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CO2 emissions play a crucial role in international politics. Countries enter into agreements to 
reduce the amount of pollution emitted into the atmosphere. Energy generation is one of the main 
contributors to pollution and is generally considered the main cause of climate change. Despite 
the interest in reducing CO2 emissions, few studies have focused on investigating energy pricing 
technologies. This article analyzes the technologies used to meet the demand for electricity from 
2016 to 2021. The analysis is based on data provided by the Spanish Electricity System regulator, 
using statistical and clustering techniques. The objective is to establish the relationship between 
the level of pollution of electricity generation technologies and the hourly price and demand. 
Overall, the results suggest that there are two distinct periods with respect to the technologies 
used in the studied years, with a trend toward the use of cleaner technologies and a decrease in 
power generation using fossil fuels. It is also surprising that in the years 2016 to 2018, the most 
polluting technologies offered the cheapest prices.

1. Introduction

Since its commercial operation in the last years of the nineteenth century, electricity has played an important role in the economic 
development of society. Citizens’ concerns have evolved from the search for sufficient and low-cost electricity, to the impact it can 
have on the environment [1], the Paris Agreement [2] and the European Union Emissions Market [3], or problems in supply security, 
recently exacerbated by recent conflicts in supplier countries [4].

These new societal aspirations were formalized with the definition of the Energy Trilemma [5], in which cost, sustainability, 
and supply security are explicitly stated as the most essential aspirations of society. While society’s concern until then had focused 
on producing energy in sufficient quantity and at low cost, with the Trilemma two new concerns have emerged: Sustainability and 
supply security.

Technological progress has contributed to the simultaneous achievement of the three aspirations of the Trilemma (cost, security, 
and sustainability) through cost reductions and efficiency gains of renewable and storage technologies [6]. As an illustration, it can 
be observed that the costs of photovoltaic and storage technologies have been reduced by more than 10 times in the last 10 years. In 
addition, the fact of internalizing in many states the negative externalities caused by some generation technologies through a CO2
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market, as is the case in Europe with the establishment of the greenhouse gas emissions trading scheme in 96/61/C Electrification 
of the economy is one of the keys to progress in the three coordinates of the Trilemma, so the performance of this market is key to 
progress on the energy transition.

It should be noted that, in the Spanish electricity market, as in all other liberalized countries, the technology that sets the price of 
energy is extremely important, since the price at which energy is consumed will depend on it. Therefore, it is interesting to perform 
an in-depth analysis of technologies that have been used in recent years, as well as the relationships associated with CO2 emissions. 
One of the techniques that exists to conduct an in-depth analysis of these relationships is Machine Learning (ML) [7–10]. ML is 
seen as a part of artificial intelligence and one of its purposes is to extract knowledge from data. ML is also one of the most widely 
used techniques for knowledge discovery, and its use can be found in many areas of knowledge such as chemistry [11,12], computer 
vision [13–15] or data streaming [16–18]. Furthermore, we can find numerous studies that use ML to predict electricity consumption 
[19,20] or price prediction [21,22]. However, to the best of our knowledge, there are no studies in the literature that describe the 
technology that sets the price of energy, as well as the correlation between it and the final price of energy.

In this article, an analysis of technologies that set the price of electricity for 6 years (2016-2021) has been carried out. The 
analysis consists of two different parts. First, unsupervised learning techniques have been applied to search for relationships between 
the technological profiles, as well as to characterize them. Moreover, a study of the correlation between marginal technologies and 
the price of energy has been carried out. In summary, this paper presents three major contributions to the Spanish electricity market:

1. Introducing a novel methodology: This paper presents a pioneering methodology that uncovers new information on energy 
generation technologies used to determine energy prices. Using descriptive statistics, clustering, and statistical inference, the 
study identifies similarities among various time series data related to electricity technologies and their impact on energy prices 
in Spain.

2. Different periods of analysis: The study reveals two distinct periods within the 6-year analysis period (2016-2021). The first period 
(2016-2018) is characterized as the most polluting, where less clean technologies played a significant role in the determination 
of energy prices. During this period, lower demand hours, such as overnight and weekends, aligned with higher prices influenced 
by the most polluting technologies. In contrast, the second period (2019-2021) represents the cleanest phase, dominated by green 
technologies as the primary source of energy generation.

3. Shift towards cleaner technologies: The results obtained from the clustering analysis indicate that all clusters in the second period 
have centroids below the levels observed in the previous period. This finding signifies a significant transition toward cleaner 
energy technologies, as evidenced by lower centroid values. This shift highlights the increasing reliance on green technologies 
and their positive impact on reducing pollution and improving the overall energy landscape.

In conclusion, this study offers a fresh perspective on energy generation technologies and their role in shaping energy prices. 
By analyzing real-world data using advanced statistical techniques, we gain valuable insight into the transition towards cleaner and 
more sustainable energy sources. These findings have practical implications for policy makers and industry stakeholders in navigating 
the evolving energy market landscape. In this line, regulators can use the results obtained to perform an evaluation of public energy 
policies, monitoring the impact of these policies on prices and emissions over the period considered. It can also help power plant 
owners determine their hourly bids to participate in the electricity market, providing information on their behavior during the week, 
the hour and their evolution over time.

The rest of the paper is organized as follows: Section 2 details the different agents involved in the Spanish electricity market from 
the generation of energy until it reaches the end customer, including how the energy price is calculated. Section 3 presents related 
works that contribute to the state-of-the-art in this topic. Section 4 shows the methodology followed, as well as the materials that 
have been used for the experiments. Section 5 presents the results of the experimentation, and Section 6 the discussion of them. And 
finally, the conclusions and future work are exposed in Section 7.

2. Spanish electricity market

In the current Spanish electricity system, there are several agents responsible for bringing the energy to the final destination. 
Fig. 1 represents the relationships and how the agents interact between them. The generators, who are the organizations that 
produce electricity; the System Operator, who regulates the functioning and operation of the transmission grid; distributors, who 
carry the electricity from the high voltage transmission grid to the low voltage socket at home; and finally, the marketers, who are 
the intermediaries between the entire electricity grid and the consumers.

The electricity market has a regulatory body, which is OMIE, and establishes legal mechanisms so that buyers and sellers can buy 
and sell energy [23]. That is, OMIE tries to bring the distributors, who purchase the energy, and the generators, which generate the 
energy, into an agreement. On the one hand, suppliers demand to the OMIE a sufficiently high price to guarantee its entry into the 
market. It is as if, in fact, their demand would have a rigid short-term performance. On the other hand, generators offer the minimum 
price they wish to sell their energy, which according to economic theory should be their short-run marginal cost. Then, in a graph, 
all buyers are placed first in order of the price they are willing to pay, from highest to lowest. Generators are then also ordered 
according to the price at which they want to sell their energy, but from the lowest to the highest (Fig. 2). The graph represents these 
data with two curves, and the place where the two curves intersect will be the agreed price for all the power at the time on that 
2

day [24].
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Fig. 1. Entities involved in the electricity system.

Fig. 2. Price Curves for Buyers and Sellers at 1 PM on April 6, 2022.

For both sellers and buyers to the left of the clearing point, their bids are considered to have been accepted and an agreement has 
been reached. All buyers with matched bids will buy power from the sellers who have also matched their bids at the agreed price. 
This operation is executed every hour of the day and is planned the day before. However, within each day, intraday markets exist, 
allowing buyers and sellers to change their bids slightly to get closer to the actual value.

Focus on buyers, since all suppliers must provide their customers at whatever price. Therefore, in the curve, we will find some 
industries that prefer to stop their production if the price of energy is very high, and finally we will find storage systems that are 
interested in buying energy only when it is very cheap.

Also, the generators are placed on the curved as follows: The first places are occupied by the lower bids (lower marginal-cost 
technology facilities, such as nuclear, photovoltaic, wind, some kind of hydro, and others, so they usually bid close to zero cost. Some 
kind of hydroelectric facilities (pumping and reservoirs) that, despite being renewable, can manage their resources and, therefore, 
always try to bib themselves to obtain the best possible market price. And finally, there is fossil generation, which offers a higher 
price due to variable fuel and emission costs. Therefore, renewables will bid for their generation at a low price, whereas fossil 
generation will bid for a higher price. That is, the price of energy will be directly influenced by the renewable energies in the system.

3. Related work

CO2 emissions have been one of the recurring topics of discussion in recent years. Numerous works deal with the subject from 
different points of view [25]. The authors of [26] studied the trends in CO2 emissions in the United States from the 1950s to today. 
In the study, they conclude that one of the reasons why in the last 15 years they have achieved enormous reductions in emissions 
has been the disuse of coal-fired generation instead of natural gas and renewable energies, such as wind power. Another aspect to 
consider in this case is the drop in the price of gas, which favors the use of this type of energy over others. Li et al. [27] made a 
decomposition analysis to study the effects of CO2 emissions from the electricity sector. The authors claim that economic activity, 
population, and emission coefficient have a positive effect on increasing CO2 emissions; however, the power sector is significantly 
different depending on the economic level of the country. The study states that economic activity is one of the main causes of CO2
3

emissions.
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To our knowledge, there is no detailed study on CO2 reductions in Spain. However, numerous related studies can be found using 
data collected in China. For example, Wei et al. [28] analyzed the use of different technologies over time, as well as the CO2 emission 
of these technologies in China. Estimation and decomposition methods reveal that renewable energy has great promise in reducing 
emissions. Renewable energy generation is expected to replace coal as China’s main energy source for power generation in the future 
due to large-scale development, technological progress, and cost reductions. Furthermore, Zeraibi et al. [29] investigated the drivers 
of the carbon footprint in the BRICS nations (Brazil, Russia, India, China and South Africa) between 2003 and 2018, revealing long-
term cointegration links. The analysis highlights that urbanization, greenfield investments, and economic complexity hinder and 
encourage the transition to renewable energy, necessitating an active role for the industrial sector in enhancing economic complexity 
and increasing investment in clean and renewable energy sources for the BRICS countries. A related article on CO2 emission reduction 
can also be found here [30]. This paper focuses on China’s efforts to reduce carbon emissions since the introduction of the “double 
carbon” target in 2020. The study specifically examines the energy and heating sector, which represents approximately 50% of China’s 
total energy consumption. Using input-output investigation and various analytical methods, the research analyzes the reduction of 
structural emissions in China’s power and heating industry from 2007 to 2015. The findings reveal that the minimization of CO2e 
in this sector is significantly influenced by energy intensity, input composition, and energy structure. The study emphasizes the 
importance of using low-carbon energy sources to achieve effective emission reduction in the power and heating sector. The results 
of the research offer valuable information to formulate strategies to control CO2 growth and accurately reduce emissions in the 
electric heating industry.

On the other hand, Jahanger et al. [31] examined the implications of achieving carbon neutrality in the main manufacturing 
countries, such as China, the United States or the United Kingdom, using the moment quantile regression method for the period 1990-
2020. The results demonstrate the effectiveness of energy efficiency and renewable energy in reducing greenhouse gas emissions, and 
the manufacturing sector has the potential to offset its emissions through improved energy efficiency. Additionally, the validity of the 
Environmental Kuznets Curve hypothesis is confirmed in these countries. Furthermore, Kim [32] showed the capital investment that 
would have to be made to reduce CO2 emissions by substituting fossil generation for nuclear and renewable energy. Furthermore, 
they demonstrate that nuclear power generation may be more efficient than renewable energy generation in terms of global emission. 
The goal of Yan et al. [33] was to study the effect of low-carbon innovation on CO2 emissions from the perspective of heterogeneous 
classifications in the technological domain. Low-carbon innovation has no major influence on CO2 emissions, according to empirical 
findings. Mai et al. [34] introduced and applied a new method to determine the cost reduction requirements for zero-emission energy 
generation systems to achieve a targeted and significant adoption. They calculated the levelized cost of energy that each technology 
must achieve by 2050 to allow the United States to achieve national incremental penetrations of up to 15%. The methods used 
evaluate the multiple and changing costs and values of various generation alternatives considering their distinct characteristics.

On the other hand, there are several works that present new studies on the electricity market applying machine learning tech-
niques. There is a novel method for predicting short-term bus loads using a clustering algorithm [35]. The authors propose three 
forecasting models by combining the load profile given by clustering and obtaining promising results. There is another publication in 
which clustering techniques are used to improve the prediction of electrical load [36]. Johnpaul et al. [37] published a work in which 
they propose a probabilistic representational learning method to group time-series data with energy data. The identification of the 
environmental consequences of marginal electrical supplies in consequential life cycle assessments is discussed by Lund et al. [38]. 
The methodology used includes defining a relevant energy system and selecting an energy system analysis model and a life-cycle 
assessment tool. It shows statistical data, such as differences in electricity generation between summer and winter, day and night, 
for a single hour. Furthermore, Amri et al. [20] group customer data using the K-Means algorithm to process electricity usage data, 
including power data in kWh meters. The goal of this grouping is to determine similar patterns in the use of client electricity. The 
study reveals promising results, such as the use of electricity over time and the fact that most customers are classified into the lowest 
electricity consumption cluster.

The marginal cost of energy production after accounting for fixed outages is calculated using density estimation [39]. In this 
paper, the adoption of a density estimate approach to smoothing LDC to calculate marginal costs in real time has been demonstrated 
using a case study on the Maharashtra power system. The essential mathematical theory of continuous-time marginal power pricing 
is presented by Parvania and Khatami [40]. The continuous-time unit commitment problem is first formulated as a constrained 
variational problem, and then the continuous-time economic dispatch problem is defined, with the binary commitment variables 
locked at their optimal values. The numerical results show that the continuous-time marginal price reflects the behavior of power 
systems with constantly changing load and generation schedules.

4. Method and materials

In this section, the datasets that were used in the study and the proposed methodology are presented. First, the content and 
characteristics of the datasets are analyzed, and the construction of the dataset is also detailed (Section 4.1). Finally, we describe the 
practical framework step by step with the procedure that was followed in the following sections.

4.1. Electrical technologies dataset

In this study, our starting point was a downloaded data set that contained information on electrical technologies that influence 
the prices of the hourly market. These data were sourced from ESIOS [41], the Spanish electrical network operator responsible for 
4

information and management tasks related specifically to the electricity market. The dataset encompasses information spanning from 
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Fig. 3. Raw data extracted from ESIOS.

Fig. 4. Formation of the three datasets derived from the original dataset.

June 1, 2016, to June 17, 2021 (a total of 4 years). We chose this timeframe due to a significant event in Spain, the introduction 
of the “Dynamic Tariff” system. This innovative model, implemented during the specified period, is grounded in the dynamics of 
energy demand and supply in the market, automatically adjusting prices every hour. Consequently, prices can fluctuate according to 
real-time demand and energy availability.

The underlying rationale for adopting this new tariff model is to improve energy efficiency and promote electricity usage during 
periods of lower demand. By incentivizing consumption at such times, the aim is to reduce the overall strain on the electricity system, 
thereby mitigating the risk of blackouts.

The complete dataset comprises a total of 44,232 entries, exclusively containing date and time information, coupled with the 
technology data that dictates the energy price at that specific time, as depicted in Fig. 3. It is crucial to note that this dataset consists 
of categorical data, representing a time series with a label corresponding to each hour. To facilitate a comprehensive analysis, three 
distinct datasets have been generated from these data.

Fig. 4 visually outlines the various transformations applied to the original data to derive the three datasets utilized in our analysis. 
The construction details for each dataset are elucidated below.

The first dataset is a time series whose values are generated through one-hot encoding of the utilized technology (OneHot-DS). 
This encoding is constructed based on the technologies that have been active over time. Specifically, if hydro generation sets the 
price at a certain time, its corresponding value will be one, while the values for the remaining technologies will be zero. On the 
contrary, if multiple technologies set the price during a time slot, the result of the one-hot encoding will be all those technologies 
set to 1. This dataset encompasses the one-hot encoding values for all hours (organized by columns) across days (organized by rows) 
over the four-year data span. The objective is to conduct a clustering analysis by days and analyze the centroids by hours of the day, 
as discussed in later sections. Fig. 5 visually represents the structure of the data in this dataset.

As illustrated, the first row contains column names in bold, representing the timestamp at the beginning, followed by the names 
5

of each technology along with the corresponding time. Here, time 0 refers to midnight, and time 23 corresponds to 11 PM. In other 
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Fig. 5. OneHot-DS representation. Features are summarized for space saving.

Fig. 6. CO2-DS representation. Features are summarized for space saving.

Table 1
Mapping of technology to tons of equivalent CO2 emissions, sorted by CO2
emission levels. Source: REE [42].

Technology Acronym 𝑡CO2eq/MWh

Hydro generation HI 0.000
Pumping storage generation BG 0.000
Supply contract REE-EDF REE 0.068
Renewable, Co-generation and wastes RE 0.112
Imports II 0.140
Reseller (sale) CO 0.168
Surplus forward market DAC 0.168
MIBEL import from Portuguese system MIP 0.168
Combined cycle thermal generation TCC 0.370
Conventional thermal generation TER 0.950

words, the data corresponding to the attribute “𝑇𝐸𝑅0” will be 1 if thermal generation has set the energy price during that hour. The 
abbreviations for the technologies can be found in Table 1.

On the other hand, the second dataset with which we have worked is made up of the CO2 emissions that the use of each marginal 
technology entails (CO2-DS). In this case, the information on CO2 emissions derived from each technology has been integrated. 
Instead of applying the one-hot encoding as in the first dataset, in this case, the CO2 emissions of each technology have been used 
and replaced. Therefore, if there is more than one technology that marks the price in an hour, the label is replaced by the arithmetic 
mean of the emissions of those technologies. The shape of this dataset is the same as the OneHot-DS, that is to say, each instance 
represents a time series with the CO2 emission of each hour (by columns) on each day (rows). Fig. 6 shows an example of how the 
data would look in the dataset. As can be seen, CO2-DS contains only one column for each hour, and the value represented by that 
column is the average of the CO2 emissions of the technologies that have set the price at that hour. For example, on 2016-06-01, 
at midnight, the average emission value of energy pricing technologies was 0.0 𝑡CO2eq/MWh, while at 1 am the emission was 0.37 
𝑡CO2eq/MWh.

In order to construct CO2-DS, we utilized the average CO2 emission levels associated with each technology, as detailed in Table 1
[42–44]. This table includes all the energy sources involved in our study, including hydroelectric generation (HI) and pump storage 
generation (BG), both of which exhibit zero CO2 emissions. Additionally, it incorporates other technologies, such as the import 
of the MIBEL Portuguese power system (MIP) with an emission level of 0.168. Furthermore, we considered technologies such as 
combined cycle thermal plants (TCC) and conventional thermal plants (TER), which exhibit the highest emissions at 0.370 and 
0.950, respectively.

Finally, the third dataset (PD-DS) is used to study the correlation between electricity price and demand and mean emissions 
from marginal technologies. This dataset is the result of combining the CO2 emission dataset (CO2-DS) with two other datasets that 
include the price of electricity and the demand for electricity by hour. The result of combining these three datasets is a new one in 
which we can find CO2 emissions, price and demand by day and by hours. In this way, correlation analysis can be studied.

Data analysis has been carried out from three different points of view: a statistical analysis, in which a visual of the composition 
of the data is made from a purely statistical point of view (Section 4.2); a clustering analysis, in which similarities are sought between 
technologies that have occurred over the days (Section 4.3); and finally, based on the results obtained in the two previous analyses, 
6

we have measured the correlation between the price of electricity and the demand (Section 4.4).
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Table 2
Percentage distribution across CO2 intervals by year.

Interval 2016 2017 2018 2019 2020 2021

[0.0, 0.1) 45.95 50.38 63.12 43.45 51.86 66.22
[0.1, 0.2) 17.87 15.32 14.91 22.37 25.79 23.24
[0.2, 0.3) 1.54 0.74 0.23 1.66 0.80 0.15
[0.3, 0.4) 9.75 12.02 4.93 23.32 18.61 7.69
[0.4, 0.5) 0.88 0.58 0.21 0.29 0.09 0.07
[0.5, 0.6) 1.29 0.67 0.17 0.25 0.13 0.00
[0.6, 0.7) 0.25 0.29 0.14 0.30 0.06 0.02
[0.7, 0.8) 0.00 0.00 0.00 0.00 0.00 0.00
[0.8, 0.9) 0.00 0.00 0.00 0.00 0.00 0.00
[0.9, 1.0] 22.47 20.00 16.30 8.37 2.68 2.60

4.2. Statistical analysis

First, a statistical analysis of the data was performed. Calculations such as mean, median, variance, standard deviation, chi-square, 
and interval counters are performed to extract information to help us understand the meaning of the data received. These calculations 
have been made separated by year, month, week, day of year, day of the month, day of the week, by hours and by consumption rate 
brackets, taking into account days off and holidays.

4.3. Clustering analysis

In the second stage, clustering analysis has been carried out to look for similarities between the technologies that have defined the 
time series daily. The k-means clustering algorithm is used to group the different data entries into groups of similar characteristics 
to help us understand and categorize these entries [45]. K-means was chosen because it is one of the most widely used clustering 
algorithms in the literature [46–48]. The analysis has been carried out on both datasets, that is, both the time series dataset composed 
of price-setting technologies (OneHot-DS) and the dataset constructed on the basis of CO2 emissions (CO2-DS). To decide on the 
optimal number of clusters (k) to apply, we have followed the method that was applied by Luna-Romera et al. [49,50], so that 
two internal cluster validation indices have been used: Davies-Bouldin [51] and Silhouette [52]. Once the optimal k study has been 
carried out, the K-means was applied and the resulting clusters have been characterized, the results were incorporated with the year, 
month, week, day of the year, day of the month, day of the week, and hours, in the same way as described in Section 4.2.

4.4. Correlation with price and demand

As mentioned in Section 4, PD-DS was built with the aim of studying the correlation between the price of electricity and demand. 
This dataset has been used to cross-check the information to analyze the correlation between both time series. Linear, Pearson, and 
Spearman correlations were used to determine if there is a correlation between marginal technology and price and between marginal 
technology and demand. Finally, an interval technology counter was used to determine for each interval the number of entries that 
were above or below the mean for both price and demand, applying the chi-square to the results.

5. Results

This section describes the results obtained from the methodology detailed in Section 4. This section follows the same structure as 
the previous section: first, the results of the statistical analysis, then the results of the clustering, and finally the correlation between 
marginal technology and price.

5.1. Statistical analysis

In this section, we first studied the distribution by years of technologies based on their CO2 emissions. Table 2 shows the CO2
values grouped in intervals of amplitude 0.1 from 0 to 1. As can be seen, in 2016, 45.95% of the data belonged to the interval 
whose CO2 emissions were the lowest. Furthermore, the second interval had 17.87% and 22.47% to the interval whose technologies 
had the highest CO2 emissions. Furthermore, we can observe that there is a growing trend in the use of technologies with low CO2
emissions, and the use of more polluting technologies decreases over time, from 22.47% in 2016 to 2.60% in 2021.

It should be noted that most of the values are centered on 4 intervals; for that reason, the table has been simplified and summarized 
by omitting the less frequent intervals (less than 2% of the total). Therefore, Table 3 has been organized into the following 4 groups:
A [0, 0.1) which are mainly BG and HI; B [0.1, 0.2) which is mainly RE; C [0.3, 0.4) which corresponds to TCC; and D [0.9, 1] 
which is mainly TER. Since these four groups have been established, it should be noted that the groups are arranged in order of 
contamination, so that group A is the group that pollutes the least, while group D is the one that pollutes the most. From this point 
7

on, only these 4 intervals [A-D] will be referred to in order to simplify the notation.
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Table 3
Annual evolution of the distribution percent-
ages of total hours throughout the year across 
intervals.

Year A B C D Total

2016 45 18 10 22 95
2017 50 15 12 20 97
2018 63 15 5 16 99
2019 43 22 23 8 96
2020 52 26 19 3 100
2021 66 23 8 3 100

Fig. 7. Average ratio of the pollution groups by hour of the day.

5.1.1. Analyses based on temporal data
Next, we will analyze the technologies based on the time the price is established (Fig. 7). We have observed that during the years 

2016-2019 there exists an increase in the use of the most polluting technologies (Group D, Fig. 7d) at night (between 1 am and 6 
am). This increase assumes twice the annual average. However, the use of these technologies is considerably reduced between 8 and 
10 at night. Furthermore, between 10 am and 1 pm, and between 6 pm and 10 pm, there is an increase that can reach 20% above 
the average of nonzero emission technologies (Group A, Fig. 7a), between 9 pm and 10 pm above 80%. On the other hand, we can 
observe that between 2019-2021 there is a tendency to use technologies that have a medium CO2 emission (Groups B and C, Figs. 7b 
and 7c, respectively) during night and midday hours, while the use of the most polluting technologies decreases drastically during 
night.

Taking into account the day of the week (Fig. 8), we can observe that in 2016, weekends are much more polluting (Fig. 8d), with 
the most polluting technologies increasing to more than 30% and the cleanest technologies decreasing to 33%. This trend continues 
in 2017 and 2018 but begins to fade. However, in the years 2019-2020, medium-pollution technologies (Figs. 8b and 8c) have 
become prominent on weekends, doubling compared to weekdays, replacing clean technologies that decrease on weekends (Fig. 8a). 
While examining the day of the week, it becomes apparent that there is no discernible pattern.

If we focus on the weeks or months of the year (Fig. 9), it becomes apparent that the differences between the months in the 
8

various years studied are not very decisive. It can be argued that the summer weeks are generally more polluting, marked by a 
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Fig. 8. Average ratio of the pollution groups by day of the week.

notable decrease in the use of clean technologies (Figs. 9a and 9b) and an increase in other sources (Figs. 9c and 9d). This outcome 
aligns with expectations, as there is minimal generation of hydro and wind power during the summer months. In addition, there is a 
notable increase in polluting intervals during the weeks of November and early December.

From this first frequency analysis, three conclusions can be drawn:

• The least polluting marginal technologies have increased from 63% in 2016 to 89% in 2021. On the contrary, the most polluting 
have decreased from 22.4% to 2.6%. The renewable segment has grown from 17% to 23%.

• In the period from 2016 to 2018, the hours at night and on weekends had the highest presence of polluting marginal technologies, 
coinciding with the hours of lowest demand and lowest prices.

• This contradiction between cheap prices and polluting energy has been corrected in the second analyzed period. Between 2019 
and 2021, the most polluting technologies have been used during times of higher demand (lunch and dinner hours in Spain) or 
during the summer months when there is higher demand due to heat and less hydroelectric or wind generation.

Therefore, it can be concluded that in the first three-year period of the study, the electricity marking the price was much more 
polluting than during the last few years. This was more evident in the early morning hours and on weekends. This implies a 
contradiction, since during the hours of lower demand and therefore lower prices, it was the most polluting energy that set the price. 
Moreover, in the second three-year period, clean energies set the price primarily, although there is still a certain tendency, above 
20%, in the early morning and early afternoon hours to group C energies.

In the following sections, we will try to ratify or rectify these first statements of the statistical study using two complementary 
approaches. First, an unsupervised approach applies clustering to the days according to the marginal technology pollution of their 
24 hours. The second approach will be carried out by means of a statistical analysis that will provide us with information on whether 
the distribution of demand values and prices is independent of the marginal technology.

5.2. Clustering

This section presents the results of the clustering analysis conducted on OneHot-DS, as described in Section 4.1. Given the observed 
trend of change within the 2016-2021 interval, we opted to divide the study into two subintervals to draw more precise conclusions. 
9

Consequently, the clustering algorithm was applied separately to the 2016-2018 and 2019-2021 intervals.
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Fig. 9. Average ratio of the pollution groups by month.

For each clustering analysis, we will showcase the centroids, representing the average values of the elements belonging to each 
cluster. Specifically, these centroids denote the average CO2 emission for each hour. Furthermore, a summary table will outline the 
most significant characteristics of each cluster. To provide a complete view of the evolution of the cluster, a Sankey graph will be 
presented, illustrating changes as the value of k increases.

As highlighted earlier, all clustering analyzes involved a preliminary study to determine the optimal number of clusters [49,50]. 
Silhouette and Davies-Bouldin indices were employed for this purpose. The results of these indices indicated that the optimal number 
of clusters falls within the range of 3 to 5. Consequently, for experimentation, clustering solutions were explored using k values of 3, 
4, and 5, allowing us to examine the evolution of the clusters.

5.2.1. OneHot-DS clustering for 2016-2018
Fig. 10 displays the clustering centroids for solutions with 𝑘 = 3 and 𝑘 = 5. It is important to note that clustering was applied 

to the database organized by days, representing the 24-hour time series. As depicted in Fig. 10a, for 𝑘 = 3, three distinct clusters 
emerge: Cluster 1 exhibits high emission levels during the early hours of the day, with emissions dropping to lower levels for the 
remainder of the day; Clusters 0 and 2 share similar shapes, but Cluster 0 has higher emissions than Cluster 2.

In contrast, the centroids for 𝑘 = 5, illustrated in Fig. 10b, reveal two types of clusters: those with high emissions during the early 
hours and low emissions for the rest of the day, as seen in Clusters 1, 0, and 3; and Clusters 2 and 4, which experience some variations 
in emissions throughout the day, but generally maintain low levels. To summarize the centroids, the most significant characteristics 
of each have been consolidated in Table 4.

Table 4 shows the different clustering solutions by columns (𝑘 = 3, 𝑘 = 4, and 𝑘 = 5), and clusters by rows. It must be remembered 
that each solution cluster of each 𝑘 is different and independent, that is, cluster 0 of 𝑘 = 3 is not related to cluster 0 of 𝑘 = 4. This 
analysis of the equivalences of the clusters and their evolution will be carried out. Focusing on the results of the table, it can be 
observed that almost half of the days, the most polluting technologies set the price for the early morning hours. And around 25% of 
the days clean electricity was a marginal technology.

As mentioned above, the clustering analysis has been carried out taking 3 different k. The evolution of the clusters as the number 
of elements increases is detailed below. To do this, this transformation has been illustrated using a Sankey diagram. In this diagram, 
we can see how the elements are distributed among the different clusters. Fig. 11 shows how clustering evolves as we increase the 
number of clusters with OneHot-DS in the period 2016-2018. As can be observed, from 𝑘 = 3, while clusters 0 and 2 are mainly 
10

related to clusters 3 and 1 in 𝑘 = 4, respectively, cluster 1 is divided into clusters 2 and 0. The next evolution, from 𝑘 = 4 to 𝑘 = 5, 
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Fig. 10. Centroids of OneHot-DS for various clustering solutions with each k value in the 2016-2018 period.

Table 4
Percentage of elements in each cluster and a summary of the elements for the 2016-2018 period.

k 3 4 5

Cluster 0 29%
Low values in the early hours.
Peaks at 6 and 16

27%
High values in the early morning
Peak at 3 pm-4 pm

26%
High values in the early morning
Low values

Cluster 1 45%
High values in the early morning
Low values the rest of the day.

22%
Average values
Peak at 6 am

15%
High values in the early morning.
Peak at 6 am and 3 pm-4 pm
Medium to high values in the 
morning and afternoon.

Cluster 2 26%
Low values in the early hours.
Low values.

31%
High values in the early morning
Low values elsewhere.

20%
Low values

Cluster 3 — 20%
Low values.

22%
High values in the early morning.

Cluster 4 — — 17%
Low values
Peak at 6 am

we find a similar situation; the clusters that were mostly matched by a single cluster do so again in this new change, with clusters 3 
and 1 corresponding to clusters 2 and 4, respectively. Furthermore, clusters 0 and 2 correspond to clusters 0 and 1, respectively, and 
also create the new cluster 3. With these data, we could confirm that clusters 0 and 2 are completely independent of the rest since, 
although we increase the number of clusters, the elements remain united until the end. However, cluster 1 in 𝑘 = 3 has undergone 
the most changes, having been split into two clusters in both modifications of k that were made.

5.2.2. OneHot-DS clustering for 2019-2021
In this section, the results of the OneHot-DS clustering during the second period are presented. The centroids of the clustering 

solution are illustrated in Fig. 12, while Figs. 12a and 12b display the centroids for 𝑘 = 3 and 𝑘 = 5, respectively. Focusing on the 
𝑘 = 3 solution (Fig. 12a), the highest emission value corresponds to Cluster 0, reaching 0.37 at 5:00 a.m. This scenario was not 
observed in the previous period, where a cluster exhibited values that almost reached 0.8 with the same number of clusters. Clusters 
1 and 2 exhibit similar shapes, with markedly low values throughout the day. For the centroids at 𝑘 = 5, we do not encounter a 
dissimilar situation; only Cluster 2 reaches high values, albeit not exceeding 0.5. In this instance, cluster 0 could be categorized as a 
medium-emission cluster, while the remaining clusters may be grouped into low-emission categories.

A summary of the main characteristics of these clustering solutions can be found in Table 5. It can be observed that the high CO2
values are on average below 0.3 𝑡CO2∕𝑀𝑊ℎ, much lower than in the previous 3-year period. Furthermore, there are more than 
30% days when the most polluting energies are priced again in the early morning. There are about 25% days with marginal polluting 
energies between 3 PM and 4 PM.

Therefore, we can conclude that, taking into account the results of the clustering analysis, the analyzed periods are completely 
different from each other. In the first period (2016-2018), clusters with very high emissions and others with very low ones were 
obtained, while in the second period (2019-2021) the clusters did not exceed emissions above 0.5, the most numerous being those 
11

whose emissions did not exceed 0.2 points.
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Fig. 11. Sankey diagram depicting the transfer of elements as the k value changes during the 2016-2018 period.

Fig. 12. Centroids of OneHot-DS for various clusters with each k value in the 2019-2021 period.

Table 5
Number of elements in each cluster and summary of elements for the period 2019-2021.

k 3 4 5

Cluster 0 30%
High values in the early morning
Peak at 4 pm

34%
High values in the early morning
Peak at 5 am and 4 pm

19%High values

Cluster 1 48%
Low Values
Peak at 5 am and 4 pm

25%
Low values
Peak at 4 pm

19%Low values

Cluster 2 22%
Average values
Peak at 3 pm

23%
High values

23%High values in the early morning

Cluster 3 — 18%
Low values

15%Low values

Cluster 4 — — 24%Low valuesPeak at 4 pm

Fig. 13 represents it in a Sankey diagram according to the evolution of the clusters. As can be observed, cluster 2 of 𝑘 = 3 is 
directly related to cluster 3 of 𝑘 = 4 and 𝑘 = 5. On the other hand, cluster 1 from 𝑘 = 3 is divided into two clusters 0 and 1 in 𝑘 = 4, 
whose centroids represent high and medium emission values. We find a similar situation with cluster 0 from 𝑘 = 4, which is also 
divided into two clusters, 1 (low values) and 2 (high values in the early morning) from 𝑘 = 5. Most of the elements in cluster 0 in 
12

𝑘 = 3 are mapped in clusters 2 and 0 of the other solutions, respectively.
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Fig. 13. Sankey diagram illustrating the transfer of elements as the k value changes during the 2019-2021 period.

Fig. 14. Average price values relative to marginal technologies intervals.

5.3. Correlation with price and demand

This section shows the results of the different correlations. As described in Section 4.4, linear, Pearson, and Spearman correlations 
were used to check if there exists a relationship between marginal technology and, on the other hand, marginal technology and the 
final price.

Fig. 14 illustrates the mean price values for the hours of each marginal technology. As can be observed, prices are higher in A 
technologies than in the rest in all years except in 2021 where the mean price was C and D technologies obtained higher prices. 
This fact indicates that cleaner technologies obtained a higher price than those that were more polluting during the first years of the 
study.

Focusing on the average price difference between intervals, we may observe that B and D are similar in the first years, but their 
difference increases later until 2021 where B is much lower than D. That is, D (the most polluting technologies) started at a price 
similar to that of B, but over the years it became almost twice as expensive as B.

On the other hand, we can observe how the demand has behaved with technology over the years in Fig. 15. As can be seen, 
cleaner technologies (A) have maintained their demand from 2016 to 2020, which suffered a slight decrease. At the other extreme 
of CO2 emissions (D technologies), they have increased from 2016 to 2021 until they reach demand values similar to those of A. 
However, an interruption in 2020 can be observed due to the confinement suffered by the country due to the COVID-19 pandemic 
and, therefore, to the drop in demand due to the cessation of many key economic activities such as tourism. This fact could indicate 
that as the years go by, more polluting technologies are used to the detriment of green technologies. On the other hand, if we look 
at B, we can observe that its demand levels remain stable throughout all years, while C, which is used more in the first half of the 
study (2016-2018) and suffers a decrease in the following years, even becoming the most demanded group of technologies in 2021.

In conclusion, we can establish that during the first two years, the hours in which the marginal technology was less polluting were 
characterized by a higher demand and a higher price. On the other hand, the hours in which the price was set by the most polluting 
technology were those with the lowest price and the lowest demand. Over the years, the differences have become less pronounced, 
although there was still a certain difference in 2020. In the first half of 2021, the high price of the hours marked with technologies 
13

in the C range, which also corresponded to those with the highest demand, stands out.
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Fig. 15. Average demand values relative to marginal technologies intervals.

Table 6
Frequency of occurrences above and below the median within each interval concerning the price.

2016 Price 2017 Price

Pollution interval A B C D A B C D

Number of hours above median 1186 293 215 273 2323 401 451 351
Number of hours below median 1174 625 286 881 2075 936 600 1399

2018 Price 2019 Price

Pollution interval A B C D A B C D

Number of hours above median 3755 486 247 533 2662 612 858 438
Number of hours below median 1759 818 184 889 1135 1347 1172 295

2020 Price 2021 Price

Pollution interval A B C D A B C D

Number of hours above median 2774 682 775 105 1536 239 159 84
Number of hours below median 1771 1580 850 130 870 657 53 17

Finally, we will perform an analysis using statistical inference models to examine the independence or lack thereof among the 
three factors under investigation: marginal technology, price, and demand. To apply independent inference tests, it is necessary to 
label the samples for establishing comparisons between groups. In this scenario, the samples will be labeled based on the average 
value of one of the factors and compared with the others.

For each set of hours characterized by three factors, marginal technological pollution, price, and demand, we calculate the average 
value of demand within a specified period. If the marginal technology pollution is independent of demand, the distribution of the 
number of hours above or below the average in each of the four intervals should exhibit similarity.

A chi-square test measures whether the expected distribution in the case of factor independence is similar to the actual distribu-
tion. The mean value of the demand has been taken as the average value because it is a distribution that follows a normal distribution 
with almost no outliers. However, the high variability of prices makes it advisable to take the median as the value that leaves 50% 
of the values in each interval above or below the median.

The analysis has been performed year by year, resulting in 12 chi-square analyses in Tables 6 and 7 per year for price and demand, 
respectively:

All chi-square tests are highly significant with infinitesimal p-values (of the order of 10e-53 being the largest of them). Therefore, 
it is safe to say that both the statistical distribution of prices and the demands are not independent of the marginal technology. This 
could in principle be presented as an obvious result. However, what was not expected was that once again it was clear that the hours 
with the cheapest prices are related to the most polluting technologies, especially in the early years of this study. Let us pay attention 
to Table 6, for example, on the 2016 prices, while the hours above and below average for A technologies were similar (1186 vs. 
1174), for D technologies they had a 1/3 ratio (273 vs. 881). This ratio worsens to 1/4 (351 vs. 1399) and only from 2019 the trend 
is reversed.

Regarding the demand presented in Table 7, for 2016 the hours of marginal polluting technologies have covered less hours of 
demand above the average (303) than below (851), which means that polluting technologies have been used in off-peak hours. This 
trend is maintained in the first three years, from 2019 onward, the very few hours when the technology that marked the price was 
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polluting. However, another characteristic of the historical series that can be observed is the increase in the hours where marginal 
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Table 7
Frequency of occurrences above and below the mean within each interval regarding the demand.

2016 Demand 2017 Demand

Pollution interval A B C D A B C D

Number of hours above average 1603 406 232 303 2882 554 555 407
Number of hours below average 757 512 269 851 1516 783 496 1343

2018 Demand 2019 Demand

Pollution interval A B C D A B C D

Number of hours above average 3338 485 235 353 2363 726 991 304
Number of hours below average 2176 819 196 1069 1434 1233 1039 429

2020 Demand 2021 Demand

Pollution interval A B C D A B C D

Number of hours above average 2615 693 776 71 1350 299 147 66
Number of hours below average 1930 1569 849 164 1056 597 65 35

Fig. 16. Visualization of the chi-square values between CO2 emissions and price. The Y-axis corresponds to the chi-square values.

Table 8
P-values for the chi-square analysis between technology intervals and the average price.

2016 2017 2018 2019 2020 2021

p-value 5.32E-53 1.42E-134 2.71E-149 9.07E-197 6.71E-123 1.61E-90

type B technologies have marked price, with an increasing disproportion between hours below and above the average. For example, 
in the last full year (2020), 693 hours versus 1569, a ratio of 1 to 2 that is maintained in 2021.

Finally, we have studied the relationship between the CO2 emissions of each technology, with their average price by applying the 
chi-square. It should be noted that the chi-square is a measure of the discrepancy between the observed values and the expected values 
in a contingency table. If the chi-square value is high, it means that the observed values and the expected values are significantly 
different, indicating an association between the variables. In other words, a high chi-square value suggests that the relationship 
between the variables is not coincidental or fortuitous.

Fig. 16 shows the chi-square values for all years of the study. On the other hand, Table 8 shows the results of the p-values for these 
statistical tests. It should be noted that the chi-square test was performed with 3 degrees of freedom. As can be seen, the p-values are 
below the marked significance level (alpha=0.05) and therefore the null hypothesis is rejected and it can be concluded that there is 
a significant association between technology and the price of energy.

6. Discussion

The results presented in the previous section can be summarized as follows:

(a) Two different periods can be distinguished in the horizon analyzed (2016-2021: A first period, 2016-2018, of higher emissions, 
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while last years market prices are marked by cleaner technologies.
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Fig. 17. Installed power by technology in Peninsular Spain from 2018 to 2022.

Fig. 18. Evolution of European ETS prices and emissions produced from 2008 to 2021.

(b) Off-peak periods, such as at night, are the times when the most polluting technologies have set the price. This effect increases in 
the second period (2018-2021).

(c) In general, the hours of lowest demand coincide with the hours of lowest price.

The first obtained result (a) is a consequence of the structural changes implemented in the Spanish power generation system in 
the period considered, as a consequence of the change in the Spanish energy policy in 2018, promoted by the change of government. 
In this legislative mandate, the orderly closure of coal-fired power plants (with higher emissions) and the development of new 
renewable facilities (mainly wind and photovoltaic) were decreed, for which a program of annual capacity auctions was developed. 
Fig. 17 illustrates the substantial reduction in installed capacity in coal-fired power plants (depicted by the green line), that is, almost 
7000 MW (equivalent to two thirds of installed capacity). At the same time, there was a notable increase in renewable generation 
(represented by the gray line), with a surge of almost 15,000 MW. These structural changes rationalize the identification.

In addition to the reason mentioned above, we can associate the lower emissions in the second subperiod with the loss of 
competitiveness on the market of high-emission plants, due to the increase in emission rights and fossil fuels (mainly natural gas). 
Fig. 18 shows how the costs of ECTS have increased in the period under consideration, which has caused an increase in their 
production costs and consequently in their bids, causing them to be left out of the market several times. Fig. 19 shows the distribution 
of the different technologies on the supply curve [53].
16

Fig. 19 shows the distribution of the different technologies on the supply curve [53].
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Fig. 19. Illustrative supply and demand curves for the Iberian wholesale market on July 15, 2022, at 12:00 PM.

Fig. 20. Representation of market price reduction in two different scenarios.

The second result (b) can also be attributed to the aforementioned change in the technological landscape of power generation. 
As illustrated in Fig. 17, particularly in the second subperiod (2019-2021), there has been a substantial reduction in the installed 
capacity of coal-fired plants, coupled with an almost 50% increase in renewables. Notably, the renewable generation installed during 
this period is characterized by its non-manageability, as it is contingent upon the availability of primary resources such as wind and 
sunlight.

Despite the significant rise in renewable generation, manageable generation, mostly fossil-based (combined cycle and coal-fired 
plants), continues to play a crucial role, helping to meet demand during periods of insufficient renewable resources. Given that a sub-
stantial portion of renewable generation, especially photovoltaic, is associated with daylight hours, the participation of manageable 
units (emitters), primarily combined cycles, explains the higher emission levels during off-peak hours, notably at night. Consequently, 
the higher emission levels during off-peak periods, such as nighttime, can be justified by the unavailability of solar resources during 
these times.

Lastly, the functioning of a competitive market based on marginal costs justifies the results obtained in point (c). The observation 
that hours of lowest demand (e.g., evenings or holidays) coincide with the lowest prices can be explained by a shift in the demand 
function towards the origin (depicted in Fig. 20a), leading to a reduction in prices, all else being equal (ceteris paribus). In the 
subsequent years, it is plausible for lower prices to manifest during peak solar production hours (central hours of the day) since 
the contribution of these plants would expand the supply (depicted in Fig. 20b), while the demand would remain constant (ceteris 
paribus). Fig. 20a illustrates the price reduction associated with a demand contraction (consistent with the model), while Fig. 20b 
describes the possible outcomes after the commissioning of the planned photovoltaic facilities.

Although the above points to the consistency of the results obtained, the limitations of the study can be highlighted by the fact 
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that the emission levels adopted in the analysis correspond to those of the marginal technologies in the market, and not to the total, 
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for which it would be necessary to gather additional information. In any case, given that the variability of the emissions will depend 
on marginal technology, the results obtained were found to be significant.

7. Conclusions and future work

In summary, this paper introduces a novel methodology to uncover new information related to energy generation technologies 
currently used to fix energy prices. The study uses techniques such as descriptive statistics, clustering, and statistical inference to 
identify similarities among various time series generated during the analysis of electricity technologies that affect the price of energy 
in Spain.

The results of the study suggest that there are two distinct periods within the 6-year analysis period (2016-2021). The first 
period, 2016-2018, can be described as the most polluting period, where less clean technologies played an important role in setting 
the price. The results show that hourly periods of lower demand, such as overnight and weekends, are times when the most polluting 
technologies have marked the price. During this initial three-year period, the hours of lower demand and lower price coincided with 
the most polluting technologies. The second period, from 2019-2021, can be defined as the cleanest period, where the use of green 
technologies is the main source of energy generation. The clustering results show that all clusters have centroids below the levels 
of the previous period. This conclusion is aligned with the change in energy policy implemented in Spain since 2018, in which a 
closure agenda for the most polluting power plants was developed. On the other hand, the evolution of allowance prices in Europe 
has increased from an average of 6 €/tCO2 to 60 €/tCO2 (x10), reaching peaks close to 100 €/𝑡CO2. As a result, higher emission 
units (coal) suffered cost increases, which prevented their incorporation into the market.

The robust correlation observed between emissions, prices and energy demand, as analyzed in this paper, is likely to carry 
significant implications for the formulation of energy policy. It offers the opportunity to investigate how the capacity and technology 
choices for power plants, whether promoted or authorized by regulatory bodies, impact these variables, thereby influencing aspects 
such as inflation and environmental outcomes. However, it is crucial to approach the results obtained with caution, acknowledging 
the presence of numerous other exogenous parameters that can influence the outcomes, including but not limited to fuel prices (e.g., 
natural gas and coal) and emissions trading system (ECTS) dynamics.

While this study focused on a specific range of years, expanding the analysis to include the most recent data could reveal po-
tential changes in trends. Such an extension would be valuable for providing insights into the contemporary energy landscape and 
its potential shifts. Furthermore, this work holds ecological significance by elucidating how different technologies contribute to CO2
emissions and the intricate relationships among technology, price, and demand. Although the current study offers valuable infor-
mation on the dynamics of electricity generation technologies, pollution levels, and electricity prices from 2016 to 2021, a more 
extensive longitudinal analysis is warranted. Future studies should consider examining data over a longer period to foster a compre-
hensive understanding of evolving trends and changes in electricity generation technologies and their corresponding environmental 
impacts.

Future studies should try to extend the period of years, review previous periods in which pollution was not taken into account, 
and consider the current period in which the price of electricity in Spain reaches historical records due to changes in tariffs, high 
inflation, and international political conflicts. It would also be interesting to apply this methodology using other clustering algo-
rithms and approach the problem from another point of view, such as predicting CO2 emissions. On the other hand, the relationship 
between electricity prices, pollution levels, and power generation technologies is multifaceted and influenced by various socioeco-
nomic factors. To provide a comprehensive analysis, future research should consider the integration of socioeconomic data, such 
as GDP growth, population dynamics, and industrial activities. Incorporating these factors into the analysis can help identify the 
drivers of certain energy price trends and better elucidate the interaction between environmental concerns and economic realities. In 
addition, international politics, agreements, and regulatory frameworks play an important role in shaping a country’s energy mix and 
environmental policies. The impact of specific policies and regulations on the price of electricity and the adoption of environmental 
policies should also be investigated.
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