and the y-axis represents the wavelet 668

scale used for the analysis. The intensity of the color 669

or shading of each point in the plot corresponds to the 670

amplitude of the wavelet coefficient function, which 671

provides information about the signal’s energy at a par- 672

ticular scale and time. 673

In this way, it is possible to build a dataset composed 674

of a set of images that are the WAV-DS scalograms. In 675

this work, the scalograms have been used to visualize 676

the patterns and trends in the power consumption data 677

for each time interval and to be able to use these im- 678

ages to apply Deep Learning techniques and perform 679

comparisons between the different techniques. Figure 5 680

shows different examples of scalograms in the same 681

window with total and disaggregated consumption of 682

appliances in house 1. 683

Therefore, we go from having a dataset composed of 684

time series of the aggregate power consumption to hav- 685

ing a set of wavelet transforms (WAV-DS) and scalo- 686

grams from those wavelets (SCA-DS) of 10-minute 687

time windows. It should be noted that, for each of these 688

datasets, we will work with the versions without and 689

with DAUG. 690
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Fig. 5. Scalograms generated from a window with a) the consumption of three appliances (bathroom-gfi, microwave, and refrigerator);
b) the disaggregated consumption of bathroom-gfi appliance; c) the disaggregated consumption of microwave appliance; d) the disaggregated
consumption of refrigerator appliance.

3.2.4. Classification models691

The next step of the methodology (Step 5 in Fig. 2)692

is given by applying two different classification algo-693

rithms. On the one hand, we will use the MLkNN al-694

gorithm. MLkNN is a classification algorithm used for695

multi-label classification problems [43], which is nec-696

essary for this problem, as more than one appliance697

may appear in the same time window. The algorithm is698

based on the K-Nearest Neighbor (KNN) method and699

uses a supervised learning technique to assign labels700

to new instances. The main goal is that for each data 701

instance, the K-Nearest Neighbors of it in the feature 702

space are searched, and their labels are used to assign 703

a label to the current instance. The labels are consid- 704

ered as binary vectors, where each label represents a 705

distinct class. The algorithm aims to find the k nearest 706

neighbors in the feature space and assign labels based 707

on the majority voting of the labels from the neighbors. 708

In addition, this algorithm has been chosen because it 709

is one of the most widely used in the literature [44–46]. 710
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This algorithm works with numerical data, so, in our711

study, we have used as input the WAV-DS composed of712

the wavelets extracted from the data and discussed in713

the previous Section.714

On the other hand, we will use one of the most widely715

used Deep Learning techniques, such as the classifica-716

tion architecture based on Convolutional Neural Net-717

works (CNN), and more specifically the ResNet-50 ar-718

chitecture [47]. ResNet-50 is a deep convolutional neu-719

ral network (CNN) architecture commonly used for im-720

age recognition tasks. This architecture uses a tech-721

nique called “residual connection" to allow the network722

to learn deeper representations of images. A residual723

connection is a way to allow information to flow di-724

rectly through a layer without additional processing.725

This helps avoid the problem of gradient fading, which726

can make it challenging to train very deep neural net-727

works. ResNet-50 consists of 50 layers including con-728

volutional layers, pooling layers, and fully connected729

layers. Specifically, the ResNet-50 architecture com-730

prises five stages, each with a different number of resid-731

ual blocks. The number of layers in each stage is as732

follows:733

– Stage 1: 1 convolutional layer + 1 pooling layer734

– Stage 2: 3 residual blocks, each containing 3 con-735

volutional layers736

– Stage 3: 4 residual blocks, each containing 4 con-737

volutional layers738

– Stage 4: 6 residual blocks, each containing 6 con-739

volutional layers740

– Stage 5: 3 residual blocks, each containing 3 con-741

volutional layers742

In this study, ResNet-50 is used to classify multi-743

ple categories of appliances from the sliding window744

scalogram, detailed in Section 3.2.745

The Binary Cross Entropy (BCE) loss with an ini-746

tial sigmoid function was selected to implement this747

multicategory problem on ResNet-50. BCE is a com-748

monly used loss function in machine learning for binary749

classification problems, such as the appearance or non-750

appearance of a household appliance. This loss mea-751

sures the difference between the predicted probability752

distribution and the true probability distribution. Never-753

theless, the BCE loss must be modified to handle one-754

hot-encoded vectors when dealing with multicategory755

classification problems, where the output has more than756

two possible classes, such as the appearance of multi-757

ple household appliances. The output of this network758

consists of the probability distribution for each class as759

a vector. To obtain a binary classification for each class,760

an activation threshold of 0.5 was established, as this761

presents a correct detection ratio. However, this value 762

could be modified to reduce false positives at the cost 763

of losing true positives if necessary. 764

The experiment was carried out following the cross- 765

validation method, where the selected folds correspond 766

to the six houses of the REDD dataset. Hence, six ex- 767

periments were carried out for each model with the 768

combination of use and non-use of augmentations. Each 769

fold uses as training the rest of the houses available for 770

training and the one selected as validation. 771

The results shown in this study correspond to the 772

mean and standard deviation obtained over all the folds, 773

considering only labels with at least five samples in 774

their test set. The labels that meet this support are bath- 775

room_gfi, dishwasher, disposal, electronics, furnace, 776

kitchen_outlets, lighting, microwave, outlets_unknown, 777

refrigerator, and washer_dryer. 778

Therefore, the MLkNN algorithm will work with 779

WAV-DS; on the other hand, CNN will process SCA- 780

DS. It should be noted that each algorithm will use its 781

corresponding dataset with the original data and an- 782

other with the data after applying the data augmentation 783

algorithm. 784

As a last step, comparative tables will be shown and 785

the results will be discussed in Section 4. 786

3.2.5. Statistical tests 787

To verify the performance of the different algorithms 788

proposed, a statistical framework has been applied in 789

two steps: Friedman’s statistical test and Holm post-hoc 790

procedure. The Friedman test is a non-parametric test 791

used to compare the effects of several conditions or 792

treatments on an ordinal dependent variable. The pur- 793

pose of the test is to determine whether there are sig- 794

nificant differences between the treatments evaluated, 795

such as the methods in our study [48] i.e., if at least 796

one of them has a different effect than the others. If the 797

null hypothesis is rejected, it can be concluded that at 798

least one treatment is different from the others. Once 799

the Friedman test is performed and the null hypothesis 800

is rejected, a post-hoc procedure is applied to determine 801

which treatments are significantly different from each 802

other. In this case, the Holm post-hoc procedure will be 803

used [49]. The Holm post-hoc procedure is a correction 804

for multiple comparisons that is used to adjust the p- 805

values obtained from the paired comparisons. This pro- 806

cedure is performed in several stages, where each stage 807

compares the smallest unadjusted p-value with its cor- 808

responding adjusted p-value. If the unadjusted p-value 809

is less than the adjusted p-value, the null hypothesis is 810

rejected for this comparison. If the unadjusted p-value 811
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Table 3
MLkNN results for WAV-DS regarding precision, recall, F1-score, and support for each appliance. The highest F1-score for each appliance is
in bold

Normal DAUG

Appliance Precision Recall F1-score Precision Recall F1-score Support
bathroom_gfi 0.19 ± 0.19 0.11 ± 0.08 0.13 ± 0.09 0.22 ± 0.12 0.22 ± 0.10 0.19 ± 0.07 53.250 ± 53.13
dishwasher 0.31 ± 0.23 0.51 ± 0.44 0.36 ± 0.27 0.43 ± 0.24 0.55 ± 0.28 0.480 ± 0.26 33.800 ± 27.81
disposal 0.05 ± 0.07 0.02 ± 0.03 0.03 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 28.500 ± 6.36
electronics 0.16 ± 0.00 0.03 ± 0.00 0.05 ± 0.00 0.37 ± 0.00 0.19 ± 0.00 0.25 ± 0.00 181.000 ± 0.00
furnace 0.42 ± 0.00 0.183 ± 0.00 0.26 ± 0.00 0.46 ± 0.00 0.50 ± 0.00 0.48 ± 0.00 120.000 ± 0.00
kitchen_outlets 0.12 ± 0.22 0.09 ± 0.05 0.16 ± 0.07 0.23 ± 0.15 0.16 ± 0.05 0.18 ± 0.08 74.667 ± 68.23
lighting 0.48 ± 0.31 0.68 ± 0.14 0.52 ± 0.26 0.42 ± 0.32 0.63 ± 0.06 0.45 ± 0.26 356.167 ± 290.60
microwave 0.48 ± 0.42 0.17 ± 0.24 0.22 ± 0.28 0.77 ± 0.17 0.38 ± 0.18 0.49 ± 0.18 175.667 ± 107.73
outlets_unknown 0.13 ± 0.00 0.33 ± 0.00 0.19 ± 0.00 0.07 ± 0.00 0.29 ± 0.00 0.10 ± 0.00 82.000 ± 0.00
refrigerator 0.94 ± 0.13 0.62 ± 0.32 0.72 ± 0.29 0.96 ± 0.08 0.63 ± 0.19 0.76 ± 0.17 1254.600 ± 588.16
washer_dryer 0.31 ± 0.38 0.09 ± 0.15 0.14 ± 0.21 0.64 ± 0.13 0.09 ± 0.08 0.16 ± 0.13 59.000 ± 43.31

is greater than the adjusted p-value, the null hypothesis812

is accepted.813

In summary, the Friedman test is going to be used to814

determine if there are significant differences between815

the evaluated algorithms, while the Holm post-hoc pro-816

cedure is used to determine which methods are signifi-817

cantly different from each other after the null hypothesis818

has been rejected.819

4. Results and discussion820

This section details the results after applying the821

methodology developed in the previous section. This822

section is divided into two sections: first, the results of823

applying the MLkNN algorithm to the original data and824

the augmented data are presented (Section 4.1); and825

second, the results of using ResNet-50 on both data sets826

are shown (Section 4.2). Then, a statistical test will be827

applied and the results obtained in both models will be828

discussed.829

4.1. MLkNN results830

The results after applying MLkNN to the two data831

sets are presented in this section. The same cross-832

validation was applied for both datasets, with the re-833

sults presented being the mean metric for all folds. In834

addition, Grid Search CV has been used to optimize835

the parameters, taking the number of neighbors (k) be-836

tween 1 and 3. The parameter s which is the smoothing837

parameter that controls the strength of uniform prior,838

tested with 0.5, 0.7, and 1.0 and F1-Score was taken as839

a metric. The F1-Score is a measure that combines the840

precision and recall of the model. A higher F1-Score841

indicates a better performance of the model in detect-842

ing the corresponding appliance. Grid search indicates843

that the best hyperparameters for the normal dataset 844

were k = 2 and s = 0.5, while for the data-augmented 845

dataset (DAUG) were k = 1 and s = 0.5. 846

Table 3 shows the MLkNN results regarding preci- 847

sion, recall, F1-Score, and support for each appliance, 848

for both the normal dataset and DAUG. The results are 849

the mean values of the validation for all the houses; 850

therefore, the mean is shown together with the stan- 851

dard deviation for each value. Additionally, the values 852

in bold indicate the highest F1-Score for each appli- 853

ance. Precision measures how many of the predicted 854

positive cases are actually true positives, while recall 855

is calculated as the ratio of true positives to the sum 856

of true positives and false negatives. The F1-Score is a 857

harmonic mean between precision and recall. Support 858

refers to the mean number of cases in the test split per 859

fold. 860

In this case, the results show that the models perform 861

poorly for most labels. It can be seen that no F1-score 862

higher than 0.5 is achieved for all appliances except the 863

refrigerator and lighting, where 0.76 and 0.52, in DAUG 864

and normal, respectively, are achieved. Furthermore, it 865

should be noted that the refrigerator label has a preci- 866

sion of 94.2 and 96.4 in both models, suggesting that 867

the model can effectively identify this class. Further- 868

more, we can see that the microwave has also achieved 869

proper precision, reaching 77.3 in the DAUG model, 870

from 48 without data augmentation. However, there are 871

appliances whose prediction has not been good, as is 872

the case of outlets_unknown, which has obtained a pre- 873

cision of 0.13 and 0.65 in each model. Unfortunately, 874

we did not find a reasonable explanation as to why for 875

this appliance, compared to the rest, the models obtain 876

results that can be significantly improved. 877

4.2. CNN results 878

This Section presents the results of CNN. In this case, 879
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Table 4
CNN results for SCA-DS without data augmentation regarding precision, recall, F1-score, and support for each appliance. The highest
F1-score for each appliance is in bold

Normal DAUG

Appliance Precision Recall F1-score Precision Recall F1-score Support
bathroom_gfi 0.12 ± 0.15 0.07 ± 0.12 0.05 ± 0.05 0.36 ± 0.12 0.38 ± 0.11 0.35 ± 0.08 53.250 ± 53.13
dishwasher 0.10 ± 0.15 0.02 ± 0.03 0.03 ± 0.05 0.38 ± 0.25 0.52 ± 0.33 0.42 ± 0.26 33.800 ± 27.81
disposal 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.35 ± 0.07 0.23 ± 0.15 0.27 ± 0.13 28.500 ± 6.36
electronics 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00 0.41 ± 0.00 0.33 ± 0.00 181.000 ± 0.00
furnace 0.76 ± 0.00 0.35 ± 0.00 0.48 ± 0.00 0.61 ± 0.00 0.69 ± 0.00 0.65 ± 0.00 120.000 ± 0.00
kitchen_outlets 0.32 ± 0.23 0.15 ± 0.10 0.16 ± 0.08 0.53 ± 0.24 0.61 ± 0.15 0.55 ± 0.20 74.667 ± 68.23
lighting 0.47 ± 0.28 0.61 ± 0.07 0.49 ± 0.23 0.34 ± 0.24 0.64 ± 0.02 0.40 ± 0.22 356.167 ± 290.60
microwave 0.41 ± 0.42 0.17 ± 0.22 0.18 ± 0.18 0.74 ± 0.17 0.63 ± 0.19 0.65 ± 0.06 175.667 ± 107.73
outlets_unknown 0.07 ± 0.00 0.09 ± 0.00 0.08 ± 0.00 0.16 ± 0.00 0.26 ± 0.00 0.19 ± 0.00 82.000 ± 0.00
refrigerator 0.90 ± 0.23 0.75 ± 0.26 0.81 ± 0.26 0.92 ± 0.18 0.82 ± 0.25 0.86 ± 0.22 1254.600 ± 588.16
washer_dryer 0.59 ± 0.52 0.39 ± 0.34 0.47 ± 0.41 0.66 ± 0.41 0.65 ± 0.36 0.65 ± 0.39 59.000 ± 43.31

the scalograms generated from the wavelets were used880

as data to train the model. The results are presented for881

SCA-DS without and with data augmentation (DAUG).882

The Resnet-50 architecture and a fine-tuning with the883

same configuration for both datasets: 4 epochs with884

frozen weights and 20 epochs with unfrozen weights,885

and a base learning rate of 0.003. The results of these886

models are shown in Table 4. As in Table 3, the best887

result in terms of F1-score for each appliance is shown888

in bold.889

As can be seen, the results obtained by the CNN890

applied to the scalograms have obtained good results.891

We can see how, in terms of F1-Score, the highest values892

are in the model that has used data augmentation. It893

should be noted that the furnace, the kitchen_outlet,894

the microwave, the refrigerator, and the washer_dryer895

obtained F1-Score above 0.5, with the fridge the highest896

with 0.864 for DAUG. This means that the model has897

identified some positive examples for this class, but has898

missed many others, resulting in low recall.899

In this table, we can see that the algorithm has im-900

proved significantly in terms of precision, recall, and901

F1-Score for most of the labels compared to the results902

of MLkNN. In particular, the CNN-DAUG method has903

significantly improved the classification of disposal,904

kitchen_outlets, and washer_dryer appliances, which905

were difficult to classify in MLkNN, even with data906

augmentation.907

In addition, it has improved the recall and precision of908

the washer_dryer and furnace appliances. In particular,909

the classification of the washer_dryer label stands out,910

with a much higher recall value compared to MLkNN,911

achieving an improvement of +0.56 points. In terms912

of precision, the furnace label also obtains an essential913

change from MLkNN, achieving an improvement of914

+0.31 points.915

The results indicate that the CNN model with the pro- 916

posed data augmentation has achieved significantly bet- 917

ter performance in classifying most appliances than the 918

MLkNN model. However, the most significant change 919

is in data augmentation, which has led to detections 920

where previously this was not possible. 921

As can be seen, there has been a notable improve- 922

ment in the use of data augmentation, in general, in all 923

household appliances. It can be seen that the disposal 924

and electronics have obtained an F1-Score of 0.269 925

and 0.333 respectively, while in the SCA-DS without 926

DAUG, they obtained 0.0. Furthermore, we can see that 927

in the case of the kitchen_outlets and microwave, the 928

result has improved significantly, achieving a gain in 929

F1-Score of +0.388 and +0.468 points. However, in 930

appliances that already had an acceptable F1-Score, 931

such as lighting and “refrigerator”, we see that they 932

have also improved, but to a lesser extent. 933

Finally, we compare the results obtained with 934

MLkNN and CNNs with and without data augmenta- 935

tion in Fig. 4.2. The figure illustrates the results for each 936

algorithm in terms of the F1-Score for the appliances. 937

Focusing on the MLkNN results, it can be seen at a 938

glance that the MLkNN-DAUG results generally im- 939

prove MLkNN. However, if we analyze the details, it 940

can be observed that the result of some appliances was 941

better in MLkNN. On the one hand, we find appliances 942

where the results between the two models are similar, 943

like lighting and washer_dryer. There are other cases 944

in which the DAUG has had a slight negative influ- 945

ence, such as in the case of outlets_unknown. We also 946

found other appliances whose identification has been 947

facilitated by the DAUG, such as electronics, furnaces, 948

dishwashers, and microwaves. It could be affirmed that, 949

in general, DAUG has helped identify the appliances, 950

as the results are improved in 8 of the 11 appliances 951

shown. Moreover, the improvement is very noticeable in 952953
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some cases, such as those with high consumption, such954

as in the furnace or the microwave. However, some ap-955

pliances, such as lighting, do not improve with DAUG,956

and this may be due to the fact that the consumption of957

this one has a shape that could lead to confusion with958

others.959

It was observed that the “refrigerator” label had the960

best results in all algorithms evaluated. In contrast, the961

labels “dishwasher” and “microwave” presented the962

lowest performance, and this could be because these963

techniques do not perform well in minority classes,964

since classes with a more significant amount of real data965

will exhibit better predictive performance. In general, it966

can be concluded that classifying electrical appliances967

in a smart home remains a challenge for machine learn-968

ing algorithms. The results suggest that the choice of969

algorithm is highly dependent on the classification label970

considered and that further exploration and experimen-971

tation with different machine learning techniques are972

still needed to improve the performance of appliance973

classification in a smart home.974

The results indicate that the CNN and CNN-DAUG975

algorithms achieved the best results for most appli-976

ances, with F1-Scores that reach 0.86 in the refrigera-977

tor. In contrast, the MLkNN and MLkNN-DAUG al-978

gorithms had lower performance, especially in detect-979

ing appliances such as disposal, kitchen_outlets, and980

washer_dryer. It is important to note that the results981

presented may depend on various factors, such as the982

quality and quantity of training data, the selection of983

features, and the parameters used in classification algo-984

rithms. In addition, a statistical evaluation would be of985

interest to determine whether the differences between986

the algorithms are significant. In general, the results987

suggest that using convolutional neural networks (CNN)988

with the proposed data augmentation can effectively de-989

tect home appliances, obtaining more significant results990

in minority classes.991

4.3. Statistical analysis992

This section presents the results of the statistical anal-993

ysis. To carry out the statistical test, the mean F1-Score994

of the appliances for each MLkNN and CNN was taken995

into account, without and with data augmentation. To996

determine whether these performance differences were997

statistically significant, the non-parametric Friedman998

test and the Holm post hoc test were used to determine999

any significant differences between the performances of1000

multiple results. The test uses a chi-square distribution1001

to calculate a p-value indicating whether the observed1002

Table 5
Sorted ranked mean for Fried-
man’s test

Algorithm Ranking
CNN-DAUG 2.48
MLkNN-DAUG 4.54
MLkNN 5.45
CNN 5.70

Table 6
Post-hoc Holm procedure results using
CNN-DAUG as the control method

Algorithm p z

MLkNN-DAUG 0.0389 2.0643
MLkNN 0.0059 2.9726
CNN 0.0038 3.2203

performance differences between the algorithms are 1003

statistically significant. The test requires the F1-Scores 1004

of each algorithm on each appliance as input. Apply- 1005

ing the Friedman test to the given dataset, a chi-square 1006

value of 29.2938 and a p-value of 0.0011 are obtained, 1007

which may indicate significant differences between the 1008

performance of the algorithms. 1009

According to the Friedman test and the mean ranking 1010

in Table 5, CNN-DAUG is the best algorithm, followed 1011

by MLkNN-DAUG and MLkNN, and CNN in the last 1012

position. Furthermore, according to Holm’s post hoc 1013

test (Table 6), there are significant differences between 1014

CNN-DAUG and the other algorithms, as the p-values 1015

are lower than the alpha of 0.05. On the other hand, z 1016

refers to the test statistic used to compare differences 1017

between group means and determine their significance. 1018

The “z” statistic is based on the difference between the 1019

means of the group and takes into account variance and 1020

sample size. In summary, applying the Friedman and 1021

Holm post hoc tests to the given dataset, we find sig- 1022

nificant differences between the performance of CNN- 1023

DAUG and the other algorithms. The CNN-DAUG al- 1024

gorithm performs significantly better than the other 1025

three algorithms, while the CNN algorithm performs 1026

the worst. 1027

4.4. Comparison with state-of-the-art 1028

In this section, we will compare the performance of 1029

our proposed algorithms with the current state-of-the- 1030

art methods in the field. We will consider a wide range 1031

of popular and well-established techniques as bench- 1032

marks to ensure a fair and comprehensive comparison. 1033

These methods will be evaluated using the same dataset 1034

and performance metrics used for our algorithms. This 1035

will ensure that the comparison is based on the same 1036



co
rre

cte
d p

roo
f v

ers
ion

Galley Proof 5/01/2024; 10:11 File: ica–1-ica230726.tex; BOKCTP/xjm p. 17

J.L. Salazar-González et al. / Enhancing smart home appliance recognition with wavelet and scalogram analysis 17

Table 7
Comparison of F1-Score over four appli-
ances on House 2 between Machlev et al.
[22] and our proposed method

Appliance Machlev et al. Our
Dishwasher 0.36 0.55
Kitchen Outlet 0.72 0.79
Refrigerator 0.98 0.97
Microwave 0.77 0.72

ground and hence, provide a reliable assessment of the1037

performance of our proposed approaches.1038

Nevertheless, some state-of-the-art studies do not1039

sufficiently specify the partitions established and the1040

data treatment performed. For this reason, when they do1041

not determine the house used as validation, we compare1042

them with the average obtained by all the houses, which1043

will be specified in the description of the results.1044

In contrast to Machlev et al. [22], our study focuses1045

on all available appliances, validating with 11 due to the1046

number of sample restrictions. Nonetheless, we have1047

used the four appliances that overlap with their research1048

for this comparison. To establish a basis, we utilized1049

the first scenario, household two. This was deemed1050

appropriate since other scenarios do not encompass1051

the entirety of electricity usage in a household or use1052

different datasets.1053

Table 7 reveals a significant improvement in the clas-1054

sification of “dishwasher”, with a gain of +0.19 points,1055

and once again, the class “Kitchen Outlet” outperforms1056

with an increase of +0.07 points. However, our re-1057

sults for “refrigerator” and “microwave” are similar and1058

slightly lower.1059

Our next step was to compare our results with those1060

from the studies by Singh et al. [23], and Verma et1061

al. [24]. Although these studies did not present the vali-1062

dation data, we assumed they evaluated a random se-1063

lection, given that they only indicated the percentage1064

used. We used the average obtained in our experiments1065

to compare our results, validated using independent1066

houses. We also included the standard deviation of these1067

results. As in the previous study, we compared the co-1068

inciding ones as they do not have many classes.1069

Table 8 compares our proposed algorithms’ per-1070

formance with existing studies, where “dishwasher”,1071

“Kitchen Outlet” and “Lighting” show inferior results.1072

The “Washer Dryer” scores similarly, considering the1073

standard deviation, while our proposal demonstrates1074

superior outcomes in the “refrigerator” category, with a1075

gain of +0.10 points. Our methodology ensures a more1076

rigorous and realistic validation of our algorithms’ per-1077

formance by never using the same house for training1078

and validation. Therefore, the results cannot be entirely1079

Table 8
Comparison of F1-Score over five appliances between Singh et
al. [23], Verma et al. [24] and our proposed method

Appliance Singh et al. Verma et al. Our
Dishwasher 0.74 – 0.43 ± 0.26
Kitchen outlet 0.66 0.76 0.55 ± 0.20
Lighting 0.70 0.72 0.40 ± 0.22
Washer dryer 0.70 0.74 0.65 ± 0.39
Refrigerator – 0.76 0.86 ± 0.22

Table 9
Comparison of F1-Score over two appliances on
House 1 and House 3 between Hur et al. [25] and
our proposed method

Hur et al. Our

Appliance H.1 H.3 H.1 H.3
Refrigerator 0.84 0.85 0.46 0.97
Microwave 0.81 0.82 0.60 0.64

comparable to those of studies using random partition 1080

selection. 1081

We compared our study with the one by Hur et 1082

al. [25], which had two similar appliances. Their study 1083

included House 1 and House 3, training with one and 1084

validating with the other. However, their model could 1085

result in low generalization when applied to an actual 1086

system. To avoid this, our training data included the 1087

remaining houses, even if this means a deterioration in 1088

performance. 1089

Table 9 displays the outcomes obtained from testing 1090

the “refrigerator” and “microwave” appliances in two 1091

houses, comparing the study of Hur et al. [25] and ours. 1092

It is noticeable that the “refrigerator” results are lower 1093

in House 1, possibly due to differences in consump- 1094

tion patterns compared to the other houses. However, 1095

compared to Hur et al.’s study, our “refrigerator” re- 1096

sults in House 3 show an improvement of +0.12 points, 1097

achieving a high precision F1-Score of 0.97. In contrast, 1098

the “microwave” appliance shows lower results in our 1099

study, possibly due to the difficulty of detecting this 1100

appliance among the other appliances included in our 1101

research. 1102

Finally, we compared our results with the most re- 1103

cent study presented, which, like us, utilizes 2D-CNN 1104

models and wavelets, thereby giving a more direct com- 1105

parison standpoint. In their research, Shahab et al. [26] 1106

used four appliances to test their system, for which we 1107

will provide comparative results. Furthermore, in this 1108

case, the metric used is accuracy, as they used it in their 1109

study to showcase their per-appliance results. 1110

Table 10 shows the average accuracy obtained in our 1111

study with different houses, accompanied by standard 1112

deviation, compared to the study by Shahab et al. [26]. 1113
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Table 10
Comparison of accuracy over four appliances between
Shahab et al. [26] and our proposed method

Appliance Shahab et al. Our
Dish washer 94.60% 97.76% ± 0.42
Microwave 94.41% 94.09% ± 2.50
Refrigerator 86.58% 81.71% ± 25.29
Washer dryer 89.97% 98.95% ± 0.20

As their research does not specify which houses were1114

used for training and testing, we assume that the parti-1115

tion selection is random over the entire set. Based on1116

these results, we can see that our system surpasses the1117

accuracy obtained in the “Dish Washer” class with an1118

improvement of +3.16 points and the “Washer Dryer”1119

class with a gain of +8.98 points, which is a consid-1120

erable improvement. On the other hand, we present a1121

similar accuracy in the “Microwave” class and slightly1122

lower in the “Refrigerator” class. However, in the latter1123

case, the standard deviation is very high due to the sig-1124

nificantly lower precision observed during the valida-1125

tion of House 1, which is much higher in the remaining1126

houses.1127

5. Conclusions1128

In this study, we have conducted a thorough evalua-1129

tion of two machine learning algorithms, MLKnn and1130

CNN, in the context of appliance classification within1131

a smart home environment. Our analysis focused on1132

comparing these algorithms in terms of precision, re-1133

call, and F1-Score using both an original dataset and1134

one augmented with data augmentation techniques. The1135

results have clearly demonstrated that the CNN model,1136

particularly when enhanced with our proposed data aug-1137

mentation techniques, exhibits superior performance1138

over MLKnn in handling the complexities of NILM1139

tasks. This combination of advanced modeling with1140

customized data enhancement represents a significant1141

advancement in the classification of electrical appli-1142

ances, effectively addressing both the challenges of data1143

scarcity and the variability inherent in appliance energy1144

usage patterns.1145

However, while our findings indicate a notable im-1146

provement, we also observed that the classification met-1147

rics for many appliances did not reach the high stan-1148

dards anticipated. This highlights a critical aspect of our1149

research, showcasing the intricate challenges inherent1150

in NILM due to the diverse and variable nature of appli-1151

ance behavior and energy consumption patterns. These1152

results underscore the need for the ongoing refinement1153

and development of more sophisticated models and ap- 1154

proaches in this domain. 1155

In addition, the practical implications of our study are 1156

significant. The deployment of our system in homes or 1157

buildings with access to real-time electrical consump- 1158

tion data, facilitated by low-cost sensors or smart me- 1159

ters, opens up possibilities for detailed energy use anal- 1160

ysis. This could lead to substantial reductions in energy 1161

waste, lower energy bills, and a decrease in greenhouse 1162

gas emissions, contributing to environmental sustain- 1163

ability. 1164

Future research directions, as identified from our 1165

study, include exploring diverse data preprocessing 1166

techniques to enhance the quality of input data and fur- 1167

ther deepening the investigation into the impact of data 1168

augmentation. Testing our methodology with varied 1169

datasets such as UK-DALE [50], SynD [51], or EN- 1170

ERTALK [52] will help assess its applicability in dif- 1171

ferent scenarios and domains. Additionally, the explo- 1172

ration of new and emerging Deep Learning architectures 1173

and machine learning techniques, including Neural Dy- 1174

namic Classification algorithms [53], Dynamic Ensem- 1175

ble Learning Algorithms [54] and self-supervised learn- 1176

ing [55], holds promise for uncovering more nuanced 1177

and complex patterns in energy consumption data. 1178

In conclusion, the results of this study are poised to 1179

make a substantial contribution to the field of smart 1180

home appliance classification. They provide a founda- 1181

tion for future research aimed at developing more accu- 1182

rate and efficient methods for NILM, ultimately helping 1183

in the global effort to promote more sustainable and 1184

efficient energy use in households and buildings. 1185
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